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Recent studies on probabi l ist ic causation and s ta t is t ica l explanation
(Cartwright 1979; Salmon 1984), I believe, have opened up the possi-
b i l i t y of a genuine unif ication between philosophical approaches and
causal model ing (CM) in the social, behavioral and biological sciences
(Wright 133^; Blalock 1964; Asher 1976). This unif ication rests on the
stat is t ica l tools employed, the principle of common cause, the irreduci-
b i l i t y of causation to probability or s ta t i s t i cs , and the idea of causal
process as a suitable framework for understanding causal relationships.
The aim of this paper is to draw attention to these four areas of con-
tact by focusing on the relevant aspects of CM.

1. Causal Modeling

Causal analysis in the social sciences is based on two fundamental
notions: model and method. A causal model fs an idealized picture of
the causal relationships in the world. Method, on the other hand,
refers to certain s ta t is t ica l techniques that are used to evaluate and
test a causal model jusing data which consist of j o i n t observations on
the model variables. Accordingly, causal modeling is the specification
of the hypothesized causal relations among a number of variables as a
model and i ts evaluation by an appropriate s ta t is t ica l technique.

A causal model is expressed in terms of a set of equations and a
directed graph. Below is a simple linear and additive model:

(1) z3 = p i Z ] + p 2 2 z + U

It asserts that z, is caused by z. and z , which themselves are not
causally related, but may be correlated with each other.

p's are called model parameters and interpreted as measuring the
direct causal effects: p measures the causal impact of z., and p of
z_, on z,. More precisely, a unit change in each explanatory variable
(Zj and 1 ) produces on the average a change of p. units in the variable
to be explained (z,). The fundamental idea behind CM is that a variable
is a cause of another if and only if the corresponding parameter is
significantly different from zero. If the model above is correct, for
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instance, we should find non-zero estimates for both p and p . These
parameters are, of course, unknown to researchers, and one of their most
important aims is to compute rel iable estimates of the parameters from
sample data.

U is a random variable, called disturbance, which represents measure-
ment errors, and more importantly, a l l causal factors for z which are
not exp l ic i t l y included in the model. U is needed to have completeness
over the model and required to meet certain assumptions, the most
important of which is that i t is uncorrelated with the explanatory
variables. I w i l l call th is the U-assumption.

Violation of the U-assumption results in biased estimates for p's.
Suppose that U contains a variable z, which is correlated with z , say.
Then the estimate for p. w i l l be misleading since, in rea l i ty , i t is a
combination of the influences of both z and z. on z , and the model
w i l l at t r ibute some of the influence of z, to z.. Consequently, the
stat is t ica l estimation procedure may yield a negative or even zero value
for an actually positive p.. Models in which omitted variables (such as
z. ) both cause the variable to be explained (z,) and are correlated with
the explanatory variables (z. and/or z.) are said to be misspecified.
As we shall see later, the misspecif icat ion problem _i_s_ Simpson's para-
dox.

Typically, CM employs two types of linear models: recursive (or
path) and non-recursive (or structural equation) models. A model is
said to be recursive i f the disturbance terms across the model equations
are uncorrelated with each other and there are no reciprocal causal con-
nections between any two variables. A model is non-recursive i f i t is
not recursive. For each type of model, there are several different
techniques that can be applied. Ordinary least squares regression, path
analysis, and the Simon-Blalock method (a special case of path analysis)
are a l l appropriate for recursive models.

A desirable property of recursive models is that they are ident i -
f iable; that is, the model parameters can always be estimated. The
issue of identi f icat ion is ultimately linked to, the problem of reduc-
t ion of causation to s ta t i s t i cs .

2. Stat ist ical Tools

The most important tool for probabi l ist ic causation and stat is t ica l
explanation in philosophy has been the use of conditional probabil i t ies.
In his S-R model, for example, Salmon (1971) has made much use of the
notion of s ta t is t ica l relevance, P(A/B) £ P(A), and screening-off,
P(A/BC) = P(A/B) while P(A/BC) ^ P(A/C). He showed, among other things,
that most common-cause structures exhibit the screening-off relations,
as in the example of atmospheric conditions rendering irrelevant the
association between the occurrence of storms and a drop in barometer
reading.

