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Abstract In this paper, the LP(R) x L9(R) — L"(R) boundedness of the bilinear oscillatory integral
along parabola

Qiltl? dt

To(f.9)@) = pv. [ fla =gl — )&l G

is set up, where f>1 or <0, %—l—é: 1 and % < r < oo, p>1and ¢>1. The result for the case

T
B <0 extends the L= x L? — L? boundedness obtained by Fan and Li (D. Fan and X. Li, A bilinear
oscillatory integral along parabolas, Positivity 13(2) (2009), 339-366) by confirming an open question
raised in it.
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1. Introduction

The main task of the present paper is to determine the boundedness of the following
bilinear oscillatory operators along parabola

To(.9)(e) = 0. [ o =09t — et 5

with >1 or f<0. The main result is as follows.

Theorem 1.1. Assume [ is real number such that 5 <0 or §>1. We have

ITs(f,9)lr < Cprpall Flnllglly (1.1)
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for

1 1 1 1
-—=-4+-, pg>1, =—<r<oo (1.2)
r D q 2

and the constant Cg . p.q < 00 depending only on 3,p,q and r.

In [4], Fan and Li proved that T4 is bounded from L*° x L? to L? with 8 < —1. In the
same paper, the authors raised an open question to set up the LP x LY — L" boundedness
for Tg with (p, g,r) satisfying Equation (1.2) for 5 < 0. In this paper, we give a confirm
answer to this question. T'g is an oscillatory form of the bilinear Hilbert transform along
the parabola, which is defined as

Haf,9)) = po. [ o= 0 - )

for f and g in the Schwartz class S(R) whose boundedness was obtained by Li [11] and

Li and Xiao [12]. Our main interest is to explore how the oscillatory term ei|5|5 effects
the boundedness of the operator. To make the idea clear, we start with the well-known
bilinear Hilbert transform

H(1.9)(&) = po. [ 2= 0g(e+0) T

By Fourier transform, the bilinear Hilbert transform can be written (informly) as

H(f.9)a) =i [, H€an) senln - e agan

Here sgn(z) denotes the Sign function. The line £ = 7, the set of the critical points of
sgn(£—mn), is called the resonance set. We say that the functions f resonates with g on the
resonance set. If we have some suitable decay estimate away from the line, the bilinear
Hilbert transform is almost a product of f and g. We could obtain the boundedness of
the bilinear Hilbert transform. However, this problem becomes very subtle since the line
& = n is modulation-invariant. This is the main obstacle to obtain the boundedness of the
bilinear Hilbert transform. The boundedness of such bilinear transform was conjectured
by Calderén and motivated by the study of the Cauchy integrals on Lipschitz curves.
In the 1990s, this conjecture was verified by Lacey and Thiele in a breakthrough pair of
papers [9, 10]. In their works, a systematic and delicate method was developed, inspired
by the famous works of Carleson [1] and Fefferman [5], which is nowadays referred as the
method of time—frequency analysis. Over the past two decades, this method has emerged
as a powerful analytic tool to handle problems that are related to multilinear analysis.
We write (informally) the multiplier of H,2 as

) dt

; 2
m(&,m) =p-v-/e“t5+t "
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The extra curvature of ¢? breaks down the modulation invariant of the operators. The
tools in oscillatory integral such as van der Corput’s lemma and method of stationary
phase work well. Along this direction, there are plenty of literatures studying how the
curvature of a general curve effects the boundedness of bilinear Hilbert transform along
a general curve (replacing the parabola t? by a general curve ). We refer the readers to
the recent paper [13] and the references in it.

The multiplier of the bilinear oscillatory integral T'g can be written (informally) as

’ t

Except the curvature of ¢2, the oscillatory term eimﬁ also effects the distribution of the
singular points. Thus, there is the competition between t? and eimﬁ. As one may find
out in § 2, <0 affects when |t|] < 1 and §>0 places a rule for [¢| > 1. The main
contribution of this paper is to elaborate the competition. For this reason, we need to
consider different cases carefully.

The bilinear oscillatory integrals studied in this paper are the combination of the

bilinear Hilbert transform along curve H,2 and the oscillatory operators

Tsf(z) = p.v./f(x —t) oiltl” %

These operators are excluded in Cardelén-Zygmund type operators (see [6, 7, 15, 16]).
Moreover, for the case 5> 1, let us assume for a moment §=3. We believe our result
may share some light on the boundedness of the trilinear Hilbert transform:

dé

H(f,9.W)(@) i=po. [ f(o—thg(o — )hia ) .

but we do not pursue this issue in this paper.

2. Strategy of the proof

In this section, we explain the strategy of the proof. We split the bilinear operator T'g
into two parts:

oiltt? 4t

1
Ty.er(F)@) = po. [ o= tgta =)

and

Ts>1(f,9)(x) = fle—t)g(x —1?)

ol 4t
lt]>1 ¢

It is sufficient to prove that they map LP x L? to L" under the condition (1.2). When
|t| <1, the term et” behaves like 1 if >0, and when [¢| > 1, elt” 1t < 0. Hence,
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we compare them with

Ho(f,9)( pv/ flz—1) (x—t2)it

and

Ha(fi)@) = [ - tgle -2,

[t]>1

respectively. Their sum is the bilinear Hilbert transform

H(.9)w) = po. [ flo—tgta )T

o7

From Li [11] and Li and Xiao [12], we know that H, H<; and H>; are LP x L9 to L"

bounded for p, g, r satisfying Equation (1.2).
When 5 > 1, by Taylor’s formula,

‘n|+|nS
Ts.<1(f.9)(x) = Hzi(£.9) Z Fa— g — ) I dE

[t|<1 nt ¢

The boundedness of T3 <1 is reduced to set up the boundedness of

Mo(f.g9)(z) = flz—t)gle — %) dt

lt|<1

under condition (1.2).
When 8 <0, we use Taylor’s formula again,

Too1(f.9)@ ~ Half)@ =3 | f@= (e 1) aa
n=1 t|>1 :

(2.1)

(2.3)

We decompose § = > jez Pi(t), where p : R — R is a non-negative smooth bump function
supported on [—3,—1] U [1, 3] and p;(t) = 27p(27t). It is sufficient to set up the uniform

boundedness of
My(f)@) = [ fo—tga =)o) <1,

Li and Xiao [12] have already set up the following bilinear estimates.

