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Constructions of some families of smooth
Cauchy transforms
Adem Limani and Bartosz Malman
Abstract. For a given Beurling–Carleson subset E of the unit circle T which has positive Lebesgue
measure, we give explicit formulas for measurable functions supported on E such that their
Cauchy transforms have smooth extensions from D to T. The existence of such functions has
been previously established by Khrushchev in 1978, in non-constructive ways by the use of duality
arguments. We construct several families of such smooth Cauchy transforms and apply them in a
few related problems in analysis: an irreducibility problem for the shift operator, an inner factor
permanence problem. Our development leads to a self-contained duality proof of the density of
smooth functions in a very large class of de Branges–Rovnyak spaces. This extends the previously
known approximation results.

1 Introduction

Let E be a closed subset of the unit circle T = {z ∈ C ∶ ∣z∣ = 1} of the complex plane C,
and let the notation dm stand for the Lebesgue measure, normalized by the condition
m(T) = 1. The following question has been studied by Khrushchev in [12]. What
conditions on the set E guarantee the existence of a nonzero measurable function h
supported on E for which the Cauchy transform, or Cauchy integral,

Ch1E (z) ∶= ∫
T

h(ζ)1E(ζ)
1 − zζ

dm(ζ) = ∫
E

h(ζ)
1 − zζ

dm(ζ), z ∈ D,(1.1)

which is an analytic function in the unit disk D = {z ∈ C ∶ ∣z∣ < 1}, can be smoothly
extended to the closed disk D? In the above formula, and throughout the article, 1E
denotes the indicator function of the set E.

For the question to be interesting, the set E should contain no arc A of T. Indeed,
if E contains an arc A, then certainly any function s ∶ T→ C in C∞ with support on A
will be transformed into a function Cs which is a member of A∞. Here, A∞ denotes
the algebra of analytic functions in D for which the derivatives of any order extend
continuously to D. The containment Cs ∈ A∞ follows in this case readily from the
rapid rate of decay of Fourier coefficients {sn}n of the smooth function s, and the fact
that Cs(z) = ∑∞n=0 snzn .
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By A, we will denote the class of analytic functions in D which admit a continuous
extension to D, and by An we denote those functions for which the nth derivative
admits such an extension, that is, f (n) ∈ A. Thus, A∞ = ∩n≥1A

n . Khrushchev in [12]
has solved the existence part of the above stated problem in full. For a general closed
set E, he establishes the existence of a nonzero measurable function h, with support
only on E, such that Ch given by (1.1) is in the class A. Moreover, he proves that there
exists a nonzero measurable function h supported on E for which the transform (1.1)
is a function in A∞ essentially if and only if E contains a Beurling–Carleson set of
positive Lebesgue measure. A set E is a Beurling–Carleson set if it is closed and if the
condition

∑
n=1
∣An ∣ log(1/∣An ∣) < ∞(1.2)

is satisfied, where {An}n is the system of disjoint open subarcs of T union of which
equals the complement T/E, and ∣A∣ denotes the length of the arc A. The class of
Beurling–Carleson sets has a rich history, and appears notably in the solution of
boundary zero set problems for smooth analytic functions, and zero set problems for
Bergman spaces (see, for instance, Carleson’s paper [5] and Korenblum’s paper [14]).
In [18], the present authors found that Beurling–Carleson sets play an important role
in smooth approximation theory in de Branges–Rovnyak spaces, another classical and
well-studied family of Hilbert spaces of analytic functions.

A notable feature of the proofs of the abovementioned results of Khrushchev in
[12] is that they are non-constructive. One of the aims of this article is to show that, in
the case in which Beurling–Carleson sets and the class A∞ are involved, the theorem
of Khrushchev can be obtained in a rather elementary and explicit way by using
modifications of other known constructions.

Theorem A Let E be a Beurling–Carleson set of positive Lebesgue measure.Then there
exists an explicit formula for a measurable function h = h1E for which the Cauchy
transform given by (1.1) belongs to A∞.

The above result is established in Section 3 as a special case of Proposition 3.1, which
deals with a slightly more general situation, and which will be useful for our further
applications. We remark that the very interesting problem of giving an explicit formula
for h supported on any given closed set E such that Ch1E is in A remains open, and the
approach presented here is not applicable.

Our ultimate application of the construction of smooth Cauchy transforms is to
the approximation theory in de Branges–Rovnyak spaces H(b). For background on
the theory of H(b)-spaces, see [6, 7, 21]. A basic problem in the theory is to identify
what functions are contained in the spaceH(b) and how this depends on the structure
of the symbol b, which is any analytic function mapping the disk D into itself. It has
been established by Sarason (see [21]) that the analytic polynomials are contained and
norm-dense in the space H(b) if and only if the weight

Δ(ζ) ∶= 1 − ∣b(ζ)∣2 , ζ ∈ T,(1.3)
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has an integrable logarithm on T:

∫
T

log(Δ)dm > −∞.(1.4)

Moreover, it is also known that any H(b)-space contains a dense subset of functions
inA (see [2]). In particular, considering the usual inner–outer factorization of b = θb0
into an inner function θ and an outer function b0, the inner factor θ plays no role in
the context of approximations by analytic polynomials or functions continuous up to
the boundary. The situation is different in the context of approximations by functions
in the class A∞ or An , or even the Hölder classes. A combination of results in [16, 18]
shows that the functions in the class An will be dense in the space H(b) if the outer
factor of b is “good” and the “bad” part of the singularities of the inner factor of b
is appropriately located on T, with respect to the outer factor. More precisely, it was
found in [2] that if weight Δ appearing above is of the form

Δ =
∞
∑
n=1

wn1En ,(1.5)

where each set En is a Beurling–Carleson set of positive Lebesgue measure, and each
wn is a nonnegative weight satisfying

∫
En

log(wn)dm > −∞,(1.6)

then the functions in An are dense in H(b) if b is outer. Note that the two con-
ditions above say something about the “good” structure of the support set of the
weight Δ (being a union of “good” sets satisfying the Beurling–Carleson condition),
and something about Δ not being too small on the support. In [18], examples are
highlighted in which bad support and small size of Δ both independently prohibit
such approximations in H(b), not only by functions in A∞, but even by functions in
the Hölder classes. In the presence of a nontrivial inner factor θ = BSν of b, where B is a
Blaschke product and Sν is a singular inner function, results of [16, 18] show that what
matters is the location on T of the support of a certain part of the singular measure ν.
To describe this mechanism, we will need to introduce a simple decomposition of the
measure ν, which has appeared already in a similar context in [17] and also in work of
Roberts in [20]. Namely, the measure ν can be expressed as a sum

ν = νC + νK ,(1.7)

where the two measures are mutually singular, there exists an increasing sequence of
Beurling–Carleson sets of Lebesgue measure zero {Fn}n≥1 such that

lim
n→∞

νC(Fn) = νC(T),

and

νK(F) = 0

for any Beurling–Carleson set F of Lebesgue measure zero. The part νC plays no role in
our approximation problem. However, the support of νK must necessarily be located
on the support of Δ for approximations by smooth functions to be possible. Moreover,
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if the conditions (1.5) and (1.6) are satisfied and the mass of νK is located appropriately
in the sense that

νK(∪n En) = νK(T),(1.8)

then indeed functions in the class An are dense in H(b). This was established by a
duality argument in [18], using also the results of [16]. We will sharpen this result by
proving density of functions in A∞. Thus, we will prove (using duality) the following
approximation result, which is the strongest that we are aware of.

Theorem B Let b ∶ D→ D be an analytic function with singular inner factor Sν such
that the weight Δ given by (1.3) has the form (1.5) for some sequence {En}n of Beurling–
Carleson sets of positive measure and satisfies (1.6) and such that the part νK in the
decomposition (1.7) of ν satisfies (1.8). Then A∞ ∩H(b) is norm-dense in H(b).

