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A new nonlinear robust filter is proposed in this paper to deal with the outliers of an integrated
Global Positioning System/Strapdown Inertial Navigation System (GPS/SINS) navigation
system. The influence of different design parameters for an H∞ cubature Kalman filter is ana-
lysed. It is found that when the design parameter is small, the robustness of the filter is stron-
ger. However, the design parameter is easily out of step in the Riccati equation and the filter
easily diverges. In this respect, a singular value decomposition algorithm is employed to
replace the Cholesky decomposition in the robust cubature Kalman filter. With large condi-
tions for the design parameter, the new filter is more robust. The test results demonstrate
that the proposed filter algorithm is more reliable and effective in dealing with the outliers
in the data sets produced by the integrated GPS/SINS system.
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1. INTRODUCTION. The integration of a Strap-down Inertial Navigation System
(SINS) and the Global Positioning System (GPS) has been widely utilised for real-time
navigation, mobile mapping, Location-based Services, transport andmany other appli-
cations. Kalman Filtering (KF) is the most common technique for data fusion of GPS
and SINS (Grejner-Brzezinska et al., 1998). However, the operations of the KF rely on
the proper definition of the dynamic stochastic models and the standardKF can only be
used to dealwith linear systems (Yi andGrejner-Brzezinska, 2006). Furthermore, due to
the nonlinear characteristics of the low-cost SINS errormodel and the uncertaintyof the
stochastic model, the KF estimation is not optimal and may produce an unreliable
result, or even lead to filtering divergence (Geng and Wang, 2008).
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Over the past few decades, nonlinear KF algorithms have been intensively investi-
gated to deal with the nonlinear issues of low-cost SINS (Gustafsson, 2010; Wendel
et al., 2006). The recently proposed Cubature Kalman Filtering (CKF) is a
Gaussian approximation to the Bayesian filtering. It has more accurate filtering
performance than traditional methods, and less computational cost (Arasaratnam
and Haykin, 2009). The CKF was introduced to deal with the data fusion of the inte-
grated GPS/INS system (Sun and Tang, 2012). However, the standard CKF may still
face difficulty in providing stable results and cannot deal with the outliers in the mea-
surements effectively. Robust Cubature Kalman Filtering (RCKF) based on an H∞
filter was proposed for integrated GPS/INS navigation applications (Liu et al., 2010).
TheRCKFalgorithmmakes use of theH∞ robust filter to overcome the interference of

outliers. For the H∞ robust filter, the given restrict parameter γ is used to show the bound
level andassess the robustness of theH∞ filter to this uncertain interference (Simon, 2006).
Theparameter γ canbe chosen appropriately according to the detailed performance index
and there is a balance between system average accuracy and its robustness performance
(Einicke and White, 1999). Certainly, γmust be larger than a positive number to output
a normal filtering result. It is found that the smaller the value of γ the stronger the robust-
ness of the filter (Liu et al., 2010). However, a disproportionately small value can easily
lead to a non-positive definite state covariance and cause filter divergence. Based on the
error variance constraints or minimum variance principle, the modified robust filters
were proposed (Hung and Yang, 2003; Shaked and Souza, 1995). An a priori robust
filter for linear uncertain systemswas presented by (Yahali and Shake, 1996) which guar-
antees a certainboundon the error covariance of the estimate.Furthermore, thenonlinear
robust Kalman filtering problem with norm-bound parameter uncertainties was also
studied by Xiong et al. (2012). However, how to improve the performance of a robust
filter under a small given parameter γ has rarely been investigated.
In this paper, the authors compare the performance of a robust cubature Kalman

filter for integrated GPS/SINS navigation applications under different given para-
meters γ. In order to maintain a high level of numerical stability, a Singular Value
Decomposition (SVD) algorithm is introduced to replace the Cholesky decomposition
in the RCKF. Land vehicle tests have been carried out to compare the performance of
this algorithm with other cubature Kalman filter algorithms. The results show that the
SVD-based Robust Cubature Kalman Filter (SVD-RCKF) algorithm can significantly
improve the filtering stability and has better robustness to the impact of outliers.
The structure of this paper is as follows. Section 2 includes the nonlinear description

of the H∞ filter and the calculation steps of the RCKF based on SVD is presented in
Section 3. Section 4 lists the formulae of the system and observation equations of the
GPS/SINS system. Two test results and data analysis are given in Section 5. The final
part of the paper is the preliminary conclusions attained through this study.