Lemma 2.1. For every p, q and r satisfying Equation (1.2), we have

1M (f; 9)lle S W fllpllglqs

with a bound uniform in j € Z.
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Using Equations (2.2) and (2.3) and Lemma 2.1, we can obtain the following result.
Proposition 2.1. For every p, q and r satisfying Equation (1.2), we have
1Ts,<1ller S W lpllgllq: B>1
and
[T >1llr S WS Npllgllg, B <O.

Proof. The f>1 case is clear. We only give the proof for §<0. According
to Equation (2.3), we have

Ts,>1(f, 9)(x) — H>1(f,9) I_E n'/t>1 fla—tyg(x — )] |¢"* " dt
_ 42 npg
<3 X 15— ate =0

= 7<1

IN
3‘»—!

QJ"ﬁ/’fxft x7t2|p] dt
1

> 27 M(f,9) ().

T <1

3‘»—\

o0

n=1 ]<
o0
By the triangle inequality, when r > 1, we have

1Ts. 1, < 1H>1(f, 9, + Z 22 b SupllM (£ 9)ll,.-

= T <1

When % < r <1, we have

Sl

ITssnll. < [Hs1(f.9)ll, + Z( )Zz—anm sup M (£ )1,
J

n=1 n! j<1

By Lemma 2.1 and noticing that 8 <0, we can finish the proof.

We now consider the following bilinear operators:
48 dt
Ts.<1(f59) pv/ flz—t)g )e”t‘67 for B <0

and

for g > 1.
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In this step, the cancellation of the Hilbert kernel p.v.% will not play a role. One can
as well replace it by ﬁ and prove the same bounds. Under this consideration, we define

for any j > 1
j 25,2\ 287 |48
Ts.;(f,9) fx—2t —29t%)e p(t)dt for f>1
and
—2j,2y 2~ BI|yB
Ts.;(f, 9) fx—2 Ityg(x —27%t*) e p(t)dt forp < 0. (2.5)
As a corollary of Lemma 2.1, we have
Theorem 2.1. Let <0 or f>1, r> ,p>1,¢>1, wzthp—i—a ,thereisa
constant C independent of j and the coeﬁczents of p, q, such that
15, (f, Dllr < CllflIpllgllq- (2.6)
Notice that
Ts>1(f,9)(x) = Ts;(f.9)(x) B>1
j>1
and
Ts1(f.9)(@) =) Ts,(f.9)(x) B <.
j>1

The main aim of this paper becomes to set up the following result.

Proposition 2.2. For every p, q and r satisfying Equation (1.2), >1 or <0, we
have

S Ts(£9)|| S UL llgll, 27)
jeN -

with a constant depending only on 3, p, q and 7.

To prove Proposition 2.2, it is sufficient to show that

75,5 ), e 27 MI£1l, gll, > 1.

Noticing the uniform estimate (2.6), we can further reduce our aim to set up the following
estimate.
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Theorem 2.2. Suppose 3>1 or <0 and j > 1, there exists € >0 such that
1 T5,5(f: Dl Se 27V fllzllgll2- (2.8)
Let us take 8> 1, for example, and rewrite
Tosl.9)a) = [ | F@atmm, () e dcay
with

i(29 1402712, 1 0BT 4|8
e

The main idea is to obtain a suitable decay estimate of the bilinear multiplier m; (&, n),
in which the critical points of the phase function

Gjem(t) = Qﬂj(g(lfﬁ)jgt + 2@ 4 It|%)

in the support of p play the crucial role. Thus, depending on the sizes of 201=%)7¢ and
22=8)ip the following decompositions will be natural.

Let @ : R — R be a Schwartz function such that ® is a non-negative bump function
supported on [—3, —1] U [1, 3] and satisfies

Z%(;) =1 forevery £ #0.
k

For a function f : R — R, we define

Pa) = fulo) = [ Fo® (5c) e e

and

Pepf(z) = f<p(z) == /Rj?(g) Z oy (ka/) RERTS
For fixed j > 1, we decompose

Tﬁ] fv Z j,m,m/ )(1‘)

m,m/€Z

Tyt (£-9)0) = [ 708 (s ) 3008 (s ) mo(emer 0" ag
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It equals to

/ Paijimf (@ — 20 Ps;_o s g(w — 2912)e? 107 p(1) d.
R

Let C's be a large positive integer depending only on /. Define

A ={e Z|L < -Bj},

Ag:{L€Z|—[3j§L§—Cﬁ},
Ay ={L€Z| - Cs <1< Cgl,

Ay = {L S Z|L > Cg}

We will consider several cases according to where m and m’ take values from. The

construction of the proof is stated in the following table.

The case of 3 >1

Section 3 Section 4 Section 5 Section 6 Section 7
m € Ny, m,m € A3 m e Ng,m € o m € m €
(m e A (m,m' € Az) (m € Ag,m’ € As) (
m’ € Z) Ag,m/ S Ag) A3,m, S Ag)
(m' € Ay, (m € Ay,m’ € Ay) (m €
mGZ) A4,m' S A4)

(m € Ay,m’ € Ag)

(m S A3,m’ S A4)

(m < A4,m’ c Ag)

The case of 3<0

Section 9 Section 10 Section 11 Section 12 Section 13
(m e Oy, (m,m’ € Q3) (m € Qo,m' € Q) (m € (m €
m' € Z) Qg,m/ € Q3) Qg,m/ S Qg)
(m' €y, (m € Qa,m' € Qy) (m €
mGZ) Q4,7TL/ S Q4)

(m (S Q4,m’ S QQ)

(m € Q3,m' € Q)

(m S Q4,m/ € Qg)

In § 3,8§4,85,86 and § 7, for technical reasons, we need the condition §#2. As

we pointed out, the curvature of the curve t? and the oscillatory term ei‘f‘ﬂ are used to
isolate the critical points in the frequency space. But if 8 =2, this isolation disappears.
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However, this case can be reduced to the H,2.

