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Abstract

The asymptotic behavior of the Jaccard index in G(n, p), the classical Erdös–Rényi
random graph model, is studied as n goes to infinity. We first derive the asymptotic
distribution of the Jaccard index of any pair of distinct vertices, as well as the first two
moments of this index. Then the average of the Jaccard indices over all vertex pairs in
G(n, p) is shown to be asymptotically normal under an additional mild condition that
np → ∞ and n2(1 − p) → ∞.
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1. Introduction

The Jaccard index, also known as the Jaccard similarity coefficient, was originally intro-
duced by Paul Jaccard to measure the similarity between two sets [13]. For any two finite sets
A and B, the Jaccard index J(A,B) is the ratio of the size of their intersection to the size of
their union. That is,

J(A,B) = |A∩B|
|A∪B| = |A∩B|

|A| + |B| − |A∩B| ,
where the symbol | · | denotes the cardinality of a set. It is clear that this index ranges from
0 to 1. The associated Jaccard distance for quantifying the dissimilarity between two sets is
defined as one minus the Jaccard index (see, e.g., [11, 17]). In statistics and data science,
the Jaccard index is employed as a statistic to measure the similarity between sample sets,
especially for binary and categorical data (see, e.g., [6, 15]). For extensive generalizations of
the Jaccard index in many other mathematical structures, such as scalars, vectors, matrices,
and multisets, we refer the reader to [7]. Due to its simplicity and popularity, many applica-
tions of the Jaccard index and its variants have been developed in various fields, such as cell
formation [29], pattern recognition [12], data mining [24], natural language processing [27],
recommendation systems [3], medical image segmentation [8], and machine learning [1].

Following the original definition on sets, the Jaccard index of two vertices in a graph can
naturally be extended to equal the number of common neighbors divided by the number of
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1140 Q. FENG ET AL.

vertices that are neighbors of at least one of them (see, e.g., [9]). As a graph benchmark suit-
able for real-world applications, the Jaccard index has also been proposed to determine the
similarity in graphs or networks [16], because of its clear interpretability and computational
scalability. This index, as well as its variants, is employed to find core nodes for community
detection in complex networks [4, 20], to estimate the coupling strength between temporal
graphs [19], and to do link prediction [18, 21, 30], among others.

Erdös–Rényi random graphs are widely used as a benchmark model in statistical network
analysis (see, e.g., [2, 26]). In the simulation study of [22], it is shown that the empirical cumu-
lative distribution functions of Jaccard indices over all vertex pairs in two network models, the
Erdös–Rényi random graph and the stochastic block model, are quite different. Despite the
widespread applications of the Jaccard index in network analysis, to the best of our knowledge
there is a lack of comprehensive study of theoretical results on this simple index defined on
statistical graph models. As the first step toward filling this gap, our main concern in this paper
is derive the asymptotic behavior of the basic Jaccard index in Erdös–Rényi random graphs.
For numerous probabilistic results on this classical random graph model we refer the reader to
[5, 14, 25].

Throughout this paper we use the following notation. For any integer n ≥ 2, we denote by
[n] the vertex set {1, 2, . . . , n}. For an event E , let |E | be the cardinality, E the complement, and
1(E) the indicator of E . For real numbers a, b, we write a ∨ b to denote the maximum of a and

b. For probabilistic convergence, we use
D−→ and

P−→ to denote convergence in distribution
and in probability, respectively.

The rest of this paper is organized as follows. The Jaccard index of any pair of distinct
vertices in the Erdös–Rényi random graph G(n, p) is considered in Section 2. We first com-
pute the mean and variance of this index, and then obtain the phase changes of its asymptotic
distribution for p ∈ [0, 1] in all regimes as n → ∞. In Section 3, we prove the asymptotic nor-
mality of the average of the Jaccard indices over all vertex pairs in G(n, p) as np → ∞ and
n2(1 − p) → ∞.

