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Abstract

Let p be a prime. If an integer g generates a subgroup of index t in (Z/pZ)∗, then we say that g is a t-near
primitive root modulo p. We point out the easy result that each coprime residue class contains a subset of
primes p of positive natural density which do not have g as a t-near primitive root and we prove a more
difficult variant.
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1. Introduction

1.1. Background. Given a set of primes S , the limit

δ(S ) = lim
x→∞

#{p : p ∈ S , p ≤ x}
#{p : p ≤ x}

,

if it exists, is called the natural density of S . (Here and in the sequel the letter p is
used to denote a prime number.)

For any integer g < {−1, 0, 1}, let Pg be the set of primes p such that g is a primitive
root modulo p, that is p - g and the multiplicative order of g modulo p, ordp(g), is
p − 1 = #(Z/pZ)∗ and so g is a generator of (Z/pZ)∗. In 1927, Emil Artin conjectured
that the set Pg is infinite if g is not a square and gave a conjectural formula for its
natural density δ(Pg) (see [12] for more details). There is no explicit value of g known
for which Pg can be unconditionally proved to be infinite. However, Heath-Brown [3],
building on earlier fundamental work by Gupta and Murty [2], showed that, given any
three distinct primes p1, p2 and p3, there is at least one i such that Ppi is infinite.

In 1967, Hooley [4] established Artin’s conjecture under the Generalised Riemann
Hypothesis (GRH) and determined δ(Pg). Ten years later, Lenstra [7] considered a
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wide class of generalisations of Artin’s conjecture. For example, under GRH, he
showed that the primes in Pg that are in a prescribed arithmetic progression have
a natural density and gave a Galois theoretic formula for it. This was worked out
explicitly by the first author [9, 11], who showed that δ(Pg) = rgA, where rg is an
explicit rational number and A is the Artin constant,

A =
∏

p

(
1 −

1
p(p − 1)

)
= 0.373955 . . . .

Using a powerful and very general algebraic method, this result was rederived in a
very different way by Lenstra et al. [8].

For any integer t ≥ 1, let

Pg(t) = {p : p - g, p ≡ 1 (mod t), ordp(g) = (p − 1)/t}.

If p is in Pg(t), then it is said to have g as a t-near primitive root. Assuming GRH, the
first author [13] determined δ(Pg(t)) in the case where g > 1 is square-free.

A more refined problem is to ask how the primes in Pg(t) are distributed over
arithmetic progressions. To this end, let a, d ≥ 1 be coprime integers and define

Pg(t, d, a) = {p : p ≡ a (mod d), p ∈ Pg(t)}.

By the prime number theorem for arithmetic progressions,

#{p : p ≤ x, p ≡ a (mod d)} ∼
x

ϕ(d) log x
, (1.1)

where ϕ denotes Euler’s totient function. A straightforward combination of the ideas
used in the study of near-primitive roots and those for primitive roots in arithmetic
progression, allows one to show, assuming GRH, that δ(Pg(t, d, a)) exists and derive
a Galois theoretic expression δG(Pg(t, d, a)) for it (see Hu et al. [6, Theorem 3.1]).
Moreover, it can be unconditionally shown (see [6, Equation (3.7)]) that

lim sup
x→∞

#{p ≤ x : p ∈ Pg(t, d, a)}
π(x)

≤ δG(Pg(t, d, a)), (1.2)

where as usual π(x) denotes the prime counting function. The idea of the proof is to
apply the simple asymptotic sieve up to a range in which the unconditional Chebotarev
density theorem is valid.

On the basis of insights from [8], we know that δG(Pg(t, d, a)) is a rational multiple
of the Artin constant A,where the rational multiple can be worked out in full generality.
However, this is likely to produce a result involving several case distinctions (as in the
restricted case where t = 1 and in the case where t is arbitrary and g is square-free). In
the much less general case g = 4 and t = 2, the expression was explicitly worked out
in [6] (see Section 1.3 for more background).
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1.2. Our considerations. In this paper we study the distribution of primes not
having a prescribed near-primitive root in arithmetic progressions. Our motivation
comes from the following questions.