A more detailed exposition of why this approximation result is close to the best
possible also appears in [18].

The proof of Theorem B presented here is long, but it is self-contained and the
constructive proof of the theorem of Khrushchev mentioned above plays a crucial role
in our development. In [18], a duality approach to the smooth approximation problem
in H(b) is presented, and it is based on a connection with two problems in analysis
which are of independent interest: an operator irreducibility problem and an inner
factor permanence problem. We will need to study both of these problems in detail to
prove Theorem B.

In Section 5, we deal with the irreducibility problem. Let X be some space of
functions defined on a domain in the complex plane which contains the analytic
polynomials and is invariant under the forward shift operator Mz ∶ f (z) ↦ z f (z),
where z is the coordinate function (or identity function) of the complex plane. We
denote by D the closure of the analytic polynomials in X. In many important cases, the
functions in X live on the closed unit disk D, the operator Mz is a contraction (in the
sense that ∥Mz f ∥X ≤ ∥ f ∥X holds for all f ∈ X), and a question or assumption which
appears in several contexts (see, for instance, [2, 3, 15]) is related to the existence of
invariant subspaces of the operator Mz ∶ D → D on which it acts as an isometry. In the
particular case X = L2(μ), where μ is a positive Borel measure compactly supported
in the complex plane, the closure of analytic polynomials is usually denoted by P2(μ).
If μ is a positive measure of the form

dμ = dA+ 1E dm(1.9)

(dA and dm being the area measure of D and Lebesgue measure of T, respectively),
then the condition that Mz is completely nonisometric on the closure of polynomials
D ∶= P2(μ) is precisely the condition which ensures that P2(μ) can be identified with
a genuine space of analytic functions in D. If not, then P2(μ) will contain as a subset
a space of the form L2(1F dm), for some measurable subset F of E, on which Mz
obviously acts as an isometry. In the context of P2(μ)-spaces, the nonexistence of
a subspaces of the type L2(1F dm) goes under the name of irreducibility (see [3, 24]).
It is known that if E is a Beurling–Carleson set, then the corresponding shift operator
will be completely nonisometric onP2(μ). This follows essentially from Khrushchev’s
work in [12]. However, if we replace dA by a weighted version ρ dA in (1.9), where ρ is
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some function which decays rapidly to zero near the boundary of D, or if we replace
E by a set more complicated than a Beurling–Carleson set, then it might very well
happen that Mz admits an invariant subspace on which it acts as an isometry (see [15]
and in particular [12] for details). In Section 5, we construct a special family of smooth
Cauchy transforms and employ it in a functional analytic argument to establish that
Mz is completely nonisometric on a wide range of Hilbert spaces of analytic functions
which are structurally similar to the P2(μ)-spaces discussed here, but much bigger.
More precisely, we will work with spaces which we denote below by D(α−1 , w) and
which we will equip with a norm defined on an analytic polynomial p(z) = ∑k pk zk

by

∥p∥2
D(α−1 ,w) ∶= ∑

k

∣pk ∣2
αk

+ ∫
E
∣p∣2w dm,(1.10)

for some rapidly increasing positive sequence α = {αk}k and a Beurling–Carleson set
E with weight w. Our development in particular implies the abovementioned results
for P2(μ)-spaces, and even their extensions from [16], but the method of proof is
completely different, arguably much more straightforward, and the result actually
reaches further. We remark that a wealth of information on the behavior of P2(μ)-
spaces which are spaces of analytic functions can be found in [3].

In Section 6, we will study the inner factor permanence problem. In the problem
setting, we let H be a space of analytic D which includes at least H∞, the algebra of
bounded analytic functions. Assume that H carries a norm (or at least some other
type of topological structure) and we have a convergent sequence of the form

lim
n→∞

∥θ fn − f ∥H = 0,

where θ is an inner function, and all other appearing functions are bounded and
analytic inD. Then, in particular, f admits an inner–outer factorization f = IU into an
inner function I and an outer function U. We ask: is I divisible by θ? In other words,
does the inner factor θ get passed onto the limit f ∈ H∞ in the metric induced by
the norm ∥ ⋅ ∥H? We will call this property permanence of an inner function θ in the
corresponding metric. The problem is only interesting for singular inner functions,
since a Blaschke product B will be passed onto the limit in any reasonable norm
defined on analytic functions. In the context of the usual L2-norm computed on the
circle, it is of course well known that any inner function θ satisfies the permanence
property, but for many other metrics, a more interesting situation occurs. Here, a
principal set of examples consists of the weighted L2-metrics on the unit disk D. A
singular inner function has the form

Sν(z) = exp ( − ∫
T

ζ + z
ζ − z

dν(ζ)), z ∈ D,(1.11)

where ν is a finite positive singular Borel measure on T. Recall the decomposition
(1.7) above, which induces according to (1.11) a factorization Sν = SνC SνK . The part
SνC is passed onto the limit under convergence of bounded functions in the weighted
Bergman spaces norms with polynomially decreasing weights. That is, if ν = νC in

https://doi.org/10.4153/S0008414X23000081 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000081


324 A. Limani and B. Malman

(1.7), then for θ = Sν , we have that

lim
n→∞∫D

∣θ fn − f ∣2(1 − ∣z∣2)C dA(z) = 0

⇒ f /θ ∈ H∞

whenever fn , f are all bounded analytic functions, and C > −1. In contrast, SνK can
vanish under the same circumstances. A proof for the first claim appears in [17],
whereas the second is a consequence of a deep cyclicity theorem for inner functions
which was independently established by Roberts in [20] and Korenblum in [14]. In
Section 6, a carefully constructed family of smooth Cauchy transforms will help us to
implement a functional analytic argument and establish this inner factor permanence
for a very large class of singular inner functions and a range of spaces D(α−1 , w)
mentioned above. The result is a technical extension of the one appearing in the article
[16], in which the present authors investigated this principle for the topologies induced
by the abovementioned P2(μ)-spaces.

Our results on the spaces D(α−1 , w) are used in Section 7 in which we implement
the duality approach from [18] to prove Theorem B.

2 Construction of an analytic “cutoff” function

We start off by presenting the constructing of a certain analytic function with strong
decay properties near a given Beurling–Carleson set. The reason for calling it a cutoff
function, as in the name of the section, will become clear from the proof of the coming
application in Proposition 3.1. Our construction is a straightforward adaptation of a
technique from [10], more precisely from Lemma 7.11 of that work. We could have also
followed the ideas of [19] or [23]. The proof is included for the reader’s convenience
and because the construction is crucial for our development.

Lemma 2.1 Let E be a Beurling–Carleson set, of either zero or positive Lebesgue
measure. There exists an analytic function g ∶ D→ D that extends analytically across
T/E, and if G ∶ T→ C is defined by

G(e i t) = g(e i t)1T/E(e i t),(2.1)

where 1T/E denotes the indicator function of the set T/E, then G is a smooth function on
T, and we have the estimate

∣G(m)(e i t)∣ = o(dist(e i t , E)N), e i t → E ,(2.2)

for each pair of nonnegative integer N and m. Here, G(m) denotes the mth derivative of
G with respect to the variable t, and dist(⋅, ⋅) denotes the distance between two closed
sets.

Proof Let ∪n∈NAn = T/E be the complement of E with respect to T. For each subarc
An , we perform the classical Whitney decomposition An = ∪k∈ZAn ,k . More precisely,
let An ,0 be the arc with the same midpoint as An but having one-third of the length
of An . For this choice of the length, we have ∣An ,0∣ = dist(An ,0 , E). The arcs An ,−1
and An ,1 should be chosen adjacent to An ,0 from the left and the right, respectively,
and their lengths should be chosen, again, such that ∣An ,−1∣ = dist(An ,−1 , E) and
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∣An ,1∣ = dist(An ,1 , E). It is easy to see that the correct choice is ∣An ,1∣ = ∣An ,−1∣ = ∣An ∣
6 .