2. H∞ FILTER AND ITS NONLINEAR DESCRIPTION
2.1. The Principle of an H∞ filter. An H∞ filter is a typical implementation of the

robust filtering theory (Simon, 2006). It defines a cost function as follows:

J ¼
PN
k¼1

xk � x̂kk k2

x0 � x̂0k k2P�1
0
þ PN

k¼1
ð wkk k2Q�1

k
þ vkk k2R�1

k
Þ

ð1Þ
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where N is the total number of filtering time limit and k= 1,2, · · · N. wk and vk are
the unrelated system noise and measurement noise, and Qk and Rk are their
covariance matrices respectively. x0 is the initial value of the system state vector xk with
covariance P0, whilst x̂0 and x̂k are the estimated values of x0 and xk. In this equation,
x0 � x̂0k k2P�1

0
¼ ðx0 � x̂0ÞTP�1

0 ðx0 � x̂0Þ. Other similar terms canbe obtained recursively.
The goal of an optimal H∞ filter is to find an estimate of xk that minimizes J, under

the condition x̂k ¼ argmin Jk k∞. Normally, it is difficult to get the analytical solution
of an optimal H∞ filter problem. Therefore, we need find a suboptimal iterative algor-
ithm. We can set a threshold value γ, which meets Jk k∞¼ sup J � γ2ð Jk k∞ refers to
the infinity-norm of J and supis the supremum of a set). The threshold value γ is
equivalent to the following Riccati inequality (Chen and Yuan, 2009):

P�1
k þHT

k Hk � γ�2LT
k Lk > 0 ð2Þ

where, Lk is a user-defined matrix (assumed to be full rank). If we want to directly
estimate xk (as in the Kalman filtering), then we set Lk= I.Hk is the matrix of measure-
ment function after linearization, and Pk is the covariance matrix of xk.
For an H∞ filter, the estimation error in the most unfavourable conditions is con-

trolled by the threshold value γ that is called the designed restrict parameter. When
the designed restrict parameter γ is smaller, the robustness of a filter is stronger.
When γ approaches infinity, the H∞ filter is approaching the standard Kalman filter.

2.2. The nonlinear description of an H∞ filter. In order to apply the H∞ filter in
the nonlinear models, the recursive Riccati equation for a linear model is transformed
to implement the nonlinear filter. Due to Pk/k−1 Hk

T = Pxz,k, Hk Pk/k−1 Hk
T =Pzz,k−Rk

(Yan et al., 2008), the formula for computing the state vector covariance matrix of the
nonlinear H∞ filter can be modified as follows:

Pk ¼ Pk=k�1 � Pxz;k Pk=k�1
� � Pzz;k � Rk þ I PT

xz;k

Pxz;k Pk=k�1 � γ2I

" #�1
PT
xz;k

PT
k=k�1

" #
ð3Þ

where, innovation covariance matrices Pzz,k and cross-covariance matrix Pxz,k can be
gained by nonlinear filtering methods such as the cubature Kalman filter and the
unscented Kalman filter.
For nonlinear models, we can calculate the mean and covariance of the state vectors

by cubature point transformation instead of a Taylor expansion as discussed by
Arasaratnam and Haykin (2009) and then we can obtain the nonlinear H∞ robust
filter based on the cubature Kalman filter.

3. ROBUST CUBATURE KALMAN FILTER BASED ON SVD. Based on a
cubature Kalman filter frame, we developed a new filter algorithm by introducing
an H∞ robust filter. It is called a Robust Cubature Kalman Filter (RCKF).
However, after many iterations of the RCKF, Pk/k−1 and Pk can easily lose their posi-
tive definiteness and this will lead to the instability of the numerical value.Meanwhile a
much smaller restrict parameter γ may lead to non-positive definiteness of Pk/k−1 and
Pk. Therefore singular value decomposition (Gao et al., 2010) is applied in the calcu-
lation of the covariance matrix for the RCKF instead of the Cholesky decomposition
in this paper.
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Consider the following discrete nonlinear system:

xk ¼ f ðxk�1Þ þ wk�1 ð4Þ
zk ¼ hðxkÞ þ vk ð5Þ

where xk and zk are the state and measurements of the dynamic system; f(·) and h(·) are
known nonlinear functions; wk−1 and vk are the independent process and measurement
Gaussian noise sequences with zero means and co-variances,Qk−1 andRk, respectively.
Then the procedure of the Robust Cubature Kalman Filter based on Singular Value
Decomposition (SVD-RCKF) can be expressed as follows:

1) Calculate the basic cubature sampling points ξi and weights ωi based on the
cubature rule.