2. Jaccard index of a vertex pair

Let us denote by G(n, p) an Erdös–Rényi random graph on the vertex set [n], where each
edge is present independently with probability p. In this paper we consider p = p(n) as a func-
tion of the graph size n. For any two vertices i, j ∈ [n], let 1ij be the indicator that takes the
value 1 if an edge between i and j is present in G(n, p), and takes the value 0 otherwise. It
follows that 1ii = 0, 1ij = 1ji, and {1ij : 1 ≤ i < j ≤ n} is a sequence of independent Bernoulli
variables with success rate p. The n × n matrix A = (1ij) is usually called the adjacent matrix
of G(n, p), and is a symmetric matrix with all diagonal entries equal to zero.

For any vertex i ∈ [n], let the set Ni be its neighborhood, i.e., Ni = {k : 1ik = 1, k ∈ [n]}. For
any pair of vertices i, j ∈ [n], we also define their union neighborhood as

Nij = {k : 1ik ∨ 1jk = 1, k ∈ [n] and k �= i, j}, i �= j.

Notice that here the neighborhood set Nij does not contain vertices i and j themselves, even if
1ij = 1. Then the Jaccard index of vertices i and j in G(n, p) is formally defined as

J(n)
ij = |Ni ∩Nj|

|Nij| =:
S(n)

ij

T (n)
ij

, i �= j. (1)
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Average Jaccard index of random graphs 1141

We can see that the index J(n)
ij given in (1) is not well defined when Nij is an empty set or

T (n)
ij = 0. For convenience, following the idea in [6], we define J(n)

ij = p/(2 − p) in this special

case. Indeed, it is shown later that the conditional expectation of J(n)
ij is exactly p/(2 − p) given

that T (n)
ij > 0. In terms of the adjacent matrix A, the numerator and denominator in (1) can be

rewritten as
S(n)

ij =
∑
k �=i,j

1ik1jk, T (n)
ij =

∑
k �=i,j

1ik ∨ 1jk. (2)

Due to the independence of the elements in A, it is clear that the random variables S(n)
ij and T (n)

ij

follow the binomial distributions Bin(n − 2, p2) and Bin(n − 2, p(2 − p)), respectively. Hence,
the Jaccard index of a vertex pair in G(n, p) is a quotient of two dependent binomial random
variables.

2.1. Mean and variance

We first calculate the mean and variance of the Jaccard index of any pair of vertices in G.
By (1) and (2), we can see that

{
J(n)

ij , 1 ≤ i < j ≤ n
}

is a sequence of random variables that
are pairwise dependent but identically distributed. Without loss of generality, we only consider
J(n)

12 .
For any vertex 3 ≤ k ≤ n, the conditional probability

P(11k12k = 1 | 11k ∨ 12k = 1) = P(11k12k = 1)

P(11k ∨ 12k = 1)
= p

2 − p
,

which is independent of k. Then, for any positive integer 1 ≤ m ≤ n − 2, given the event
T (n)

12 = m, the conditional distribution of S(n)
12 is Bin(m, p/(2 − p)), due to independence of the

indicators {11k, 12k, 3 ≤ k ≤ n}. Consequently, we have

E

[
S(n)

12 | T (n)
12 = m

]
= mp

2 − p
, (3)

Var
[
S(n)

12 | T (n)
12 = m

]
= 2mp(1 − p)

(2 − p)2
. (4)

Noting that J(n)
12 = p/(2 − p) in the special case T (n)

12 = 0, by (1) and (3) we thus have E

[
J(n)

12 |
T (n)

12

]
= p/(2 − p), which implies that E

[
J(n)

12

]
= p/(2 − p) and Var

[
E

(
J(n)

12 | T (n)
12

)]
= 0. Using

the law of total variance, it follows from this and (4) that

Var
[
J(n)

12

]
=E

[
Var
(

J(n)
12 | T (n)

12

)]
=

n−2∑
m=1

P

(
T (n)

12 = m
)

Var

[
S(n)

12

m
| T (n)

12 = m

]

= 2p(1 − p)

(2 − p)2

n−2∑
m=1

1

m
P

(
T (n)

12 = m
)
, (5)

which involves the first inverse moment of the binomial distribution. Recalling that T (n)
12 has

the distribution Bin(n − 2, p(2 − p)), it follows by [28, Corollary 1] that

n−2∑
m=1

1

m
P

(
T (n)

12 = m
)

= 1

np(2 − p)

(
1 + O

(
1

np

))
(6)
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1142 Q. FENG ET AL.

as np → ∞. By (5) and (6), we thus have

Var
[
J(n)

12

]
= 2(1 − p)

n(2 − p)3

(
1 + O

(
1

np

))
.

