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Abstract
I propose a new model, ordered Beta regression, for continuous distributions with both lower and upper

bounds, suchasdata arising fromsurvey slider scales, visual analog scales, anddose–response relationships.

This model employs the cut point technique popularized by ordered logit to fit a single linear model to both

continuous (0,1) and degenerate [0,1] responses. The model can be estimated with or without observations

at the bounds, and as such is a general solution for these types of data. Employing a Monte Carlo simulation,

I show that the model is noticeably more efficient than ordinary least squares regression, zero-and-one-

inflated Beta regression, rescaled Beta regression, and fractional logit while fully capturing nuances in the

outcome. I apply the model to a replication of the Aidt and Jensen (2014, European Economic Review 72, 52–
75) study of suffrage extensions in Europe. The model can be fit with the R package ordbetareg to facilitate
hierarchical, dynamic, andmultivariate modeling.

Keywords: Bayesian statistics, limited dependent variables, regression modeling

Although scholars often collect data that are continuous in nature within set bounds, statistical

models are not easily designed to handle this design. For example, in the social, medical, and

behavioral sciences, there has been increasing usage of slider and visual analog scales as a

way to capture nuanced information from human respondents (Cooper and Kagel 2016; Roster,

Lucianetti, and Albaum 2015).

However, despite the increasing popularity of these types of data, the approaches in the

statistical literature have significant limitations. While practitioners often fall back on ordinary

least squares regression (OLS) as a convenient and easily interpretable way to analyze the data,

the unimodal, unbounded Normal distribution cannot capture important characteristics of the

sample. More recently, scholars have turned to the Beta regression model (Ferrari and Cribari-

Neto 2004) as a more flexible continuous distribution. Although the Beta distribution is defined

over the (0,1) interval, it can be used on any continuous distribution within fixed bounds because

it is straightforward to normalize any distribution to the (0,1) interval.

While this clever parameterization permits powerful inference on these bounded, potentially

bimodaldistributions, theBeta regression’smain flaw is that it cannotmodelobservations that are

degenerate, that is, equal to the lower bound of 0 or the upper bound of 1. Various solutions have

been proposed, such as transforming the outcome so that all observations are strictly between

0 and 1 (Smithson and Verkuilen 2006), and more recently, modeling 0s and 1s through separate

processes via zero-or-one-inflated Beta regression (Ospina and Ferrari 2012) or the zero-and-one

Beta regression model (Liu and Kong 2015; Swearingen, Melguizo, and Bursac 2012), which is also

known as the ZOIB. However, as I show in this paper, transforming the outcome can inadvertently

have important consequences for model results, while the ZOIB has issues with overfitting the

data by fitting multiple sets of parameters to degenerate (bounded) and continuous responses

separately.
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A new approach is given in this paper that seeks to capture the best points of the exist-

ing approaches while permitting straightforward and efficient inference. To do so, I employ

ordered cut points, similar in spirit to an ordered logit model, to estimate the joint proba-

bility of 0s (the lower bound), continuous proportions, and 1s (the upper bound) in bounded

continuous data. As only one predictive model is used for all of the outcomes, the effect of

covariates is identified across degenerate and continuous observations without resulting in over-

fitting. The use of cut points permits the model to fit distributions with mostly degenerate

observations or no degenerate observations at all, which makes it a general solution to this

problem.

To compare this new model, I estimate a Monte Carlo simulation to examine how existing

approaches compare along an array of criteria. The results show that ordered Beta regression

estimatesmarginal effectsmuchmoreprecisely than competitors, resulting inhigher power,while

performing admirably on measures of overall fit. Furthermore, the simulation shows that the

alternative of transforming values to avoid boundaries in Beta regression can have difficult-to-

predict implications and should be avoided.

To apply the model, I replicate the Aidt and Jensen (2014) influential study on the spread

of suffrage in Europe as a function of revolutions in neighboring countries. While the proposed

estimator supports the main findings of the study, there are wide discrepancies in terms of the

efficiency of estimators and for some covariates, both sign and significance. I show in this section

howtheZOIBcanoverfit thedatabyallowing for toomuchheterogeneitybetweendegenerate and

continuous responses, resulting in marginal effects which are substantively difficult to interpret.