Questions 1.1. Let t ≥ 1 and g < {−1, 0, 1} be integers. Let a, d be positive coprime
integers.

(A) Is the set Qg(t, d, a) = {p : p ≡ a (mod d), p < Pg(t)} infinite?
(B) Does the set Qg(t, d, a) have a natural density and can it be computed?

SincePg(t,d,a) ∪Qg(t,d,a) = {p : p ≡ a (mod d)}, if δ(Pg(t,d,a)) exists, then using
(1.1),

δ(Qg(t, d, a)) = 1/ϕ(d) − δ(Pg(t, d, a)).

Question B can currently be answered only assuming GRH. However, in this approach
it is far from evident under which conditions on the parameters g, t, d and a we have
δ(Qg(t, d, a)) > 0, thus guaranteeing the infinitude of the set Qg(t, d, a).

Unconditionally, using (1.2),

lim inf
x→∞

#{p ≤ x : p ∈ Qg(t, d, a)}
π(x)

≥
1

ϕ(d)
− δG(Pg(t, d, a)).

If there exists a prime p0 - t satisfying both p0 ≡ a (mod d) and p0 . 1 (mod t), then
all the primes p ≡ p0 (mod dt) are in Qg(t, d, a) (because t - (p − 1)). By (1.1), there
are infinitely many primes p ≡ p0 (mod dt), and they have a positive natural density.
Thus, Question A is only nontrivial when p ≡ a (mod d) implies p | t or p ≡ 1 (mod t),
which is true if and only if

t | d and t | (a − 1). (1.3)

In this note we will see that answering Question A is actually also rather easy in
the case where (1.3) is satisfied. The answer to Question A is yes, and we can even be
a little bit more precise if we use Kummerian extensions of cyclotomic number fields
Q(ζn) with ζn = e2πi/n.

Proposition 1.2. Let g < {−1, 0, 1} and t ≥ 1 be integers. Let a, d be positive coprime
integers. Then, for any integer q > 2 and coprime to 2dt, the set Qg(t, d, a) contains a
subset of primes p having natural density

1
[Q(ζd, ζq, g1/q) : Q]

.

The field degree [Q(ζd, ζq, g1/q) : Q] = [Q(ζlcm(d,q), g1/q) : Q] is not difficult to
compute for any given g, d and q (see [10, Lemma 1] for the general result which is
a direct consequence of [15, Proposition 4.1]). Using this computation the maximum
density of the q-dependent subsets arising in Proposition 1.2 can be determined; see
the next section for an example. If ` is a prime factor of q, then Q(ζd, ζ`, g1/`) ⊆
Q(ζd, ζq, g1/q), and so a priori the maximum occurs at an odd prime.
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We will also establish a more difficult variant of Proposition 1.2. Letting g, t, d, a
be as in Proposition 1.2, we define the set

Rg(t, d, a) = {p : p - g, p ≡ a (mod d), p ≡ 1 (mod t), ordp(g) | (p − 1)/t}.

Clearly, Pg(t, d, a) ⊆ Rg(t, d, a). Our purpose is to show that if Rg(t, d, a) is not
empty, then Rg(t, d, a) contains a subset of primes of positive density not contained
in Pg(t, d, a).

Theorem 1.3. Let g < {−1, 0, 1} and t ≥ 1 be integers. Let a, d be positive coprime
integers. Suppose the set Rg(t, d, a) is not empty. Then, for any integer q > 2 coprime
to 2dgt, the set Rg(t, d, a) contains a subset of primes p for which g is a non t-near
primitive root modulo p having natural density

1
[Q(ζd, ζqt, g1/qt) : Q]

.

Again, given d, g and t, the maximum density of the q-dependent subsets arising in
the theorem can be determined and for this it suffices to consider primes q - 2dgt.

Note that for any integer q ≥ 2, each prime in Rg(qt, d, a) is not contained in
Pg(t, d, a). So, Theorem 1.3 is derived directly from the following proposition, which
might be of independent interest.