Proceeding in this manner, we will obtain a decomposition

T/E = ∪n An = ∪n ,k An ,k ,

where, for each arc An ,k , we have

∣An ,k ∣ =
∣An ∣

3 ⋅ 2∣k∣ = dist(An ,k , E).(2.3)

A straightforward computation based on (2.3) will show that

∑
n ,k
∣An ,k ∣ log(1/∣An ,k ∣) < ∞.

Let {B j} j be a relabeling of the arcs {An ,k}n ,k and {λ j} j a positive sequence tending
to infinity such that

∑
j

λ j ∣B j ∣ log(1/∣B j ∣) < ∞.

Now, let r j = 1 + ∣B j ∣, b j ∈ T be the midpoint of the arc B j , and consider the function

h(z) = ∑
j

h j(z) = ∑
j

λ jb j ∣B j ∣ log(1/∣B j ∣)
r jb j − z

, z ∈ D.(2.4)

It is not hard to see that the real part of h(z) is positive in D. In fact, the real part of
the jth term in the sum is

Re h j(z) = λ j ∣B j ∣ log(1/∣B j ∣)
Re(r j − zb j)
∣r jb j − z∣2 > 0,

where the last inequality follows from Re(r j − zb j) > 0, which is a consequence of the
inequalities r j > 1 and ∣zb j ∣ < 1. It follows that

g(z) ∶= exp(−h(z))(2.5)

is bounded by 1 in modulus for z ∈ D. Moreover, the series defining h(z) converges
also for z ∈ B j , and h extends analytically across each B j , because the poles {r jb j} j
of h cluster only at the set E. For z ∈ B j , we have that the quantities ∣r jb j − z∣ and
Re(r j − zb j) are both approximately equal to ∣B j ∣, and so

∣g(z)∣ ≤ exp(−Re h j(z)) ≤ exp(−cλ j log(1/∣B j ∣)) = ∣B j ∣cλ j

for some positive constant c. Since ∣B j ∣ equals the distance from B j to E, for z ∈ B j , we
obtain that

∣g(z)∣ ≤ Cdist(z, E)cλ j

for some positive constant C > 0 independent of j. Note that as z tends to E along the
complement T/E, it needs to pass through infinitely many intervals B j . Since λ j tends
to infinity, we obtain that

∣g(z)∣ = o(dist(z, E)N)(2.6)
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as z → E along the complement of E on T, for any choice of positive integer N. Now,
for e i t ∈ T/E, the derivatives G(m)(e i t) have the form H(e i t)G(e i t), where H is a
linear combination of products of derivatives of h(e i t) with respect to t. But a glance
at (2.4) shows that such a product cannot grow faster than a constant multiple of
dist(e i t , E)−n for e i t ∈ T/E, for some positive integer n = nm depending only on the
number of derivatives m taken. Now, according to the definition of G in (2.1), it follows
that the estimate (2.2) holds whenever e i t ∈ T/E. Using this, it is now also evident from
the definition in (2.1) that G is continuous on T. In fact, it is straightforward to verify
that whenever e i t ∈ E, the function G is differentiable as many times as we wish, with
G(m)(e i t) = 0 for any positive integer m. This shows that G is smooth on all of T and
thus completes the proof of this lemma. ∎

Note the fact that the proof above gives an explicit computable formula for the
cutoff function g. It is given in terms of the Beurling–Carleson set E and is presented
in equations (2.4) and (2.5).

3 A constructive proof of Khrushchev’s theorem

3.1 Smooth Cauchy transforms

As before, let E be a Beurling–Carleson set of positive measure. Lemma 2.1 will allow
us to construct, and give explicit formulas for, measurable functions supported on E
which have a smooth Cauchy transform. Thus, we will now give the constructive proof
of the theorem of Khrushchev from his seminal work [12].

Proposition 3.1 (Construction of smooth Cauchy transforms) Let E be a Beurling–
Carleson set of positive measure such that E ≠ T, and let w be a bounded positive
measurable function with support on E which satisfies ∫E log(w)dm > −∞. Let W be
the outer function

W(z) = exp (∫
E

ζ + z
ζ − z

log(w(ζ))dm(ζ)),(3.1)

and let g be the function associated with E, which is given by Lemma 2.1. Consider the
set

K = {s = ζ pgW ∶ p analytic polynomial }(3.2)

consisting of functions on T, where ζ is the coordinate function on T. Then the Cauchy
transform

Cs1E (z) ∶= ∫E

s(ζ)
1 − zζ

dm(ζ)(3.3)

is a nonzero function in A∞ for each nonzero s ∈ K, the restrictions to E of elements of
the set K form a dense subset of L2(1E dm), and the set

CE K ∶= {Cs1E ∶ s ∈ K}(3.4)

is dense in H2.
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Certainly, our more general form of the theorem, together with the density state-
ments, is obtainable by Khrushchev’s methods from [12]. We therefore emphasize that
our main contribution in this context are the explicit formulas for the measurable
functions supported on E for which the Cauchy transform is an analytic function in
A∞. More precisely, the formulas for the functions in K are given by the equations
(2.4), (2.5), and (3.1).

The density statements in Proposition 3.1 will be useful for our further applications.
It is not our point to prove these density statements constructively. In this part of the
proof, we will use the following well-known theorem.

Lemma 3.2 (Beurling–Wiener theorem) Let Mζ ∶ L2(T) → L2(T) be the operator
of multiplication by ζ. The closed Mζ-invariant subspaces of L2(T) are of the form

L2(1F dm) = { f ∈ L2(T) ∶ f = 0 almost everywhere on T/F},

where F is a measurable subset of T, or of the form

UH2 = {U f ∶ f ∈ H2},

where U is a unimodular function.

For a proof of the Beurling–Wiener theorem, see, for instance, [11].

Proof of Proposition 3.1 Since s is a conjugate analytic and satisfies ∫T sdm = 0, we
have

∫
T

s(ζ)
1 − zζ

dm(ζ) = 0

for each z ∈ D. This implies that

Cs1E (z) = ∫E

s(ζ)
1 − zζ

dm(ζ) = −∫
T/E

s(ζ)
1 − zζ

dm(ζ).(3.5)

Consider now the function S(e i t) ∶= s(e i t)1T/E(e i t) = e i t p(e i t)G(e i t)W(e i t). From
the formula (3.1) for W, it is clear that this function extends analytically across T/E,
and a simple differentiation argument shows that the derivatives in the variable t of
the function W(e i t) admit a bound

∣ ∂m

∂tm W(e i t)∣ ≤ Cm ⋅ dist(e i t , E)−2m(3.6)

for e i t ∈ T/E. Thus, by (2.2) of Lemma 2.1 and the definition in (3.2), the derivatives of
any order of S tends to zero as e i t tends to E alongT/E, and it is not hard to see that the
derivatives of S vanish on E. Thus, S ∈ C∞. It follows that the Fourier coefficients Sn of
S satisfy ∣Sn ∣ ≤ C∣n∣−M for each positive integer M and some constant C = C(M) > 0.
Obviously, then, (3.5) implies that the function Cs1E (z) = −∑∞n=0 Snzn is in A∞. It is
nonzero if s is nonzero because the positive Fourier coefficients cannot vanish for the
function s1E which is identically zero on the set T/E of positive Lebesgue measure.

The density in L2(1E dm) of the restrictions to E of elements of the set K is an
easy consequence of the invariance of K under multiplication by ζ and the Beurling–
Wiener theorem (Lemma 3.2). Indeed, the restriction to E of an element of K is
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nonzero almost everywhere on E, but obviously zero on T/E. It follows from Lemma
3.2 that the closure of K in L2(1E dm) could not be anything else than the full space.