Not surprisingly, the s imi lar i t ies between the probabi l ist ic approach
and CM start with these fundamental notions. F i rs t , while the former
speaks of s ta t is t ica l relevance, the lat ter speaks of (zero-order) cor-
relation coeff ic ient. The absence of correlation is actually equivalent
to s ta t is t ica l irrelevance. By def ini t ion of the correlation
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coefficient, P.R. for dichotomous variables:

Numerator of P A B = P(AB) - P(A) P(B) = 0 iff P(A/B) = P(A).

The proof easily follows from the conditional probability formula
( ) ( ) ( )

Second, the vanishing of ( f i rst-order) part ial correlation coef f i -
cient, i .e . , r _ = 0, conveys the same idea as screening-off: The
association betweln x and y disappears when z is controlled. In fact ,
this result can be deduced from a recursive common-cause model:

(2a) x = p z + U . , * *~~UX

(2b) y = p2z + Uy ^ , U y .

Multiply each equation by z and take the expected value:

E(xz) = p,E(z2) + E(zUx)

E(yz) = p2E(z2) + E(zUy).

E(zU ) = E(zU ) = 0 because of £he U-assumption. Also, since a l l the
variables areystandardized, E(z ) = 1, E(xz) = r and E(yz) = r .
Hence,

( 3 ) rxz = P1 a n d ryz = P2-

Then multiply (2a) and (2b) side by side and take the expected value as
before:

CO r = p-p2; or by ( 3 ) ,
xy

(5) r = r r .xy xz yz

Final ly, by def ini t ion of the part ial correlation coefficient

Numerator o f r = r - r r = 0 by (5).
x y z xy xz yz

Thanks to Salmon's recent e f fo r ts , the s ta t is t ica l s imi lar i t ies be-
tween philosophical theories of causation and CM go beyond these funda-
mental notions. While ear l ier Salmon believed that s ta t is t ica l
relevance and screening-off suffice to characterize s tat is t ica l explana-
t ion , he now thinks that one actually needs to measure the relevance of
each factor that figures in the explanation:

It is important to know how each factor is relevant—
whether positively or negatively, and how strongly
both in the population at large and in various sub-
groups of the population . . . .
The moral is that we need to know not only how the
various factors D, , U , F . . . , are relevant to the
outcome, B., but Row ?he relevance of each of them is
affected by the presence or absence of the others.
(198*1, pp. 39-AO).
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To this end, Salmon adds a new requirement to his old S-R model (or S-R
basi s as he calls it now), which enables him to derive such conditional
probabilities as P(B./AD E ). These tell "how each factor is relevant
and how strongly" wiihin each cell of the partition of the reference
class.

Salmon's new S-R basis is a further step toward making full use of
statistical machinary employed by causal modeling. Although Salmon does
not explicitly define a measure for weighing relevance, it can be shown
that his approach yields numerically the same results as those of CM
applied to dichotomdus variables.

The overlap between the two approaches not only brings philosophy of
science closer to the sciences, but also points to the necessity and
usefulness of measuring the impact of one factor upon another. It shows
that the precise degree to which A influences B (the computation of which
is at the heart of CM) is quite as important as the mere fact of such
influence and gives a deeper insight into causal relations.

3. The Problem of Reduction

The complexity of statistical techniques employed in CM and the fact
that social scientists seldom discuss the irreducibi1ity of causal rela-
tions to statistical ones might give the impression that CM is a sophis-
ticated reductionist program. For example, in a recent article Ellett
and Ericson (I983) attribute the following reductionist rule to causal
model ing:

Rule S.B. If the correlation r between x and z is
high positive (or negative) andxzthe partial correlation
coefficient r _ between x and z with y "held constant"
is zero, then ' either (a) y is an intervening variable —
the causal effect of x or z (or vice versa) operates
through y; or (b) y is a common cause of x and z—the
correlation between x and z is spurious, (pp. 70-71).