Collecting the above findings, by Chebyshev’s inequality we thus prove the following result.

Proposition 1. Let J(n)
ij be the Jaccard index of any distinct vertices i, j ∈ [n] in G(n,p). Then

E

[
J(n)

ij

]
= p/(2 − p) for all n ≥ 2. In particular, as np → ∞, it further follows that

Var
[
J(n)

ij

]
= 2(1 − p)

n(2 − p)3

(
1 + O

(
1

np

))
,

and J(n)
ij − p/(2 − p) converges to 0 in probability.

2.2. Asymptotic distribution

We now establish the asymptotic distribution of the Jaccard index of any vertex pair in
G(n, p).

Theorem 1. Let J(n)
ij be the Jaccard index of any distinct vertices i, j ∈ [n] in G(n,p).

(i) If np2(1 − p) → ∞, then √
n(2 − p)3

2(1 − p)

(
J(n)

ij − p

2 − p

)
D−→ Z,

where Z denotes a standard normal random variable.

(ii) If np2 → λ for some constant λ > 0, then 2npJ(n)
ij

D−→ Poi(λ), where Poi(λ) denotes the
Poisson distribution with parameter λ.

(iii) If np2 → 0, then npJ(n)
ij

P−→ 0.

(iv) If n(1 − p) → c for some constant c > 0, then n
(

1 − J(n)
ij

)
D−→ Poi(2c).

(v) If n(1 − p) → 0, then n
(
1 − J(n)

ij

) P−→ 0.

Proof. As presented in the previous subsection, it is sufficient to consider a single index J(n)
12 .

To prove (i), we first rewrite√
(n − 2)(2 − p)3

2(1 − p)

(
J(n)

12 − p

2 − p

)
=
√

(n − 2)(2 − p)

2(1 − p)
· (2 − p)S(n)

12 − pT (n)
12

T (n)
12

= (2 − p)S(n)
12 − pT (n)

12√
2(n − 2)p2(1 − p)(2 − p)

· (n − 2)p(2 − p)

T (n)
12

. (7)

For any distinct vertices i, j, k ∈ [n], we write

Vij,k = (2 − p)1ik1jk − p(1ik ∨ 1jk). (8)
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Average Jaccard index of random graphs 1143

Then, for any fixed two vertices i, j ∈ [n], the random variables {Vij,k, k ∈ [n], k �= i, j} are inde-
pendent and identically distributed with common mean 0 and common variance 2p2(1 − p)
(2 − p). Since it follows by (2) that

(2 − p)S(n)
12 − pT (n)

12 =
n∑

k=3

V12,k, (9)

a direct application of the Lindeberg–Feller central limit theorem yields

(2 − p)S(n)
12 − pT (n)

12√
2(n − 2)p2(1 − p)(2 − p)

D−→ Z (10)

whenever np2(1 − p) → ∞. By Chebyshev’s inequality, the fact that T (n)
12 ∼ Bin((n − 2),

p(2 − p)) gives us that, as np → ∞,

T (n)
12

(n − 2)p(2 − p)
P−→ 1, (11)

which, together with (7) and (10), proves (i) by Slutsky’s lemma.
If np2 → λ for some constant λ > 0, we must have that p → 0 and np → ∞. Since S(n)

12 ∼
Bin(n − 2, p2), the Poisson limit theorem yields that S(n)

12
D−→ Poi(λ). By (11), again using

Slutsky’s lemma, we obtain

2npJ(n)
12 = 2np

T (n)
12

· S(n)
12

D−→ Poi(λ),

which proves (ii).

If np2 → 0, to prove (iii) we only need to prove that the probability P

(
npJ(n)

ij > np2/

(2 − p)
)

tends to 0. Note that if the event
{

S(n)
12 = 0

}
occurs, the Jaccard index J(n)

ij must be

0 or p/(2 − p). Therefore,

P

(
npJ(n)

ij >
np2

2 − p

)
= P

(
J(n)

ij >
p

2 − p

)
≤ P

(
S(n)

12 �= 0
)

= 1 − P

(
S(n)

12 = 0
)

.

