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Abstract

Let Q(n) denote the number of partitions of n into distinct parts. Merca [‘Ramanujan-type congruences
modulo 4 for partitions into distinct parts’, An. Şt. Univ. Ovidius Constanţa 30(3) (2022), 185–199] derived
some congruences modulo 4 and 8 for Q(n) and posed a conjecture on congruences modulo powers of 2
enjoyed by Q(n). We present an approach which can be used to prove a family of internal congruence
relations modulo powers of 2 concerning Q(n). As an immediate consequence, we not only prove Merca’s
conjecture, but also derive many internal congruences modulo powers of 2 satisfied by Q(n). Moreover,
we establish an infinite family of congruence relations modulo 4 for Q(n).
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1. Introduction

A partition π of a positive integer n is a finite weakly decreasing sequence of positive
integers π1 ≥ π2 ≥ · · · ≥ πr such that

∑r
i=1 πi = n. The πi are called the parts of the

partition π. Let p(n) denote the number of partitions of n with the convention that
p(0) = 1. The generating function of p(n), derived by Euler, is given by

∞∑
n=0

p(n)qn =
1

(q; q)∞
,
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[2] Congruences for partitions into distinct parts 27

where, here and throughout this paper, we always assume that q is a complex number
such that |q| < 1 and adopt the customary notation:

(a; q)∞ =
∞∏

j=0

(1 − aqj).

In 1919, Ramanujan discovered three celebrated congruences for the partition
function p(n) (see [4]), which were later confirmed by Atkin [2] and Watson [15]:
for any n ≥ 0 and α ≥ 1,

p(5αn + δ5,α) ≡ 0 (mod 5α), (1.1)

p(7αn + δ7,α) ≡ 0 (mod 7�α/2�+1), (1.2)

p(11αn + δ11,α) ≡ 0 (mod 11α), (1.3)

where δp,α is the least positive integer satisfying 24δp,α ≡ 1 (mod pα) with
p ∈ {5, 7, 11}. Since then, congruence properties for various partition functions have
been a hot topic in the theory of partitions and have motivated a large amount of
research.

Another ingredient of the theory of partitions is the study of partition identities.
In 1748, Euler [7] proved the most well-known partition theorem which states that
there are as many partitions of n into distinct parts as into odd parts. In terms of the
generating function,

∞∑
n=0

Q(n)qn = (−q; q)∞ =
1

(q; q2)∞
=

(q2; q2)∞
(q; q)∞

, (1.4)

where Q(n) denotes the number of partitions of n into distinct parts. According to
Euler’s pentagonal number theorem [1, page 17, (1.4.11)],

(q; q)∞ =
∞∑

n=−∞
(−1)nqn(3n−1)/2,

we find that almost all values of Q(n) are even, that is,

lim
X→∞

#{0 ≤ n ≤ X : Q(n) ≡ 0 (mod 2)}
X

= 1. (1.5)

Indeed, Q(n) is odd if and only if n is a generalised pentagonal number. Motivated
by (1.1)–(1.5), many scholars subsequently investigated congruence properties and
arithmetic density properties of Q(n). For instance, in 1997, Gordon and Ono [8]
proved the striking result that for any positive integer m, Q(n) is divisible by 2m for
almost all nonnegative integers n, that is,

lim
X→∞

#{0 ≤ n ≤ X : Q(n) ≡ 0 (mod 2m)}
X

= 1. (1.6)

The identity (1.6) is a powerful result on the arithmetic properties of Q(n). However, it
is not a constructive result and the theory of modular forms used in the proof of (1.6)
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TABLE 1. A table of values of cp.

p 11 13 17 19 23 31 37 41 43 47 59
cp 3 5 15 27 89 1 45 231 131 305 51

p 61 67 71 79 83 89 103 107 109 113
cp 21 107 5769 1 27 23 1 3 37 367

cannot be applied to derive the explicit congruences enjoyed by Q(n). Therefore, it is
still of interest to find explicit congruences for Q(n).

In a recent paper, Merca [9] derived some congruences modulo 4 and 8 for Q(n)
by using Smoot’s Mathematica implementation [13] of Radu’s algorithm [12] on
Ramanujan–Kolberg identities for partition functions. At the end of his paper, Merca
posed the following conjecture on congruences modulo powers of 2 for Q(n).