The set CE K is certainly contained in H2, and the density in H2 follows from
the classical Beurling theorem for the Hardy spaces. More precisely, the set CE K is
invariant under the backward shift operator

f (z) ↦ f (z) − f (0)
z

.(3.7)

Indeed, we have that

Cs1E (z) − Cs1E (0)
z

= ∫
E

ζs(ζ)
1 − zζ

dm(ζ) = Cζs1E
(z).(3.8)

By Beurling’s theorem, the closure of CE K is either all of H2, or it coincides with a
model space Kθ of functions which have boundary values on T of the form θh, h ∈
zH2, for some nonzero inner function θ. If we would be in the second case, then
there would exist a function k ∈ zH2 such that on the circle T we would have the
equality s1E = Cs1E + k = θh + k, and consequently θs1E ∈ H2. This is a contradiction,
since θs1E vanishes on a set of positive measure. ∎

3.2 A technical improvement

Sets of the form K as in (3.2) have another useful property, one of which will be
employed in the coming applications. The property is that the set CE K defined in (3.4)
is contained in a single Hilbert space consisting purely of functions which are in A∞.
This applies to many sets similar to K, as we shall see next.

More precisely, take the function s0 ∶= ζ gW ∈ K, i.e., the one where p = 1 in (3.2).
The only property of K that we will use in the proof is that it is of the form

{ps0 ∶ p analytic polynomial}.

For an analytic polynomial p(z) = ∑d
n=0 pnzn , we let

p̃(z) ∶=
d
∑
n=0

pnzn(3.9)

and define the operator

p(L) ∶=
d
∑
n=0

pn Ln ,(3.10)

where L is the backward shift operator defined in (3.7). Every other element of
CE K can be expressed as p(L)Cs0 1E for some analytic polynomial. This claim is a
consequence of the formula

p(L)Cs0 1E (z) = ∫E

ζ p̃gW
1 − zζ

dm(ζ),(3.11)

which, in turn, is a consequence of (3.8). Thus, the Taylor coefficients in the family
CE K have similar asymptotic behavior, and we exploit this fact in the following way.
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Being a function in A∞, the Taylor coefficients {Sk}∞k=0 of Cs0 1E satisfy
∞
∑
k=0

kN ∣Sk ∣2 < ∞(3.12)

for all positive integers N. It follows that for each N ≥ 1, there exists a positive integer
K(N) such that

∞
∑

k=K(N)
kN ∣Sk ∣2 <

1
2N .(3.13)

We may assume that {K(N)}N≥1 is increasing. Set K(0) = 0 and define a sequence
{αk}∞k=0 by

αk = kN , K(N) ≤ k < K(N + 1).

This sequence is increasing, and satisfies

∞
∑
k=0

αk ∣Sk ∣2 =
∞
∑
N=0

K(N+1)−1

∑
k=K(N)

kN ∣Sk ∣2 ≤
∞
∑
N=0

1
2N < ∞.(3.14)

Moreover, since αk ≥ kN+1 if k ≥ K(N + 1), we have that

lim
k→∞

αk

kN ≥ lim
k→∞

kN+1

kN = ∞(3.15)

for any positive integer N.

Definition 3.3 A sequence of positive numbers α = {αk}∞k=0 is rapidly increasing if

lim
k→∞

αk

kN = ∞(3.16)

holds for each positive integer N.

Thus, we have constructed above a rapidly increasing sequence. In the coming
application, we will also need the very mild condition

lim
k→∞

α1/k
k = 1,

which we can safely assume. Indeed, by replacing αk by min(αk , k
√

k), we still have a
sequence which is rapidly increasing, and moreover

1 ≤ lim
k→∞

α1/k
k ≤ lim

k→∞
exp(log(k)/

√
k) = 1.

We now make a somewhat trivial observation, which will, however, be important
in the sequel. Because the sequence α = {αk}∞k=0 is increasing, it also follows that
whenever an analytic function f has a Taylor series which satisfies (3.14), then so does
the backward shift L f of this function. Thus, also p(L) f satisfies this property, for
all analytic polynomials p (and, in fact, so does appropriately defined h(L) f for any
bounded analytic function h; see Proposition 4.1). Using also the formula (3.11), we
have proved the following technical result.
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Proposition 3.4 Let s0 be a measurable function on T for which the Cauchy transform
Cs0 is a function in A∞. Then there exists a rapidly increasing sequence α = {αk}∞k=0
satisfying

lim
k→∞

a1/k
k = 1

and such that
∞
∑
k=0

αk ∣ fk ∣2 < ∞

for all functions f which are Cauchy transforms f = Cs of a function s from the set

{s = ps0 ∶ p analytic polynomial }.

4 Weighted sequence spaces

We will explore the Hilbert spaces implicitly appearing in Proposition 3.4 a little more,
and prove a few basic facts about their duality and operators acting on them. The main
results of the following Sections 5 and 6 will be stated in the context of these Hilbert
spaces. All results in this section are certainly well known, so we include the proofs
for completeness.

4.1 Definition and duality

For a sequence of positive numbers α = {αk}∞k=0, we define the Hilbert space X(α) to
consist of formal power series f (z) = ∑∞k=0 fnzn which satisfy

∥ f ∥2
X(α) ∶=

∞
∑
k=0

αk ∣ fk ∣2 < ∞.(4.1)

It is obvious that if α is rapidly increasing, then X(α) ⊂ A∞. We define the dual
sequence α−1 by the equation

α−1 ∶= {α−1
k }∞k=0 .

The space X(α−1) is isometrically isomorphic to the dual space of X(α) under the
pairing which maps f ∈ X(α), g ∈ X(α−1) to the complex number

⟨ f , g⟩ ∶= ∑
k=0

fk gk ,(4.2)

where the sequences { fk}∞k=0 and {gk}∞k=0 are the coefficients in the formal power
series expansions of f and g, respectively.

In fact, for us, the spaces X(α) and X(α−1) will always be genuine spaces of
analytic functions on D. Indeed, a property which ensures this is limk→∞ α1/k

k = 1. The
sequences appearing in our context will be the ones constructed in Proposition 3.4 and
their dual sequences, so we can safely assume below that this assumption is always
satisfied. To see indeed that the assumption limk→∞ β1/k

k = 1 implies that the radius of
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convergence of a formal power series f ∈ X(β) is equal to at least 1, we compute

lim sup
k→∞

∣ fk ∣1/k = lim sup
k→∞

(βk ∣ fk ∣2)1/2k

β1/2k
k

≤ lim sup
k→∞

1
β1/2k

k

= 1,

where, in the next-to-last step, we used that

lim
k→∞

βk ∣ fk ∣2 = 0,

so that

lim sup
k→∞

(βk ∣ fk ∣2)1/2k ≤ 1.

This shows that the radius of convergence of f ∈ X(β) is indeed equal to at least 1.
Finally, an obvious but important property of the presented duality pairing is that

if f and g happen to be functions in H2, then we have that (4.2) equals

⟨ f , g⟩ = ∫
T

f g dm.

In other words, the duality pairing coincides with the usual L2(T)-duality pairing in
the case f and g are functions in H2. We shall often implicitly use this property.

4.2 Toeplitz operators

The usual Toeplitz operator with symbol h ∈ L∞(T) acts on an H2-function f by the
formula

Th f (z) ∶= ∫
T

f (ζ)h(ζ)
1 − ζz

dm(ζ).

If p is a polynomial, then

Tp f = p̃(L) f ,(4.3)

where p̃(L) is defined according to (3.10) and where p̃(z) is given by (3.9). If h
is in H∞, then we can equivalently define the operator Th as the mapping taking
the function f (z), z ∈ D, to the function h(z) f (z), z ∈ D. We denote by Mh the
multiplication operator

Mh f (z) = h(z) f (z), z ∈ D,

which acts on the space of all holomorphic functions on D. If h is analytic and f ∈ H2,
then it is well known that Th f = Mh f . We say that the Toeplitz operator is co-analytic,
or has a co-analytic symbol, if it is of the form Th for h ∈ H∞.