Proposition 1.4. Let g < {−1, 0, 1} and t ≥ 1 be integers. Let a, d be positive coprime
integers. Suppose the set Rg(t, d, a) is not empty. Then, for any positive integer q
coprime to 2dgt,

δ(Rg(qt, d, a)) =
1

[Q(ζd, ζqt, g1/qt) : Q]
.

1.3. An application. Proposition 1.2 has an application to Genocchi numbers Gn,
which are defined by Gn = 2(1 − 2n)Bn, where Bn is the nth Bernoulli number. The
Genocchi numbers are actually integers. As introduced in [6], if a prime p > 3 divides
at least one of the Genocchi numbers G2,G4, . . . ,Gp−3, it is said to be G-irregular and
G-regular otherwise. The first fifteen G-irregular primes [1] are

17, 31, 37, 41, 43, 59, 67, 73, 89, 97, 101, 103, 109, 113, 127.

The G-regularity of primes can be linked to the divisibility of certain class numbers of
cyclotomic fields. Let S be the set of infinite places of Q(ζp) and T the set of places
above the prime 2. Denote by hp,2 the (S ,T )-refined class number of Q(ζp) and by h+

p,2

the refined class number of Q(ζp + ζ−1
p ) with respect to its infinite places and places

above the prime 2 (for the definition of the refined class number of global fields, see
for example Hu and Kim [5, Section 2]). Define h−p,2 = hp,2/h+

p,2. It turns out that h−p,2
is an integer (see [5, Proof of Proposition 3.4]). Recall that a Wieferich prime is an odd
prime p such that 2p−1 ≡ 1 (mod p2).

Theorem 1.5 [6, Theorem 1.5]. Let p be an odd prime. If p is G-irregular, then p | h−p,2.
If p is not a Wieferich prime, the converse is also true.
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It is easy to show that if ordp(4) , (p − 1)/2, then p is G-irregular (see [6, Theorem
1.6]). Hence, taking g = 4 and t = 2 in Proposition 1.2 and noting that we have
[Q(ζd, ζq, 41/q) : Q] = ϕ(d)q(q − 1) for any prime q - 2d, we arrive at the following
result.

Proposition 1.6. Let a, d be positive coprime integers. Let q be the smallest prime not
dividing 2d. The set of G-irregular primes p satisfying p ≡ a (mod d) contains a subset
having natural density

1
ϕ(d)q(q − 1)

.

This result is a weaker version of [6, Theorem 1.11]. However, its proof is much
more elementary, and it still shows that each coprime residue class contains a subset
of G-irregular primes having positive natural density.

2. Preliminaries

Given any integers d, n ≥ 1 put Kn = Q(ζd, ζn, g1/n). For a coprime to d, let σa be
the endomorphism of Q(ζd) over Q defined by σa(ζd) = ζa

d . Let Cn be the conjugacy
class of elements of the Galois group Gn = Gal(Kn/Q) such that for any τn ∈ Cn,

τn|Q(ζd) = σa, τn|Q(ζn,g1/n) = id, (2.1)

where ‘id’ stands for the identity map. Note that either Cn is empty, or Cn is nonempty
and |Cn| = 1. The latter case occurs if and only if

τn|Q(ζd)∩Q(ζn,g1/n) = id. (2.2)

If this condition is satisfied, then by the Chebotarev density theorem (in its natural
density form as in Serre [14], the original form being for Dirichlet density), the primes
unramified in Kn and with Frobenius Cn have natural density 1/[Kn : Q]. Note that
the primes unramified in Kn are exactly the primes p - dgn. The first condition on τn

ensures that the primes p - dgn having τn as Frobenius satisfy p ≡ a (mod d). Likewise
the second condition ensures that such primes satisfy ordp(g) | (p − 1)/n.

In particular, in the case where Q(ζd) and Q(ζn, g1/n) are linearly disjoint over Q,
that is,

Q(ζd) ∩ Q(ζn, g1/n) = Q, (2.3)

we have |Cn| = 1, and the primes p - dgn with Frobenius Cn satisfy p ≡ a (mod d) and
ordp(g) | (p − 1)/n, and they have natural density 1/[Kn : Q].