Again by the fact that S(n)
12 ∼ Bin(n − 2, p2), we have 1 − P

(
S(n)

12 = 0
)→ 0 if np2 → 0. This

implies (iii).
Analogously to (7), we have

p

2 − p
− J(n)

12 = −(2 − p)S(n)
12 + pT (n)

12

(n − 2)p(2 − p)2
· (n − 2)p(2 − p)

T (n)
12

. (12)

Note that (11) still holds, and n[1 − p/(2 − p)] has the limit 2c if n(1 − p) → c for some
constant c > 0. To prove (iv), by (12) it is now sufficient to show that

−(2 − p)S(n)
12 + pT (n)

12
D−→ Poi(2c) − 2c. (13)

For any distinct vertices i, j, k ∈ [n], we can directly obtain from (8) that the characteristic
function of −Vij,k is

fn(t) =E
[
e−itVij,k

]= p2e−2it(1−p) + 2p(1 − p)eitp + (1 − p)2,
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1144 Q. FENG ET AL.

where i = √−1 denotes the imaginary unit. Then, by (9) and independence, we have that the
characteristic function of −(2 − p)S(n)

12 + pT (n)
12 is equal to

f n−2
n (t) = [p2e−2it(1−p) + 2p(1 − p)eitp + (1 − p)2]n−2

, t ∈R.

Note that

lim
n→∞ n

[
p2e−2it(1−p) + 2p(1 − p)eitp + (1 − p)2 − 1

]= 2ceit + lim
n→∞ n

[
p2e−2it(1−p) − 1

]
= 2ceit + lim

n→∞ n
[
p2(e−2it(1−p) − 1

)
+ (p2 − 1

)]
= 2c

(
eit − it − 1

)
if n(1 − p) → c. Therefore, the limit of the characteristic function of −(2 − p)S(n)

12 + pT (n)
12

satisfies

lim
n→∞ f n−2

n (t) = exp
{
2c
(
eit − it − 1

)}
,

which implies (13) and completes the proof of (iv).
We only sketch the proof of (v), since it is very similar to (iv). By (11) and (12), it is

sufficient to show that −(2 − p)S(n)
12 + pT (n)

12 converges in probability to 0 under the condi-
tion n(1 − p) → 0. In fact, following the proof of (13), in this case we can deduce that its
characteristic function f n−2

n (t) → 1. �

3. Average Jaccard index

In this section we derive asymptotic properties of the average Jaccard index of G(n, p),
which is given by

Jn = 2

n(n − 1)

n−1∑
i=1

n∑
j=i+1

J(n)
ij . (14)

That is, the average Jaccard index Jn is the average of the Jaccard indices over all vertex pairs
in the Erdös–Rényi random graph G(n, p). An immediate consequence of Proposition 1 is that
the expectation of Jn is equal to p/(2 − p).

We now state the main results of this paper.

Theorem 2. Let Jn be the average Jaccard index of G(n,p). If np → ∞ and n2(1 − p) → ∞,
then

n(2 − p)2

√
8p(1 − p)

(
Jn − p

2 − p

)
D−→ Z,

where Z denotes a standard normal random variable.

It is remarkable that the quantity n2(1 − p)/2 is the asymptotic expected number of unoc-
cupied edges in G(n, p). Theorem 2 suggests that if G(n, p) is neither too sparse (see, e.g., [25,
Section 1.8]) nor close to a complete graph, then its average Jaccard index Jn has asymptotic
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Average Jaccard index of random graphs 1145

normality. In order to prove Theorem 2, we first introduce two auxiliary lemmas, both of which
involve the inverse moments of the binomial distribution.

Lemma 1. If the random variable Xn has a binomial distribution with parameters n and p,
then, for any fixed constants a ≥ 0 and b > 0, as np → ∞,

E

[(
(n + a)p

b + Xn
− 1

)2]
= O

(
1

np

)
.

Proof. For any ε ∈ (0, 1), we define An := {(1 − ε)(n + a)p ≤ b + Xn ≤ (1 + ε)(n + a)p}.
Applying Chernoff’s bound for the binomial distribution (see, e.g., [14, Corollary 2.3]) gives,
for sufficiently large n,

P
(An

)≤ P

(∣∣∣∣Xn

np
− 1

∣∣∣∣> ε

2

)
≤ 2 exp

{
− ε2

12
np

}
= O

(
1

n3p3

)
.