Proposition 4.1 Let α be a sequence of positive numbers such that the corresponding
X(α) space consists of analytic functions in D.
(i) If α is increasing, then X(α) is continuously contained in H2, and the Toeplitz

operators with bounded co-analytic symbols are bounded on X(α).
(ii) If α is decreasing, then the operators Mh with bounded analytic symbols are

bounded on X(α).
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In both cases, the corresponding operators have a norm which is less than or equal to
the supremum norm of the corresponding symbol.

Proof We prove (i). It is clear that X(α) is continuously contained in H2. A direct
computation shows that α being increasing implies that the backward shift operator L
in (3.7) is a contraction on X(α). There certainly exists no subspace of X(α) on which
L acts as a unitary (or even an isometry), so the Nagy–Foias functional calculus (see
[22] for details) allows us to define the operator

h(L) ∶ X(α) → X(α)

for any bounded analytic function h, in such a way that the definition is consistent
with (3.10) for polynomials h, the operator norm of h(L) is at most ∥h∥∞, and if

lim
n→∞

hn(ζ) → h(ζ)

almost everywhere on T and

sup
n
∥hn∥∞ < ∞,

then hn(L) converges in the strong operator topology to h(L). In fact, the operators
h(L) are co-analytic Toeplitz operators with symbol h̃, where h̃(z) = h(z). To see this,
fix h ∈ H∞ and let {hn}n be the Fejér polynomials for h, so that the above properties of
the Nagy–Foias functional calculus imply that hn(L) f → h(L) f in the norm of X(α),
for any f ∈ X(α). The same is true in the norm of H2. Recalling (4.3), for z ∈ D, we
get

h(L) f (z) = lim
n→∞

hn(L) f (z) = lim
n→∞

T
h̃n

f (z) = T
h̃

f (z).

Thus, h(L) = T
h̃
, and by reversing roles of h and h̃, we see that the Nagy–Foias

functional calculus for L on X(α) is a bijection onto the co-analytic Toeplitz operators.
Next, we prove (ii). If α is decreasing, then the dual sequence α−1 is increasing,

so by (i) we can define T∗
h
∶ X(α) → X(α) as the adjoint of Th ∶ X(α−1) → X(α−1)

with respect to our duality pairing (4.2) between the spaces. Let f ∈ X(α), λ ∈ D, and
sλ(z) = 1

1−λz
. Recall that sλ is an eigenvector of Th , with eigenvalue h(λ). We compute

T∗h f (λ) = ⟨T∗h f , sλ⟩ = ⟨ f , Thsλ⟩ = h(λ)⟨ f , sλ⟩ = h(λ) f (λ).

Thus, the adjoints of the co-analytic Toeplitz operators on X(α−1) are multiplication
operators on X(α). The operator norm of T∗

h
equals to operator norm of Th , which is

at most ∥h∥∞, as was noted in the proof of part (i). The proof is complete. ∎

5 Completely nonisometric shifts

5.1 A big Hilbert space with a completely nonisometric shift

In the next proposition, we construct a Hilbert space of analytic functions on D which
has desirable properties and which is strictly larger than any spaceP2(μ)with measure
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μ being of the form

dμ = dμC ∶= (1 − ∣z∣2)C dA+wdm

and C being any positive number. This Hilbert space will play an important role in the
proof of the main result of Section 7. Another application is presented in Corollary
5.3. We note that a similar result certainly can be reached by methods of Khrushchev
developed in [12], but our proof below is different, and relies fully on construction of
smooth Cauchy transforms.
Proposition 5.1 Let E be a Beurling–Carleson set of positive Lebesgue measure, and
let w be a bounded positive measurable function which is supported on E and satisfies
∫E log(w)dm > −∞. For a sequence α, consider the product space

X(α−1) ⊕ L2(w dm)
and the norm closure

D(α−1 , w)
of the linear manifold

{(p, p) ∈ X(α−1) ⊕ L2(w dm) ∶ p analytic polynomial}.

There exists a rapidly increasing sequence α = {αk}∞k=0 such that the space D(α−1 , w)
has the following property: f1 ≡ 0 implies that f2 ≡ 0, for any tuple ( f1 , f2) ∈D(α−1 , w).
Proof The proof is very simple in principle. We will use the set K in (3.2) in
combination with the sequence constructed in Proposition 3.4, and this will provide us
with enough functionals on X(α−1) ⊕ L2(wdm) to conclude that f1 ≡ 0 implies f2 ≡ 0,
by a straightforward duality argument involving the Beurling–Wiener theorem.

For each s ∈ K, consider the functional

p ↦ −∫
T

pCs1E dm + ∫
E

ps dm,(5.1)

which we define on the set {(p, p) ∈ X(α−1) ⊕ L2(wdm) ∶ p analytic polynomial}.
By construction, these functionals are the zero functionals, since the functions Cs1E

and s1E have coinciding Fourier coefficients indexed by nonnegative numbers. Apply
Proposition 3.4 to produce a rapidly increasing sequence α such that Cs1E ∈ X(α) for
all s ∈ K. The constructed functionals are then continuous with respect to the metric
X(α−1) ⊕ L2(wdm). Indeed, we see from (3.2) that s = wq on E, where q is a bounded
function, and so

∣∫
E

ps dm∣ ≤ ∥q∥L2(wdm)∥p∥L2(wdm)

by Cauchy–Schwarz inequality.
Now, let ( f1 , f2) lie D(α−1 , w) and assume that f1 ≡ 0. Fix a sequence of poly-

nomials {pn}∞n=1 such that (pn , pn) → ( f1 , f2) = (0, f2) in the norm of X(α−1) ⊕
L2(wdm). Then (0, f2) is annihilated by any functional in (5.1), and so

∫
E

f2sdm = 0, s ∈ K .

By the density statements in Proposition 3.1, we conclude that f2 ≡ 0. ∎
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Let us take another look at the space D(α−1 , w) appearing above, assuming that
it is satisfying the conclusion of Propoition 5.1. If ( f , f1) and ( f , f2) are two tuples
in D(α−1 , w) with coinciding first coordinate, then (0, f1 − f2) ∈D(α−1 , w), and the
above result implies that f1 ≡ f2. In particular, the projection ( f , f1) ↦ f onto the first
coordinate is an injective mapping from such tuples to analytic functions on D. But
this means that D(α−1 , w) is in essence a space of analytic functions in which the
analytic polynomials are dense.

We make three more very simple but important observations.

Proposition 5.2 Let D(α−1 , w) be as in Propoition 5.1, and identify it with a space of
analytic functions on D as described above.

(i) Mz ∶D(α−1 , w) →D(α−1 , w) is completely nonisometric.
(ii) If f ∈ H2, then f ∈D(α−1 , w) and the corresponding tuple equals ( f , f ), where in

the second coordinate f is interpreted in the sense of boundary values of f on T.
(iii) Every bounded analytic function h defines a multiplication operator Mh on

D(α−1 , w), with norm at most ∥h∥∞.

Proof Part (i) follows from the paragraph above. The only way a function f ∈
D(α−1 , w) satisfies ∥Mz f ∥D(α−1 ,w) = ∥ f ∥D(α−1 ,w) is if f vanishes on D, which does
not happen by Propoition 5.1.

Part (ii) follows in a similar way. We need to note only that since α−1 is decreasing
and w is bounded, then for a suitable sequence {pn}n of Taylor polynomials of f ∈ H2,
the tuples (pn , pn)will converge in the norm of X(α−1) ⊕ L2(w dm) to ( f , f ). By part
(i), or the discussion in the paragraph above, there is only one tuple in D(α−1 , w)
which has f as the first coordinate. So the tuple representing f ∈ H2 ∩D(α−1 , w) is
precisely ( f , f ).