CONJECTURE 1.1 (Merca [9], Conjecture). Let (p, k) ∈ S. For any n � 0 (mod p),

Q
(
pn +

p2 − 1
24

)
≡ 0 (mod 2k),

where

S ∈ {(11, 5), (13, 6), (17, 8), (19, 9), (23, 11), (31, 3), (37, 6),
(41, 8), (43, 9), (47, 11), (59, 6), (61, 6), (67, 10), (71, 13),
(79, 3), (83, 5), (89, 9), (103, 3), (107, 6), (109, 6), (113, 9)}. (1.7)

In this paper, we prove the following result.

THEOREM 1.2. Let S be defined as in (1.7). Then for any (p, k) ∈ S,
∞∑

n=0

Q
(
pn +

p2 − 1
24

)
qn ≡ cp

∞∑
n=0

Q(n)qpn (mod 2k), (1.8)

where cp is given in Table 1.

As an immediate consequence of (1.8), we obtain the following congruences and
internal congruences enjoyed by Q(n), which confirms Conjecture 1.1.

COROLLARY 1.3. Let S be defined as in (1.7). Then for any (p, k) ∈ S and 1 ≤ i ≤
p − 1,

Q
(
p2n +

(24i + p)p − 1
24

)
≡ 0 (mod 2k).

Moreover, for any n ≥ 0,

Q
(
p2n +

p2 − 1
24

)
≡ cpQ(n) (mod 2k),

where cp is given in Table 1.
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The following theorem shows that there are an infinite family of congruence
relations of the form (1.8) satisfied by Q(n).

THEOREM 1.4. Let p ≥ 5 be a prime number. If
(−24

p

)
= −1, then

∞∑
n=0

Q
(
pn +

p2 − 1
24

)
qn ≡ (−1)(±p−1)/6

∞∑
n=0

Q(n)qpn (mod 4), (1.9)

where
( ·

p

)
is the Legendre symbol and

(±p − 1)/6 =

⎧⎪⎪⎨⎪⎪⎩
(p − 1)/6 if p ≡ 1 (mod 6),
(−p − 1)/6 if p ≡ 5 (mod 6).

(1.10)

The rest of this paper is organised as follows. In Section 2, we collect some notation
and terminology on modular forms. The proof of Theorem 1.2 is presented in Section 3
and that of Theorem 1.4 in Section 4. Finally, we pose a conjecture on congruence
relations for Q(n) modulo 4 which strengthens both (1.9) and a result of Merca.

2. Preliminaries

We first recall some terminology from the theory of modular forms. The full
modular group is given by

Γ =

{ (
a b
c d

)
: a, b, c, d ∈ Z, and ad − bc = 1

}
,

and for a positive integer N, the congruence subgroup Γ0(N) is defined by

Γ0(N) =
{ (

a b
c d

)
∈ Γ : c ≡ 0 (mod N)

}
.

Let γ be the matrix ( a b
c d ) from now on. Then γ acts on τ ∈ C by the linear fractional

transformation

γτ =
aτ + b
cτ + d

and γ∞ = lim
τ→∞
γτ.

Let N, k be positive integers and H = {τ ∈ C : Im(τ) > 0}. A holomorphic function
f : H→ C is called a modular function of weight k for Γ0(N) if it satisfies the following
two conditions:

(1) for all γ ∈ Γ0(N), f (γτ) = (cτ + d)k f (τ);
(2) for any γ ∈ Γ, (cτ + d)−k f (γτ) has a Fourier expansion of the form

(cτ + d)−k f (γτ) =
∞∑

n=nγ

a(n)qn
wγ ,

where a(nγ) � 0, qwγ = e2πiτ/wγ and wγ = N/gcd(c2, N).
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In particular, if nγ ≥ 0 for all γ ∈ Γ, then we call f a modular form of weight k for
Γ0(N). A modular function with weight 0 for Γ0(N) is referred to as a modular function
for Γ0(N). For a modular function f (τ) of weight k with respect to Γ0(N), the order of
f (τ) at the cusp a/c ∈ Q ∪ {∞} is defined by

orda/c( f ) = nγ

for some γ ∈ Γ such that γ∞ = a/c; orda/c( f ) is well defined (see [6, page 72]).
Radu [12] developed the Ramanujan–Kolberg algorithm to derive the Ramanujan–

Kolberg identities on a class of partition functions defined in terms of eta-quotients
using modular functions for Γ0(N) (see [11]). Smoot [13] developed a Mathematica
package RaduRK to implement Radu’s algorithm.