42 dt

T(f.9)@) = po- [ fo =t - G

= p.v./ flz —t)g(z —t%) el eilt® ) -
R

= e"p.v./Rf(:E —t)ge(z — t2) % = e 12(f,9¢)(2),

where g.(z) = eg(x) and ||g.|l, = ||g||p- The boundedness of H,> was already known.

3. The case of m € Ay or m’ € A;: contribution from extremely low
frequencies

In the section, we consider the case of m € A; or m’ € A;. We take m € A; as an
example. The other case can be handled similarly.
We write

S Ty (f29) = Ts s (P<—s f.9).

mGAl,m/GZ

By Fourier transform, it equals to

/ /R R@(f)ﬁ(n)m;’(é‘,n)e”(“”) de da. (3.1)

By Taylor’s formula,

m](fan) _ /lR (io: 7/n(i:'€)n> ei(22jt27]+2ﬁj|t\5)p(t)tn dt. (32)

n=0
Fix ann € N,
)" 25,2 087 1 583
(Z ) ez2 Tt 7787,2’83|t\ﬁp(t) dtl = = e1267¢(t)p(t)rn dt ,
R n' n' R
where ¢(t) = 22 Bint? + |t|?. Since
") 21, |t~ 1

by van der Corput’s lemma, we have

/eﬂﬁj‘z’(t)p(t)t"dt <n27PI/8,
R
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By Holder’s inequality, it is easy to obtain

|| [ r=mreeeread | [aom ([ 7" pmrmar) ooy

<275 f)l2llgll-

1

We finish the proof of the case m € A;.

4. The case of m,m’ € A3

In this section, we consider the case m, m’ € A3. Without loss of generality, we assume
that m = m’ = 0. The main result of this section is the following decay estimate.

Proposition 4.1. For 5 > 1,5 > 0, we have

1Ts.5(Psj—i f, Paj—259)ly S 27 N1l lglly

for some € >0 depending only on B.

Proof. By rescaling, it is sufficient to prove

287 |¢)P

(z—t)g(z —2t")e p(t)dt|| <277 Iflly gl

1

where f = Pg;f and g = P3_1);9.

Using the standard localization argument, we can localize the integrals into small
intervals. More precisely, for fixed 7 > 1, we split R into disjoint intervals U;I; with
I; = [i27, (i +1)27),i € Z. We set

f1,(x) = fxu,(z),  gr,(x) = gxy,(2),
where x is the characteristic function. For Vz € I;, and [¢| < 1, if |x — ¢| € I/, then we

have |i — 1’| < 2. Similarly, if |z — 27¢| € I, we also have |i —i"| < 2.

(z —t)g(x — 27t*)p(t) dt| dz

—Z/

i€Z

>y > f

1€Z |i—il|<2 |i—i"|<2

/fa:—t (x —27t%)p (t)dt’dx

/f}, t)gr. ,,(x—23t2) (t)dt‘dx

(@ —t)gr, (x—28%)p (t)dt’dx
€L

<CZ22

i€EZL

/fI x—tgl x—2jt2) (t)dt

2
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By Cauchy-Schwarz, it is sufficient to prove

S 2792792 flla g2
2

H [ 1t = gt — 282 1)

By Fourier transform, it equals to show that

[, Featn | [ eer ez 0y ae| e + s
< 2792792 f L lglall

By Hélder’s inequality, the left hand side of Equation (4.1) can be bounded by

2010372 g

/ Fe) [ /R itz izl dt} he + 1) de

o0
L77

Here, since suppg C {|n| ~ 28=17} we have ||g]y < 2(8=13/2||g|lo. We consider the
following term

/ oite+i2lt ”"‘Zzﬂ]‘tlﬂp(t) dt = / 612B]¢(t)p(t) at,

R R

where ¢(t) = 2797t¢ + 29 Bit2n + |t|P for |€] ~ 277, |n| ~ 20F=DI . Since B#2, for any
fixed £ and 7, ¢/(t) and ¢”(¢) cannot be zero at the same point. By van der Corput’s
lemma and the method of stationary phase, we obtain

/ei25j¢<t>p(t) dt‘ < 9-bi/?,
R
Since > 1, we can finish the proof. O

5. The cases where phase functions admit no critical points

In this section, we study several cases. In these cases, the corresponding phase function
does not admit any critical point. These cases are (m € Az, m’ € Ag), (m € Ay,m’ € Ay),
(m e Ayym’ € Ag), (m € Az, m' € Ay) and (m € Ay, m’ € Ag). The proofs for all these
cases are similar. We only present the proof of the case m € Az, m’ € Ay.

Without loss of generality, we take m =0. By the triangle inequality, it is sufficient to
prove that

—(1 m/
T 0.m (fs ), < 2794 £l gl (5.1)
Let m; be defined by

o Bide (1)
e? & dt

)

is(6.m = [ ot
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where
b (t) = £t +27 0t + |17,
Then the fact that m’ > Cy gives
|(§f§n(t)\ > 2m/, for ¢ € suppp.
By integration by parts, for every large integer M, it holds that
(€, m)| Sarp 27 MG+

It is straightforward to check that

Gt+m’ = § = n

is a Coifman—Meyer multiplier, see [2] and [3]. This finishes the proof of the desired
Equation (5.1).