1 Background

Bounded continuous data with observations at the bounds are common across scientific fields.

While there are too many possible applications to list here, bounded scales have been employed

prominently in medical pain research via visual analog scales (VAS) (Myles et al. 2017; Roster et al.
2015), andslider scalesmoregenerally inpsychological research (Lee,Hicks, andNino-Murcia 1991;

Monk 1989), and political science and economics (Cooper and Kagel 2016; Liu and Wang 2015;

Nelson 2008). Dose–response relationships often have lower and upper bounds (Prentice 1976),

and the analysis of chemical concentrations likewise involves bounds with continuous values

(Fisher, Ricardo, and Fox 2020; Ritz et al. 2015). As such, it is an important empirical domain for
applied statistical analysis, and one that remains an active subject of research.

The default approach for modeling this type of variable is OLS regression as the variable is at

least in part continuous. OLS, as the maximum entropy estimator for any continuous distribution

with finite variance (Jaynes 2003), is likely to capture at least some of the relevant features of

the distribution. The more “Normal” the distribution, the more likely this approximation will give

interpretable answers. However, Smithson and Verkuilen (2006) raise important questions about

this application of OLS to upper- and lower-bounded dependent variables. They argue that OLS’s

failure to capture higher-order moments of the distribution represents a serious shortcoming

because these moments, such as skewness and variance, may well affect what can be learned

from the model and even the theoretical questions one can ask. One variation is to use a “quasi-

likelihood” estimator called fractional logit (Papke andWooldridge 1996) inwhich the trial param-

eter in the Bernoulli distribution is modeled as a continuous response with the logit link function.

The primary drawback of fractional logit is that it is not itself a statistical distribution, and so the

estimates’ uncertainty can be difficult to define. As I show later, the estimator also appears to be

heavily affected by the ratio of continuous to degenerate (i.e., at the bounds) responses in the

outcome.

More recently, Beta regression (Ferrari and Cribari-Neto 2004) has become an increasingly

popular technique because it is a model explicitly designed for bounded continuous data. The
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main drawback of Beta regression, as mentioned earlier, is that it cannot handle observations at

the bounds given that it is a distribution of probabilities. There are two straightforward ways to

handle degenerate values within the Beta regression framework. The first is to simply drop these

responses andmodel the remaining data. If the count of 0s and 1s in the data is small, this strategy

would seem reasonable. A more sophisticated strategy is to normalize the outcome within a set

of bounds that are close to, but never equal to, one. The formula from Smithson and Verkuilen

(2006) thathas receivedconsiderableattention fromresearchers is as follows. For agivenoutcome

yi ∈ [0,1], i ∈ {1,2, . . . ,N }, define a normalized outcome yj :

yj =
yi (N −1)+0.5

N
.

The distribution of yi is nudged so that the values can never reach 0 or 1, and the amount

of the nudge is determined by N. A larger sample will result in extreme values that are closer
to the boundaries. This transformation permits Beta regression modeling without any need for

further modeling choices. As such, it is a computationally simple and straightforward solution.

However, it is not immediately clear what ramifications this transformation has on inferences as

the transformation is nonlinear and varies with sample size.

Finally, themost recent development in this vein is theZOIBmodel, an approach that this paper

builds upon. While Ospina and Ferrari (2012) proposed a ZOIB regression, where a degenerate

process couldbeused tomodel either category separately, LiuandKong (2015) showhowtomodel

both 0s and 1s in a ZOIB regressionmodelwith twodistinct processes for degenerate responses. In

this paper, I focus on the Liu and Kong (2015) parameterization because it is possible to estimate

effects of independent variables on the full scale of the dependent variable (DV), that is, lower

bounds, continuous values, and upper bounds. I return to the Ospina and Ferrari (2012) model in

the discussion.

I first detail the Liu and Kong (2015) parameterization as a useful starting place. It is important

to note that this model and the model I present later both assume that there are qualitative

differences between degenerate (i.e., responses at the bounds) and continuous values of the DV.

By contrast, OLS is a model that does not differentiate between the bounds and the continuous

values, unless such a distinction happens via post hoc processing (Horrace and Oaxaca 2006).
However, the way in which the two Beta-based models interpret this distinction varies and has

an important implication for estimation and inference.

