
Proceedings of the Royal Society of Edinburgh, 154, 629–659, 2024

DOI:10.1017/prm.2023.26

The monostable cooperative system with nonlocal
diffusion and free boundaries

Lei Li
College of Science, Henan University of Technology, Zhengzhou 450001,
PR China

Xueping Li
School of Mathematics and Information Science, Zhengzhou University
of Light Industry, Zhengzhou 450002, PR China

Mingxin Wang
School of Mathematics and Information Science, Henan Polytechnic
University, Jiaozuo 454000, PR China (mxwang@hpu.edu.cn)

(Received 18 July 2022; accepted 20 February 2023)

This paper concerns the monostable cooperative system with nonlocal diffusion and
free boundaries, which has recently been discussed by Du and Ni [J. Differential
equations 308(2021) 369-420 and arXiv:2010.01244]. We here aim at four aspects:
the first is to give more accurate estimates for the longtime behaviours of the
solution; the second is to discuss the limits of solution pair of a semi-wave problem;
the third is to investigate the asymptotic behaviours of the corresponding Cauchy
problem; the last is to study the limiting profiles of the solution as one of the
expanding rates of free boundaries converges to ∞. Moreover, some epidemic models
are given to illustrate their own rich longtime behaviours, which are quite different
from those of the relevant existing works.
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1. Introduction and main results

Recently, Du and Ni [10, 11] considered the following monostable cooperative
system with nonlocal diffusion and free boundaries
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uit = diLi[ui](t, x) + fi(u), t > 0, x ∈ (g(t), h(t)), 1 � i � m0,

uit = fi(u), t > 0, x ∈ (g(t), h(t)), m0 + 1 � i � m,

ui(t, g(t)) = ui(t, h(t)) = 0, t > 0, 1 � i � m,

g′(t) = −
m0∑
i=1

μi

∫ h(t)

g(t)

∫ g(t)

−∞
Ji(x− y)ui(t, x)dydx, t > 0,

h′(t) =
m0∑
i=1

μi

∫ h(t)

g(t)

∫ ∞

h(t)

Ji(x− y)ui(t, x)dydx, t > 0,

h(0) = −g(0) = h0 > 0, ui(0, x) = ui0(x), |x| � h0, 1 � i � m,

(1.1)

where u = (u1, · · · , um), 1 � m0 � m, di > 0, μi � 0,
∑m0

i=1 μi > 0, and

Li[ui](t, x) :=
∫ h(t)

g(t)

Ji(x− y)ui(t, y)dy − ui(t, x). (1.2)

For 1 � i � m0, kernel functions Ji satisfy

(J) Ji ∈ C(R) ∩ L∞(R), Ji � 0, Ji(0) > 0,
∫

R

Ji(x)dx = 1, Ji is even,

and the initial function u0(x) = (u10(x), · · · , um0(x)) satisfies

ui0 ∈ C([−h0, h0]), ui0(±h0) = 0 < ui0(x), ∀ x ∈ (−h0, h0), i = 1, · · · ,m.

This model can be used to describe the spreading of some epidemics and the inter-
actions of various species, for example, see [38] and [12], where similarly to (1.1)
the spatial movements of agents are approximated by the nonlocal diffusion oper-
ator (1.2) instead of random diffusion (also known as local diffusion). Such kind
of free boundary problem was firstly proposed in [4] and [7]. Especially, it can be
seen from [4] that the introduction of nonlocal diffusion brings about some dif-
ferent dynamical behaviours from the local version in [9], and also gives arise to
some technical difficulties. Since these two works [4] and [7] appeared, some related
research has emerged. For example, one can refer to [8] for the first attempt to the
spreading speed of the model in [4], [5, 15, 22] for the Lotka–Volterra competition
and prey–predator models, [21, 28, 29] for the systems where one species adopts
the nonlocal diffusion strategy while the other takes the local diffusion, [13, 14]
for high dimensional and radial symmetric version of the model in [4], [20] for the
model with a fixed boundary and a moving boundary, [19] for unbounded initial
range, [23] for the mutualist model, [34, 35] for SIR epidemic model, and [27] for
the model with seasonal succession.

Before introducing our results for (1.1), let us briefly review some conclusions
obtained by Du and Ni [10, 11]. The following notations and assumptions are
necessary.
• Notations:

(i) R
m
+ := {x = (x1, · · · , xm) ∈ R

m : xi � 0, 1 � i � m}.
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(ii) For x ∈ R
m, we simply write x = (xi) sometimes, and denote the transpose

of x by xT . For x, y ∈ R
m, x � (�) y means xi � (�) yi for all 1 � i � m;

x ≺ (�) y means xi < (>) yi for all 1 � i � m.

(iii) If x � y, we set [x, y] = {z ∈ R
m : x � z � y}, the order interval.

(iv) Hadamard product: x ◦ y = (xiyi) ∈ R
m for all x, y ∈ R

m.

(v) For any given functions s(t) and γ(t), we say s(t) ≈ γ(t) if there exist two
positive constants c1, C1 such that c1γ(t) � s(t) � C1γ(t) for t� 1; we say
s(t) = o(γ(t)) if lim

t→∞
s(t)
γ(t) = 0.

• Assumptions on reaction term fi:

(f1) (i) Let f = (f1, · · · , fm) ∈ [C1(Rm
+ )]m. System f(u) = 0 has only two roots

in R
m
+ : 0 = (0, · · · , 0) and ũ = (ũ1, · · · , ũm) � 0.

(ii) ∂jfi(u) := ∂fi(u)
∂uj

� 0 for i �= j and u ∈ [0, û], where either û = ∞ mean-
ing [0, û] = R

m
+ , or ũ ≺ û ∈ R

m
+ . This implies that system (1.1) is cooperative

in [0, û].
(iii) The matrix ∇f(0) = (∂jfi(0))m×m is irreducible with positive principal
eigenvalue.
(iv) If m0 < m, then ∂jfi(u) > 0 for 1 � j � m0 < i � m and u ∈ [0, ũ].

(f2) f(ku) � kf(u) for any 0 � k � 1 and u ∈ [0, û].

(f3) The matrix ∇f(ũ) is invertible, ∇f(ũ)ũT � 0 and for every 1 � i � m, either∑m
j=1 ∂jfi(ũ)ũj < 0, or

∑m
j=1 ∂jfi(ũ)ũj = 0 and fi(u) is linear in [ũ− ε01, ũ]

for some small ε0 > 0, where 1 = (1, · · · , 1) ∈ R
m.

(f4) Define di = 0 and Ji ≡ 0 for i ∈ {m0 + 1, · · · , m}. Denote D = (di) and
J = (Ji). Problem

Ut = D ◦
∫

R

J(x− y) ◦ U(t, y)dy −D ◦ U + f(U) for t > 0, x ∈ R (1.3)

has an invariant set [0, û] and its every nontrivial solution is attracted by
the equilibrium ũ. That is, if the initial value U(0, x) ∈ [0, û], then U(t, x) ∈
[0, û] for all t > 0 and x ∈ R; if further U(0, x) �≡ 0, then lim

t→∞U(t, x) = ũ

locally uniformly in R.

In this paper we always assume that the conditions (J) and (f1)–(f4) hold, and
the initial function u0 ∈ [0, û].

Under the above assumptions, one easily proves that (1.1) has a unique global
solution (u, g, h) by using similar methods in [12, 38]. Here, we suppose that its
longtime behaviours are governed by a spreading–vanishing dichotomy, namely, one
of the following alternatives must happen for (1.1)

(i) Spreading: lim
t→∞h(t) = − lim

t→∞ g(t) = ∞ and lim
t→∞u(t, x) = ũ locally uniformly

in R.
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(ii) Vanishing: lim
t→∞[h(t) − g(t)] <∞ and lim

t→∞ ‖u(t, ·)‖C([g(t),h(t)]) = 0.

As in [9] and [8], the understanding of spreading speed for free boundary prob-
lem highly relies on the associated semi-wave problem. The semi-wave problem
corresponding to (1.1) is made up of the following two equations:⎧⎨
⎩D ◦

∫ 0

−∞
J(x− y) ◦ Φ(y)dy −D ◦ Φ + cΦ′(x) + f(Φ) = 0, −∞ < x < 0,

Φ(−∞) = ũ,Φ(0) = 0, Φ(x) = (φi(x)),
(1.4)

and

c =
m0∑
i=1

μi

∫ 0

−∞

∫ ∞

0

Ji(x− y)φi(x)dydx. (1.5)

In order not to cause confusion, as in [10] we say that (c, Φ) is a semi-wave solution
of (1.1) if (c, Φ) satisfies (1.4)–(1.5). And if (c, Φ) solves (1.4), we say that Φ is a
semi-wave solution for (1.3) with speed c. Moreover, we also call the solution of the
problem⎧⎨
⎩D ◦

∫
R

J(x− y) ◦ Ψ(y)dy −D ◦ Ψ + cΨ′(x) + f(Ψ) = 0, −∞ < x <∞,

Ψ(−∞) = ũ,Ψ(∞) = 0, Ψ(x) = (ψi(x)).
(1.6)

the travelling wave solution of (1.3) with speed c. Du and Ni [10] obtained a com-
plete understanding for the semi-wave solutions of (1.1), (1.3) and the travelling
wave solution of (1.3). To state their conclusion, two following threshold conditions
on Ji are important and necessary, namely,

(J1)
∫ ∞

0

xJi(x)dx <∞ if μi > 0, i ∈ {1, · · · , m0},

(J2)
∫ ∞

0

eλxJi(x)dx <∞ for some λ > 0 and any i ∈ {1, · · · , m0}.

Clearly, the condition (J2) implies (J1) but not the other way around.

Theorem A. [10, Theorems 1.1 and 1.2] The following conclusions hold:

(i) There exists a C∗ ∈ (0, ∞] such that the semi-wave problem (1.4) has a unique
monotone solution if and only if c ∈ (0, C∗), and the travelling wave problem
(1.6) has a monotone solution if and only if c � C∗.

(ii) C∗ <∞ if and only if (J2) holds.

(iii) System (1.4)–(1.5) has a unique solution pair (c0, Φ0) with c0 > 0 and Φ0

non-increasing in (−∞, 0] if and only if (J1) holds.

With the help of Theorem A and some comparison principles, Du and Ni [10]
discussed the spreading speeds of g(t) and h(t) when spreading happens for (1.1),
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and proved that there is a finite spreading speed for (1.1) if and only if (J1) holds.
Exactly, they obtained the following conclusion.

Theorem B ([10, Theorem 1.3]). Let (u, g, h) be a solution of (1.1) and spreading
happens. Then

lim
t→∞

−g(t)
t

= lim
t→∞

h(t)
t

=

{
c0 if (J1) holds,

∞ if (J1) does not hold,

where c0 is uniquely determined by the semi-wave problem (1.4)–(1.5).