6. The case of m € Ay, m' € A3
We assume again that m’ = 0. Recall that —85 < m < —Cg. We will show the following:
Proposition 6.1. It holds that
75,5 (Paj—j+mf, Paj—2i )l Se 27 £ 12 gl (6.1)
for some € >0 depending only on f and —fj < m < —Cj.

When Equation (6.1) is true, by Cauchy—Schwarz, we have

e 1
Do s (Pojmjimf Pai—29) ) Se 27 9#(M;6)7 |1 fll5 gl
—Bj<m<-Cg

with M 3 ={m € Z; —fj < m < —Cz} and
#(Mjp) Sep 2
hold for j large enough. By taking €; < €, we obtain our aim.

Proof of Proposition 6.1. By rescaling, it is sufficient to prove

where f = P, f and g = Pg_1);g with 0 <m < 5 — Cp.

Af@—ﬂﬂw—?ﬁwﬂmWMﬂ&

<277 £fl2 llglls
1
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By the localization argument above, it equals to set up

< 2792792 flalgll2.
2

/R fx — t)g(x — 2712y 2”107 pr) at

By turning to the Fourier side and the duality, we need to show

‘//RQ FOam) {/R eit§+i2jt2n+i25ﬂt|ﬁp(t> dt} h(€ +n)de dn’ (6.2)

< 2792792 f |2l gl21l-

This will be finished in several subsections.

6.1. Thecaseof 0 < m < (B—1)j — Cg

To prove Equation (6.2), it is equivalent to prove

N i9B7 (9m—Bise 142 8 ~
[, Bt | [ & C ) sy e 4 nyaga
ejo—itm
<2792 5 |l gl 1l

for f and g whose frequencies support on [—3, —1] U [L, 3].
We set the phase function

b (t) = 277PILE + 2 + |t|°.

Let ¢ty denote the critical point of it. By the method of stationary phase, it is enough to
prove

’// f<£>§<n> 2 enltOR (20707 1) g dn‘

o (B=1i=m
$2792 112 gl 1A

Changing the variables
9= (B=Ditme 4y 5w, E—u—w,

the left hand side is comparable to
‘// Flu— )b+ byv) o2 umvibruterw (07 () du du|

Here

by=1-— Qm—(,@—l)j’ by = om—(8-1)j
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By Holder’s inequality, it is sufficient to prove

S 2792070 713 g3

2

/ fu—=v)g(biu+ bav)e 2 bu—vbrutbyo(to) dv
R

L3

We expand the left hand side as

~ i Bj
/ [//2 f(u—v1)g(biu+ bavy)e 27 bu—uy byutbye; (f0)
R

=

fu—v2)g(bru + bavs) 2" Pu—vy by u-tbyuy (f0) dvy dwvy | du.

Changing the variables
v — U, Vg — U+ T,
we obtain

/|:// F-,—(u _ U)GT(blu + bz’l}) eiQBj (¢u—v,b1u+b2v(tO)_¢u—U—T,b1u+b2’U+b2T(t0)) df d?] dr
R2

9Bi _
:/ [/ P ()G () 0 umrayr (0 quay | ar,
R
(6.3)

where

Let us denote

Q(u,v) = dun(to(u,v))

and

@(u,v) = Q(u,v) — Qu,v+ 7).

To proceed, we will use the following Hormander’s oscillatory integral estimates.
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Lemma 6.1. [8, 14] Let a : R?> — R be an amplitude supported on [0,1]? with
lallca S 1. Let ¥ : R? — R be a phase function with

|aw’y\p| 21 and ||8z,y‘1’||02 SL

Then

’// NV a(a, ) fla)g(y) da dy] <N allgle

for smooth functions f and g.

Proof of Lemma 6.1. Let us denote
Ty f(a) = [ ¥4 Dae,y)f(0) d
R
It is equivalent to set up

T fllz2 S N7V2IFIl

with f supported in [0, 1]. We rewrite

175713 = [ Txf@TFa)de = [[ a2 Gy
where
an(y,z) = /eiN(\I'(E’y)_‘P(m’z))a(x,y)a(x,z) dz.

By Taylor’s formula, we have

10/02 (¥ (z,y) — ¥ (z,2))]

\Ij/// 9 (aj Z)

U, @,2) |y — 2 + 2y — 2l o (Jy - =)

>cly — z|.

Since

lan (y, 2)| = <1

)

1
/ NV =¥ (w.2) g (3 1702 d
0

integration by parts shows that

1
< - @@
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We obtain
Jlaxw iy <ont [lax( o)z <N,
We now use Holder’s inequality to obtain

1

2 d
Tl < ( [antn 21 200:) 15l < [ 1B < 51
Y

Therefore, we finish the proof. U

Lemma 6.2. Under the above notation, we have

20 (m—B3) ;
Q.| J2mr sz 6.4
Qudv 92m=26jr if 3 =3
and
92Q,
‘ Oudv (6.5)
c2

for every j > 1.

Proof of Lemma 6.2. We assume that ¢y > 0, and when ¢y < 0, the proof is similar.
Because to(u,v) is the critical point of the phase function ¢, ,(t),

@ o(to) = 2™ Plu + 2tov + Bty " = 0.
Thus, we have

8t0 _ 72m7,3j
Ou B Z,v(tO)
and

o _ 21
v B ;i,v(to).

By the chain rule, we have

aQ __om—p8j
% =2 to(u, 'U)

and

0Q

Do t2(u,v).
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By a direct calculation,

aQQ 2mfﬁj+1t0
ud0 ) T T T B Dt 2

Hence,

2*Q

_ _om—pitl aa%) (20 + BB —1)(3 - B)ty )
0%udv N

(20 +B(B— 1)t %)?

(u,v)

The relation between v and tg is given by
27~ Piy 4 2tgu + Bt = 0.

Here we used the fact that 5 2.