Given a bounded continuous response yi with observations at the bounds of the scale, the

ZOIB estimates three separate probabilities, which I label as α for P r (yi = 0), γ for P r (yi = 1),

and δ for P r (yi > 0∩ yi < 1). Given these probabilities, we can define a conditional distribution

over yi that depends on the realization of yi in these three mutually exclusive outcomes, along

with parameters μ and φ to model the continuous outcomes via the Beta distribution (defined

below):

f (yi |α ,γ,δ,μ,φ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α if yi = 0

(1−α )γ if yi = 1

(1−α )(1−γ)Beta(μ,φ) if yi ∈ (0,1)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
, (1)

where the Beta distribution is defined as follows:

f (yi ,ω,τ) =
Γ (ω+τ)

Γ (ω)Γ (τ)
yω−1
i (1− yi )

τ−1. (2)
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To directly estimate themean of the Beta distribution, we can substitute the parameters μ and

φ (precision) for the shape parametersω and τ :

μ =
ω

ω+τ
, (3)

φ = ω+τ . (4)

Returning to the ZOIB model in (1), we can see that the Beta distribution is being deflated

by the probabilities α and γ such that the contribution of the Beta distribution cannot exceed

(1 − α )(1 − γ), that is, δ . To parameterize the model, we can include regressors α = g (X ′βα ),

γ = g (X ′βγ), and μ = g (X ′βδ ) for a given matrix of covariates X. These linear models are rescaled
with the inverse logit function g (·) to map on to (0,1). While the covariates X for each of the
submodels could be different or shared, the parameters βα , βγ , and βδ need to be distinct for each

submodelas the threeprocessesare functionally independent. Tomake theestimatescomparable

toOLSandorderedbeta regression, I only consider a versionof themodelwith identical covariates

in all three submodels.

It is important to note that the ZOIB submodels are not ordered, that is, they are exchangeable.

While this point is rather subtle, it is very important for the modeling exercise that follows. It is

possible in this model for P r (yi = 0) and P r (yi = 1) to both increase independently of P r (yi >

0∩ yi < 1). This independence can isolate heterogeneity in either end of the slider scale such that

the decisions to choose a 1 or a 0 are distinct choices with no necessary connection to each other,

which is similar in principle to a selection model like a hurdle (Zorn 1998).

This exchangeability, however, comes at a cost of overfitting the distribution if the underlying

processes are in fact generated by the same process. As the number of covariates X increases,
the number of parameters necessarily triples (assuming that all covariates are used to predict

all parts of the model). The independence between submodels means that X could positively
predictP r (yi = 0) andnegativelypredictP r (yi = 1) in the samemodelwithout contradiction. If the

degenerateoutcomes represent a fundamental differentprocess versus the continuousoutcomes,

thanmodeling this heterogeneity is necessary, but otherwise it introduces a substantial additional

level of complexity.

2 Model

To resolve theproblemof overparameterization in theZOIB, I presentorderedBeta regression. The
main difference between this approach and the ZOIB model is to induce dependence between

the three probabilities α , γ, and δ . To do so, I borrow ideas from the literature on the ordered

(cumulative) logit model (McCullagh 1980).

To give the intuition behind the model, I first define it in terms of measuring individual

preferences. Suppose that data are being collected on the preferences of individual i over an
outcome that is continuous in �1. We can denote these latent preferences as y ∗

i . We collected a

set of measurements yi for each individual in our sample concerning their preferences. However,

becausewecannot represent�1 in a limited space,wecanonly collectdatausingaboundedscale,

resulting in a biased estimate of true preferences y ∗
i for thosewith preferences above or below the

bounds of the scale.

While we cannot directly observe y ∗
i , we can obtain estimates of our uncertainty using a

bounded scale as a stand-in for true preferences. We can think of the distribution of our measure-

ments yi asbeinga realizationof a latent cumulativedistribution functionF (y
∗
i ) definedbya set of

ordered cut points {k 1,k 2 : k 1 < k 2}. Each cut point represents the point at which the bounds of

the observed scale becomemore likely than the continuous values. The farther past the cut point

an individual’s preferences are, the more likely that individual will provide a measured value of
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yi at the bound. Providing estimated locations for these cut points in F (y
∗
i ) will permit us to also

estimate the approximate intensity of preferences that are lost in the data measurement process,

and consequently correct for bias in the reported data.