When (J1) does not hold, we usually call the phenomenon the accelerated spread-
ing. Additionally, some more accurate estimates on free boundaries were also derived
in [11] if Ji satisfy

(Jγ) Ji(x) ≈ |x|−γ for all i ∈ {1, · · · , m0} and m0 = m.

Theorem C ([11, Theorem 1.5]). Suppose that (Jγ) holds with γ ∈ (1, 2]. Let
(u, g, h) be a solution of (1.1) and spreading happens. Then

−g(t), h(t) ≈ t1/(γ−1) if γ ∈ (1, 2), −g(t), h(t) ≈ t ln t if γ = 2.

Inspired by the above interesting results, attention is paid to the following four
aspects:

(i) When spreading happens for (1.1), we give more accurate longtime behaviours
of solution component u rather than that of spreading case mentioned above.
Particularly, if (Jγ) holds with γ ∈ (1, 2], then some sharp estimates on
solution component u, which are closely related to the behaviours of kernel
function near infinity, are obtained.

(ii) Assume that (J1) holds. Choose a μj > 0 as the parameter and fix other μi.
The limiting profile of solution pair (c0, Φ0) of system (1.4)–(1.5) as μj → ∞
is derived.

(iii) We obtain the dynamical properties of (1.3) with initial data U(0, x), namely,
if (J2) holds, then C∗ is the asymptotic spreading speed of (1.3); if (J2) does
not hold, then accelerated spreading happens for (1.3). Moreover, if (Jγ)
holds with γ ∈ (1, 2], which implies that the accelerated spreading occurs,
then more accurate longtime behaviours are obtained.

(iv) Choose a μj > 0 as the parameter and fix other μi. It is proved that the
limiting problem of (1.1) is problem (1.3) as μj → ∞.

Now let’s introduce our first main result.
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Theorem 1.1. Let (u, g, h) be the unique solution of (1.1) and spreading happens.
Then ⎧⎨

⎩
lim

t→∞ max
|x|�ct

|u(t, x) − ũ| = 0 for any c ∈ (0, c0) if (J1) holds,

lim
t→∞ max

|x|�ct
|u(t, x) − ũ| = 0 for any c > 0 if (J1) does not hold,

where c0 is uniquely determined by system (1.4)–(1.5).

Remark 1.2. From Theorems B and 1.1, one easily obtains that for any λ ∈ (0, 1)
and i = 1, 2, · · · , m,⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

lim
t→∞

min{x > 0 : ui(t, x) = λũi}
t

= lim
t→∞

max{x < 0 : ui(t, x) = λũi}
t

= c0 if (J1) holds,

lim
t→∞

min{x > 0 : ui(t, x) = λũi}
t

= lim
t→∞

max{x < 0 : ui(t, x) = λũi}
t

= ∞ if (J1) does not hold,

where c0 is the same as in Theorem 1.1.

Remark 1.3. By Theorems B and 1.1 we know that if one of Ji with μi > 0 violates∫ ∞

0

xJi(x)dx <∞,

then the accelerated spreading happens, which means that the species ui will accel-
erate the propagation of other species. This phenomenon is also captured by Xu
et al. [33] for the Cauchy problem, and is called the transferability of acceleration
propagation.

Before giving our next main result, we need an additional assumption on f , i.e.,
(f5) For each 1 � i � m,

∑m
j=1 ∂jfi(0)ũj > 0,

∑m
j=1 ∂jfi(ũ)ũj < 0 and fi(ηũ) >

0 for η ∈ (0, 1).

Theorem 1.4. Assume that (f5) holds and (Jγ) holds with γ ∈ (1, 2]. Let (u, g, h)
be a solution of (1.1) and spreading happens. Then⎧⎪⎨

⎪⎩
lim

t→∞ max
|x|�s(t)

|u(t, x) − ũ| = 0 for any s(t) = o(t
1

γ−1 ) if γ ∈ (1, 2),

lim
t→∞ max

|x|�s(t)
|u(t, x) − ũ| = 0 for any s(t) = o(t ln t) if γ = 2.

Remark 1.5. We mention that in contrast to Theorem C that deals with the esti-
mates of free boundaries g(t) and h(t), Theorem 1.4 focuses on the estimates of
solution component u(t, x). Therefore, the lower solutions in the proof of Theorem
1.4 are different from those in the proof of Theorem C, which leads to that (f5)
is crucial to estimate (2.7) and necessary for our arguments, while not needed for
Theorem C.
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Remark 1.6. By Theorem C and the construction of lower solutions in the proof
of Theorem 1.4, we know that the level set of the solution component u of (1.1) has
a similar longtime behaviour with the free boundaries g(t) and h(t). More precisely,
for every λ ∈ (0, 1) and i = 1, 2, · · · , m, we have

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−max{x < 0 : ui(t, x) = λũi}, min{x > 0 : ui(t, x) = λũi}

≈ t

1
γ − 1 if (Jγ) holds with γ ∈ (1, 2),

−max{x < 0 : ui(t, x) = λũi}, min{x > 0 : ui(t, x) = λũi}
≈ t ln t if (Jγ) holds with γ = 2.

Remark 1.7. It can be seen from Theorems B, 1.1 and 1.4, [31, Theorem 3.15]
and [36, Theorem 1.2] that free boundary problem with nonlocal diffusion has
richer dynamics than its counterpart with random diffusion. This phenomenon also
appears for the corresponding Cauchy problem. The reason is that the kernel func-
tion plays an important role in studying the dynamics of nonlocal diffusion problem,
and the accelerated spreading may happen if kernel function violates the so-called
‘thin-tailed’ condition, please see [3, 16, 33] and the references therein.

Now we assume that (J1) holds, and choose a μj > 0 as the parameter and
fix other μi. Denote the unique solution pair of (1.4)–(1.5) by (cμj

, Φcμj ) with
Φcμj = (φ

cμj

i ). By the monotonicity of Φcμj , there is a unique lμj
> 0 such that

φ
cμj

j (−lμj
) = 1

2 ũj . Define Φ̂cμj (x) = Φcμj (x− lμj
). Our next result concerns the

limit of (cμj
, lμj

, Φcμj , Φ̂cμj ) as μj → ∞.

Theorem 1.8. If (J2) holds, then cμj
→ C∗, lμj

→ ∞, Φcμj (x) → 0 and Φ̂cμj (x) →
Ψ(x) as μj → ∞, where (C∗, Ψ) is the minimal speed solution pair of travelling wave
problem (1.6) with ψj(0) = 1

2 ũj. If (J2) does not hold, then cμj
→ ∞ as μj → ∞.

For convenience, we define a new function û0(x) by

û0(x) = u0(x) for |x| � h0, û0(x) = 0 for |x| > h0.

Theorem 1.9. Let û = ∞ in (ii) of (f1) and U be a solution of (1.3) with U(0, x) =
û0(x). For λ ∈ (0, 1), denote the level set of the component Ui by Ei

λ = {x ∈ R :
Ui(t, x) = λũi}, and define x+

i,λ = supEi
λ and x−i,λ = inf Ei

λ, i = 1, · · · , m.
(i) If the condition (J2) holds,

lim
t→∞

|x±i,λ|
t

= C∗, lim
|x|→∞

U(t, x) = 0 for any t � 0, (1.7)⎧⎪⎨
⎪⎩

lim
t→∞ max

|x|�ct
|U(t, x) − ũ| = 0 for any c ∈ (0, C∗),

lim
t→∞ max

|x|�ct
|U(t, x)| = 0 for any c > C∗.

(1.8)
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(ii) If the condition (J2) does not hold,

lim
t→∞

|x±i,λ|
t

= ∞, lim
t→∞ max

|x|�ct
|U(t, x) − ũ| = 0 for any c > 0. (1.9)

(iii) If the conditions (f5) and (Jγ) hold with γ ∈ (1, 2],⎧⎪⎨
⎪⎩

lim
t→∞ max

|x|�s(t)
|U(t, x) − ũ| = 0 for any s(t) = o(t

1
γ−1 ) if γ ∈ (1, 2),

lim
t→∞ max

|x|�s(t)
|U(t, x) − ũ| = 0 for any s(t) = o(t ln t) if γ = 2.

As before, choose a μj > 0 as the parameter and fix other μi. Our last main result
concerns the limiting problem of (1.1) as μj → ∞.

Theorem 1.10. Problem (1.3), with U(0, x) = û0(x), is the limiting problem
of (1.1) as μj → ∞. More precisely, denoting the unique solution of (1.1) by
(uμj

, gμj
, hμj

) and letting μj → ∞, we have uμj
(t, x) → U(t, x) locally uniformly

in [0, ∞) × R and −gμj
(t), hμj

(t) → ∞ locally uniformly in (0, ∞).

This paper is as follows. In § 2, we prove Theorems 1.1 and 1.4. Section 3 is
devoted to the proofs of Theorems 1.8, 1.9 and 1.10. In § 4, two epidemic models
are taken as examples to illustrate our previous results.

2. Proofs of theorems 1.1 and 1.4

In this section, we will prove Theorems 1.1 and 1.4 by constructing some properly
upper and lower solutions.

Proof of Theorem 1.1. Firstly, consider the following ODE system

ūt = f(ū), ū(0) = (‖ui0(x)‖C([−h0,h0])) ∈ [0, û].

It follows from condition (f4) and a comparison argument that

lim sup
t→∞

u(t, x) � ũ uniformly in R. (2.1)

(i) Assume that (J1) holds. Let (c0, Φ0) be the unique solution pair of
(1.4)–(1.5). For small ε > 0 and σ > 0, we define

h(t) = c0(1 − 2ε)t+ σ, u(t, x) = (1 − ε) [Φ0(x− h(t)) + Φ0(−x− h(t)) − ũ]

for t � 0 and |x| � h(t). By [10, Lemma 3.4], for small ε > 0 there exist
suitable T, σ > 0 such that

g(t+ T ) � −h(t), h(t+ T ) � h(t), u(t+ T, x) � u(t, x) for t � 0, |x| � h(t).
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On the other hand, direct calculations show that, with cε0 = c0(1 − 3ε),

max
|x|�cε

0t
|u(t, x) − (1−ε)ũ| = (1 − ε) max

|x|�cε
0t
|Φ0(x− h(t)) + Φ0(−x− h(t))−2ũ|

� (1 − ε) max
|x|�cε

0t

(|Φ0(x− h(t)) − ũ|

+ |Φ0(−x− h(t)) − ũ|)
= 2(1 − ε)|Φ0(−c0εt− σ) − ũ| → 0 as t→ ∞.