23Q

_gmpi1 52 (204 B(8 = DB - B)tg?) — 2t
oud?v )

20+ B(B — 1)ty )2

(u7 U) =

By an implicit function calculation,

oty 2 Ot

to + 2v 81? + BB —1)th~ 5 =0
Therefore,
oty 2t
o 24881t 2
Hence,

0 (204 85— 03 - 5 7) - 20

o | 4tov +B(8 —1)(4 -~ Bt~
2+ B(B —1)t5 2

~ [atov + 58— 14— p)5 Y.

We notice that
2o = —2" Py — By,
where 2787 « 1. According to the above equation, we have

(6.7) ~ Bltol? 1| — 2™ 4 (B —2)(B - 3)|.

https://doi.org/10.1017/50013091523000032 Published online by Cambridge University Press

(6.6)


https://doi.org/10.1017/S0013091523000032

The boundedness of the bilinear oscillatory integral along a parabola 71

When 3 # 3, we have (6.7) ~ 1. When =3, we have (6.6) ~ 22™~5/, By the mean value
theorem, we have

AT R
uov | T |udy

(u,v+071)| T

for some 0 € [0, 1]. Therefore, Equation (6.4) can be proved. To prove Equations(6.5), it
suffices to prove that

22Q 1
82u8v o2 ’
and
’ oud?v
Both are straightforward to check. Therefore, Equation (6.5) is true. d

To bound Equation (6.3), we write it as

(6.3) :/ +/ ,
ri<mo  Jirlzmo

for some 7o will be decided soon. The former term can be bounded by

287 (G0 (t0) — oy t
lsup [ PG (o) 0 bumrtr D agay| < | Bl

For the latter term, when 8 # 3, we bound it by

—(m ﬁj) -3 1/2 2 1/2
9~ /U’f (u—1) ] [/’g b1v+b27)‘ dv} dr

Bj —(m=Bj) _1
727 2 Tozbzfllfllgllgl\g

<2

Choosing 19 = 9= +%7 will finish the proof.
When g =3, for the latter term, we bound it by

_3j —(@m=6j) _1 1/2 9 1/2
R //‘f (u—1) /‘g blv+b27)’ dv|  dr

_3j —2m+6j _1
<2772 2 Tozbﬂllfllgllg\@

Choosing 9 = 2_%m+%j will finish the proof. O
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6.2. Thecaseof (3—1)j —Cg<m < (B—-1)j+Cpg

For convenience, we assume that m = (8—1)j. To prove Equation (6.2), it is equivalent
to prove

~ 987 (9= teai2ra 11
[, Foaon | [ @6t ) i s
R2 R
< omejo b
S 27927 2 fll2llgll2 MRl
for all functions f and g whose frequencies support on [—3, —1] U [1, 3]. Denote
Gen(t) = 27766 + P + |t]°.

Let tg denote the critical point of it. By the same argument as in last subsection, we face
to estimate

/ [ / / Fy (u) H, (v)e2” $un(t0)=0u—r0-7(t0)) gy dp | dr (6.8)
R2

where

Let us denote
Q(u,v) = duu(to(u, v))
and
Qr(u,v) = Q(u,v) — Q(u,v — 7).

Lemma 6.3. Under the above notation, we have

2 . .
8 QT > 2 JT Zfﬂ # 37 (69)
oudv | ™~ 2723’7_ 'Lfﬂ — 37
and
92Q,
Judo (6.10)
c2

for every 7 > 1.
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Proof of Lemma 6.3. As the same argument in § 6.2, we have

0°Q _ 22—+,
m(&n) - _21) _|_6(6 _ 1)|t0|ﬁ—2'
Hence,
83762(141;) — _9—5+1 %?(271 +8(B-1)3 iﬁ)tgﬂ)
O2udv (2’[) + 5(5 _ 1)tg 2)2

The relation between v and tg is given by
—J B-1 _
277w+ 2tgv + Bt =0.

Here we also used the fact that §# 2. Let

(‘9:)’7@@ v) = —279F1 %(21’ +B(B—-1)(3 - ﬁ)tg_Q) — 2t
ud?v "’ 20+ B(3 — 1)tg_2)2 .
We have
Oty _ 2t
8’1} o 0 + 6(6 _ 1)t0,8—2
and
a —
% (2”+6(5*1)(3*B)t§ 2) — 21,

~ |85 -1) -5yt

73

(6.11)

When 3 # 3, we have (6.11) ~ 1. When 8 =3, we have (6.11) ~ 277. Equations (6.9) and

(6.10) can be proved by the mean value theorem.

To estimate Equation (6.8), as before, we decompose it as

(6.8) :/ +/ 7
ri<mo  JIrlzmo

with 7¢ being given soon. The former term can be bounded by

1289 (v (t)) = by
lsup | [, Fr(w) ) G- dumramrt) agay] < [l 131,
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For the latter term, when g # 3, we bound it by

2’%(2 I10)” /{/ ’f (u—7) ]1/2 {/ ’g va‘ dn]l/sz

_Bi,_ _1
<273 (277 n) 2||fH2||9||2

(B-1)j
We can finish the proof by setting o =2~ 3 ‘)

When S =3, we bound it by

o= (9% ) /[/‘f (w—1) ]1/2{/19 u—r‘ dn]l/zdr

_Bi _1
<27 % (27%m) 2| £33

We set 19 = 92=% and finish this proof.

6.3. Thecaseof (3—1)j+Cs<m <35 —Cps

As before, we need to set up

~ i0B (3m—Bi pe 42, 11118 - ,
[, T | [ o2 e ) iy i i+ 20 aga
=Bl
< 27927 | fllallglal vl

for f and g whose frequencies support on [—3,—1]U|[1, 3]. Let ¢y denote the critical point
of

by (t) = 2m7PILE + 2 + |t|°.
By the same argument, we need to estimate

/{/ 2 f U—bT) (v )(vTr)eizﬁ]((b“’”(tO)*%—bTv”*‘T(tO)) dudv| dr. (6.12)
R

with b = 28=1i=m et

Q(uv U) = ¢U,v(t0 (u, ’U)),

and

@:(u,v) = Q(u,v) — Qu,v + 7).