Let the partition function a(n) be defined by
∞∑

n=0

a(n)qn =
∏
δ|M

(qδ, qδ)rδ
∞, (2.1)

where M, δ are positive integers and rδ are integers. For any m ≥ 1 and 0 ≤ t ≤ m − 1,
Radu [12] defined

gm,t(τ) = q(t+�)/m
∞∑

n=0

a(mn + t)qn,

where

� =
1

24

∑
δ|M
δrδ,

and gave a criterion for a function involving gm,t(τ) to be a modular function with
respect to Γ0(N), where N satisfies the following conditions, with κ = gcd(1 − m2, 24):

(1) for every prime p, p | m implies p | N;
(2) for every δ dividing M with rδ � 0, δ | M implies δ | mN;
(3) κmN2 ∑

δ|M rδ/δ ≡ 0 (mod 24);
(4) κN

∑
δ|M rδ ≡ 0 (mod 8);

(5) 24m/gcd(κ(−24t −∑
δ|M δrδ), 24m) | N;

(6) if 2 | m, then κN ≡ 0 (mod 4) and 8 | Ns, or 2 | s and 8 | N(1 − j), where∏
δ|M δ

|rδ | = 2sj and j, s ∈ Z with j odd.

Given a positive integer n and an integer x, we denote by [x]n the residue class of x
modulo n. Let

Z∗n = {[x]n ∈ Zn : gcd(x, n) = 1} and Sn = {y2 : y ∈ Z∗n}.

Define the set

Pm(t) =
{[

ts +
s − 1
24

∑
δ|M
δrδ

]
m

: s ∈ S24m

}
.
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Recall that the Dedekind eta-function η(τ) is defined by

η(τ) = q1/24
∞∏

n=1

(1 − qn),

where q = e2πiτ and τ ∈ H.

THEOREM 2.1 [12, Theorem 45]. For a partition function a(n) defined as in (2.1),
and integers m ≥ 1, 0 ≤ t ≤ m − 1, suppose that N is a positive integer satisfying the
conditions (1)–(6). Let

F(τ) =
∏
δ|N
ηsδ(δτ)

∏
t′∈Pm(t)

gm,t′(τ),

where sδ are integers. Then F(τ) is a modular function for Γ0(N) if and only if the sδ
satisfy the following conditions:

(1) |Pm(t)|∑δ|M rδ +
∑
δ|N sδ = 0;

(2)
∑

t′∈Pm(t) (1 − m2)(24t′ +
∑
δ|M δrδ)/m + |Pm(t)|m ∑

δ|M δrδ +
∑
δ|N δsδ ≡ 0 (mod 24);

(3) |Pm(t)|mN
∑
δ|M rδ/δ +

∑
δ|N(N/δ)sδ ≡ 0 (mod 24);

(4) (
∏
δ|M(mδ)|rδ |)|Pm(t)|∏

δ|N δ
|sδ | is a square.

Radu [12, Theorem 47] also gave lower bounds for the orders of F(τ) at cusps of
Γ0(N).

THEOREM 2.2. For a partition function a(n) defined as in (2.1) and integers m ≥ 1,
0 ≤ t ≤ m − 1, let

F(τ) =
∏
δ|N
ηsδ(δτ)

∏
t′∈Pm(t)

gm,t′(τ)

be a modular function for Γ0(N), where sδ are integers and N satisfies the conditions
(1)–(6). Let {s1, s2, . . . , sε} be a complete set of inequivalent cusps of Γ0(N) and, for
1 ≤ i ≤ ε, let γi ∈ Γ be such that γi∞ = si. Then

ordsi (F(τ)) ≥ N
gcd(c2, N)

(|Pm(t)|p(γi) + p∗(γi)),

where

p(γi) = min
λ∈{0,1,...,m−1}

1
24

∑
δ|M

rδ
gcd2(δ(a + κλc), mc)

δm

and

p∗(γi) =
1
24

∑
δ|N

sδ
gcd2(δ, c)
δ

.

The following theorem of Sturm [14, Theorem 1] plays an important role in proving
congruences using the theory of modular forms.
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THEOREM 2.3. Let k be an integer and g(τ) =
∑∞

n=0 c(n)qn a modular form of weight
k for Γ0(N). For any given positive integer u, if c(n) ≡ 0 (mod u) holds for all n ≤
(kN/12)

∏
p|N, p prime (1 + 1/p), then c(n) ≡ 0 (mod u) holds for any n ≥ 0.

3. Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. The following lemma plays a
vital role in the proof of Theorem 1.2.

LEMMA 3.1. Let p be a prime with p ≥ 5 and define k1 = (p2 − 1)/48p� and
k2 = (p2 − 1)/48p2�. Then for any constant c,

η24k1 (τ)η16k2 (2pτ)
η8k2 (pτ)

(
qp/24 η(pτ)

η(2pτ)

∞∑
n=0

Q
(
pn +

p2 − 1
24

)
qn − c

)

is a modular form of weight 12k1 + 4k2 for Γ0(2p).

PROOF. Recall that the generating function of Q(n) is
∞∑

n=0

Q(n)qn =
(q2; q2)∞
(q; q)∞

.

Taking M = 2, (r1, r2) = (−1, 1), m = p, t = (p2 − 1)/24 in Theorem 2.1, one can find
that N = 2p satisfies the conditions (1)–(6), and for (s1, s2, sp, s2p) = (0, 0, 1,−1),

F(τ) = qp/24 η(pτ)
η(2pτ)

∞∑
n=0

Q
(
pn +

p2 − 1
24

)
qn

is a modular function for Γ0(2p).
By Theorem 2.2, we derive lower bounds for the orders of F(τ) at the cusps of

Γ0(2p):

ord0(F(τ)) ≥ − p2 − 1
24

, ord1/2(F(τ)) ≥ − 1
24p

,

ord1/p(F(τ)) ≥ 2p2 − 1
24p

, ord∞(F(τ)) ≥ − p2 − 1
24p

,

which implies that

ord0(F(τ) − c) ≥ − p2 − 1
24

, ord1/2(F(τ) − c) ≥ 0,

ord1/p(F(τ) − c) ≥ 0, ord∞(F(τ) − c) ≥ − p2 − 1
24p

.

By [10, Theorems 1.64 and 1.65], one easily shows

F1(τ) = η24(τ) and F2(τ) =
η16(2pτ)
η8(pτ)
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TABLE 2. A table of values of lp.

p 11 13 17 19 23 31 37 41 43 47 59
lp 48 56 72 80 96 128 152 168 176 192 420

p 61 67 71 79 83 89 103 107 109 113
lp 434 476 504 560 588 630 1040 1080 1100 1140

are modular forms with weight 12 and 4 for Γ0(2p), respectively, and the orders at the
cusps of Γ0(2p) are

ord0(F1(τ)) = 2p, ord1/2(F1(τ)) = p, ord1/p(F1(τ)) = 2, ord∞(F1(τ)) = 1,
ord0(F2(τ)) = 0, ord1/2(F2(τ)) = 1, ord1/p(F2(τ)) = 0, ord∞(F2(τ)) = p.

Therefore, the orders of Fk1
1 (τ)Fk2

2 (τ)F(τ) at all cusps of Γ0(2p) are nonnegative, and so
Fk1

1 (τ)Fk2
2 (τ)F(τ) is a modular form with weight 12k2 + 4k2 for Γ0(2p). This completes

the proof. �

PROOF OF THEOREM 1.2. Fix k ≥ 1. By Lemma 3.1 and Sturm’s theorem, to prove

(qp; qp)∞
(q2p; q2p)∞

∞∑
n=0

Q
(
pn +

p2 − 1
24

)
qn − cp ≡ 0 (mod 2k),

we only need to check that the coefficients of the first lp = (p + 1)(3k1 + k2) terms of
the expansion of

η24k1 (τ)η16k2 (2pτ)
η8k2 (pτ)

(
qp/24 η(pτ)

η(2pτ)

∞∑
n=0

Q
(
pn +

p2 − 1
24

)
qn − cp

)

are congruent to 0 modulo 2k. Here, k1 and k2 are defined in Lemma 3.1 and the
corresponding lp are displayed in Table 2. This information allows us to do the
computations to complete the proof of Theorem 1.2. �

4. Proof of Theorem 1.4

In this section, we give a proof of Theorem 1.4. Before starting the proof, we need
to introduce Ramanujan’s theta function, given by

f (a, b) =
∞∑

n=0

an(n+1)/2bn(n−1)/2 = (−a,−b, ab; ab)∞, |ab| < 1, (4.1)

where the last identity in (4.1) is the celebrated Jacobi triple product [1, page 17,
(1.4.8)]. Two important cases of f (a, b) are
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ϕ(q) := f (q, q) =
∞∑

n=0

qn2
=

(q2; q2)5
∞

(q; q)2
∞(q4; q4)2

∞
, (4.2)

f (−q) := f (−q,−q2) =
∞∑

n=−∞
qn(3n+1)/2 = (q; q)∞.