To prove part (iii), let h be a bounded analytic function and {hn}n its Fejér
means. Let {pn}n be a sequence of polynomials converging to f ∈D(α−1 , w). Then
Proposition 4.1 implies that {hn pn}n is a norm-bounded sequence in D(α−1 , w). The
weak limit of this sequence equals h f ∈D(α−1 , w), and

∥h f ∥D(α−1 ,w) ≤ lim inf
n→∞

∥hn pn∥D(α−1 ,w) ≤ ∥h∥∞∥ f ∥D(α−1 ,w).

The last inequality is again a consequence of Proposition 4.1. ∎

5.2 An uncertainty-type principle

The significance of Propoition 5.1 might not be easy to appreciate. In this section,
which is independent of the rest of the article, we want to highlight how such a result
can be applied in the theory of P2(μ)-spaces and how it relates to a classical result in
the theory of Hardy spaces.

Recall that a square integrable function f on T which lies in the L2-closure of the
analytic polynomials (that is, in the Hardy space H2) cannot vanish on a set of positive
measure. Thus, the spectral smallness of f (vanishing of negative Fourier coefficients of
f ) implies that the function cannot be too small. A beautiful exposition of this result,
and other manifestations of the uncertainty principle in harmonic analysis, can be
found in [9]. A combination of the deep work of Aleman, Richter, and Sundberg in
[3] and our Propoition 5.1 will establish the following result of similar nature.
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Corollary 5.3 (An uncertainty-type principle for a class of P2(μ)-spaces) Let C >
−1 and E be a Beurling–Carleson set of positive measure. Let w be a bounded positive
measurable function which is supported on E and satisfies ∫E log(w)dm > −∞. Consider
the measure

dμ = (1 − ∣z∣2)C dA+wdm

and the classical Lebesgue space L2(μ). Let P2(μ) be the closure of analytic polynomials
in L2(μ). Then we have that f ≠ 0 almost everywhere with respect to μ, for any nonzero
f ∈ P2(μ).

Proof A computation shows that for f (z) = ∑∞k=0 fk zk , we have

∫
D

∣ f (z)∣2(1 − ∣z∣2)C dA(z) = ∑
k=0

βk(C)∣ fk ∣2 ,

where the weights βk(C) satisfy the asymptotics

βk(C) ≃
1

kC+1 .

This means that convergence of polynomials {pn}n in P2(μ) implies convergence
of (pn , pn) in the space X(α−1) ⊕ L2(wdm) appearing in Propoition 5.1, and a
direct consequence is that P2(μ) contains no nonzero function which vanishes on
D. In particular, P2(μ) does not contain the characteristic function of any subset
of T of positive measure, and every element f ∈ P2(μ) has a unique restriction f ∣D
to D, which of course is an analytic function. In particular, the space satisfies the
assumptions of [3, Theorem A], and the conclusion of that theorem is that for any f ∈
P2(μ), its restriction f ∣D has a nontangential limit almost everywhere with respect to
μ∣T, and this limit agrees almost everywhere with f ∣T. If f would vanish on a set of
positive μ∣T-measure, then a classical theorem of Privalov (see, for instance, [13]) can
be used to deduce that f ≡ 0 throughout D. ∎

In the above result, we can obviously replace the part dμ∣T = wdm with a more
general weight w which is carried by a countable union {En}n of Beurling–Carleson
sets of positive measure, and where the weight w is log-integrable on each set En
separately.

We want to remark also that the use of the very deep and general Aleman–Richter–
Sundberg theorem from [3] in the above proof can likely be avoided, and the existence
of nontangential limits on E for functions f in P2(μ) of the described form, or even
in the space D(α−1 , w), is likely accessible in a more straightforward way (see the
introductory section of the article [3] for an exposition of previously attained special
cases of the Aleman–Richter–Sundberg theorem).

6 A permanence principle for inner factors

In this section, we study the inner factor permanence problem for the spaces appearing
in the previous sections. We start by formally stating the property which we are
investigating.
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Definition 6.1 LetH be a topological space of analytic functions which contains H∞,
and let θ be a given inner function. We say that the pair (H, θ) satisfies the permanence
property if

lim
n→∞

θ fn = f ,

in the sense of the topology of H, implies that f /θ is bounded, whenever fn , f are
bounded analytic functions.

Let us go back to the setting of Propositions 5.1 and 5.2 where the Hilbert space
D(α−1 , w) appears. We noted that if α is suitably chosen, then D(α−1 , w) is in fact
a space of analytic functions, and it contains H2. Thus, the above question of inner
factor permanence makes sense in the context of the norm on D(α−1 , w).

Weaker versions of the following results appear in [16], where circumstances allow
for statements in much less technical form. This is a consequence of the fact that the
sequences α which appear in [16] increase only polynomially. Below, we show that
by fixing some singular inner function θ of some particular structure, we can alter
the methods in [16] and construct a space D(α−1 , w) where the sequence α is rapidly
increasing and in which the permanence principle in Definition 6.1 holds for that given
θ. The corresponding results for P2(μ)-spaces from [16] are corollaries (we state them
in Corollary 6.5), but we will need the full strength of the results established below in
the principal application to come.

Lemma 6.2 Let θ = Sν be a fixed singular inner function for which in the decomposi-
tion (1.7) of ν, the part νC is supported on a single Beurling–Carleson set F of Lebesgue
measure zero, and νK ≡ 0. Then there exists a rapidly increasing sequence α = {αk}∞k=0
(which depends on θ) such that the pair (X(α−1), θ) satisfies the permanence property
in Definition 6.1.

Proof The idea of the proof is as follows: Let u be a function in Kθ , the orthogonal
complement of θH2 in H2, and let Λu be the (in general, unbounded with respect to
the norm on X(α−1)) linear functional

Λu f ∶= ∫
T

f u dm,(6.1)

which is defined for f ∈ H2 ⊂ X(α−1). If Λu can be extended to a bounded linear
functional on X(α−1) for u in a dense subset of Kθ , then ∥θ fn − f ∥X(α−1) → 0, with
fn , f ∈ H2, will imply that f is orthogonal to Kθ in H2. Indeed, in such a case, we will
have

⟨ f , u⟩ = lim
n→∞

⟨θ fn , u⟩ = 0,

for all u in a dense subset of Kθ , and so f ∈ (Kθ)⊥ = θH2. This of course means
that f /θ ∈ H2. We will show that such a dense set can be constructed under the
stated assumption, for some rapidly increasing sequence α. The proof will involve
construction of a new set of smooth Cauchy transforms similar to those in (3.4), and
an application of Proposition 3.4.
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Note that θ extends analytically across the set T/F, and a simple differentiation
argument and the formula (1.11) shows that we have the following estimate:

∣ ∂m

∂tm θ(e i t)∣ ≤ Cm ⋅ dist(e i t , F)−2m , e i t ∈ T/F .(6.2)

Let g = gF be the function decaying rapidly near F, which is given by Lemma 2.1. We
conclude, similarly to as in the proof of Proposition 3.1, that the set of functions on T

defined by

K1 ∶= {θζ pgF ∶ p analytic polynomial }
consists of functions in C∞(T), and thus the Cauchy transform of any function in this
set is inA∞. Let P+ denote the projection operator from L2(T) to the Hardy space H2.
Then P+ f = C f , interpreted as functions on the circle. We now verify that the Cauchy
transforms of elements of K1 are members of Kθ . Let ⟨⋅, ⋅⟩L2 denote the usual inner
product for L2(T). For s = θζ pgF and any h ∈ H2, we have

⟨θh, Cs⟩L2 = ⟨θh, P+s⟩L2 = ⟨θh, s⟩L2 = ∫
T

hζ pgF dm = 0,

where the last integral vanishes because the integrand represents the boundary
function of an analytic function with a zero at the origin. Thus, Cs ∈ Kθ for any
s ∈ Kθ . We now verify that this set of Cauchy transforms is dense in Kθ . If f ∈ Kθ ,
then f θ = ζ f0 as boundary functions, where f0 ∈ H2. Orthogonality of f ∈ Kθ to all
functions Cs , s ∈ K1, means that

⟨ f , Cs⟩L2 = ∫
T

f0 pgF dm = 0.