ξi ¼
ffiffiffiffi
m
2

r
½1�i; ωi ¼ 1

m
; i ¼ 1; 2; � � �m; m ¼ 2nx ð6Þ

where m is the number of cubature points, and nx is the dimension of state
vector. [1] represents a set that is similar to the following set of

points:
1
0

� �
;

0
1

� �
;

�1
0

� �
;

0
�1

� �� �
. Here, the generator is

1
0

� �
.

2) Time update:
Factorise Pk−1 based on SVD, and we get:

Pk�1 ¼ U
S 0
0 0

	 

VT

where S= diags{1 ,s2,· · · sn} is a diagonal matrix. Normally, the co-variance
matrix Pk−1 is a symmetric one, so its eigenvalues are si

2(i = 1,2,· · · n) and U=
V. Then the factorisation formula can be described as follows:

Pk�1 ¼ Uk�1Sk�1VT
k�1 ð7Þ

Evaluate the cubature points Xi,k−1

X i;k�1 ¼ U i;k�1
ffiffiffiffi
si

p
ξi þ x̂k�1 ð8Þ

Evaluate the propagated cubature points Xi,k
*

X�
i;k ¼ f ðX i;k�1Þ ð9Þ

Estimate the predicted state �xk and error covariance Pk/k−1

�xk ¼ Pm
i¼1

ωiX�
i;k

Pk=k�1¼
Pm
i¼1

ωiX�
i;kX

�T
i;k � �xk�xTk þQk�1

8>><
>>: ð10Þ

3) Measurement update
SVD factorisation

Pk=k�1 ¼ Uk=k�1Sk=k�1V
T
k=k�1 ð11Þ
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Calculate the cubature points

X i;k=k�1 ¼ U i;k=k�1
ffiffiffiffi
si

p
ξi þ �xk ð12Þ

Calculate the propagated cubature points of measurement vector Zi,k

Z i;k ¼ hðX i;k=k�1Þ ð13Þ
Calculate the predicted measurement vector �zk, the innovation covariance
matrices Pzz,k and the cross-covariance matrix Pxz,k

�zk ¼ Pm
i¼1

ωiZ i;k

Pzz;k ¼ Pm
i¼1

ωiZ i;kZT
i;k � �zk�zTk þ Rk

Pxz;k ¼ Pm
i¼1

ωiX i;kZT
i;k � �xk�zTk

8>>>>>>><
>>>>>>>:

ð14Þ

Calculate the gain matrix Kk, the updated state x̂k and the corresponding
covariance Pk

Kk ¼ Pxz;k=Pzz;k ð15Þ
x̂k ¼ �xk þ Kkðzk � �zkÞ ð16Þ

Pk ¼ Pk=k�1 � KkPzz;kKT
k ð17Þ

Considering the state covariance update formula of the H∞ robust filter:

Pk ¼ Pk=k�1 � Pxz;k Pk=k�1
� � Pzz;k � RkþI PT

xz;k

Pxz;k Pk=k�1 � γ2I

" #�1
PT
xz;k

PT
k=k�1

" #

ð18Þ
Equations (4) to (16) and (18) constitute the calculation procedure of the Robust

Cubature Kalman Filter based on SVD (SVD-RCKF).