Then, for sufficiently large n, by noting that(
(n + a)p

b + Xn
− 1

)2

≤
(

(n + a)p

b

)2

+ 1 ≤ 2n2p2,

we have

E

[(
(n + a)p

b + Xn
− 1

)2]
=E

[(
(n + a)p

b + Xn
− 1

)2

1(An)

]
+E

[(
(n + a)p

b + Xn
− 1

)2

1
(An

)]
≤E

[
(n + a)2p2

(b + Xn)2

(
b + Xn

(n + a)p
− 1

)2

1(An)

]
+ 2n2p2

P
(An

)
≤ (1 − ε)−2

E

[(
b + Xn

(n + a)p
− 1

)2]
+ 2n2p2

P
(An

)
= O

(
1

np

)
,

where we used the inequality

E

[(
b + Xn

(n + a)p
− 1

)2]
≤ 2

(n + a)2p2

(
E
[
(Xn − np)2]+ (b − ap)2)= O

(
1

np

)
.

�

Lemma 2. If the random variable Xn has a binomial distribution with parameters n and p,
then, for any fixed positive constants b and α, as np → ∞,

E

[
1

(b + Xn)α

]
= 1

(np)α
(1 + o(1)).

Proof. This is an immediate consequence of [23, Theorem 2]. �

We now give a formal proof of Theorem 2.

Proof of Theorem 2. By (12), the index J(n)
ij can be expressed as

J(n)
ij = p

2 − p
+ (2 − p)S(n)

ij − pT (n)
ij

(n − 2)p(2 − p)2
+ R(n)

ij , 1 ≤ i �= j ≤ n, (15)
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where the remainder term is

R(n)
ij = (2 − p)S(n)

ij − pT (n)
ij

(n − 2)p(2 − p)2

(
(n − 2)p(2 − p)

T (n)
ij

− 1

)
. (16)

Note the special case in (15) that the remainder term R(n)
ij vanishes if T (n)

ij = 0. Taking
expectation on both sides of (15) gives, for any distinct vertices i, j ∈ [n],

E

[
R(n)

ij

]
= 0. (17)

Denote by Rn the sum of all the remainder terms, i.e.,

Rn =
n−1∑
i=1

n∑
j=i+1

R(n)
ij . (18)

Then it follows by (17) that E[Rn] = 0. By (2) and the simple fact that 1ik ∨ 1jk = 1ik + 1jk −
1ik1jk, we have, for any 1 ≤ i �= j ≤ n,

(2 − p)S(n)
ij − pT (n)

ij =
∑
k �=i,j

[
(2 − p)1ik1jk − p1ik ∨ 1jk

]= ∑
k �=i,j

[
21ik1jk − p

(
1ik + 1jk

)]
,

which, together with (14) and (15), implies that

Jn = p

2 − p
+ 2

n(n − 1)

n−1∑
i=1

n∑
j=i+1

( (2 − p)S(n)
ij − pT (n)

ij

(n − 2)p(2 − p)2
+ R(n)

ij

)

= p

2 − p
+ 2

n(n − 1)(n − 2)(2 − p)2

n−1∑
i=1

n∑
j=i+1

∑
k �=i,j

(
21ik1jk

p
− (1ik + 1jk)

)
+ 2

n(n − 1)
Rn

= p

2 − p
− 4P1,n

n(n − 1)(2 − p)2
+ 4P2,n

n(n − 1)(n − 2)p(2 − p)2
+ 2

n(n − 1)
Rn, (19)

where

P1,n =
n−1∑
i=1

n∑
j=i+1

1ij, P2,n =
n−1∑
i=1

n∑
j=i+1

∑
k �=i,j

1ij1ik

denote the number of edges and the number of paths of length two in G(n, p), respectively.
Further, we can rewrite (19) as

(n − 1)(2 − p)2

√
8p(1 − p)

(
Jn − p

2 − p

)
=
√

2p

1 − p

(
−P1,n

np
+ P2,n

n(n − 2)p2

)
+ (2 − p)2

n
√

2p(1 − p)
Rn. (20)