We can finish the estimate of Equation (6.12) with the following.

https://doi.org/10.1017/50013091523000032 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091523000032

The boundedness of the bilinear oscillatory integral along a parabola 75

Lemma 6.4. Under the above notation and the assumption that 5> 1, we have

20)_ m—pBj i

0°Q, > 2 T if B 7& 3 (613)

Qudv | ™ | 92m=3j)r 3 =3

for every j > 1. Moreover,
02Q.
14
| Oudv (6.14)
c2

Proof of Lemma 6.4. By a direct calculation, we have

9%Q gm—Bi+ly,
aua0 ) T T T BB Dt 2

Hence,

83762(u v) = —mPitl aa%?(% +8(B8-1)(3 - B)tg_Q)
02udv (21} + 5(5 _ 1)tg72)2

The relation between v and tg is given by

2m =Py 4 2tgu + Bty = 0.

We obtain
— B9 8t0 —2 8750
om=Pi 4 9y =2 ~1g 222 =o.
e Ju +B5 =1ty ou
Here we used the fact that 5 # 2.
Q) g B0+ BB DG = D) — 21
Quifto (20+B(8 — 1)ty *)? '
By a implicit function calculation, we obtain
Jto _5 Otp
2t + 2v — —)tF2 —= =0.
02 v +A(B-1) v
Therefore, we have
Oty 2to

W 2w+ BB
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and

Jto
v

~ 1o+ (8 - 1@ - )2

@ +m5—n@—m£”)—mo

(6.15)

When 8 # 3, we have (6.15) ~ 1. When =3, we have (6.15) ~ 2™~3/. We can finish
Equations (6.13) and (6.14) in the same way as above. O

With the above estimates, we can finish the estimate of Equation (6.12) in the same

way.
(mmz/ +/ :
IrI<7o I1=70

The former term can be bounded by

— .Bj B
|70l sup Flu— bT) ()gv+7)e” (S0 (t0)=bu—br,047t0)) gy do

<l / / Flu— br)3(0)alo ¥ )ldudo < |70l | F12]19112-

For the latter term, when 8 # 3, we bound it by

1/2 1/2
27 Pi/2(gm=Biry) 2/{/|f u—bT |2du} {/‘g ’U+7" dv] dr
Bi/2(om=Bj 3 (Bl)i—m
< 2709/ (gmPig)) =22 71BNl
We can finish our proof by setting ) = % The proof for the case =3 is more

or less the same; for the latter term, we bound it by

1/2

1/2
3]/2(22m 6]7_ /[/ ‘f u_bq- :| [/ [g(v)g(v+7) |2dv dr

S 273j/2(22m76j7_0)—§ 2

||9||2-

We can finish the proof by setting 7o = 2~ me-5 7.

7. The cases of (m € Az, m’ € A3) and (m € Ay, m’ € Ay)

In this section, we show the case (m € Az, m’ € Ag). The proof of the case (m € Ay, m’ €
Ay4) is almost the same and will be left out. As before, it is sufficient to show (after a
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where f = Pg;f and g = P,/ 5;_;9 with —j <m/ < (8 —1)j — Cg. By the localization
argument as above, it equals to show

By Fourier transform,

rescaling) that

< 27| fll2llgllz,
1

/R fx = t)g(o — 282) 10 pr) ar

< 2792792 fllalgll2.
2

/R f(w = t)g(w — 2742y 2”107 pr) at

Feva ite+i2d t2n4i2Pd (4B >
[, Tt | [ e sl oy ae e 4 ac
< 279272 fallglla IR 2-
By scaling,

‘/ 2 f(f)?(n) {/ ei25j(t£+2m/*(5*1)jt2n+\tlﬁ)p(t) dt} ﬁ(§+2m_ﬁj77)d§d77‘
R R

—m—j

<2727 27 | fll2llgll2lnll2

for f and g whose frequencies support on [—3, —1] U [1, 3].
Let to denote the critical point of the phase function

/ .
e, (t) = t& +2m ~ (DI 4 g8
Changing the variables,
! .
§+2m_ﬂj77—>% n=uv,
the left hand side of Equation (7.1) becomes

(to)

EY
<
N~—
o
IS
jol
<

N i0BJ )
N O e
R2

Denote

Q(U, U) = ¢u,v (tO (U, U))v

and

@:(uvv) = Q(U,U) - Q(u,v + T)'
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By the same argument as before, it is sufficient to prove

‘/ [// f —om/ BJT)g( )meﬂﬁjé;(“’”) dudv] dr

(7.2)
< 27928 Di=m| 71212,
Lemma 7.1. With the same notation, we have
920. o2m’ ~26j+2j 1 4
Q T if B# (7.3)
oudv 23m —9],7_ ’Lfﬁ =4
and
9%Q,
(7.4)
Oudv o2

for every j > 1.

The proof of the lemma is exactly the same as in the last section; we omit the proof.
With this lemma, we can obtain Equation (7.2) in the same way as before.

8. The case of 3<0

According to Equation (2.5), in this section, we will consider the operator

Q_ﬁ]‘tlﬁ

Ts.(f,9) /fx—Q It)g(x —27%7¢2) ¢! p(t) dt,

where $ <0 and j > 1.
As before, we decompose the frequencies of f and ¢ and estimate

. oo\ i2—BiyB
mwﬁgxm:iéfth+mﬂx—2JﬂRﬂﬂ%Hﬁmx—22%%e2 17 p(t) at.