In other words, that r = 0 is sufficient to infer either x •*•
y -v z or xz'y

x + y + z or y^
^ z .

It is not difficult to show that scientists working on causal models
neither used nor endorsed such a rule, for it is invalid, as Sewall
Wright showed as early as 1931*:

Let r =0.64 and r = r = 0.8.Then numerator of r . = r
7\£L " / 7 X Z j • • X Z

r r = O.Sk - (0.8) (0.8) = 0.
Ay y^

That reduatlon in general is not an aim of CM can be seen from the
care with which methodologists speak of their techniques. Thus, Sewall
Wright writes: "It has been emphasized that the method of path
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coefficient is not intended to accomplish the impossible task of de-
ducing causal relations from the values of the correlation coefficients.
It is intended to combine the quantitative information given by the cor-
relations with such qualitative information as may be at hand on causal
relations to give a quantitative interpretation." (1934, p. 193). In a
similar vein, two leading sociologists, P. M. Blau and 0. D. Duncan, echo
Sewall Wright: "The technique of path analysis is not a method for dis-
covering causal laws but a procedure for giving a quantitative interpre-
tation to the manifestations of a known or assumed causal system."
(1967, P. 177).

Contrary to appearance, these quotations are not an appeal to
authority. They simply express the nonreductionist character of CM.
It is instructive to see why causal methodology cannot be reductionist.
The scientists quoted above allude to the fact that one must have an
explicit, well defined causal model in the first place so that an ap-
propriate statistical method can be meaningfully applied. Recall the U-
assumption that all models share: the disturbance term(s), U, must be
uncorrelated with the explanatory variables; otherwise the statistical
methods yield biased (misleading) estimates for the model parameters.
But U contains all causal factors for the variable to be explained.
Therefore, to see if C causes E one must make the causal assumption that
all other causes of E that are not explicitly incorporated into the
model are uncorrelated with C. This is one of the two reasons why CM
cannot (and does not attempt to) reduce causation to statistics.

In a perceptive article, Nancy Cartwright (1979) gives a similar ac-
count as to why statistical analyses of causation (such as Patrick
Suppes') have failed. She shows that most of the counterexamples
against the idea that a cause C should increase (or merely change) the
probability of its effect E have the same structure: there is a third
factor which both causes E and is correlated with C. In the presence
of such a factor, C may fail to increase (or change) the probability of
E even if C causes E. This statistical phenomenon is known as Simpson's
paradox. The following example by Cartwright (1979, PP- 421-422) il-
lustrates how it functions.

Suppose that smoking causes heart disease (s -+ h). We would expect
that P(h/s) > P(h). However, if exercising should happen to prevent
heart disease more effectively than smoking causes it, and if smoking
and exercising are themselves sufficiently correlated, we might actually
observe that P(h/s) < P(h). That is, if smokers also tend strongly to
be exercisers, the net result may be that they are in fact less likely
to have heart disease.

As cases of Simpson's paradox fail to exhibit the expected increase
in the probability of the effect, so the misspecification problem in CM
leads to biased estimates of the true model parameters. The reasons why
CM is non-reductionist and why probabilistic theories of causation fail
to reduce causal laws to laws of association are at root identical.

But there is another reason why CM cannot be reductionist. Statisti-
cal data underdetermine causal models in the sense that there may be
more than one model compatible with a given body of data. Let us take
the simplest case possible: a two-variable recursive model.
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Model 1 : z P 2 1 Z !