For P1,n and P2,n, it is not hard to obtain that their expectations are given by E[P1,n] =
1
2 n(n − 1)p and E[P2,n] = 1

2 n(n − 1)(n − 2)p2. Applying [10, Theorem 3(iii)] yields that if
np → ∞ and n2(1 − p) → ∞,√

2p

1 − p

(
P1,n − 1

2 n(n − 1)p

np
,

P2,n − 1
2 n(n − 1)(n − 2)p2

2n(n − 2)p2

)
D−→ (Z, Z),
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which implies that √
2p

1 − p

(
−P1,n

np
+ P2,n

n(n − 2)p2

)
D−→ Z. (21)

To prove Theorem 2, by (20) and (21) it is sufficient to show that

Rn

n
√

p(1 − p)
P−→ 0.

That is, by Chebyshev’s inequality and the fact that E[Rn] = 0, we only need to prove that

Var[Rn] = o
(
n2p(1 − p)

)
. (22)

On the other hand, by symmetry, it follows by (18) that

Var[Rn] = cov

(
n−1∑
i=1

n∑
j=i+1

R(n)
ij ,

n−1∑
i=1

n∑
j=i+1

R(n)
ij

)

= n(n − 1)

2
cov

(
R(n)

12 ,

n−1∑
i=1

n∑
j=i+1

R(n)
ij

)

= 1

2
n(n − 1)Var

[
R(n)

12

]
+ n(n − 1)(n − 2)cov

(
R(n)

12 , R(n)
13

)
+ 1

4
n(n − 1)(n − 2)(n − 3)cov

(
R(n)

12 , R(n)
34

)
. (23)

To prove (22), we next estimate the variance and covariances in (23) separately. By the law of
total expectation and (17), for the variance of R(n)

12 we have

Var
[
R(n)

12

]
=E

[(
R(n)

12

)2]=E

[
E

[(
R(n)

12

)2 | T (n)
12

]]
=

n−2∑
m=0

E

[(
R(n)

12

)2 | T (n)
12 = m

]
P

(
T (n)

12 = m
)

.

(24)
Recalling that T (n)

12 ∼ Bin(n − 2, p(2 − p)), and R(n)
12 = 0 if T (n)

12 = 0, By (3), (4), and (16), it
follows that

E

[(
R(n)

12

)2 | T (n)
12 = m

]
= 1

(n − 2)2p2(2 − p)2

(
(n − 2)p(2 − p)

m
− 1

)2

Var
(

S(n)
12 | T (n)

12 = m
)

= 2(1 − p)

(n − 2)2p(2 − p)4

(
(n − 2)2p2(2 − p)2

m
− 2(n − 2)p(2 − p) + m

)
,

which, together with (6) and (24), implies that

Var
[
R(n)

12

]
= 2(1 − p)

(n − 2)2p(2 − p)4

n−2∑
m=1

(
(n − 2)2p2(2 − p)2

m
− 2(n − 2)p(2 − p) + m

)
P

(
T (n)

12 = m
)

= 2(1 − p)

(n − 2)(2 − p)3

(
(n − 2)p(2 − p)

n−2∑
m=1

1

m
P

(
T (n)

12 = m
)

− 1 + 2P
(

T (n)
12 = 0

))
= O

(
1 − p

n2p

)
, (25)
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where in the last equality we used the simple fact that

0 < P

(
T (n)

12 = 0
)

= (1 − p)2(n−2) ≤ e−2(n−2)p = o

(
1

np

)
.

To calculate the covariance of R(n)
12 and R(n)

13 , by convention we introduce the shorthand
notation

T̃ (n)
ij := (n − 2)p(2 − p)

T (n)
ij

− 1

for distinct vertices i, j ∈ [n]. Recalling (8), we have

(2 − p)S(n)
ij − pT (n)

ij =
∑
k �=i,j

Vij,k, i, j ∈ [n].