Importantly, because we are interested in a single latent scale of preferences y ∗
i , we can also

have a single set of regressorsX ′β that predict this latent variable, y ∗
i = g (X ′β ). At very lowvalues

of y ∗
i below k1, we observe a degenerate outcome yi = 0, and at very high values of y ∗

i above

k2, we observe a degenerate outcome y = 1. For intermediate values of y ∗
i , we observe the Beta-

distributed outcome yi ∈ (0,1), whichwe can assume is unbiased over its range (i.e., strictly within

the bounds).

Using y ∗
i and cut points k1 and k2, we can now redefine the probabilities α , γ, and δ where

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

α = 1−g (X ′β − k1)

δ = [g (X ′β − k1)−g (X ′β − k2)]Beta(g (X
′β ),φ)

γ = g (X ′β − k2)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (5)

We can see thatwe can still obtain the necessary probabilitiesα (P r (yi = 0)), γ (P r (yi = 1)), and

δ (P r (yi > 0∩ yi < 1)) to combine the 0s, 1s, and proportions into a single distribution. However,

unlike in (1), theprobabilities are no longer exchangeable, but rather ordereddue to the cut points.

The position of the cut points k1 and k2will affect each outcomeby either decreasing or increasing

the probability of that outcome occurring. As k1 increases, P r (yi = 0) must increase and P r (yi >

0∩ yi < 1) must decrease. Similarly, an increase in k2 will necessarily make P r (yi = 1) decrease

and increase P r (yi > 0∩ yi < 1).

In terms of latent utility, the position of the cut points defines the potential loss of information

about an individual. If the cut points increase, then there would seem to be more bunching

around the end of the observed scale, and consequently, only higher levels of y ∗
i are associated

with observations at the bounds. As the cut points decrease toward zero, there is no clear break

in the distribution around the bounds and consequently little reason to expect significant bias.

As can be seen in (5), if both k1 = 0 and k2 = 0, then the probability of δ , or a continuous

observation, is simply equal to Beta(g (X ′β ),φ), that is, there is no need to adjust the observed

data and the probability of a degenerate outcome increases in tandem with the continuous

outcomes.

This is another important distinction between the ordered beta regression and the ZOIB

model—both treat responses at the bounds as qualitatively different than the continuous

responses in some sense, but the ordered beta regression allows the extent of difference to be a

smooth function of the data. As I describe in Section 6, the ZOIB can bemore helpfully thought of

as a type of selectionmodel inwhich cases can select into and out of continuous responses. In this

framework, adegenerate responseof0 is equallydistinct fromall continuous responses regardless

of their proximity to 0. By contrast, the orderedbetamodel ismore appropriatewhen theoutcome

is a single, possibly latent, scale, and the bounds of the scale are qualitatively different from

continuous responses mainly in terms of strength or intensity, not type.

The implication of using ordered cut points means that only two parameters, the cut points

themselves, are required in addition to the auxiliary parameter φ. Thus, only two parameters

more than OLS are required to fit this model, improving considerably efficiency and information

retrieval relative to theZOIB, as shown inSection4. It ispossible toexpand themodelbypermitting

thresholds to vary by groups, as in the graded responsemodel (Samejima 1997), although I do not

consider those extensions here. This type of heterogeneity could improve model fit, but sample-

average cut points are appropriatewhen subgroup-level differences are not theprimary aimof the

analysis.
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To consider the model from a Bayesian perspective, I assign weakly informative priors to the

parameters. I define these as

β ∼ N (0,5), (6)

φ ∼ E (.1), (7)

s (K,0) ∼ D (1). (8)

I use what is known as an induced Dirichlet prior over the set of cut points K in which the cut
points are converted to a vector of probabilities via a sigmoid function s (·) (Betancourt 2019). A

vector of 1s is passed to theDirichlet distribution to assume that the probability of each submodel,

0, 1, and theBetamodel, is equalapriori. Similarly, the prior on β isweakly informative on the logit
scale. The prior on φ is an exponential distribution with a rate parameter of .1. This prior would

need to be adjusted if φ took on very large values, which could occur if the distribution became

highly centered on a single point.