4. THE DYNAMIC AND OBSERVATION EQUATIONS OF A GPS/SINS
SYSTEM. The loosely coupled GPS/SINS system is adopted. The state vectors are
composed of the position and velocity error in an Earth-Centred and Earth-Fixed
frame (ECEF frame, e frame), the attitude error between computer e frame and plat-
form e′ frame, and the gyro and accelerometer drift errors in the body frame (b frame),
which can be expressed as (Petovello, 2003):

xk ¼ ΔRe ΔVe φe ∇b εb
� �T

The nonlinear differential error model for low-cost SINS is as follows:

Δ _R
e ¼ ΔVe

Δ _V
e ¼ ðI3×3 � C e

e0 Þf e
0 þ C e0

b∇
b � 2Ωe

ieΔV
e

_φe ¼ ðI3×3 � C e0
e Þωe

ie � C e0
b ε

b

_∇
b ¼ 0

_εb ¼ 0

8>>>>><
>>>>>:

ð19Þ
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where ΔRe and ΔVe are the position and velocity error in the e frame, _φe is the attitude
error between computer e frame and platform e′ frame, I3×3 is the 3 × 3 unit matrix,Ce′

e

is the rotation matrix between the computer e frame and the platform e′ frame; Cb
e′ is

the rotation matrix between the body frame and the platform e′ frame; Ωie
e is the skew

symmetric matrix of earth rotation rate ωie
e ; εb and ▿b are the gyro and accelerometer

drift errors in the body frame.
The dynamical model of a loosely coupled GPS/SINS system can be expressed as

follows
_xk ¼ f ðxk�1Þ þ wk

Generally, the measurement model can be expressed as:

zk ¼ R̂e
INS � R̂e

GPS

V̂e
INS � V̂e

GPS

" #
¼ Hxk þ vk ¼ I3×3 03×3 03×3 03×3 03×3

03×3 I 3×3 03×3 03×3 03×3

	 

xk þ vk ð20Þ

where R̂e
INS andV̂

e
INS are the computed position and velocity vectors by the SINS in the

e frame, R̂e
GPS andV̂e

GPS are those output by GPS, and vk is the noise vector.

5. TEST CASES AND DATA ANALYSIS. To demonstrate the performance of
the SVD-RCKF algorithm, data was collected under real world conditions with a
probe vehicle. The tests were performed in Xuzhou (China) and Nottingham (UK)
respectively.

5.1. Case study 1. The first dataset was collected at the China University of
Mining and Technology (CUMT), Xuzhou, China in January 2011. The test employed
two GPS receivers and one low-cost Inertial Measurement Unit (IMU) (SPAN-CPT).
One of the GPS receivers was set on the rooftop as the reference station, and the second
was placed on the top of the test vehicle together with the IMU. The data was logged
for post processing. The SPAN-CPT IMU consists of a three-axis open-loop fibre optic
gyroscope and three-axis MEMS accelerometers. The technical data is shown in
Table 1. The specified parameters were used in setting up the Q estimation in the filter-
ing process. Figure 1 shows the ground track of the test vehicle. The update rates of the
INS and GPS were 100 Hz and 1 Hz, respectively. The high accuracy double difference
carrier-phase GPS position results are used as reference values.
The test results plotted in Figure 2 are based on the cubature Kalman filter. It is

worth noting here that the results contain some outlier values due to the vehicle
driving over speed bumps. These indicate that the robustness of the CKF needs to
be improved.

Table 1. IMU technical specifications.

SPAN-CPT SPAN-LCI

Gyro Rate Bias 20 deg/hr <1·0 deg/hr
Gyro Scale Factor 1500 ppm 500 ppm
Angle RW 0·067 deg/rt-hr <0·15 deg/rt-hr
Acc. Bias 50 mg <1·0 mg
Acc. Scale Factor 4000 ppm <1000 ppm
Velocity RW 55ug/rt-Hz —
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Figure 3 shows the positioning error when using the robust cubature Kalman filter
and the parameter γ is set to 2. Comparing Figures 2 and 3, it is apparent how effective
the robust filter is. The error amplitude in Figure 3 is reduced by improving the robust-
ness of the filter. Figure 4 is the position error result for the SVD-based robust cubature
Kalman filter (SVD-RCKF) with γ set to 2. Figures 3 and 4 show that the results are
almost the same when the parameter γ is set to 2. The reason is that the Cholesky de-
composition and the SVD method can achieve a similar effect when the RCKF is rela-
tively stable. Table 2 shows the statistical information for the different filter algorithms.

Figure 1. The vehicle trajectory of Case 1.

Figure 2. The position error of CKF in Case 1.
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The performance of the robust cubature Kalman filter with different values of the
parameter γ was further analysed. Table 3 presents the statistical information. For
the RCKF, the larger value for the parameter γ, the less the robustness of the filter.
Compared with the result of the RCKF on the value of 2500, the results when using
the value of 1·5 improved the performance by 6·5%, 7·1% and 3·7% in three directions.