Replacing q by −q in (4.2) yields

ϕ(−q) =
(q; q)2

∞
(q2; q2)∞

.

The following p-dissections for ϕ(−q) and f (−q) play an important role in the proof of
Theorem 1.4.

LEMMA 4.1. Let p ≥ 5 be a prime number. Then

ϕ(−q) = ϕ(−qp2
) + 2

(p−1)/2∑
j=1

q j2 f (−qp2+2pj,−qp2−2pj), (4.3)

f (−q) =
(p−1)/2∑

k=−(p−1)/2
k�(±p−1)/6

(−1)kqk(3k+1)/2 f (−q(3p2+(6k+1)p)/2,−q(3p2−(6k+1)p)/2)

+ (−1)(±p−1)/6q(p2−1)/24 f (−qp2
), (4.4)

where (±p − 1)/6 is defined as in (1.10). Further, for −(p − 1)/2 ≤ k ≤ (p − 1)/2 and
k � (±p − 1)/6,

3k2 + k
2

�
p2 − 1

24
(mod p).

PROOF. The identity (4.3) follows immediately from [3, page 49]. The identity (4.4)
appears in [5, Theorem 2.2]. �

PROOF OF THEOREM 1.4. From (1.4), we find that

∞∑
n=0

Q(n)qn =
(q2; q2)∞
(q; q)∞

=
(q2; q2)2

∞

(q; q)4
∞
·

(q; q)3
∞

(q2; q2)∞
≡ ϕ(−q) · f (−q) (mod 4). (4.5)

For a prime p ≥ 5, 0 ≤ j ≤ (p − 1)/2, −(p − 1)/2 ≤ k ≤ (p − 1)/2, assume that

j2 +
3k2 + k

2
≡ p2 − 1

24
(mod p),

which implies that

24j2 + (6k + 1)2 ≡ 0 (mod p).
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Since
(−24

p

)
= −1, we get j = 0 and k = (±p − 1)/6. Substituting (4.3) and (4.4) into

(4.5), we find that
∞∑

n=0

Q
(
pn +

p2 − 1
24

)
qn ≡ (−1)(±p−1)/6ϕ(−qp) f (−qp)

≡ (−1)(±p−1)/6
∞∑

n=0

Q(n)qpn (mod 4),

where we have used (4.5) in the last congruence. The congruence (1.9) follows. This
completes the proof of Theorem 1.4. �

5. Concluding remarks

One can use Lemma 3.1 to establish congruence relations satisfied by Q(n) similar
to (1.8) for other primes p. For example,

∞∑
n=0

Q(127n + 672)qn ≡
∞∑

n=0

Q(n)q127n (mod 23),

∞∑
n=0

Q(131n + 715)qn ≡ 43
∞∑

n=0

Q(n)q131n (mod 27),

∞∑
n=0

Q(137n + 782)qn ≡ 71
∞∑

n=0

Q(n)q137n (mod 28),

∞∑
n=0

Q(139n + 805)qn ≡ 803
∞∑

n=0

Q(n)q139n (mod 210).

However, the corresponding bound lp will become much larger as p increases.
Merca [9] proved the following infinite family of congruences modulo 4 for Q(n).

THEOREM 5.1. Let p ≥ 5 be a prime number such that p � 1 (mod 24). Then for any
n � 0 (mod p),

Q
(
pn +

p2 − 1
24

)
≡ 0 (mod 4). (5.1)

The congruence (1.8) together with numerical evidence suggests the following
conjecture, which contains (1.9) and (5.1) as special cases.

CONJECTURE 5.2. Let p ≥ 5 be a prime number such that p � 1 (mod 24). Then
∞∑

n=0

Q
(
pn +

p2 − 1
24

)
qn ≡ cp

∞∑
n=0

Q(n)qpn (mod 4),

where cp = −1 or 1.
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