Since gF is outer, the set

{pgF ∶ p analytic polynomial }(6.3)

is dense in H2, and so the above implies f0 ≡ 0, which means that f ≡ 0. We have
thus constructed a dense set of functions in Kθ to which Proposition 3.4 applies, and
the conclusion is that the Cauchy transforms we constructed are all contained in some
space X(α)defined by a rapidly increasing sequence α. Then the space X(α−1) satisfies
the permanence principle for θ, by the observation in the first paragraph of this
proof. ∎
Lemma 6.3 Let E be a Beurling–Carleson set of positive Lebesgue measure, and let
w be a weight supported on E and satisfying ∫E log(w) dm > −∞. Let θ = Sν be a
fixed singular inner function for which ν is supported on the set E. There exists a
rapidly increasing sequence α = {αk}∞k=0 (which depends on E , w, and θ) for which the
conclusion of Propoition 5.1 holds, and moreover the pair (D(α−1 , w), θ) satisfies the
permanence property in Definition 6.1.

The difference from Lemma 6.2 is that Lemma 6.3 also applies to the case when νK
in (1.7) is nonzero.

Proof We follow the same idea as in the proof of Lemma 6.2. From the weight w, we
construct the outer function W given by the formula (3.1). For the set E, we construct

https://doi.org/10.4153/S0008414X23000081 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000081


338 A. Limani and B. Malman

the corresponding function g = gE as in Lemma 2.1, and we define

K2 ∶= {θζ pgE W ∶ p analytic polynomial }.

This time, the Cauchy transforms of the functions in K2 are not necessarily smooth.
However, they are again contained and dense in Kθ , as in Lemma 6.2. The only
difference in the proof, which we skip, is that the set in (6.3) is replaced by

{pgE W ∶ p analytic polynomial },

which is dense in H2 by the fact that W and gE are outer.
For

s0 ∶= θζ gE W ∈ K2 ,

we define the Cauchy transform u0 ∶= Cs0 . We can decompose u0 according to

u0(z) = ∫
T

s0(ζ)
1 − ζz

dm(ζ) = ∫
T/E

s0(ζ)
1 − ζz

dm(ζ) + ∫
E

s0(ζ)
1 − ζz

dm(ζ)

∶= u1(z) + u2(z).(6.4)

The estimates in (3.6) and (6.2) show that in s01T/E is a function in C∞, and thus
u1 ∈ A∞. Consequently, by Proposition 3.4, there exists a rapidly increasing sequence
β such that Cs1T/E is in X(β−1), for all s ∈ K2. Apply now Propoition 5.1 to E and
w to obtain another rapidly increasing sequence γ such that the conclusion of that
proposition holds, and let α be the termwise minimum of β and γ:

αk = min{βk , γk}, k ≥ 0.

Then α is again a rapidly increasing sequence, the conclusion of Propoition 5.1 holds,
and Cs1T/E is in X(α), for all s ∈ K2.

Moreover, the linear functional

f ↦ ∫
T

f u2 dm,

defined on analytic polynomials f, is bounded in the metric of L2(w dm). Indeed,
recall that ∣W ∣ = w on the set E, and so we have

∣∫
T

f u2 dm∣ = ∣⟨ f , P+s01E⟩L2 ∣ = ∣∫
E

f s0 dm∣ = ∣∫
E

f θζ gE W dm∣ ≤ c∥ f ∥L2(wdm)

for some constant c > 0, since θζ gE is bounded. The same argument shows also that
Cs1E defines a bounded linear functional on the analytic polynomials in the metric of
L2(w dm), for all s ∈ K2.

We let v = Cs for s ∈ K2, v1 = Cs1T/E , and v2 = Cs1E , so that v = v1 + v2, and go back
to the definition of the functional Λu in (6.1). We have just verified that we can
decompose it according to (6.4)

Λv f ∶= ∫
T

f v dm = ∫
T

f v1 dm + ∫
T

f v2 dm(6.5)

in such a way that the first piece defines a continuous linear functional on the analytic
polynomials in the metric of X(α−1), and the second piece defines a continuous linear
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functional on the analytic polynomials in the metric of L2(w dm). But then, these
functionals extend continuously to D(α−1 , w), and by the density of {Cs ∶ s ∈ K2} in
Kθ and the argument in the first paragraph of the proof of Lemma 6.2, we conclude
that the pair (D(α−1 , w), θ) satisfies the permanence property. ∎

Corollary 6.4 (An inner factor permanence principle) Let E be a Beurling–Carleson
set of positive Lebesgue measure, and let w be a weight supported on E and satisfies
∫E log(w) dm > −∞. Let θ = Sν be a fixed singular inner function such that in the
decomposition (1.7), the part νC satisfies νC(F) = νC(T) for a single fixed Beurling–
Carleson set F of Lebesgue measure zero, and νK is supported on E. There exists a
rapidly increasing sequence α = {αk}∞k=0 (which depends on E , w, and θ) for which the
conclusion of Propoition 5.1 holds, and moreover the pair (D(α−1 , w), θ) satisfies the
permanence property in Definition 6.1.

Proof The required rapidly increasing sequence α is the one obtained by construct-
ing the termwise minimum of the sequences given by Lemmas 6.2 and 6.3. ∎

The above result is essentially optimal. Indeed, if ν = νK in (1.7) and ν(T/E) > 0,
then Sν will be divisible by an inner function which is cyclic in D(α−1 , w) (and
so certainly cannot satisfy the permanence property). This can be seen from the
corresponding cyclicity result in [16] for the class of P2(μ)-spaces appearing in
Corollary 5.3. In the other direction, we note that the main inner factor permanence
result in [16] is an immediate consequence of Corollary 6.4. Here is the statement.

Corollary 6.5 (The permanence principle for a class ofP2(μ)-spaces) Let C > −1
and E be a Beurling–Carleson set of positive measure. Let w be a bounded positive
measurable function which is supported on E and satisfies ∫E log(w)dm > −∞. Consider
the measure

dμ = (1 − ∣z∣2)C dA+wdm

and the classical Lebesgue space L2(μ). Let P2(μ) be the closure of analytic polynomials
in L2(μ). If θ = Sν be a singular inner function such that in the decomposition (1.7) the
part νK is supported on E, then the pair (P2(μ), θ) satisfies the permanence property
in Definition 6.1.

We skip the proof, which is similar to the proof of Corollary 5.3.

7 Density of smooth functions in extreme H(b)-spaces

This final section is devoted to the proof of density of smooth functions in the class of
de Branges–Rovnyak spaces described in Section 1.

7.1 A little background on H(b)

The following construction of the H(b)-space appears in [2].

Proposition 7.1 Let b be an extreme point of the unit ball of H∞,

E = {ζ ∈ T ∶ ∣b(ζ)∣ < 1},
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and let Δ =
√

1 − ∣b∣2 be a function on the circle T, defined in terms of boundary values
of b on T. For f ∈H(b), the equation

P+b f = −P+Δg(7.1)

has a unique solution g ∈ L2(E), and the map J ∶H(b) → H2 ⊕ L2(E) defined by

J f = ( f , g)

is an isometry. Moreover,

J(H(b))⊥ = {(bh, Δh) ∶ h ∈ H2}.(7.2)

The benefit of the above described way of constructing the H(b)-space (that is,
using the embedding J above, and an orthogonal complement) is that it will be
particularly easy to implement our duality argument.

We need only one more lemma before going into the final proof.