3. Proofs

Proof of Proposition 1.2. Since q is odd, the extension Q(ζq, g1/q) of Q(ζq) is
nonabelian and

Q(ζd) ∩ Q(ζq, g1/q) = Q(ζd) ∩ Q(ζq) = Q(ζgcd(d,q)) = Q,
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as gcd(q, d) = 1. Thus (2.3) is satisfied and consequently there is a set of primes p with
natural density 1/[Kq : Q] satisfying p ≡ a (mod d) and ordp(g) | (p − 1)/q. Since by
assumption q - t, it follows that ordp(g) , (p − 1)/t for these primes p, and so for them
g is a non t-near primitive root. This completes the proof. �

Proof of Proposition 1.4. From now on we assume that g, t, a and d are as in
Proposition 1.4. The proof of Proposition 1.4 rests on the Chebotarev density theorem
and the following lemma. Recall that Kn = Q(ζd, ζn, g1/n).

Lemma 3.1. Put In = Q(ζd) ∩ Q(ζn, g1/n). Then, Iqt = It for any positive integer q
coprime to 2dgt.

Proof. Since It ⊆ Iqt, it suffices to show that [Iqt : Q] = [It : Q]. Obviously [d, t] = rt for
some positive integer r. By elementary Galois theory and noticing that gcd(q, dt) = 1,
we see that

[Iqt : Q] =
[Q(ζd) : Q] · [Q(ζqt, g1/qt) : Q]

[Q(ζd, ζqt, g1/qt) : Q]
=
ϕ(d)[Q(ζqt, g1/qt) : Q]

[Q(ζqrt, g1/qt) : Q]
,

and, similarly, [It : Q] = ϕ(d)[Q(ζt, g1/t) : Q]/[Q(ζrt, g1/t) : Q]. By [10, Lemma 1] and
noticing gcd(q, 2dgt) = 1, it is straightforward to deduce [Iqt : Q] = [It : Q]. �

Remark 3.2. We remark that the condition gcd(q, 2dgt) = 1 cannot be removed. For
example, choosing g = 21, d = 3, t = 10, q = 7 and using [11, Lemma 2.4], we have
It = Q and Iqt = Q(ζd) = Q(

√
−3) , It.

We can now complete the proof of Proof of Proposition 1.4. By Lemma 3.1 it
follows that

Iqt = It. (3.1)

By assumption, Rg(t, d, a) is not empty. This implies that the two automorphisms in
(2.1) are compatible and hence (2.2) is satisfied, which leads to the conclusion that
Rg(t, d, a) is not only nonempty, but even has a positive natural density. Moreover,
δ(Rg(t, d, a)) = [Kt : Q]−1 by the discussion in Section 2. So, there must be a τt ∈ Ct

such that τt |It = id, which by (3.1) implies the existence of an automorphism τqt ∈

Cqt such that τqt |Iqt = id. Then, it follows from the discussion in Section 2 that
δ(Rg(qt, d, a)) = [Kqt : Q]−1. �

Proof of Theorem 1.3. Theorem 1.3 is a direct consequence of Proposition 1.4. �
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[14] J.-P. Serre, ‘Quelques applications du théorème de densité de Chebotarev’, Publ. Math. Inst.

Hautes Études Sci. 54 (1981), 323–401.
[15] S. S. Wagstaff Jr., ‘Pseudoprimes and a generalization of Artin’s conjecture’, Acta Arith. 41 (1982),

141–150.

PIETER MOREE, Max-Planck-Institut für Mathematik,
Vivatsgasse 7, D-53111 Bonn, Germany
e-mail: moree@mpim-bonn.mpg.de

MIN SHA, Department of Computing, Macquarie University,
Sydney, NSW 2109, Australia
e-mail: shamin2010@gmail.com

https://doi.org/10.1017/S0004972719000443 Published online by Cambridge University Press

https://oeis.org
http://www.arxiv.org/abs/1809.08431
https://orcid.org/0000-0002-5318-2587
mailto:moree@mpim-bonn.mpg.de
https://orcid.org/0000-0003-2326-559X
mailto:shamin2010@gmail.com
https://doi.org/10.1017/S0004972719000443

	Introduction
	Background
	Our considerations
	An application

	Preliminaries
	Proofs
	References