Define

O = { € Z|. < Bj},
Oy = {1 € Z|Bj <1 < —=Cp},
Q3={LEZ|—CBSL§05},
Q={e Z|L > Cs},
where Cp is a large positive integer that depends only on B. Similarly, depending on

which set m belongs to and which set m’ belongs to, we have 16 cases. These cases will
be considered in § 9-§ 13.
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9. The case of m € Q1 or m’ € Q4

In this case, the situation is similar as in § 3. When m is extremely small, the function
P_gjijrmf(z —2771) is essentially the same as P_gjyjymf(x). Therefore, T}, ./(f,9)
can be viewed as a product. We write

S Tt (£19) = T (Pes . 9).

meﬂl,m/EZ

Turning to the Fourier side, we face
[ PSr@atmm,.mec acan.
X

By Taylor’s formula, we have

my(&m) = /]R (Z in(g_ﬂf)n) @ B Dy

n!
n=0

Fix n € N, we consider the term

(i2—a§)n61272jt2nei276jMﬁp(t)tn at| < 1
Rl n!

/el2 J¢£m(t)p(t)t" dt|,
R

with ¢, (t) = 272 +Pint2 + |¢]P.
Noticing that |¢¢’, ()] Z 1, by van der Corput’s lemma, we have

_y 8i

/e’2 Toen(®) () dt’ <n27.
R

We sum up according to n € N and by Hoélder’s inequality,

B
S 231 £ l2llglle-

1

We finish the proof of the case m € €. The case m’ € Q; can be estimated in the same
way.

10. The case of m,m’ € Q3

In this section, without loss of generality, we assume that m = m’ = 0.
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Proposition 10.1. For 5 <0, it holds that

1T5,5(P-gj15f, P-gjraig)lli S 27| fll2llgllz

for some € >0 depending only on B.

Proof. By rescaling, it suffices to prove

where f = P_ij and g = P(,ﬁJrl)jg.
By the localization argument as above, it is sufficient to set up

< 27| fll2llgllz,
1

/R fla = t)glo — 27382y e 7107 ) ay

<279 £ll2llgll2-
2

H [ 1o =gt — 27322y 2 iy

Turning to the Fourier side and applying duality, it equals to show that

[, T | [ ot ] e+ npacan

S 279 fll2llgll2[1]l2-

(10.1)

By scaling, it can be rewritten as

[, Tt | [ o= st at] e s npacan
<292 | fllallglalihl2

for f and g whose frequencies support on [—3, —1] U [1, 3].
By the method of stationary phase, it is enough to prove

WR Feame®  bent i@ g 4 n)dffd"’
<279 flallgll ]

Here
ben(t) = t& + 20+ |t)°

and %( is the critical point of it. By applying change of variables and denoting b = 277,
it is sufficient to show that

2

< 2790 £13Ngll3-
L3

[ Fato = by i
R
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We expand the left hand side as

9—BJ
/{// fu1 (v—"buy)e 27 by o—buq (t0)

_io—Bi

Fluz)g(v — bug) e Tugv—buz 0) 41 duy | do.

By changing the variables
v—>bu; > v, Uy —>u+T,

we obtain

~ = - 5B] _
/ U/ Fw) Flu+ m)g)glo — br) e’ uwto)=Putro—br(0) qudu | dr.
R2

Let us denote
Q(u, ) := bu,u(to(u,v))
and
Q(u,0) := Q(u,v) — Q(u,v + 7).

Lemma 10.1. With the above notation, we have

02Q,
Oudv

and

82Q,
Oudv

~Y
c2

81

(10.2)

(10.3)

(10.4)

As in last section, we omit the proof of the lemma. It can be proved in the same way.

With this lemma, Equation (10.1) can be proved easily.

11. The cases where phase functions admit no critical points

O

This section contains several cases (m € Qa,m’ € Qy), (m € Qy,m’ € Qy), (m € Qy,m’ €
Da), (m € Q3,m’ € Qy) and (m € Qq,m’ € Q3). The proofs for all these cases are similar.

We only present the proof of the case m € Qz,m’ € Q4.
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Without loss of generality, we assume m=0. As in § 5, we consider the multiplier
m;(&,m), which is given by

. i
m;(&,n) = / p(t) &2 P 2™t 1107 gy
By integration by parts, for every large integer M, it holds that

. /
[m; (€,m)| S 27 MU,

With this estimate, we can finish the proof by the same argument as in § 5.

12. The case of m € Q3, m’ € Q3

Without loss of generality, we assume that m’ = 0. We need to show that

J[, F@atn | [t o i e+ ) aay

< 27YIf I llgll2 1Rz,

(12.1)

where f = P,,_g;f and g = P_g11);9 with 85 < m < —Cpg. By Holder’s inequality, the
left hand side of Equation (12.1) can be bounded by

m—pB7
277 | fll2

Jatn | [Lerer e P ) a e

Lg

Here, because suppf C {€ ¢ |¢| ~ 2m=83}, we have the fact that || f]y < 20m=8)/2 f|..
We note that

0= B
m;(&,m) = /1R p(t) e en®a,

with ¢e () = 2971€ +207-9¢2 + [t|°. Since 277 < [207¢] < 2798 || ~ 2054 g (1)
and ¢'€'w(t) cannot be zero at same point. By van der Corput’s lemma, we obtain

o—Bj :
/ o2 J¢§777(t)p(t) dt’ < 26i/2,
R
Notice that 8 <0, it is enough to obtain the expected estimate.
13. The cases of m € Q3, m’ € Q3 and m € Qy, m € Q4

In this section, we consider the case (m € Q3, m’ € Q3). The proof of (m € Qq, m € Qy)
is similar and will be left out. Without loss of generality, we assume m =0. By the same
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argument as in § 7, we need to show

[, foatn | [ eer e o ) e+ mpaan

< 279 fll=llgl21IR 2,

(13.1)

where f = P_g;f and g = P,/_g;. ;9. We will consider two cases.