Therefore, lim inf
t→∞ u(t, x) � (1 − ε)ũ uniformly in |x| � c0(1 − 3ε)t. Then for

any c ∈ (0, c0), by letting ε > 0 sufficiently small such that c < c0(1 − 3ε), we
have lim inf

t→∞ u(t, x) � (1 − ε)ũ uniformly in |x| � ct. In view of the arbitrari-

ness of ε > 0, lim inf
t→∞ u(t, x) � ũ uniformly in |x| � ct. This, combined with

(2.1), gives our desired result.

(ii) Assume that (J1) does not hold. As in the proof of [10, Theorem 1.3], for
any integer n � 1 and 1 � i � m0, we define

Jn
i (x) =

{
Ji(x) if |x| � n,
n

|x|Ji(x) if |x| � n, J̃n
i =

Jn
i (x)

‖Jn
i ‖L1(R)

, Jn = (Jn
i ), and J̃n = (J̃n

i )

with Jn
i (x) ≡ J̃n

i ≡ 0 for m0 + 1 � i � m. Clearly, the following results about Jn
i

and J̃n
i hold:

(1) Jn
i (x) � Ji(x), |x|Jn

i (x) � nJi(x), and for any α > 0, there is c > 0 depending
only on n, α, Ji such that eα|x|Jn

i (x) � ce
α
2 |x|Ji(x) for x ∈ R, which directly

implies that J̃n satisfies (J) and (J1), but not (J2).

(2) Jn is non-decreasing in n, lim
n→∞ Jn = lim

n→∞ J̃n = J in [L1(R)]m and locally
uniformly in R.

Let (un, gn, hn) be the unique solution of the following problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un
t =D ◦

∫ hn(t)

gn(t)

Jn(x−y) ◦ un(t, y)dy−D ◦ un+f(un), t>0, x∈(gn(t), hn(t)),

un(t, x) = 0, t > 0, x /∈ (gn(t), hn(t)),

g′n(t) = −
m0∑
i=1

μi

∫ hn(t)

gn(t)

∫ gn(t)

−∞
Jn

i (x− y)un
i (t, x)dydx, t > 0,

h′n(t) =
m0∑
i=1

μi

∫ hn(t)

gn(t)

∫ ∞

hn(t)

Jn
i (x− y)un

i (t, x)dydx, t > 0,

un(0, x) = u(T, x), gn(T ) = g(T ), hn(0) = h(T ), x ∈ [g(T ), h(T )],
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where T > 0. For any integer n � 1, it follows from [10, Lemma 3.5] that there is
a proper T > 0 such that

gn(t) � g(t+ T ), hn(t) � h(t+ T ), un(t, x)

� u(t+ T, x) for t � 0, gn(t) � x � hn(t).

Since f satisfies (f1)–(f3), the function f(w) + (Dn −D) ◦ w still satisfies (f1)–(f3)
with Dn = (di‖Jn

i ‖L1(R)) and n� 1. Denote the unique positive root of f(w) +
(Dn −D) ◦ w = 0 by ũn. Clearly, lim

n→∞ ũn = ũ. By [10, Lemmas 3.6 and 3.8], the
following problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩
D ◦

∫ 0

−∞
Jn(x− y) ◦ Φ(y)dy −D ◦ Φ + cΦ′(x) + f(Φ) = 0, −∞ < x < 0,

Φ(−∞) = ũn, Φ(0) = 0, c =
m0∑
i=1

μi

∫ 0

−∞

∫ ∞

0

Jn
i (x− y)φi(x)dydx

has a unique solution pair (cn, Φn) and lim
n→∞ cn = ∞.

As before, for small ε > 0 and σ > 0, define

hn(t)=cn(1 − 2ε)t+ σ, un(t, x)=(1−ε) [Φn(x−hn(t)) + Φn(−x− hn(t)) − ũn] ,

with t � 0 and |x| � hn(t). By [10, Lemma 3.7], for small ε > 0 and large n, there
exist σ > 0 and T > 0 such that

g(t+T ) �−hn(t), h(t+T ) � hn(t), u(t+ T, x) � un(t, x) for t � 0, |x| � hn(t).

Similarly, lim inf
t→∞ u(t, x) � lim inf

t→∞ un(t, x) � (1 − ε)ũn uniformly in |x| � cn

(1 − 3ε)t. Since lim
n→∞ cn = ∞, for any fixed c > 0 there are large N � 1

and small ε0 > 0 such that c < cn(1 − 3ε) for n � N and ε ∈ (0, ε0). Thus
lim inf
t→∞ u(t, x) � (1 − ε)ũn uniformly in |x| � ct. Letting n→ ∞ and ε→ 0, we

derive lim inf
t→∞ u(t, x) � ũ uniformly in |x| � ct. Together with (2.1), the desired

result is immediately obtained. The proof is ended. �

To prove Theorem 1.4, the following two technical lemmas are crucial, and their
proofs can be found in [11] and [12].

Lemma 2.1 [12, (2.11)]. Let P (x) satisfy (J) and ϕl(x) = l − |x| with l > 0. Then
for any ε > 0, there exists Lε > 0 such that for any l > Lε,∫ l

−l

P (x− y)ϕl(y)dy � (1 − ε)ϕl(x) in [−l, l].

Lemma 2.2 [11, Lemma 6.5]. Let P (x) satisfy (J) and ϕ(x) = min
{
1, l2−|x|

l1

}
with

l2 > l1 > 0. Then for any ε > 0, there is Lε > 0 such that for any l2 > l1 > Lε and
l2 − l1 > Lε, ∫ l2

−l2

P (x− y)ϕ(y)dy � (1 − ε)ϕ(x) in [−l2, l2].
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Proof of Theorem 1.4. Clearly, (2.1) still holds. Thus it remains to show the lower
limits of u. The discussion will be divided into two steps.

Step 1: In this step, we deal with the case 1 < γ < 2, and prove

lim inf
t→∞ u(t, x) � ũ uniformly in [−s(t), s(t)] for any s(t) = o(t

1
γ−1 ). (2.2)

For small ε > 0, we define

h(t) = (σt+ θ)
1

γ−1 , u(t, x) = ũε

(
1 − |x|

h(t)

)
for t � 0, |x| � h(t),

where ũε = (1 − ε)ũ and σ, θ > 0 are to be determined later. Then we are going to
verify that there exist proper σ, T and θ > 0 such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut � D ◦
∫ h(t)

−h(t)

J(x− y) ◦ u(t, y)dy −D ◦ u+ f(u), t > 0, |x| < h(t),

u(t,±h(t)) � 0, t > 0,

h′(t) �
m0∑
i=1

μi

∫ h(t)

−h(t)

∫ ∞

h(t)

Ji(x− y)ui(t, x)dydx, t > 0,

−h′(t) � −
m0∑
i=1

μi

∫ h(t)

−h(t)

∫ −h(t)

−∞
Ji(x− y)ui(t, x)dydx, t > 0,

h(0) � h(T ), u(0, x) � u(T, x), |x| � h(0).

(2.3)

Once it is done, by the comparison method we have

g(t+ T ) � −h(t), h(t+ T ) � h(t), u(t+ T, x) � u(t, x) for t � 0, |x| � h(t).
(2.4)

Moreover, for any s(t) = o(t
1

γ−1 ), direct computations show

lim
t→∞ max

|x|�s(t)
|u(t, x) − (1 − ε)ũ| = (1 − ε) lim

t→∞ |ũ| s(t)
h(t)

= 0,

which, together with (2.4) and the arbitrariness of ε, yields (2.2).
Now let’s verify (2.3). To prove the first inequality in (2.3), we firstly show that

there is a constant ĉ > 0 depending only on J such that

∫ h(t)

−h(t)

J(x− y) ◦ u(t, y)dy � ĉũεh
1−γ(t) for t > 0, |x| � h(t). (2.5)
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In fact, for x ∈ [0, h(t)/4], we have

∫ h(t)

−h(t)

J(x− y) ◦ u(t, y)dy =
∫ h(t)−x

−h(t)−x

J(y) ◦ u(t, x+ y)dy

� ũε ◦
∫ h(t)/4

h(t)/8

J(y)
(

1 − x+ y

h(t)

)
dy

� ũε ◦
∫ h(t)/4

h(t)/8

J(y)
y

h(t)
dy

� ũεc1
h(t)

∫ h(t)/4

h(t)/8

y1−γdy = ũεĉ1h
1−γ(t).

Similarly, for x ∈ [h(t)/4, h(t)], we have

∫ h(t)

−h(t)

J(x− y) ◦ u(t, y)dy � ũε ◦
∫ −h(t)/8

−h(t)/4

J(y)
(

1 − x+ y

h(t)

)
dy

� ũε ◦
∫ −h(t)/8

−h(t)/4

J(y)
−y
h(t)

dy

� ũεĉ1h
1−γ(t).

Since Ji and u are both even in x, estimate (2.5) is obtained.
On the other hand, by lemma 2.1, one can let θ sufficiently large such that

∫ h(t)

−h(t)

J(x− y) ◦ u(t, y)dy � (1 − ε2)u(t, x) for t > 0, |x| � h(t). (2.6)

By the assumptions on f , one easily shows that there is a C � 0 such that f(ηũ) �
min{η, 1 − η}C for any η ∈ [0, 1]. Hence there is a positive constant c̄ depending
only on f such that

f

(
(1 − ε)

(
1 − |x|

h(t)

)
ũ

)
�
(

1 − |x|
h(t)

)
f((1 − ε)ũ) �

(
1 − |x|

h(t)

)
εC � c̄εu.

(2.7)
Applying (2.5)–(2.7) we arrive at

D ◦
∫ h(t)

−h(t)

J(x− y) ◦ u(t, y)dy −D ◦ u+ f(u)

=
c̄ε1
2

◦
∫ h(t)

−h(t)

J(x− y) ◦ u(t, y)dy

+
(
D − c̄ε1

2

)
◦
∫ h(t)

−h(t)

J(x− y) ◦ u(t, y)dy −D ◦ u+ f(u)
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� c̄ε1
2

◦
∫ h(t)

−h(t)

J(x− y) ◦ u(t, y)dy + (1 − ε2)
(
D − c̄ε1

2

)
◦ u(t, x) −D ◦ u+ c̄εu

� c̄ε1
2

◦
∫ h(t)

−h(t)

J(x− y) ◦ u(t, y)dy

� c̄ε

2
ũεĉ1h

1−γ(t) � σh1−γ(t)
γ − 1

ũε � ut

provided that ε and σ are suitably small. So the first inequality in (2.3) holds.
The second inequality in (2.3) is obvious. Now we show the third one in (2.3).