By symmetry and (16), it thus follows that

cov
(

R(n)
12 , R(n)

13

)
= 1

(n − 2)2p2(2 − p)4

n∑
k=3

∑
l �=1,3

E

[
V12,kV13,lT̃

(n)
12 T̃ (n)

13 1
(

T (n)
12 T (n)

13 > 0
)]

= 1

(n − 2)p2(2 − p)4
E

[
V12,3V13,2T̃ (n)

12 T̃ (n)
13 1

(
T (n)

12 T (n)
13 > 0

)]
+ (n − 3)

(n − 2)p2(2 − p)4
E

[
V12,3V13,4T̃ (n)

12 T̃ (n)
13 1

(
T (n)

12 T (n)
13 > 0

)]
, (26)

which splits the covariance into two parts. Notice that, by (8), the discrete random variable
Vij,k �= 0 if and only if 1ik ∨ 1jk = 1. This implies that if V12,3V13,2 �= 0, we have T (n)

12 = 1 +∑n
k=4 11k ∨ 12k and T (n)

13 = 1 +∑n
k=4 11k ∨ 13k, and they have the same distribution. Since it

follows that, by conditioning on 123,

E[V12,3V13,2] =E
[(

(2 − p)113123 − p(113 ∨ 123)
)(

(2 − p)112123 − p(112 ∨ 123)
)]

= pE
[(

(2 − p)113 − p
)(

(2 − p)112 − p
)]+ (1 − p)E

[
p2113112

]
= p3(1 − p)2 + p4(1 − p) = p3(1 − p),

and that, by Lemma 1 and the Cauchy–Schwarz inequality,∣∣∣∣E[( (n − 2)p(2 − p)

1 +∑n
k=4 11k ∨ 12k

− 1

)(
(n − 2)p(2 − p)

1 +∑n
k=4 11k ∨ 13k

− 1

)]∣∣∣∣
≤E

[(
(n − 2)p(2 − p)

1 +∑n
k=4 11k ∨ 12k

− 1

)2]
= O

(
1

np

)
,

we have

E

[
V12,3V13,2T̃ (n)

12 T̃ (n)
13 1

(
T (n)

12 T (n)
13 > 0

)]
=E

[
V12,3V13,2

(
(n − 2)p(2 − p)

1 +∑n
k=4 11k ∨ 12k

− 1

)(
(n − 2)p(2 − p)

1 +∑n
k=4 11k ∨ 13k

− 1

)]
= p3(1 − p)E

[(
(n − 2)p(2 − p)

1 +∑n
k=4 11k ∨ 12k

− 1

)(
(n − 2)p(2 − p)

1 +∑n
k=4 11k ∨ 13k

− 1

)]
= O

(
p2(1 − p)

n

)
. (27)
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Let us define Bab := {112 ∨ 123 = a, 114 ∨ 124 = b}, a, b ∈ {0, 1}. Noting that E[V12,3] = 0,
we have

E
[
V12,31(112 ∨ 123 = 1)

]= −E
[
V12,31(112 ∨ 123 = 0)

]= pE
[
1131(112 = 123 = 0)

]= p2(1 − p)2,

which implies that, for any a, b = 0 or 1,

E[V12,3V13,41(Bab)] =E[V12,31(112 ∨ 123 = a)]E[V13,41(114 ∨ 124 = b)]

=E[V12,31(112 ∨ 123 = a)]E[V12,31(112 ∨ 123 = b)]

= (−1)a+bp4(1 − p)4.

Analogously to (27), we have

E

[
V12,3V13,4T̃ (n)

12 T̃ (n)
13 1

(
T (n)

12 T (n)
13 > 0

)]
=

1∑
a=0

1∑
b=0

E

[
V12,3V13,4T̃ (n)

12 T̃ (n)
13 1(Bab)

]

=
1∑

a=0

1∑
b=0

E
[
V12,3V13,4W12(b)W13(a)1(Bab)

]
=

1∑
a=0

1∑
b=0

E
[
V12,3V13,41(Bab)

]
E
[
W12(b)W13(a)

]
= p4(1 − p)4

E
[
(W12(0) − W12(1))(W13(0) − W13(1))

]
, (28)

where

Wij(a) := (n − 2)p(2 − p)

1 + a +∑n
k=5 1ik ∨ 1jk

− 1, i, j ∈ [n], a = 0, 1.