More informative priors for the cut points could be useful in a repeated sampling situation in

which observations at the bounds may or may not be present in a given sample. An informative

cut point prior could stabilize inferences across samples by informing model estimates that

observations at the bounds are likely to occur even if they are not in the sample at hand.

It is possible to further parameterize φ to model higher moments in the distribution. A lower

value of φ for a given value of μ is associated with a more dispersed distribution, either 0, 1, or

both depending on the value of μ. This kind of information can be useful to analyze in a context

where understanding which subjects tend to choose middle versus extreme values is a research

question of interest. To do so, we simply replace φ with a set of regressors βφ and a covariate

matrix X (the covariates could be shared or different from those used to predict the mean of the

distribution). The ability tomodelφ is an important advantage of employing the Beta distribution

as it permits inferences on the nature of multimodal distributions in ways that OLS and other

alternatives cannot.

In the Supplementary Material, I write out the full log-likelihood and joint posterior of the

model.

3 Estimation

Estimation of the model is done using Hamiltonian Markov Chain Monte Carlo (MCMC) with the

software Stan (Carpenter et al. 2017). The model converges fairly rapidly with less than 1,000
iterations on simulated data. In addition to sampling the model above, I also draw from the

posterior-predictive distribution of yi , denoted
∫
Θ
p(ỹi |θ)p(θ |yi )dθ, conditional on the posterior

estimate of the model parameters (denoted θ) for a given number of MCMC draws S. To do so, I
first sample a categorical outcome yr epO ∈ {1,2,3} based on an ordered categorical tuple of the

probabilities α , γ, and δ :

y s
r epO ∼ Cat({1,2,3}, {αs ,δs ,γs }). (9)

If y s
r epO

is equal to 1 or 3, then assign 0 and 1, respectively, to y s
r ep :

y s
r ep = 0 if yr epO = 1, (10)

y s
r ep = 1 if yr epO = 3. (11)

I then draw from the Beta distribution if yr epO = 2.

y s
r ep ∼ Beta(μs ,φs ). (12)
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In addition to this predictive distribution, I also examine measures of model fit. I use an

estimate of leave-one-out (LOO) predictive density in which the posterior predictive distribution

is evaluated by dropping a data point yi , estimating the model, and predicting the held out yi .

Given that this measure is computationally challenging with Bayesian inference, I employ an

approximation from Vehtari, Gelman, and Gabry (2016), the Pareto-stabilized important sampling

(PSIS)-LOO predictive density:

ˆel pd psi sl oo
=

N∑
i=1

log

(∑S
s=1ω

s
i
p(yi |θ

s )∑S
s=1ω

s
i

)
. (13)

Theωi are weights derived from importance sampling of the joint posterior for each data point

yi and smoothed by the Pareto distribution to account for outliers. The resulting quantity, the

expected log pointwise predictive density (elpd), can be interpreted as the log density of a future
dataset ỹi from the “true” data-generating process. Higher values of the metric indicate a better

fit to the DV. Importantly, this quantity can be evaluated on any of the models discussed so long

as the same data are used to fit the model. In addition, this calculation yields an estimate of the

effective number of parameters in eachmodel, which is an indicator of relativemodel complexity.

Finally, I also estimate sample average marginal effects for each parameter c in β on the

expected value of yi . I use sample average marginal effects because it is a relatively model-

neutral way of understanding the effect of coefficients on the response. For example, the ZOIB

produces three sets of coefficients for each predictor, but only one sample averagemarginal effect

per predictor. I evaluate these marginal effects through numerical differentiation of
∂E (yi |β−c ,K )

∂βc
,

iterating over all elements c in β (Leeper 2021). I suppressφ in the notation because it does not by
definition factor into the calculation of the expected value.

I can then evaluate inferential properties of the different models in terms of the true marginal

effect versus the estimated marginal effects. I calculate M-errors for the magnitude of bias and S-

errors for theproportionof drawswhere themodel estimates thewrong signof themarginal effect

(Gelman and Carlin 2014). I calculate coverage rates as the proportion of simulations in which the

model’s 5%–95% posterior interval includes the true marginal effect.