Simple calculations yield, with ũiε = (1 − ε)ũi,∫ h(t)

−h(t)

∫ ∞

h(t)

Ji(x− y)ui(t, x)dydx = ũiε

∫ h(t)

−h(t)

∫ ∞

h(t)

Ji(x− y)
(

1 − |x|
h(t)

)
dydx

� ũiε

∫ h(t)

0

∫ ∞

h(t)

Ji(x− y)
(

1 − x

h(t)

)
dydx

=
ũiε

h(t)

∫ 0

−h(t)

∫ ∞

0

Ji(x− y)(−x)dydx

=
ũiε

h(t)

∫ h(t)

0

∫ ∞

x

Ji(y)xdydx

=
ũiε

h(t)

(∫ h(t)

0

∫ y

0

+
∫ ∞

h(t)

∫ h(t)

0

)
Ji(y)xdxdy

� ũiε

2h(t)

∫ h(t)

0

Ji(y)y2dy

� c1ũiε

2h(t)

∫ h(t)

h(t)/2

y2−γdy

� c̃1(σt+ θ)(2−γ)/(γ−1),

which indicates the third inequality in (2.3). Since Ji and u are both symmetric
about x, the fourth inequality of (2.3) also holds.

For σ, θ and ε chosen as above, since spreading happens, there exists T > 0 such
that

−h(0) � g(T ), h(0) � h(T ), u(0, x) � ũε � u(T, x) for |x| � h(0).

Therefore, (2.3) holds. Step 1 is finished.

Step 2: We now deal with the case γ = 2 and prove

lim inf
t→∞ u(t, x) � ũ uniformly in [−s(t), s(t)] for any s(t) = o(t ln t). (2.8)

For small ε > 0, define

h(t) = σ(t+ θ) ln(t+ θ), u(t, x) = ũε min
{

1,
h(t) − |x|
(t+ θ)

1
2

}
for t � 0, |x| � h(t),
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where ũε = (1 − ε)ũ := (ũiε) and σ, θ > 0 to be determined later. Now we are ready
to show⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut � D ◦
∫ h(t)

−h(t)
J(x − y) ◦ u(t, y)dy − D ◦ u + f(u), t > 0, |x| < h(t), x �= h(t) − (t + θ)

1
2 ,

u(t,±h(t)) � 0, t > 0,

h′(t) �
m0∑
i=1

μi

∫ h(t)

−h(t)

∫ ∞

h(t)
Ji(x − y)ui(t, x)dydx, t > 0,

−h′(t) � −
m0∑
i=1

μi

∫ h(t)

−h(t)

∫ −h(t)

−∞
Ji(x − y)ui(t, x)dydx, t > 0,

h(0) � h(T ), u(0, x) � u(T, x), |x| � h(0).

(2.9)
Once this is done, the comparison argument yields

g(t+ T ) � −h(t), h(t+ T ) � h(t), u(t+ T, x) � u(t, x) for t � 0, |x| � h(t),

which, similarly to Step 1, implies that (2.8) holds.
Now we verify the first inequality of (2.9). As in Step 1, we first show that there

is a positive constant c̃1, relying only on J , such that∫ h(t)

−h(t)

J(x− y) ◦ u(t, y)dy � c̃1 ln(t+ θ)
4(t+ θ)

1
2
ũε for t > 0, h(t) − (t+ θ)

1
2 � |x| � h(t).

(2.10)
In fact, it is clear that∫ h(t)

−h(t)

J(x− y) ◦ u(t, y)dy � ũε ◦
∫ h(t)

h(t)−(t+θ)
1
2

J(x− y)
h(t) − y

(t+ θ)
1
2
dy

=
ũε

(t+ θ)
1
2
◦
∫ h(t)−x

h(t)−(t+θ)
1
2 −x

J(y)(h(t) − x− y)dy.

And, when x ∈ [h(t) − (t+ θ)
1
2 , h(t) − 3

4 (t+ θ)
1
2 ], we have

ũε ◦
∫ h(t)−x

h(t)−(t+θ)
1
2 −x

J(y)(h(t) − x− y)dy � ũε ◦
∫ 1

4 (t+θ)
1
2

1
4 (t+θ)

1
4

J(y)(h(t) − x− y)dy

� c1ũε

∫ 1
4 (t+θ)

1
2

1
4 (t+θ)

1
4

1
y
dy =

c1ũε ln(t+ θ)
4

.

(2.11)

When x ∈ [h(t) − 3
4 (t+ θ)

1
2 , h(t)],

ũε ◦
∫ h(t)−x

h(t)−(t+θ)
1
2 −x

J(y)(h(t) − x− y)dy � ũε ◦
∫ − 1

4 (t+θ)
1
4

− 1
4 (t+θ)

1
2

J(y)(−y)dy

� c1ũε

∫ − 1
4 (t+θ)

1
4

− 1
4 (t+θ)

1
2

−1
y

dy,
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and thus (2.11) holds. By the symmetry of Ji and u, (2.11) also holds for x ∈
[−h(t), −h(t) + (t+ θ)

1
2 ]. So (2.10) is derived.

Making use of lemma 2.2 with l2 = h(t) and l1 = (t+ θ)
1
2 one has∫ h(t)

−h(t)

J(x− y) ◦ u(t, y)dy � (1 − ε2)u(t, x) for t > 0, |x| � h(t). (2.12)

Similarly to Step 1, there exists a positive constant c̄ such that

f(u) � c̄εu for t > 0, |x| � h(t). (2.13)

From (2.10), (2.12) and (2.13), it follows that, when h(t) − (t+ θ)
1
2 � |x| � h(t),

D ◦
∫ h(t)

−h(t)

J(x− y) ◦ u(t, y)dy −D ◦ u+ f(u) � c̄ε1
2

◦
∫ h(t)

−h(t)

J(x− y) ◦ u(t, y)dy

� C̃1c̄ε ln(t+ θ)
8(t+ θ)

1
2

ũε

� 2σ ln(t+ θ)
(t+ θ)

1
2

ũε � ut

provided that ε and σ are small, and θ is large. Moreover, when |x| � h(t) −
(t+ θ)

1
2 ,

D ◦
∫ h(t)

−h(t)

J(x− y) ◦ u(t, y)dy −D ◦ u+ f(u) � c̄ε1
2

◦
∫ h(t)

−h(t)

J(x− y) ◦ u(t, y)dy

� 0 = ut.

The first inequality of (2.9) is proved. The second inequality of (2.9) is obvious.
Now we deal with the third inequality in (2.9). Careful computations show

∫ h(t)

−h(t)

∫ ∞

h(t)

Ji(x− y)ui(t, x)dydx � ũiε

∫ h(t)−(t+θ)
1
2

0

∫ ∞

h(t)

Ji(x− y)dydx

= ũiε

∫ h(t)

(t+θ)
1
2

∫ ∞

x

Ji(y)dydx

� ũiε

∫ h(t)

(t+θ)
1
2

∫ y

(t+θ)
1
2

Ji(y)dxdy

� ũiεc1

∫ h(t)

(t+θ)
1
2

y − (t+ θ)
1
2

y2
dy

� c1ũiε

(
lnh(t) − ln(t+ θ)

2
+

(t+ θ)
1
2

h(t)
− 1

)

� c1ũiε

(
lnσ +

ln(t+ θ)
2

+ ln(ln(t+ θ)) − 1
)
,
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which implies the third inequality in (2.9) provided that θ is large and σ is small.
From the symmetry of Ji and u on x, it follows that the fourth one in (2.9) also
holds.

Since spreading happens for (1.1), for ε, θ and σ chosen as above, we can choose
T > 0 properly such that −h(0) � g(T ), h(0) � h(T ) and u(0, x) � ũ(1 − ε) �
u(T, x) for |x| � h(0). So (2.9) is proved, and Step 2 is complete. Theorem 1.4
directly follows from (2.1), (2.2) and (2.8). �

3. Proofs of theorems 1.8, 1.9 and 1.10

In this section, we first show the limits of solution of semi-wave problem (1.4)–(1.5),
namely, to prove Theorem 1.8.

Proof of Theorem 1.8. We first prove the result when (J2) holds. By some compar-
ison considerations, cμj

is non-decreasing in μj > 0. Thanks to cμj
< C∗, we have

C∞ = lim
μj→∞ cμj

� C∗. We shall show that lim
μj→∞ lμj

= ∞. Clearly,

0 �
∫ 0

−∞

∫ ∞

0

Jj(x− y)φ
cμj

j (x)dydx �
cμj

μj
� C∗
μj
. (3.1)

Case 1: Jj does not have compact support. Then for every n > 0, by (1.5) one sees

C∗
μj

�
∫ 0

−∞

∫ ∞

0

Jj(x− y)φ
cμj

j (x)dydx �
∫ −n

−n−1

φ
cμj

j (x)
∫ ∞

n+1

Jj(y)dydx

� φ
cμj

j (−n)
∫ ∞

n+1

Jj(y)dy � 0,

which implies lim
μj→∞φ

cμj

j (−n) = 0. Noting that φ
cμj

j (x) is decreasing in x � 0,

we have that lim
μj→∞φ

cμj

j (x) = 0 locally uniformly in (−∞, 0], which yields lim
μj→∞

lμj
= ∞.

Case 2: Jj is compactly supported. Let [−L, L] be the smallest set which contains the

support of Jj . Combining (3.1) with the uniform boundedness of φ
cμj

j

′
(x), one easily

has that lim
μj→∞φ

cμj

j (x) = 0 locally uniformly in [−L, 0]. Since Φcμj
′ is uniformly

bounded about μj > 1, it follows from a compact argument that there are a sequence
{μn

j } with μn
j → ∞ and a non-increasing function Φ∞ = (φ∞i ) ∈ [C((−∞, 0])]m

such that Φ
cμn

j → Φ∞ locally uniformly in (−∞, 0] as n→ ∞. Clearly, Φ∞ ∈ [0, ũ].
By the dominated convergence theorem,

D ◦
∫ 0

−∞
J(x− y) ◦ Φ∞(t, y)dy −D ◦ Φ∞ + cΦ′

∞(x) + f(Φ∞) = 0, −∞ < x < 0.

Thus,

dj

∫ 0

−∞
Jj(x−y)φ∞j (y)dy−djφ

∞
j +cμj

φ∞j
′+fj(φ∞1 , φ

∞
2 , · · · , φ∞m )=0, −∞<x<0.

(3.2)
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Moreover, φ∞j (x) = 0 in [−L, 0]. If φ∞j (x) �≡ 0 for x � 0, there exists L1 � −L such
that φ∞j (L1) = 0 < φ∞j (x) in (−∞, L1). By (3.2), (J) and the assumptions on f ,
we have

0 = dj

∫ 0

−∞
Jj(L1 − y)φ∞j (y)dy + fj(φ∞1 (L1), · · · , 0︸ ︷︷ ︸

j

, · · · , φ∞m (L1)) > 0,

which implies that φ∞j (x) ≡ 0 for x � 0. Hence, lim
μj→∞ lμj

= ∞.