Lemma 7.2 Let b = θu be an extreme point of the unit ball of H∞, where θ and u are
the inner and outer factors of b, respectively. Furthermore, let {θn}n be a sequence of
inner divisors of θ such that

lim
n→∞

θn(z) = θ(z)

for all z ∈ D, and let {En}n be an increasing sequence of subsets of T such that

E ∶= {ζ ∈ T ∶ ∣b(ζ)∣ < 1} = ∪n En

up to a set of Lebesgue measure zero. For n ≥ 1, let un be the outer function with modulus

∣un ∣ = 1E/En + ∣b∣1En

on T. Set bn = θnun . Then H(bn) is contractively contained in H(b), and ∪nH(bn) is
norm-dense in H(b).

Proof Let kb and kbn be the reproducing kernels of H(b) and H(bn), respectively.
Note that the assumptions imply that bn divides b, in the sense that

∣b(z)/bn(z)∣ ≤ 1, z ∈ D.(7.3)

Then

kb(λ, z) − kbn(λ, z) = bn(λ)bn(z) − b(λ)b(z)
1 − λz

= bn(λ)bn(z)
1 − b/bn(λ)b/bn(z)

1 − λz
is clearly a positive definite kernel, so by standard theory of reproducing kernel Hilbert
spaces (see, for instance, [4] or [1]), it follows that H(bn) is contractively contained
in H(b). Moreover, contractivity of the containment means that

∥kbn(λ, ⋅)∥2
H(b) ≤ ∥kbn(λ, ⋅)∥2

H(bn) =
1 − ∣bn(λ)∣2

1 − ∣λ∣2 ≤ 1 − ∣b(λ)∣2
1 − ∣λ∣2 ,

where in the last step we used (7.3). So, for fixed λ, the functions kbn(λ, ⋅) are norm-
bounded in H(b). It is not hard to see from the usual construction of the outer
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functions that un(z) → u(z) as n →∞, for every z ∈ D. Consequently, bn(z) → b(z)
for each z ∈ D, and even

lim
n→∞

kbn(λ, z) = kb(λ, z), z, λ ∈ D.

Together with the norm estimate above, this means that for any fixed λ ∈ D, a
suitable subsequence of the kernels kbn(λ, ⋅)will converge weakly in H(b) to kb(λ, ⋅).
Elementary functional analysis now ensures that ∪nH(bn) is dense in H(b). ∎

We remark that a simple consequence of the contractive containment of H(bn) in
H(b) is the following: density of A∞ ∩H(bn) in H(bn) for each n implies density of
A∞ ∩H(b) in H(b).

7.2 The density theorem

In the proof below, we use the duality pairing ⟨⋅, ⋅⟩ appearing in Section 4.1. For a set
S in either X(α) or X(α−1), we denote by S⊥ the linear space of elements in the other
space which is annihilated by S under the duality. Basic Hilbert space theory says that
(S⊥)⊥ is the norm-closure of S.

For convenience, we restate the Theorem B of Section 1.

Theorem 7.3 (A∞-density theorem inH(b)-spaces) Let b = θu be an extreme point
of the unit ball of H∞ satisfying the following assumptions.
(i) There exists an increasing sequence {En}n of Beurling–Carleson sets of positive

measure such that, up to a set of Lebesgue measure zero, we have the equality

E ∶= {ζ ∈ T ∶ ∣b(ζ)∣ < 1} = ∪n En

and

∫
En

log(1 − ∣b∣2) dm > −∞, for all n.

(ii) If θ = BSν , where B is a Blaschke product and ν is the measure defining the singular
inner factor as in (1.11), then in the decomposition (1.7), the part νK which vanishes
on Beurling–Carleson sets of Lebesgue measure zero satisfies νK(∪n En) = νK(T),
where {En}n are the sets in (i).

Then A∞ ∩H(b) is norm-dense in H(b).
Before going into the proof, we remind the reader of what was remarked in

Section 1, that the condition νK(∪n En) = νK(T) appearing in (ii) above is essentially
necessary, and that some type of structure condition on the set E, and a size condition
on the weight (1 − ∣b∣2), also are necessary (examples are mentioned in [18]).

The proof below is essentially the same as the one given in the context of P2(μ)-
spaces in [18].

Proof By Lemma 7.2 and the remark following it, we can assume that E is a Beurling–
Carleson set of positive measure, and the inner factor has a factorization

θ = BSν = BSνC SνK ,

where νC is supported on a single Beurling–Carleson set F of Lebesgue measure zero.
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We set w ∶= Δ2 = (1 − ∣b∣2)1E , and apply Corollary 6.4 to the data E , F , SνC , SνK
to obtain a rapidly increasing sequence α and a space D(α−1 , w) which satisfies the
conclusion of Corollary 6.4. Since α is rapidly increasing, the space X(α) consists of
functions in A∞. We will show that X(α) ∩H(b) is dense in H(b).

Assume that f ∈H(b) is orthogonal to all functions in X(α) ∩H(b). In terms of
the embedding J appearing in Proposition 7.1, this means that the tuple J f ∶= ( f , g) is
orthogonal in H2 ⊕ L2(E) to all tuples in J(X(α) ∩H(b)). By the definition of the
duality pairing appearing in Section 4.1, this means that

( f , g) ∈ X(α−1) ⊕ L2(E)

annihilates

J(X(α) ∩H(b)) ⊂ X(α) ⊕ L2(E).

Now, from (7.2), we see that the set J(X(α) ∩H(b)) ⊂ X(α) ⊕ L2(E) can be
expressed as the pre-annihilator. Then

J(X(α) ∩H(b)) = {(bh, Δh) ∈ X(α−1) ⊕ L2(E) ∶ h ∈ H2}⊥ .(7.4)

We are in a Hilbert space setting, so it follows from the duality remarks above that
there exists a sequence {hn}n of functions in H2, such that (bhn , Δhn) converges
to ( f , g) in the norm of X(α−1) ⊕ L2(E). By passing to a subsequence, we may
assume that the convergence of Δhn to g happens also pointwise almost everywhere
on E. Multiplying the second coordinate by the bounded function b, we read that
the elements (bhn , Δbhn) converge to ( f , bg) in the norm X(α−1) ⊕ L2(E), and in
particular the tuples (bhn , Δbhn) form a Cauchy sequence. In fact, since w = Δ2, this
is equivalent to

lim
n ,m→∞

∥bhn − bhm∥X(α−1) + ∥bhn − bhm∥L2(w dm) = 0,

so the sequence (bhn , bhn) converges in the space D(α−1 , w) which is a space of
analytic functions. The limit function must be f ∈ H2, by the above. Now, we apply
part (ii) of Proposition 5.2, which tells us that bhn → f pointwise on the set E (it
is precisely at this point where Mz being completely nonisometric on D(α−1 , w) is
crucial, else the sequence {bhn}n could potentially converge to something else than
f ). Thus, we have

b(ζ)g(ζ) = lim
n→∞

Δ(ζ)b(ζ)hn(ζ) = Δ(ζ) f (ζ)

for almost every ζ ∈ E. Thus, g = Δ f /b on E. All in all, we have identified the tuple J f
as

J f = ( f , Δ f /b).

Moreover, by the permanence property of (D(α−1 , w), θ), f is divisible by the inner
factor θ of b.

Note that on T, we have

f /b = (∣b∣2 + Δ2) f /b = b f + Δg .
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Since the right-hand side is square-integrable, so is the left. Since the inner factor of f
is divisible by the inner factor of b, we conclude that f /b is a function in the Smirnov
class of the unit disk which has square-integrable boundary values, and so f /b ∈ H2

(see [8, Chapter 2]). But by (7.1), we get

f /b = P+( f /b) = P+(b f + Δg) = 0.

So f /b ≡ 0, and hence f ≡ 0. The proof is complete. ∎

Acknowledgement The authors gratefully thank the referee for the valuable com-
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