Model 2: z2 -^ zf^ 1 z^ = p ^ z + U r

Our aim is to see whether we can unequivocally distinguish between these
two models solely on the basis of statistical relationships. As before,
we assume that z. represents standardized scores, and that z and z. are
uncorrelated witn U_ and U. respectively, so that the problem of mis-
specification'does not arise. By the method of expectations,

E ( Z 1 Z 2 ) = P21

P12 E ( Z 2

E(U2Zl)

E(U,z2) M ° d e l

R e c a l l i n g t h a t E ( z . U . ) = 0 ( i t j ) , E ( z . z . ) = r . . ( i tj) and

1 (i = j)

since all variables are standardized, we get respectively:

12
P21 and 12 12 *

In other words, the model parameters in both cases are given by the same
quantity, namely the correlation coefficient r... Therefore, we cannot
distinguish between them.

It might be argued that the time sequence of events does enable us to
choose between the two models. If, for instance, z. occurs before z_,
we can eliminate Model 2. But the difficulty is that we do not have
this kind of information for many social phenomena. Is it large budget
deficits that cause higher inflation rates, or vice versa? Of course,
it may be both, which suggests that we should perhaps test one non-
recursive model (rather than two separate recursive models) in which
both z.

1
and z cause each other reciprocally:

U, Z2 " P21 Z1 U2

Z1 " P12 Z2 + U1 •

The rationale is that if z causes z and not vice versa, then p • must
be zero while p.. is not. In the case of z causing z , only p would
be zero. If in reality z. and z are mutually related as hypotnesized,
then neither parameter should be zero. In any case, it seems better to
test this single model.

Unfortunately, we run into the problem of identi fication. Since U
influences z through z , and similarly IL affects z through z , IJ
will be correlated with z. and IL with z.. Hence, we cannot assume
that E(z.u.) = 0(i f1 j). This results in having one less equation than
needed. Tne model becomes underdetermined, and neitherp nor p „ can be
computed. 21

In general, any model in which all possible causal paths are included
will have more parameters than the number of equations from which they

https://doi.org/10.1086/psaprocbienmeetp.1986.1.193103 Published online by Cambridge University Press

https://doi.org/10.1086/psaprocbienmeetp.1986.1.193103


18

can be estimated. Consequently, all such models will be unidentifiable,
and thus irreducible to statistical relations.

The recognition of the non-reductionist character of CM removes the
tension between it and the recent developments in probabilistic theories
of causation. As we saw, Cartwright abandons the program of reducing
causal laws to laws of association and embraces the less ambitious, but
perhaps more meaningful task of specifying the precise nature of the
relationship between the two. CM methodology can be seen as a systemat-
ic attempt to study the statistical manifestations of underlying causal
structures and hence to understand their nature.

*t. The Principle of Common Cause

Causal modeling makes extensive use of the common-cause principle,
advocated by Reichenbach and Salmon, which states that "when apparent
coincidences occur that are too improbable to be attributed to chance,
they can be explained by reference to a common causal antecedent."
(Salmon 198^1, p. 158). Model construction in CM begins with the identi-
fication of highly correlated variables and proceeds with postulating a
direct and/or indirect causal relationship. If such a causal connection
is unlikely, a common cause is hypothesized on the basis of available
social theories. The principle of common cause lends CM predictive as
well as explanatory power, since a common-cause model implies the
vanishing of a partial correlation, which can easily be tested by sample
statistical data.

Moreover, CM techniques such as path analysis employ a result known
as the decomposition law , whose effect is to resolve a statistical
association into its causal components, much in the spirit of the common
cause principle. Consider the common-cause model of section 2. As we
saw, r = P.Po- This equation (which is also derivable from the de-
composition law) can be interpreted as showing how the common cause, z,
produces a (spurious) correlation between x and y, because p and p
represent the causal impact of z on x and y, respectively. The magni-
tude of this spurious correlation is equal to the product of p1 and p .

I would like to argue further that a generalized version of the com-
mon cause principle also plays a crucial role in labeling a model
causal. I claim that the causal character of any specific model is im-
ported via (l) the U-assumption, and (2) the principle of causation
according to which the correlation between any two variables in the
model is either due to a (direct or indirect) causal connection or is
the result of a common cause.