Notice that Φ̂cμj and (Φ̂cμj )′ are uniformly bounded for μj > 1 and x � −lμj
. By

a compact consideration again, for any sequence {μn
j } with μn

j → ∞, there exists
a subsequence, denoted by itself, such that lim

n→∞ Φ̂cμn
j = Φ̂∞(= (φ̂∞i )) locally uni-

formly in R for some non-increasing and continuous function Φ̂∞ ∈ [0, ũ]. Moreover,
Φ̂∞(0) = (φ̂∞1 (0), · · · , ũj/2, · · · , φ̂∞m (0)). Again using the dominated convergence
theorem yields

D ◦
∫

R

J(x− y) ◦ Φ̂∞(y)dy −D ◦ Φ̂∞ + C∞(Φ̂∞)′ + f(Φ̂∞) = 0, −∞ < x <∞.

Together with the properties of Φ̂∞ and the assumptions on f , we easily derive
that Φ̂∞(−∞) = ũ and Φ̂∞(∞) = 0. Thus, (C∞, Φ̂∞) is a solution pair of (1.6). By
Theorem A, C∗ is the minimal speed of (1.6). Noticing that C∞ � C∗, we derive that
C∞ = C∗ and Φ̂∞ = Ψ. Due to the arbitrariness of sequence {μn

j }, Φ̂cμj (x) → Ψ(x)
locally uniformly in R as μj → ∞.

We now show that if (J2) does not hold, then cμj
→ ∞ as μj → ∞. Since cμj

is non-decreasing in μj > 0, lim
μj→∞ cμj

:= C∞ ∈ (0, ∞]. Arguing indirectly, assume

C∞ ∈ (0, ∞). Then following the similar lines in previous arguments, one can prove
that (1.6) has a solution pair (C∞, Φ∞) with Φ∞ non-increasing, Φ∞(−∞) = ũ and
Φ∞(∞) = 0. This is a contradiction to Theorem A. So C∞ = ∞ and the proof is
complete. �

Then we give the proof of Theorem 1.9.

Proof of Theorem 1.9. (i) Since (J2) holds, problem (1.6) has a solution pair
(C∗, ΨC∗) with C∗ > 0 and ΨC∗ non-increasing in R. We first claim that
ΨC∗ = (ψi) � 0 and ΨC∗ is monotonically decreasing in R. For 1 � i � m0

and l > 0, define ψ̃i(x) = ψi(x− l). Applying [10, Lemma 2.2] to ψ̃ yields
ψi(x) > 0 for x < l. By the arbitrariness of l > 0, we have ψi > 0 in R. For
m0 + 1 � i � m, it follows from the assumptions on f that ψ′

i < 0 in R, which
implies ψi > 0 in R.

To show the monotonicity of ΨC∗ , it remains to verify that ψi is decreasing
in R for every 1 � i � m0. For δ > 0, we define w(x) = ψi(x− δ) − ψi(x).
Clearly, w(x) � 0 in R and w(x) �≡ 0 for x < 0. By (1.6), w(x) satisfies

di

∫ ∞

−∞
Ji(x− y)w(y)dy − diw(x) + C∗w′(x) + q(x)w(x) � 0, x ∈ R.
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By [8, Lemma 2.5], w(x) > 0 in x < 0, and so ψi(x) is decreasing in x < 0.
As before, for any l > 0, define ψ̃i(x) = ψi(x− l). Similarly, we can show that
ψi(x) is decreasing in x < l. Thus, our claim is verified.

Define Ū = σΨC∗(x− C∗t) with σ � 1. We then show that Ū is an upper
solution of (1.3). In view of the assumptions on U(0, x) and our above anal-
ysis, there is σ � 1 such that Ū(0, x) = σΨC∗(x) � U(0, x) in R. Moreover,
by (f2), we have σf(ΨC∗(x− C∗t)) � f(σΨC∗(x− C∗t)), and thus

Ūt = −C∗σΨ′
C∗(x− C∗t) � D ◦

∫ ∞

−∞
J(x− y) ◦ Ū(t, y)dy −D ◦ Ū + f(Ū).

It follows from a comparison argument that U(t, x) � Ū(t, x) for t � 0 and
x ∈ R. Noticing the properties of ψi, for any λ ∈ (0, 1) there is a unique
y∗ ∈ R such that σψi(y∗) = λũi. Therefore,

x−i,λ(t) � x+
i,λ(t) � y∗ + C∗t. (3.3)

Similarly, we can prove that for suitable σ1 � 1, the function σ1ΨC∗(−x−
C∗t) is also an upper solution of (1.3), and there is a unique ỹ∗ ∈ R such that
σ1ψi(ỹ∗) = λũi. Then one easily derives −ỹ∗ − C∗t � x−i,λ(t) � x+

i,λ(t). This,
together with (3.3), leads to

lim sup
t→∞

|x−i,λ(t)|
t

� lim sup
t→∞

|x+
i,λ(t)|
t

� C∗.

To prove the first limit of (1.7), it remains to show

lim inf
t→∞

|x+
i,λ(t)|
t

� lim inf
t→∞

|x−i,λ(t)|
t

� C∗. (3.4)

Assume μ1 > 0, and fix other μi. Denote the unique solution of (1.1) by
(uμ1 , gμ1 , hμ1) with uμ1 = (ui

μ1
). By a comparison consideration, U(t, x) �

uμ1 in [0, ∞) × [gμ1(t), hμ1(t)] for any μ1 > 0. Moreover, we can choose
μ1 sufficiently large, say μ1 > μ̃ > 0, so that spreading happens for
(uμ1 , gμ1 , hμ1) (Similarly to the criteria for spreading and vanishing in [4,
12, 38], we here assume that spreading happens for (1.1) if μ1 is large enough).
Moreover, from Theorem B, it follows that

lim
t→∞

−gμ1

t
= lim

t→∞
hμ1

t
= c0.

To stress the dependence of c0 on μ1, we rewrite c0 as cμ1 . By Theorem
1.8, lim

μ1→∞ cμ1 = C∗. As λ ∈ (0, 1), we can choose δ small enough such that

λũi < ũi − δ. By virtue of Theorem 1.1, for any 0 < ε� 1, there is T > 0
such that

λũi < ũi − δ � ui
μ1

� ũi + δ for t � T, |x| � (cμ1 − ε)t,

which obviously implies x−i,λ(t) � −(cμ1 − ε)t and x+
i,λ(t) � (cμ1 − ε)t. The

arbitrariness of ε and μ1 implies (3.4).
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Additionally, since both σΨC∗(x− C∗t) and σ1ΨC∗(−x− C∗t) are the
upper solutions of (1.3), it is easy to prove the second limit of (1.7).
Now we prove (1.8). Let ū be the solution of

ūt = f(ū), ū(0) = (‖ui0(x)‖C([−h0,h0])).

By (f4) and comparison principle, we derive

lim sup
t→∞

U(t, x) � ũ uniformly in R. (3.5)

As before, for the fixed c ∈ (0, C∗), let μ1 > μ̃ large enough such that c <
cμ1 . Using Theorem 1.1 and comparison principle, we see lim inf

t→∞ U(t, x) � ũ

uniformly in [−ct, ct] which, combined with (3.5), yields the desired result.
Moreover, since σΨC∗(x− C∗t) � U(t, x) and σ1ΨC∗(−x− C∗t) � U(t, x)

for t � 0 and x ∈ R, we have that, for any fixed c > C∗,

0 � sup
|x|�ct

Ui(t, x) � sup
x�ct

Ui(t, x) + sup
x�−ct

Ui(t, x)

� sup
x�ct

σψi(x− C∗t) + sup
x�−ct

σ1ψi(−x− C∗t)

= (σ + σ1)ψi(ct− C∗t) → 0 as t→ ∞.

Therefore, conclusion (i) is proved.

(ii) We now assume that (J2) does not hold, but (J1) is true. By Theorem 1.8,
lim

μ1→∞ cμ1 = ∞. Thanks to the above arguments, x−i,λ(t) � −(cμ1 − ε)t and

x+
i,λ(t) � (cμ1 − ε)t. Letting μ1 → ∞ and ε→ 0, we have lim

t→∞ |x±i,λ|/t = ∞,

and thus the first limit of (1.9) holds. We then prove the second limit of
(1.9). For any c > 0, let μ1 be large enough such that cμ1 > c and spreading
happens for (uμ1 , gμ1 , hμ1). By a comparison argument and Theorem 1.1, we
see lim inf

t→∞ U(t, x) � ũ uniformly in |x| � ct. Together with (3.5), the second

limit of (1.9) is obtained.
We now suppose that (J1) does not hold. It then follows from Theorem 1.1

that for any c > 0, there is T > 0 such that

λũi < ũi − δ � ui
μ1

� ũi + δ for t � T, |x| � ct,

which clearly indicates the first limit of (1.9). As for the second limit of (1.9),
by use of Theorem 1.1 and (3.5), we immediately obtain it.

(iii) As above, U(t, x) � uμ1(t, x) for t � 0 and x ∈ R. By Theorem 1.4 and (3.5),
we immediately derive the desired result. Thus, the proof is complete.

�

Finally, we show the proof of Theorem 1.10.
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Proof of Theorem 1.10. Recall that μj is the parameter and the other μi are fixed.
By the comparison principle, (uμj

, gμj
, hμj

) is non-decreasing in μj > 0. Hence,

lim
μj→∞ gμj

(t) = G(t) ∈ [−∞,−h0], lim
μj→∞hμj

(t) = H(t) ∈ [h0,∞],

and

Û(t, x) = lim
μj→∞uμj

(t, x) � U(t, x) for t > 0, G(t) < x < H(t),

where uμj
= (ui

μj
), Û = (Ûi), and U is the unique solution of (1.3) satisfying

U(0, x) = û0(x).
We now claim that G(t) = −∞ and H(t) = ∞ for all t > 0. We only prove the

former since the latter can be handled by similar arguments. Arguing indirectly,
assume that there is t0 > 0 such that G(t0) > −∞. Then −h0 � gμj

(t) � G(t) �
G(t0) > −∞ for t ∈ (0, t0]. By the condition (J), there are small ε1, δ > 0 such that
Jj(|x|) > ε1 for |x| � 2δ. Therefore, for t ∈ (0, t0],

g′μj
(t) = −

m0∑
i=1

μi

∫ hμj
(t)

gμj
(t)

∫ gμj
(t)

−∞
Ji(x− y)ui

μj
(t, x)dydx

� −μj

∫ hμj
(t)

gμj
(t)

∫ gμj
(t)

−∞
Jj(x− y)uj

μj
(t, x)dydx

� −μj

∫ gμj
(t)+δ

gμj
(t)

∫ gμj
(t)

gμj
(t)−δ

Jj(x− y)uj
μj

(t, x)dydx

� −μjε1δ

∫ gμj
(t)+δ

gμj
(t)

uj
μj

(t, x)dx.