Noting that W12(0) − W12(1) and W13(0) − W13(1) have the same distribution, by Lemma 2
and the Cauchy–Schwarz inequality we have

E
∣∣(W12(0) − W12(1)

)(
W13(0) − W13(1)

)∣∣≤E
[
(W12(0) − W12(1))2]

≤ (n − 2)2p2(2 − p)2
E

⎡⎢⎣ 1(
1 +∑n

k=5 11k ∨ 12k

)4

⎤⎥⎦
= O

(
1

n2p2

)
,

which, together with (26), (27), and (28), implies that

cov
(

R(n)
12 , R(n)

13

)
= O

(
1 − p

n2

)
. (29)
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It remains to calculate the second covariance Cov
(

R(n)
12 , R(n)

34

)
on the right-hand side of (23),

and the procedure is similar to the previous one. We sketch the calculations below, omitting a
few specific interpretations. Analogously to (26), we have

cov
(

R(n)
12 , R(n)

34

)
= 1

(n − 2)2p2(2 − p)4

n∑
k=3

∑
l �=3,4

E

[
V12,kV34,lT̃

(n)
12 T̃ (n)

34 1
(

T (n)
12 T (n)

34 > 0
)]

= 4

(n − 2)2p2(2 − p)4
E

[
V12,3V34,1T̃ (n)

12 T̃ (n)
34 1

(
T (n)

12 T (n)
34 > 0

)]
+ 2

(n − 2)p2(2 − p)4
E

[
V12,3V34,5T̃ (n)

12 T̃ (n)
34 1

(
T (n)

12 T (n)
34 > 0

)]
+ (n − 4)2

(n − 2)2p2(2 − p)4
E

[
V12,5V34,5T̃ (n)

12 T̃ (n)
34 1

(
T (n)

12 T (n)
34 > 0

)]
. (30)

Define Cab := {114 ∨ 124 = a, 123 ∨ 124 = b}, a, b ∈ {0, 1}. After straightforward calculations,
we have

E
[
V12,3V34,11(C00)

]= p3(1 − p)3,

E
[
V12,3V34,11(C11)

]= p3(1 − p)
(
1 + 3(1 − p)2),

E
[
V12,3V34,11(C01)

]=E
[
V12,3V34,11(C10)

]= −2p3(1 − p)3.

Then we can conclude that E[V12,3V34,11(Cab)] = O(p3(1 − p)). Hence, by the Cauchy–
Schwarz inequality and Lemma 1,

E

[
V12,3V34,1T̃ (n)

12 T̃ (n)
34 1

(
T (n)

12 T (n)
34 > 0

)]
=

1∑
a=0

1∑
b=0

E
[
V12,3V34,1W12(a)W34(b)1(Cab)

]
=

1∑
a=0

1∑
b=0

E[V12,3V34,11(Cab)]E[W12(a)]E[W34(b)]

= O

(
p2(1 − p)

n

)
. (31)

Since V12,3 and V34,5 are independent and have the common mean 0, it follows that

E

[
V12,3V34,5T̃ (n)

12 T̃ (n)
34 1

(
T (n)

12 T (n)
34 > 0

)]
=E

[
V12,3V34,5T̃ (n)

12 T̃ (n)
34 1(113 ∨ 123 = 1)1(135 ∨ 145 = 1)

]
=E[V34,51(135 ∨ 145 = 1)]E

[
V12,3T̃ (n)

12 1(113 ∨ 123 = 1)

(
(n − 2)p(2 − p)

1 +∑k �=3,4,5 (13k ∨ 14k)
− 1

)]
=E[V34,5]E

[
V12,3T̃ (n)

12 1(113 ∨ 123 = 1)

(
(n − 2)p(2 − p)

1 +∑k �=3,4,5 (13k ∨ 14k)
− 1

)]
= 0. (32)

Similarly, we also have E
[
V12,5V34,5T̃ (n)

12 T̃ (n)
34 1

(
T (n)

12 T (n)
34 > 0

)]= 0. Plugging this, (31), and (32)
into (30) yields

cov
(

R(n)
12 , R(n)

34

)
= O

(
1 − p

n3

)
,
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which, together with (23), (25), and (29), implies that

Var[Rn] = O

(
1 − p

p

)
+ O(n(1 − p)) + O(n(1 − p)) = O(n(1 − p))

as np → ∞. This proves (22), and thus completes the proof of Theorem 2. �
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