13.1. Bj <m’ < —j

It is equivalent to show

~ i2—B7 m’ 2 8 ~ i
‘ / 2f(£)g(n) [/ ol e >p<t)dt} h(€ +2 ﬂn)dédn‘
R
< e ﬂJ J
2727 1 7112llgl12 11712

for f and g whose frequencies support on [—3, —1] U [1, 3]. By the method of stationary
phase, it is enough to prove that

‘/ 2 f(oa( 2 oen0f (g 4 24 >dsdn‘

< 27927 | fllallgll Ikl
Here t( is the critical point of

!
Pe.n(t) = t&+ 2™ 12 + |t|°.

By changing the variables and setting b = gm’+j , it is sufficient to prove that

. 2
~ 2B
flu—bv)g(v)e™ ou—buw(t0) gy <2792~

L

1171311911

We expand the left hand side,

/{/ f (u—buy)g vl) P19 buy vy (t0)

B
f(u—bvg) (v) e 27 by, v20) 441 duy | du.

By changing variables

u — bvy = u, Vg — U+ T,
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we obtain
/ {/ f u - bT) (v)g(v+71) eiQ_BJ(d)“’(to)*¢£—b7,n+f(t0))d§ dn|dr.  (13.2)
R2

Let us denote
Q(u,v) := guv(to(u,v))
and
@;(u,v) = Q(u,v) — Q(u,v+ 7).
We can also set up the following key estimates as before.

Lemma 13.1. Under the above notation and the assumption that 5 <0, we have

02Q, !
Fud (13.3)
Moreover,
0%Q,
13.4
Oudv o2 (13.4)

Proof of Lemma 13.1. By a direct calculation, we have

82Q 2m/+1t0
(u,v) = = :
Judv 27710+ BB — 1)lte]P-2

Hence,

83Q Ity (2m +1'U+6(,6 )(3 _ﬁ)tg—Z)

( ) _om /41 Ou 5
(2 +10 + B(8 - 1)t0 %)

0%2udv uv

The relation between v and tg is given by
u+ 2m/+1t01) + 5t€71 =0.

‘We obtain

dto 920t

m/—i-l _ 70 _
142 v8u+ﬁ(ﬂ 1), B 0.
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A simple calculation shows that

2Q G0 (2m"+1o + BB - 1)(3 - B)t) ) — 21t

(u,0) = —2m 41 2
(2m/+111 +8(8 - 1)t§_2)2

Oud?v Y

On the other side, we have

Ot _ 2Ot
+B(B -1 o

2ml+1t0 + 2ml+1v
ov

=0.
Therefore, we have

ato om’+1¢,

B " -G
Hence,

dto
v

‘27" 2y 4 B(B—1)(4 — B)tS™ 2‘ ~1.

(271 + (3 - 13 - 812 - 2’"’+lto‘
(13.5)

Equation (13.3) follows from the mean value theorem. Equation (13.4) can also be proved
in the same way. g

We estimate Equation (13.2) in the same way as before.

(13.2) :/ +/ .
I7|<o [7|>70

The former term can be bounded by

B _
To sup ’// f u — bT) (0)g(v+ 7)€ T (Puw(t0)=bu—brv+r(t0)) qy, do

<T°//Rz (] (u—br)3(0)3 (“+T)‘d“dvé [olll£13llg1l3-

For the latter term, when 8 <0, we bound it by

25j/2(22m/ - /[/ ‘f u—bT ]1/2 [/ ‘g v—l—r) dv}l/QdT

< 299/2(22m )= | £ g

B3 f g
We can finish the proof by setting 79 = 23 53,
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13.2. —j <m/ < —Cp
As before, we need to set up
~ o= Bi m' 2 B ~ ol
[, Tt | [ e e ity ao| e e 4
—einBi
S 27927 | fll2llgll2Rll2

for f and g whose frequencies support on [—3, —1] U [1, 3]. By the method of stationary
phase, it is enough to prove that

~ i —B3j ~ !
‘ / | F@gme et e + mydg dn‘
<279l llgll2 121l

As before, tg is the critical point of
!
Gen(t) = t€+ 2™ 2+ |t|”.

By changing the variables and taking b = 2’ml’j, it is sufficient to prove that

2

ﬁ .
gv —bu) e Pua—bulto) qyl| < o7 £12]1g)2.

L3

We expand the left hand side and change the variables to obtain

~ > —— - . —ﬁj _
/ [ / Fw) flu+m)g)glv — br)e?  @uvlto)=Putro—br(t0) gy do| dr.  (13.6)
R2
Let us denote

Q(ua ’U) = ¢u,v (tO (ua ’U))

and

@(u,v) = Q(u,v) — Qu,v + 7).

Lemma 13.2. With these notation, we have

02Q, ’
T > 92m 13.
Oudv |~ 4 (13.7)
and
02Q-
dudv (13:8)
c2
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Proof of Lemma 13.2. By a direct calculation, we have

820Q () = 72ml+1t0
duov " T TG (ko)
Hence,
0Q ot (2 o+ (5 - 13- A5 %)
U, v .

02udv (¢ »(t0))?
The relation between v and tg is given by

u+ 2m/+1tov + 5t0’871 =0.

A simple calculation shows that

9*Q G0 (2m" 10+ BB - 1)(3 - )] ) — 21t

() = —27+1 2
(2m+10 4 605 - 152"

Oud?v Y

By an implicit function calculation, we obtain

Q.
Oud?v

(u,v)

~ lgm’% +B(B—1)(4— 5)t§—2‘ ~ 22

Equation (13.7) can be proved as before. Equation (13.8) will also be proved in the same
way. O

(13.6) z/ +/ .
rismo Jirlzmo

The former term can be bounded by

We then write

|70 Sup ’// Fu) f(u+7)gw)gv — bT)eiz*Bjé;(”’”)dudv

< \ro|// Pl 7)g0)300 = bm|dude < Il 1913

For the latter term is bounded by

Bj 1/2 . 1/2
27(22m /[/|f u+7’|du:| |:/’g ’U—bT)‘d:| dr
l2_ — % 2
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_ , Bj—3m'—j
We can finish the proof by setting 9 = 2 3 .
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