Figure 3. The position error of RCKF (γ= 2) in Case 1.

Figure 4. The position error of SVD-RCKF (γ= 2) in Case 1.
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This indicates that the RCKF can achieve jarless robustness performance if the differ-
ent design parameters are within limits.
From the fundamental of the H∞ robust filter, we know that the smaller the restrict

parameter γ, the stronger the robustness of the filter. To get more robust performance,
case studies with smaller γ values were compared. The result is shown in Table 3. We
find that the RCKF sometimes does not work well. The reason is that after many itera-
tions of the RCKF with a much smaller restrict parameter γ, Pk/k−1 and Pk lose their
positive definiteness and this consequently leads to the instability of the numerical
value. In order to further improve the numerical stability of the RCKF, the SVD-
RCKF method is proposed. Figure 5 gives the position errors when using the new
filter algorithm with γ set to 1. Compared with the result from the RCKF with γ set
to 2, the result of SVD-RCKF with the value of 1 improved the performance by
56·0%, 60·8% and 50·9% in three directions. As expected, the results are better than
the other algorithms previously mentioned. However, it was found that the relationship
between γ and the robustness of a filter does not exist anymore if γ is much smaller.
That is because there is no solution to the Riccati inequality if the γ is too small.
For instance, the estimation error increases when γ is set smaller than 0·7, as shown
in Table 3.

5.2. Case study 2. The second test was carried out in Nottingham, UK in
November 2013. The test setup was similar to Case study 1. A Global Navigation
Satellite System (GNSS) antenna, a GNSS receiver and a SPAN-LCI IMU were
mounted in a van and data was logged from the receiver’s serial ports to a laptop
for storage and processing. The vector between the IMU centre and GPS antenna
was accurately surveyed using a total station and is considered to be known to
within 1 cm. A base station was set up on the roof of the NGB building to provide
Differential GPS (DGPS) and Real-Time Kinematic (RTK) corrections. The
update rates of the INS and GPS are 200 Hz and 1 Hz, respectively. The average base-
line length was less than 3 km for the test. Figure 6 is the test trajectory and Figure 7 is

Table 3. The position errors of different restrict parameter in Case 1.

Restrict parameter γ 0·5 0·7 1·0 1·4 1·5 2·0 2·5 25 250 2500

SVD- RCKF
(Position Error in m)

X 0·850 0·554 0·04 0·088 0·087 0·091 0·092 0·093 0·093 0·093
Y 1·013 0·394 0·069 0·167 0·168 0·176 0·178 0·182 0·182 0·182
Z 0·851 0·379 0·053 0·105 0·105 0·108 0·109 0·109 0·109 0·109

RCKF
(Position Error in m)

X — — — — 0·087 0·091 0·092 0·093 0·093 0·093
Y — — — — 0·168 0·176 0·178 0·181 0·181 0·181
Z — — — — 0·105 0·108 0·108 0·109 0·109 0·109

Table 2. Position errors of different filters in Case 1(γ = 2).

RMS of Position Error (m)

X Y Z

CKF 0·129 0·229 0·116
RCKF 0·091 0·176 0·108
SVD- RCKF 0·091 0·176 0·108
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a photograph taken of the test van. The high accuracy real-time output results of a
SPAN-CIMU system are used as the reference value and the double difference code
GPS position and velocity results are used as the input measurements.
The position error of the CKF is shown in Figure 8. It indicates that there are many

epochs of outlier data and the amplitude is a little big. The robustness of the CKF
should be enhanced to tackle the problem of gross errors or an inaccurate system.
Figure 9 shows the position error when using the SVD based Robust Cubature

Kalman Filter (SVD-RCKF) and the parameter γ is set as 3. As we can see by

Figure 5. The position error of SVD-RCKF (γ= 1) in Case 1.