4 Simulations

To compare the models, I simulate data in a manner consistent with the distribution by using the

formula described above. Because the results of simulations can be sensitive to the particular

values of parameters, I draw from a broad range of possible values to simulate the ordered Beta

regression model. For a given number of covariates q, level of correlation between covariates ρq ,
vector of covariate effects βq, scalar precision parameterφ, and cut points k ∈ {1,2}, these ranges

are defined as

φ ∼U (0.5,30), (14)

q ∼U (1,15), (15)

ρq ∼U (0,0.9), (16)

βq ∼U (−5,5), (17)

k1 ∼U (−10,−1), (18)

k2 ∼ k1 +U (0.5,10). (19)

The total number of observations N is also sampled from a uniform distribution between

100 and 4,000. For this simulation, 10,000 independent variates were drawn from the dis-
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tributions above. Because the broad bounds on the parameters permit relatively sparse

distributions, such as no zeros or ones (or no continuous values), any set of parameter values

that could not produce at least five observations from the zeroes, ones, and continuous

parts of the distribution was discarded as the ZOIB is difficult to estimate with that level of

sparsity. I also report a simulation in the Supplementary Material in which the values of these

parameters are fixed and I vary sample size N to permit more precise inference at specific

values.

In addition to the ordered Beta regressionmodel specified above, four othermodels were fit to

the data. Two kinds of Beta regression models were fit, one using the transformation specified in

SmithsonandVerkuilen (2006) and the secondonlyusing the continuous valuesof thedistribution

(discarding degenerate outcomes). I also included the ZOIBmodel specified above and aBayesian

versionofOLS. Finally, I addedaBayesian versionof the fractional logitmodel using thePapkeand

Wooldridge (1996) parameterization.

All of the estimated values came from Hamiltonian Markov Chain Monte Carlo chains using

Stan (Carpenter et al. 2017) to permit comparability. All models are run with two chains of 1,000
iterations eachwith 500 samples discarded aswarmup in each chain. The use of the same sampler

ensures that the results are comparable across models. The Beta regression models and the OLS

regression were fit with brms (Bürkner 2017).
The simulation results are reported in Table 1 by model and summary statistic calculated from

the Monte Carlo draws. As can be seen, the ordered Beta regression has the highest coverage,

as would be expected. The ZOIB model has a marginally lower coverage rate, whereas OLS and

fractional logit are both approximately 10% lower. The two types of Beta regressions have quite

low coverage rates, below 50% of the simulation draws.

The reported M-errors (Gelman and Carlin 2014) in Table 1 are defined as the ratio of the

estimated marginal effect to the true marginal effect. This statistic can capture bias across the

distributions, as a completely unbiased estimator would equal exactly 1. As can be seen, in finite

samples, this is not so, although the ordered Beta regressionmodel approaches 1. While the ZOIB,

OLS, and fractional logit all have noticeable bias, bias is much worse for the Beta regression

models. Similarly, S-errors, which are defined as the probability of estimating the wrong sign

relative to the truemarginal effect, are3–4 timesmorecommon inothermodels relative toordered

beta regression.

In terms ofmodel complexity, the effective number of parameters of ordered beta regression is

quite similar toOLS,buthalf thatof theZOIB. Interestingly, fractional logit and thebeta regressions

have fewer effective parameters than ordered beta regression, implying thesemodels are actually

underspecified. Higher ˆel pd P SI S−LOO values likewise correctly select ordered beta regression as

the “true”model and the ZOIB as a second competitor, whichwould be expected given the similar

nature of these models.

However, the closeness in ˆel pd P SI S−LOO values only measures similar fit to the response

variable rather than inference. The ZOIB and ordered beta regression differ significantly in the

amount of uncertainty in estimating themarginal effect. Table 1 shows that the average varianceof

the posterior density for ordered beta regression sample average marginal effects is far less than

the ZOIB and other alternatives.