The argument is this. (1) and (2) together imply that the explana-
tory variables in the model are not causally related to U's; for other-
wise U's would be correlated with them, which violates (1). But, by
(2), any observed correlation between the explanatory variables and the
variable-to-be explained must be produced by the causal relations be-
tween them, which are explicitly included in the model. Therefore, the
model is a causal one.

Needless to say, the validity of my argument depends upon (1) and
(2). As I have discussed earlier, the U-assumption is necessary to
avoid misspecification. Here, it ensures that the correlations in the
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model are not produced by factors outside the model. The inclusion of
all other causal factors as part of the model provides a closure over
the system variables, thereby preventing outside ones from interfering
and producing spurious correlations in the model. The difficulty with
the il-assumption is that there is no direct way of checking if it is met
in a particular model. If we suspect that there are variables in U cor-
related with any of the explanatory variables, we must explicitly in-
corporate them into the model.

On the other hand, the status of the principle of causation is de-
batable. Although the idea behind it (namely, that statistical regu-
larities should be accounted for in terms of causal considerations) is
sound, surely there might be "accidental correlations" in the world for
which no cause (common or direct) can be invoked. For this reason, it
seems to me that we should interpret (2) more as a necessary local con-
dition for the applicability of the model to factual cases than as a
global principle of explanation in general. I believe that, because of
this local interpretation, the principle of causation escapes much of
the criticism launched by van Fraassen (1982) against the principle of
common cause. And, regardless of their universality, both principles
undoubtedly play an important role for scientific explanations, at least
outside quantum domain.

5. Causal Processes

Wesley Salmon is another philosopher who is convinced that causal
factors cannot be explicated solely in terms of statistical relations.
Accordingly, in the second part of his (198^t), he provides a detailed
characterization of causal relations in terms of physical processes.
Salmon argues that, contrary to what Hume had assumed, causation is a
three-term relation: the cause, the effect, and the process that con-
nects them. It is the processes that are basic to causation, not
events.

The distinctive feature of a physical process is its continuity in
space and time (except, perhaps, in quantum theory). Of course, not all
continuous processes are causal. While a car moving on a road consti-
tutes a causal process, its shadow on the road is a paradigm case of a
non-causal one. Salmon proposes a principle (which was first formulated
by Hans Reichenbach) to distinguish between the two. According to the
criterion of mark transmission, a causal process can transmit a mark;
a non-causal process cannot. To use one of Salmon's examples, a beam
of light coming from a light source qualifies as a genuine causal pro-
cess because if we put a red filter through its path, this mark will be
carried by the light beam and a red spot will be observed on the screen.
Shadows, by contrast, are not capable of transmitting such marks.

In many cases, understanding or even accurately describing the causal
process is as important as identifying the cause. I fire a cannon, the
ball follows a parabolic path and hits the ground, opening up a big
hole. For a physicist, the interesting problem here is not the identi-
fication of the cause (firing), but is to give a satisfactory descrip-
tion of the cannon ball's trajectory.

I believe that the idea of causal process provides a suitable frame-
work both for causal modeling and for models of causal explanation—a
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framework which has been anticipated and articulated by the founders of
CM, Sewall Wright and Herbert Simon.

Simon, a well known econometrician who was one of the first to apply
CM to social sciences, argues that the idea of a mechanism is the basis
of all causal explanations. He writes that "... in theories in the
social and behavioral sciences, we frequently employ the postulate, 'if
no communication, then no influence'." (1979. p- 73). A behavior is
explained by identifying the stimuli that affected it as well as by
showing how the stimuli were communicated. Our suspicion of ESP, re-
marks Simon, rests completely upon the "absence of ... mechanism or of
specifications of what the character of such a mechanism might be."
(p. 70).