Moreover, for any (t, x) ∈ (0, t0] × (G(t), G(t) + δ), we let μj large enough such
that x ∈ (gμj

(t), 0), and thus Ûj(t, x) � uμj
(t, x) > 0. Then by the dominated

convergence theorem, we see

lim
μj→∞

∫ gμj
(t)+δ

gμj
(t)

uj
μj

(t, x)dx =
∫ G(t)+δ

G(t)

Ûj(t, x)dx > 0 for t ∈ (0, t0].

Then, as μj → ∞,

−gμj
(t0)+h0

μj
� ε1δ

∫ t0

0

∫ gμj
(t)+δ

gμj
(t)

uj
μj

(t, x)dxdt→ε1δ

∫ t0

0

∫ G(t)+δ

G(t)

Ûj(t, x)dxdt>0,

which clearly implies G(t0) = −∞. We get a contradiction. So our claim is true.
Combining with the monotonicity of gμj

(t) and hμj
(t) in t, one easily shows that

− lim
μj→∞ gμj

(t) = lim
μj→∞hμj

(t) = ∞ locally uniformly in (0, ∞).

Now we prove that Û satisfies (1.3). For any (t, x) ∈ (0, ∞) × R, there are large
μ̂j > 0 and t1 < t such that x ∈ (gμj

(s), hμj
(s)) for all μj � μ̂j and s ∈ [t1, t].
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Notice di = 0 and Ji(x) ≡ 0 in R for i = m0 + 1, · · · , m. Integrating the first m
equations in (1.1) over t1 to s ∈ (t1, t] yields

ui
μj

(s, x) − ui
μj

(t1, x) =
∫ s

t1

(
djL[ui

μj
](τ, x) + fi(u1

μj
(τ, x), · · · , um

μj
(τ, x))

)
dτ

for 1 � i � m.

Letting μj → ∞ and using the dominated convergence theorem, we have

Ûi(s, x) − Ûi(t1, x) =
∫ s

t1

(
diL[Ûi](τ, x) + fi(Û1(τ, x), · · · , Ûm(τ, x))

)
dτ

for 1 � i � m.

Then differentiating the above equations by s, one knows that Û solves (1.3) for any
(t, x) ∈ (0, ∞) × R. Moreover, since 0 � Û(t, x) � U(t, x) in (0, ∞) × R, it is easy
to see that lim

t→0
Û(t, x) = 0. By the uniqueness of solution to (1.3), Û(t, x) ≡ U(t, x)

in [0, ∞) × R. Using Dini’s theorem, our desired results directly follow. �

4. Examples

In this section, we introduce two epidemic models to explain our previous
conclusions.

Example 4.1. To investigate the spreading of some infectious diseases, such as
cholera, Capasso and Maddalena [6] studied the following model:{

u1t − d1Δu1 = −au1 + cu2 =: f1(u), t > 0, x ∈ Ω,
u2t − d2Δu2 = −bu2 +G(u1) =: f2(u), t > 0, x ∈ Ω (4.1)

with u = (u1, u2). Moreover, u1 and u2 represent the concentration of the infective
agents, such as bacteria, and the infective human population, respectively. Both
of them adopt the random diffusion (or called local diffusion) strategy. Positive
constants d1 and d2 are their respective diffusion rates, −au1 is the death rate
of the infection agents, cu2 is the growth rate of the agents contributed by the
infective humans, and −bu2 is the death rate of the infective human population.
The function G(u1) describes the infective rate of humans, and its assumptions will
be given later.

Recently, much research for model (4.1) and its variations has been conducted.
For example, one can refer to [2, 24] for the free boundary problem with local
diffusion, and [36] for the spreading speed. Particularly, Zhao et al. [38] recently
replaced the local diffusion term of u1 with the nonlocal diffusion operator like
(1.2), and assumed d2 = 0. They found that the dynamics of their model is little
different from that of [2], especially for the criteria of spreading and vanishing. Later
on, Zhao et al. [37] further replaced the term cu2 with c

∫ h(t)

g(t)
K(x− y)u2(t, y)dy,

which results in some new difficulties. Very recently, Wang and Du [30] assumed
that the infective agents and the infective human population both adopt nonlocal
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diffusion strategy and the term cu2 is also replaced by c
∫ h(t)

g(t)
K(x− y)u2(t, y)dy.

Some new techniques were introduced in [30] when they dealt with the related
eigenvalue problem.

As in [30], we here assume that the dispersal of the infective human population
is approximated by the nonlocal diffusion, and thus propose the following model,
with u = (u1, u2),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1t = d1
∫ h(t)
g(t)

J1(x − y)u1(t, y)dy − d1u1 + f1(u), t > 0, x ∈ (g(t), h(t)),

u2t = d2
∫ h(t)
g(t)

J2(x − y)u2(t, y)dy − d2u2 + f2(u), t > 0, x ∈ (g(t), h(t)),

ui(t, g(t)) = ui(t, h(t)) = 0, t > 0, i = 1, 2,

g′(t) = −
2∑

i=1

μi

∫ h(t)

g(t)

∫ g(t)

−∞
Ji(x − y)ui(t, x)dydx, t > 0,

h′(t) =
2∑

i=1

μi

∫ h(t)

g(t)

∫ ∞

h(t)
Ji(x − y)ui(t, x)dydx, t > 0,

−g(0) = h(0) = h0 > 0; u(0, x) = u0(x) = (u10(x), u20(x)), |x| � h0,

(4.2)
where Ji satisfy (J), di, a, b, c are positive constants, μi � 0 and μ1 + μ2 > 0.

Function G(z) satisfies

(i) G ∈ C1([0, ∞)), G(0) = 0, G′(z) > 0 for z � 0 and G′(0) > ab
c ;

(ii) (G(z)
z )′ < 0 for z > 0 and lim

t→∞
G(z)

z < ab
c ;

Assumptions (i) and (ii) clearly imply that there is a unique positive constant
ũ1 such that G(ũ1)

ũ1
= ab

c . Define ũ2 = G(ũ1)
b .

(iii) (G(ũ1)
ũ1

)′ < −ab
c .

An example for G is G(z) = αz
1+βz with α > ab

c and β > αc
ab . By the similar meth-

ods in [12], we easily get the following spreading–vanishing dichotomy for (4.2):
Either

(i) Spreading: lim
t→∞h(t) = − lim

t→∞ g(t) = ∞ (necessarily R0 = G′(0)c
ab > 1) and

lim
t→∞u(t, x) = (ũ1, ũ2) =: ũ locally uniformly in R, or

(ii) Vanishing: lim
t→∞(h(t) − g(t)) <∞ and lim

t→∞ ‖u(t, ·)‖C([g(t),h(t)]) = 0.

It is easy to show that conditions (f1)–(f4) hold for f . For model (4.2), the
corresponding m0 = m = 2. Hence, Theorem 1.1 is valid for (4.2).
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Theorem 4.2. Let (u, g, h) be a solution of (4.2) and spreading happens. Then

⎧⎪⎨
⎪⎩

lim
t→∞ max

|x|�ct
|u(t, x) − ũ| = 0 for any c ∈ (0, c0) if (J1) holds,

lim
t→∞ max

|x|�ct
|u(t, x) − ũ| = 0 for any c > 0 if (J1) does not hold,

where c0 is uniquely determined by the corresponding semi-wave problem (1.4)–(1.5).

However, one easily checks that f does not satisfy (f5). Thus, Theorem 1.4 cannot
be directly applied to (4.2). But by using some new lower solution we still can prove
that similar results in Theorem 1.4 hold for problem (4.2).

Theorem 4.3. Assume that Ji satisfy (Jγ) with γ ∈ (1, 2]. Let spreading happens
for (4.2). Then

⎧⎪⎨
⎪⎩

lim
t→∞ max

|x|�s(t)
|u(t, x) − ũ| = 0 for any s(t) = o(t

1
γ−1 ) if γ ∈ (1, 2),

lim
t→∞ max

|x|�s(t)
|u(t, x) − ũ| = 0 for any s(t) = o(t ln t) if γ = 2.

Proof. Step 1: Consider problem

{
ū1t = −aū1 + cū2, ū2t = −bū2 +G(ū1),

ū1(0) = ‖u10(x)‖C([−h0,h0]), ū2(0) = ‖u20(x)‖C([−h0,h0]).

It follows from simple phase-plane analysis that lim
t→∞ ū1(t) = ũ1 and lim

t→∞ ū2(t) =

ũ2. By a comparison argument, u(t, x) � ū(t) = (ū1(t), ū2(t)) for t � 0 and x ∈ R.
Thus,

lim sup
t→∞

u(t, x) � ũ uniformly in R. (4.3)

It remains to show the lower limits of u. We will carry it out in two steps.

Step 2: This step concerns the case γ ∈ (1, 2). We will construct a suitably lower
solution, which is different from that of Step 2 in proof of Theorem 1.4, to show

lim inf
t→∞ u(t, x) � ũ uniformly in |x| � s(t) for any s(t) = o(t

1
γ−1 ). (4.4)

For small ε > 0 and 0 < α2
2 < α1 < α2 < 1, define

h(t)=(σt+θ)
1

γ−1 , u(t, x)=(ũ1(1−εα1), ũ2(1−εα2))l(t, x) with l(t, x)=1− |x|
h(t)
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for t � 0 and |x| � h(t), where σ and θ > 0 are to be determined later. We shall
prove that for small ε > 0, there exist proper T, σ and θ > 0 such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1t � d1

∫ h(t)

−h(t)
J1(x− y)u1(t, y)dy − d1u1 + f1(u), t > 0, |x| < h(t),

u2t � d2

∫ h(t)

−h(t)
J2(x− y)u2(t, y)dy − d2u2 + f2(u), t > 0, |x| < h(t),

ui(t,±h(t)) � 0, t > 0, i = 1, 2,

−h(t) � −
2∑

i=1

μi

∫ h(t)

−h(t)

∫ −h(t)

−∞
Ji(x− y)ui(t, x)dydx, t > 0,

h′(t) �
2∑

i=1

μi

∫ h(t)

−h(t)

∫ ∞

h(t)

Ji(x− y)ui(t, x)dydx, t > 0,

−h(0) � g(T ), h(0) � h(T ); u(0, x) � u(T, x), |x| � h(0).