Figure 6. The vehicle trajectory of Case 2.
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comparing Figure 8 and Figure 9, the error amplitude in Figure 9 is reduced through
improving the robustness of the filter. As is the situation in Case 1, the position error of
the RCKF is almost the same as the SVD-RCKF, so the corresponding plot of the
RCKF is omitted in Case 2 to keep the description concise. Table 4 shows the statistical
information of the plots.
As in Case 1, the performance of the robust cubature Kalman filter with different

values for parameter γ were also compared. The result is very similar to Case 1.
Table 5 shows the corresponding statistical result. From Table 5, we know that the
larger the value of the parameter γ, the worse the robustness of the filter. Compared
with the result of the RCKF with the value of 5000, the results for the value of 3
only improved the performance by 7·0%, 0·0% and 6·2%, in three directions. Similar
to Case 1, this result demonstrates that the RCKF can achieve jarless robustness
performance if the different design parameter is within limits.
To achieve more robust performance, case studies with smaller γ were compared.

The results from Case 2 are shown in Table 5. We find that the RCKF cannot work

Figure 7. The testing van in Case 2.

Figure 8. The position error of CKF in Case 2.
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when the parameter γ is smaller than 2. The reason is that after many iterations in the
RCKFwith amuch smaller restrict parameter γ,Pk/k−1 andPk lose their positive definite-
ness and this consequently leads to the instabilityof the numerical value.As is the situation
in Case 1, the SVD-RCKF is introduced to further improve the numerical stability of the
RCKF.Figure 10 gives the position errorswhenusing the new filter algorithmwith γ set to
1·44. Comparedwith the result from the RCKF with γ set to 3, the result from the SVD-
RCKF with the value of 1·44 improved the performance by 30·3%, 31·3% and 26·2% in

Figure 9. The position error of SVD-RCKF (γ= 3) in Case 2.

Table 4. Position errors of different filters in Case 2 (γ = 3).

RMS of Position Error (m)

X Y Z

CKF 1·430 0·264 1·185
RCKF 0·066 0·016 0·061
SVD- RCKF 0·066 0·016 0·061

Table 5. The position errors of different strict parameter in case 2.

Restrict parameter γ 0·8 0·866 1 1·414 1·732 2 3 4 5 50 500 5000

SVD- RCKF
(Position Error /m)

X 1·576 0·375 0·112 0·046 0·055 0·059 0·066 0·068 0·069 0·071 0·071 0·071
Y 1·632 0·362 0·118 0·011 0·016 0·018 0·016 0·016 0·016 0·016 0·016 0·016
Z 2·630 0·333 0·277 0·045 0·052 0·056 0·061 0·063 0·063 0·065 0·065 0·065

RCKF
(Position Error /m)

X — — — — — — 0·066 0·068 0·069 0·071 0·071 0·071
Y — — — — — — 0·016 0·016 0·016 0·017 0·017 0·017
Z — — — — — — 0·061 0·063 0·063 0·065 0·065 0·065
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three directions. As expected, the results are better than the other algorithms previously
mentioned. However, the same problem remains as in Case 1, where the robust filter
will diverge when the parameter γ is set too small. That is because there is no solution
to the Riccati inequality if the γ is too small. In this case study, the estimation error
shown in Table 5 increases when γ is set smaller than 1·44.
Case 2 displays a difference from Case 1, as the outlier may still exist in the position

error series. The reason could be that the test van was driven around corners sharply,
and at fairly high speed.
Combining the analysis of Case 1 and Case 2, we know that the nonlinear robust

filtering could gain a stable performance if the restrict parameter were assigned prop-
erly. If a more robust performance was expected, the restrict parameter should be
assigned adventurously. However, due to the existence criteria of the Riccati inequality,
the restrict parameter cannot be assigned without bounding. From the analysis of the
two cases, the restrict parameter should be equal to, or bigger than 1, and the optimal
value should vary in different cases. Therefore, how to assign the parameter properly is
the future work for the nonlinear robust filter.

6. CONCLUSIONS. The robust cubature Kalman filter based on the H∞ filter is
very effective at detecting outlier data in GPS/SINS integration systems. It has been
found that a smaller restrict parameter γ can improve the overall performance of the
RCKF. However, it is also apparent that the RCKF easily diverges if the parameter
is too small. The robust cubature Kalman filter based on SVD is proposed to maintain
stronger robustness on the wider conditions for the design parameters. Two case studies
indicate that the new filtering method is effective. It is also anticipated that more work
needs to be carried out regarding how to set the optimal parameter and quantify the
stability of the SVD-RCKF.

Figure 10. The position error of SVD-RCKF(γ = 1·414) in Case 2.
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