One might think that Simon uses the word 'mechanism' metaphorically,
not literally. However, he makes quite clear that a mechanism is a real
entity: "In many, but not all, cases a mechanism means something which
experience tells us is capable of producing the observed effect. If the
mechanism is not itself visible, then there must be some detectable
circumstances that tell us it is present." (p. 70). It is these mechan-
isms that causa 1 rootle ljs aim to capture: "scientific inquiry is concerned
not only with discovering quantitative relations between variables, but
also with interpreting these relations in terms of the underlying causal
mechanisms that produced them." (p. 79).

The resemblance between H. Simon's and W. Salmon's (recent) views on
causality is obvious. Both rely upon an intuitive notion of causality,
based upon (continuous) processes, as independent and fundamental to any
potential scientific explanation.

There is even a more striking similarity between Salmon's and Sewall
Wright's thinking on causality. Wright's views are so novel for his
time and so well articulated that it is regrettable they went unnoticed
by philosophers for more than fifty years:

It is assumed that any event always traces back continuously
in time and space through successions of previous events and
that, statistically, variations in events of a given sort may
be traced in principle to variations in previous ones of
specified sort, with varying degrees of relative importance,
however difficult it may be in practice to disentangle such
unidirectional sequences from the effects of common factors
or of rapid reciprocal interaction. (193.̂ *» PP- 15-16)

By "traces back" Wright implied that the directionality of time was
fundamental to his notion of causality. He was prepared to defend
this idea with remarkable awareness of (then) recent developments in
physics.

Under the theory of relativity ... the objective world is
to be thought of as a complex network of point events.
Although two such events sufficiently remote from each
other in space, relative to their separation in time, may
have their order of succession reversed in the systems of
two different observers, order in time is invariant along
any strand of this network involving continuity of physical
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action ... . Such successions of events as involved in the
movement of a shadow over a surface may indeed be reversed
by change of viewpoint ... but the continuity of physical
action here is not along the path of the shadow ... . In
principle the distinction is clear enough. Experimental
intervention is possible only in the true lines of causa-
tion. (193*1, p. 176).

This should sound quite familiar to those acquainted with Reichenbach's
(1956) arguments, adopted by Salmon as well, on the directionality of
time, the relation between time and causality, and the distinction
between causal processes and pseudoprocesses by means of the mark
criterion.

Wright, a population geneticist, Simon, an econometrician, and Salmon,
a philosopher, have independently showed how we can make sense of causa-
tion if we turn to processes and mechanisms rather than events. That
the same notion can be meaningfully appropriated for physical, biologi-
cal, and social phenomena as well as in philosophy suggests that we may
have finally hit upon the correct view of causation.

The similarities between causal modeling and recent developments in
probabilistic causation and statistical explanation extend well beyond
the technical details, to cover the fundamental intuitions and concerns
behind them. We have at our disposal a powerful scientific theory and
the possibility of a genuine unification between a scientific discipline
and philosophy--a unification from which both sides can benefit, true to
the spirit of philosophy of science.

Notes

A typical assumption (which facilitates the use of statistical tech-
niques such as regression) about these variables is that they are con-
tinuous, i.e., measured over an interval scale. We shall further assume
that they are standardized, that is, measured in standard deviations
from their respective means.

2
In this paper, we will bypass the issues of model construction (the

choice of relevant explanatory variables for the explanandum variable
and their interrelationships) and estimation. The interested reader can
refer to Blalock (1969), Duncan (1975), Hanushek and Jackson (1977).

See Irzik and Meyer (forthcoming), where several superiorities of CM
are also pointed out.

i,
Wright is a population geneticist, the first to develop the theory

of CM and successfully apply it to a number of biological cases.

It is possible to show that if reduction is not possible here, it
cannot succeed for higher order systems either.

6See Wright (193^); Asher (1976) .

We should note that this argument does not tell us anything about the
direction of causality, but simply reveals and ensures the existence of

https://doi.org/10.1086/psaprocbienmeetp.1986.1.193103 Published online by Cambridge University Press

https://doi.org/10.1086/psaprocbienmeetp.1986.1.193103


22

some causal connections within the model.
Q

See van Fraassen (1982) for an example from quantum mechanics.
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