(4.5)

As before, once (4.5) is proved, then by the comparison principle and our definition
of the lower solution (u, −h, h), we easily derive

lim inf
t→∞ u(t, x) � (ũ1(1 − εα1), ũ2(1 − εα2)) uniformly in |x| � s(t),

which, combined with the arbitrariness of ε, yields (4.4).
Now we verify (4.5). To prove the first two inequalities in (4.5), similarly to Step 2

in the proof of Theorem 1.4, one can show that there exists Ĉ > 0 such that∫ h(t)

−h(t)

Ji(x− y)ui(t, y)dy � Ĉũi(1 − εαi)h1−γ(t) for t > 0, |x| � h(t). (4.6)

The direct computation shows that, when ε is small,

cũ2(1 − εα2) − (a+ ε)ũ1(1 − εα1) = εα1
[
aũ1 − cũ2ε

α2−α1 − ε1−α1 ũ1(1 − εα1)
]
> 0,

which implies

cu2(t, x) � (a+ ε)u1(t, x) for t � 0, |x| � h(t). (4.7)

Furthermore, we claim that, for small ε > 0,

G(u1(t, x)) � (b+ ε)u2(t, x) for t � 0, |x| � h(t). (4.8)

To this end, we first prove that if ε is suitably small,

G(ũ1(1 − εα1)l(t, x))
ũ1(1 − εα1)l(t, x))

� ab

c
(1 + εα1) for t � 0, |x| � h(t). (4.9)

By the assumptions on G, one sees

G(ũ1(1 − εα1)l(t, x))
ũ1(1 − εα1)l(t, x)

� G(ũ1(1 − εα1))
ũ1(1 − εα1)

.
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Thus it is sufficient to prove that, for t � 0 and |x| < h(t),

G(ũ1(1 − εα1))
ũ1(1 − εα1)

� ab

c
(1 + εα1).

Define

Γ(ε) =
G(ũ1(1 − εα1))
ũ1(1 − εα1)

− ab

c
(1 + εα1) for 0 < ε� 1.

Obviously, Γ(0) = 0. From our assumptions on G, it follows that for 0 < ε� 1,

Γ′(ε) = −
(
G(ũ1(1 − εα1))
ũ1(1 − εα1)

)′
α1ε

α1−1 − ab

c
α1ε

α1−1

= α1ε
α1−1

[
−
(
G(ũ1(1 − εα1))
ũ1(1 − εα1)

)′
− ab

c

]
> 0.

So (4.9) holds.
Now, we continue to prove (4.8). Obviously, it holds when x = ±h(t). When

|x| < h(t), we have

G(u1) − (b + ε)u2 = l(t, x)

(
−bũ2(1 − εα2 ) + ũ1(1 − εα1 )

G(ũ1(1 − εα1 )l(t, x))

ũ1(1 − εα1 )l(t, x)
− εũ2(1 − εα2 )

)

� l(t, x)

(
−bũ2(1 − εα2 ) + ũ1(1 − εα1 )

ab

c
(1 + εα1 ) − εũ2(1 − εα2 )

)

= l(t, x)εα2

(
bũ2 − abũ1

c
ε2α1−α2 − ε1−α2 ũ2(1 − εα2 )

)
> 0

provided that ε is properly small. By (4.6), (4.7) and (4.8), we have that, for small
σ > 0,

d1

∫ h(t)

−h(t)

J1(x− y)u1(t, y)dy − d1u1 − au1 + cu2 � ε

2

∫ h(t)

−h(t)

J1(x− y)u1(t, y)dy

� Ĉũ1(1 − εα1)h1−γ(t)

� ũ1(1 − εα1)σh1−γ

γ − 1
� u1t,

d2

∫ h(t)

−h(t)

J2(x− y)u2(t, y)dy − d2u2 − bu2 +G(u1) � ε

2

∫ h(t)

−h(t)

J2(x− y)u2(t, y)dy

� Ĉũ2(1 − εα2)h1−γ(t)

� ũ2(1 − εα2)σh1−γ

γ − 1
� u2t.

Therefore, the first two inequalities in (4.5) hold.
Clearly, ui(t, ±h(t)) = 0 for t � 0.
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In the following, we prove the fourth and fifth inequalities of (4.5). Similarly to
the proof of Theorem 1.4, for large θ > 0 and small σ > 0, one has

2∑
i=1

μi

∫ h(t)

−h(t)

∫ ∞

h(t)

Ji(x− y)ui(t, x)dydx

=
2∑

i=1

(1 − εαi)μiũi

∫ h(t)

−h(t)

∫ ∞

h(t)

Ji(x− y)l(t, x)dydx

�
2∑

i=1

(1 − εαi)μiũi

h(t)

(∫ h(t)

0

∫ y

0

+
∫ ∞

h(t)

∫ h(t)

0

)
Ji(y)xdxdy

�
2∑

i=1

(1 − εαi)μiũi

2h(t)

∫ h(t)

0

Ji(y)y2dy

�
2∑

i=1

c1(1 − εαi)μiũi

2h(t)

∫ h(t)

h(t)/2

y2−γdy

� C̃1(σt+ θ)
2−γ
γ−1

� σ(σt+ θ)
2−γ
γ−1

γ − 1
= h′(t).

So the fourth inequality in (4.5) holds. The fifth one follows from the symmetry of
J and u on x.

Since spreading happens, for such σ, θ and ε as chosen above, there is a T > 0
such that −h(0) � g(T ), h(0) � h(T ) and u(0, x) � (ũ1(1 − εα1), ũ2(1 − εα2)) �
u(T, x) in [−h(0), h(0)]. Hence (4.5) hold, and this step is complete.

Step 3: We now handle the case γ = 2. That is, we will prove that for any
s(t) = o(t ln t),

lim inf
t→∞ u(t, x) � ũ uniformly in |x| � s(t). (4.10)

For fixed 0 < α2
2 < α1 < α2 < 1 and small ε > 0, we define

h(t) = σ(t+ θ) ln(t+ θ), ζ(t, x) = min
{

1,
h(t) − |x|
(t+ θ)1/2

}
,

u(t, x) = (ũ1(1 − εα1), ũ2(1 − εα2))ζ(t, x)

https://doi.org/10.1017/prm.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.26


The monostable cooperative system with nonlocal diffusion and free boundaries 655

for t � 0 and |x| � h(t), with σ, θ > 0 to be determined later. We will prove that
there exist proper T, σ and θ > 0 such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1t � d1

∫ h(t)

−h(t)
J1(x− y)u1(t, y)dy − d1u1 + f1(u), t > 0, |x| < h(t), |x|

�= h(t) − (t+ θ)
1
2 ,

u2t � d2

∫ h(t)

−h(t)
J2(x− y)u2(t, y)dy − d2u2 + f2(u), t > 0, |x| < h(t), |x|

�= h(t) − (t+ θ)
1
2 ,

ui(t,±h(t)) � 0, t > 0, i = 1, 2,

−h(t) � −
2∑

i=1

μi

∫ h(t)

−h(t)

∫ −h(t)

−∞
Ji(x− y)ui(t, x)dydx, t > 0,

h′(t) �
2∑

i=1

μi

∫ h(t)

−h(t)

∫ ∞

h(t)

Ji(x− y)ui(t, x)dydx, t > 0,

−h(0) � g(T ), h(0) � h(T ); u(0, x) � u(T, x), |x| � h(0).
(4.11)

Once (4.11) is derived, we similarly can complete this step. It is not hard to ver-
ify that (4.7) and (4.8) are still valid for small ε > 0. Then by following similar
lines with the proof of Theorem 1.4, one can obtain (4.11). The details are omit-
ted. Our desired results directly follow from (4.3), (4.4) and (4.10). The proof is
complete. �

On the other hand, noticing that the growth rate of infectious agents may be of
concave nonlinearity, Hsu and Yang [17] recently proposed the following variation
of model (4.1)

{
u1t = d1Δu1 − au1 +H(u2), t > 0, x ∈ Ω,

u2t = d2Δu2 − bu2 +G(u1), t > 0, x ∈ Ω,
(4.12)

where H(u2) and G(u1) satisfy that H, G ∈ C2([0, ∞)), H(0) = G(0) = 0,
H ′, G′ > 0 in [0, ∞), H

′′
, G

′′
> 0 in (0, ∞), and G(H(ẑ)/a) < bẑ for some ẑ.

Examples for such H and G are H(z) = αz/(1 + z) and G(z) = β ln(z + 1) with
α, β > 0 and αβ > ab. Based on the above assumptions, it is easy to show that
if 0 < H ′(0)G′(0)/(ab) � 1, the unique nonnegative constant equilibrium is (0, 0),
and if H ′(0)G′(0)/(ab) > 1, there are only two nonnegative constant equilibria, i.e.,
(0, 0) and (ũ1, ũ2) � 0. Some further results about (4.12) can be seen from [17]
and [32].

Motivated by the above works, Nguyen and Vo [26] very recently incorporated
nonlocal diffusion and free boundary into model (4.12), and thus obtained the
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following problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1t = d1
∫ h(t)
g(t)

J1(x − y)u1(t, y)dy − d1u1 − au1 + H(u2), t > 0, x ∈ (g(t), h(t)),

u2t = d2
∫ h(t)
g(t)

J2(x − y)u2(t, y)dy − d2u2 − bu2 + G(u1), t > 0, x ∈ (g(t), h(t)),

ui(t, g(t)) = ui(t, h(t)) = 0, t > 0, i = 1, 2,

g′(t) = −
2∑

i=1

μi

∫ h(t)

g(t)

∫ g(t)

−∞
Ji(x − y)ui(t, x)dydx, t > 0,

h′(t) =
2∑

i=1

μi

∫ h(t)

g(t)

∫ ∞

h(t)
Ji(x − y)ui(t, x)dydx, t > 0,

−g(0) = h(0) = h0 > 0; u1(0, x) = u10(x), u2(0, x) = u20(x), |x| � h0.

(4.13)
They proved that problem (4.13) has a unique global solution, and its dynam-

ics are also governed by a spreading–vanishing dichotomy. Now, we give more
accurate estimates on longtime behaviours of the solution to (4.13). Assume
H ′(0)G′(0)/(ab) > 1. One can easily check that (f1)–(f5) hold with ũ = (ũ1, ũ2)
and û = ∞. Thus, Theorems 1.1 and 1.4 are valid for the solution of (4.13). For
convenience of readers, the results are listed as below.

Theorem 4.4. Let (u, g, h), with u = (u1, u2), be a solution of (4.13) and m0 =
m = 2 in conditions (J1) and (Jγ). If spreading happens, then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
t→∞ max

|x|�ct
|u(t, x) − ũ| = 0 for any c ∈ (0, c0) if (J1) holds,

lim
t→∞ max

|x|�ct
|u(t, x) − ũ| = 0 for any c > 0 if (J1) does not hold,

lim
t→∞ max

|x|�s(t)
|u(t, x) − ũ| = 0 for any s(t)

= o(t
1

γ−1 ) if (Jγ) holds for γ ∈ (1, 2),
lim

t→∞ max
|x|�s(t)

|u(t, x) − ũ| = 0 for any s(t) = o(t ln t) if (Jγ) holds for γ = 2,

where c0 is uniquely determined by the corresponding semi-wave problem (1.4)–(1.5).
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Example 4.5. Our second example is the following West Nile virus model with
nonlocal diffusion and free boundaries

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ht = d1

∫ h(t)

g(t)

J1(x−y)H(t, y)dy−d1H+a1(e1 − H)V −b1H, t>0, x∈(g(t), h(t)),

Vt = d2

∫ h(t)

g(t)

J2(x−y)V (t, y)dy−d2V +a2(e2 − V )H−b2 V, t>0, x∈(g(t), h(t)),

H(t, x) = V (t, x) = 0, t>0, x ∈ {g(t), h(t)},

g′(t) = −μ

∫ h(t)

g(t)

∫ g(t)

−∞
J2(x − y)H(t, x)dydx, t > 0,

h′(t) = μ

∫ h(t)

g(t)

∫ ∞

h(t)

J2(x − y)H(t, x)dydx, t > 0,

−g(0) = h(0) = h0 > 0; (H, V )|t=0 = (u10(x), u20(x)), |x| � h0,

(4.14)

where Ji satisfy (J). Constants di, ai, bi, ei and μ are positive, H(t, x) and V (t, x)
are the densities of the infected bird (host) and mosquito (vector) populations,
respectively. The biological interpretation of the West Nile virus model can be
referred to the literatures [1, 18, 25, 31]. Set

f1(H,V ) = a1(e1 −H)V − b1H, f2(H,V ) = a2(e2 − V )H − b2 V.

Then the system f1(H, V ) = f2(H, V ) = 0 has a unique positive solution (H̃, Ṽ )
with

(H̃, Ṽ ) =
(
a1a2e1e2 − b1b2
a1a2e2 + b1a2

,
a1a2e1e2 − b1b2
a1a2e1 + a1b2

)

if and only if a1a2e1e2 > b1b2.

The authors of [12] proved that the dynamics of (4.14) are governed by the
spreading vanishing dichotomy: Either

(i) Spreading: lim
t→∞h(t) = − lim

t→∞ g(t) = ∞ (necessarily a1a2e1e2
b1b2

> 1) and lim
t→∞

(H(t, x), V (t, x)) = (H̃, Ṽ ) locally uniformly in R, or

(ii) Vanishing: lim
t→∞(h(t) − g(t)) <∞ and lim

t→∞[‖H(t, ·)‖C([g(t),h(t)]) + ‖V (t, ·)
‖C([g(t),h(t)])] = 0.

If a1a2e1e2 > b1b2, then the conditions (f1)–(f5) hold with û = (e1, e2). The more
accurate longtime behaviours of solution to (4.14) can be summarized as follows.
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Theorem 4.6. Let (H, V, g, h) be a solution of (4.14) and m0 = m = 2 in condi-
tions (J1) and (Jγ). If spreading happens, then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
t→∞ max

|x|�ct

(|H(t, x) − H̃| + |V (t, x) − Ṽ |) = 0 for any c ∈ (0, c0) if (J1) holds,

lim
t→∞ max

|x|�ct

(|H(t, x) − H̃| + |V (t, x) − Ṽ |) = 0 for any c>0 if (J1) does not hold,

lim
t→∞ max

|x|�s(t)

(|H(t, x) − H̃| + |V (t, x) − Ṽ |) = 0 for any s(t)

= o(t

1

γ − 1 ) if (Jγ) holds with γ ∈ (1, 2),

lim
t→∞ max

|x|�s(t)

(|H(t, x) − H̃| + |V (t, x) − Ṽ |) = 0 for any s(t)

= o(t ln t) if (Jγ) holds with γ = 2,

where c0 is uniquely determined by the corresponding semi-wave problem (1.4)–(1.5).
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7 C. Cortázar, F. Quirós and N. Wolanski. A nonlocal diffusion problem with a sharp free
boundary. Interfaces Free Bound. 21 (2019), 441–462.

8 Y. H. Du, F. Li and M. L. Zhou. Semi-wave and spreading speed of the nonlocal Fisher-KPP
equation with free boundaries. J. Math. Pures Appl. 154 (2021), 30–66.

9 Y. H. Du and Z. G. Lin. Spreading-vanishing dichotomy in the diffusive logistic model with
a free boundary. SIAM J. Math. Anal. 42 (2010), 377–405.

10 Y. H. Du and W. J. Ni. Spreading speed for some cooperative systems with nonlocal diffusion
and free boundaries, part 1: Semi-wave and a threshold condition. J. Differ. Equ. 308
(2021), 369–420.

11 Y. H. Du and W. J. Ni. Spreading speed for some cooperative systems with nonlocal diffusion
and free boundaries, part 2. arXiv:2010.01244.

12 Y. H. Du and W. J. Ni. Analysis of a West Nile virus model with nonlocal diffusion and
free boundaries. Nonlinearity 33 (2020), 4407–4448.

https://doi.org/10.1017/prm.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.26


The monostable cooperative system with nonlocal diffusion and free boundaries 659

13 Y. H. Du and W. J. Ni. The high dimensional Fisher-KPP nonlocal diffusion equation with
free boundary and radial symmetry, part 1. SIAM J. Math. Anal. 54 (2022), 3930–3973.

14 Y. H. Du and W. J. Ni. The high dimensional Fisher-KPP nonlocal diffusion equation with
free boundary and radial symmetry, part 2, Submitted, (2021), arXiv:2102.05286.

15 Y. H. Du, M. X. Wang and M. Zhao. Two species nonlocal diffusion systems with free
boundaries. Discrete Cont. Dyn. Syst. 42 (2022), 1127–1162.

16 J. Garnier. Accelerating solutions in integro-differential equations. SIAM J. Math. Anal.
43 (2011), 1955–1974.

17 C.-H. Hsu and T.-S. Yang. Existence, uniqueness, monotonicity and asymptotic behaviour
of travelling waves for epidemic models. Nonlinearity 26 (2013), 121–139.

18 M. A. Lewis, J. Renclawowicz and P. van den Driessche. Traveling waves and spread rates
for a West Nile virus model. Bull. Math. Biol. 68 (2006), 3–23.

19 L. Li, X. P. Li and M. X. Wang. A free boundary problem with nonlocal diffusion and
unbounded initial range. Z. Angew. Math. Phys. 73 (2022), 192.

20 L. Li, W.-T. Li and M. X. Wang. Dynamics for nonlocal diffusion problems with a free
boundary. J. Differ. Equ. 330 (2022), 110–149.

21 L. Li, W. J. Sheng and M. X. Wang. Systems with nonlocal vs. local diffusions and free
boundaries. J. Math. Anal. Appl. 483 (2020), 123646.

22 L. Li, J. P. Wang and M. X. Wang. The dynamics of nonlocal diffusion systems with different
free boundaries. Comm. Pure Appl. Anal. 19 (2020), 3651–3672.

23 L. Li and M. X. Wang. Free boundary problems of a mutualist model with nonlocal diffusion.
J. Dyn. Diff. Equat. (2022), doi:10.1007/s10884-022-10150-5

24 W.-T. Li, M. Zhao and J. Wang. Spreading fronts in a partially degenerate integro-
differential reaction-diffusion system. Z. Angew. Math. Phys. 68 (2017), 109.

25 Z. G. Lin and H. P. Zhu. Spatial spreading model and dynamics of West Nile virus in birds
and mosquitoes with free boundary. J. Math. Biol. 75 (2017), 1381–1409.

26 T.-H. Nguyen and H.-H. Vo. Dynamics for a two phase free boundaries system in an
epidemiological model with nonlocal dispersals. J. Differ. Equ. 335 (2022), 398–463.

27 L. Q. Pu, Z. G. Lin and Y. Lou. A West Nile virus nonlocal model with free boundaries
and seasonal succession blue. J. Math. Biol. 86 (2023), 25.

28 J. P. Wang and M. X. Wang. Free boundary problems with nonlocal and local diffusions I:
global solution. J. Math. Anal. Appl. 490 (2020), 123974.

29 J. P. Wang and M. X. Wang. Free boundary problems with nonlocal and local diffusions
II: Spreading-vanishing and long-time behavior. Discrete Contin. Dyn. Syst. B 25 (2020),
4721–4736.

30 R. Wang and Y. H. Du. Long-time dynamics of a nonlocal epidemic model with free
boundaries: spreading-vanishing dichotomy. J. Differ. Equ. 327 (2022), 322–381.

31 Z. G. Wang, H. Nie and Y. H. Du. Spreading speed for a West Nile virus model with free
boundary. J. Math. Biol. 79 (2019), 433–466.

32 S. L. Wu and C.-H. Hsu. Existence of entire solutions for delayed monostable epidemic
models. Trans. Amer. Math. Soc. 368 (2016), 6033–6062.

33 W.-B. Xu, W.-T. Li and G. Lin. Nonlocal dispersal cooperative systems: Acceleration
propagation among species. J. Differ. Equ. 268 (2020), 1081–1105.

34 G. Y. Yang, S. W. Yao and M. X. Wang. An SIR epidemic model with nonlocal diffusion,
nonlocal infection and free boundaries. J. Math. Anal. Appl. 518 (2023), 126731.

35 G. Y. Yang and M. X. Wang. An SIR epidemic model with nonlocal diffusion and free bound-
aries. Discrete Contin. Dyn. Syst. B 28 (2023), 4221–4230. doi:10.3934/dcdsb.2023007

36 M. Zhao, W.-T Li and W. J. Ni. Spreading speed of a degenerate and cooperative epidemic
model with free boundaries. Discrete Contin. Dyn. Syst. B 25 (2020), 981–999.

37 M. Zhao, W.-T. Li and Y. H. Du. The effect of nonlocal reaction in an epidemic model with
nonlocal diffusion and free boundaries. Comm. Pure Appl. Anal. 19 (2020), 4599–4620.

38 M. Zhao, Y. Zhang, W.-T. Li and Y. H. Du. The dynamics of a degenerate epidemic model
with nonlocal diffusion and free boundaries. J. Differ. Equ. 269 (2020), 3347–3386.

https://doi.org/10.1017/prm.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.26

	1 Introduction and main results
	2 Proofs of theorems [st4]1.1 and [st7]1.4
	3 Proofs of theorems [st11]1.8, [st12]1.9 and [st13]1.10
	4 Examples
	References