I further explore differences between models by examining these statistics as a function of

sample size N in Figure 1. I also include power as a separate calculation, that is, the probability
of detecting an effect different from zero (defined as a posterior interval with the same sign as the

marginal effect). As can be seen, ordered beta regression outperforms on these key inferential

metrics, and the difference is more pronounced when sample sizes are less than 1,000. Above

1,000, differences are smaller, although they still persist. Interestingly, the simulation does not

show that M-errors decrease noticeably with larger samples.
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Table 1. Comparison of simulation diagnostics.

Statistic Model 5% Median 95%

5%–95% coverage Ordered beta regression 75.2% 75.6% 75.9%

ZOIB 73.7% 74% 74.4%

Beta regression—(0,1) 20.6% 20.9% 21.3%

Beta regression—transformed 11.7% 12% 12.2%

Fractional 65.5% 65.9% 66.3%

OLS 67.6% 67.9% 68.3%

ELPD–LOO Ordered beta regression 1,260 1,280 1,290

ZOIB 843 861 878

Fractional −297 −294 −292

OLS −225 −222 −219

M-errors Ordered beta regression 0.991 0.992 0.992

ZOIB 0.982 0.983 0.985

Beta regression—(0,1) 0.92 0.922 0.924

Beta regression—transformed 0.655 0.656 0.658

Fractional 1.01 1.01 1.01

OLS 1.02 1.02 1.02

No. of parameters Ordered beta regression 13.8 13.9 13.9

ZOIB 28 28.1 28.2

Beta regression—(0,1) 9.74 9.79 9.83

Beta regression—transformed 5.58 5.6 5.62

Fractional 5.31 5.38 5.44

OLS 11.6 11.6 11.6

Proportion S-errors Ordered beta regression 0.577% 0.637% 0.698%

ZOIB 1.49% 1.58% 1.68%

Beta regression—(0,1) 25.1% 25.4% 25.7%

Beta regression—transformed 25.2% 25.6% 25.9%

Fractional 0.863% 0.936% 1.01%

OLS 1.59% 1.69% 1.79%

RMSE Ordered beta regression 0.154 0.157 0.16

ZOIB 0.189 0.192 0.195

Beta regression—(0,1) 0.079 0.0811 0.0832

Beta regression—transformed 0.284 0.287 0.291

Fractional 0.155 0.158 0.161

OLS 0.274 0.277 0.281

Variance (% ordered beta) Ordered beta regression 100% 100% 100%

ZOIB 984% 998% 1,010%

Beta regression—(0,1) 140% 141% 142%

Beta regression—transformed 641% 645% 649%

Fractional 572% 578% 583%

OLS 1,030% 1,030% 1,040%

The fixed simulation results, which are available in the Supplementary Material, show that for

certain values of parameters, it is possible for the ZOIB to have lower variance in estimated sample

averagemarginal effects than ordered beta regression. However, the decrease in variance is small,
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Variance refers to estimated posterior variance (uncertainty) of the marginal effect.

Figure 1. Bias in estimates as a function of sample size.

whereas the increase in bias via M-errors is quite large: in the fixed simulation, the ZOIB estimates

coefficients with less than half the magnitude of the true marginal effect.

As a result, even without looking at empirical examples, it is difficult to recommend OLS,

fractional logit, or transformed continuous outcomes as a general approach for analyzing these

types of data. Fractional logit and OLS perform reasonably well at recovering marginal effects,

but they have noticeably lower coverage rates. Transformation of the outcome to the [0,1]

interval is also clearly not a harmless strategy as it dramatically changes the estimated marginal

effects. Discarding degenerate outcomes can likewise affect parameter estimates even though the

continuous outcomes are predicted by the same linear model as the degenerate outcomes. All of

the alternatives estimate marginal effects with substantially more uncertainty than the ordered

beta model.

It is clear that even though ordered beta regression can be understood as a special case of

the ZOIB, the simplified parameterization has real consequences for inference. As is seen in the

statistics in Figure 1, the ZOIB can recover marginal effects and has high ˆel pd P SI S−LOO scores,

but its model complexity is far higher and its marginal effects are substantially more uncertain.

To make the distinction clearer, I show variance estimates of marginal effects from the ZOIB

conditional on the correlation (ρx ) and number of covariates in Figure 2. As can be seen, variance

increases considerably when the number of covariates and the correlation between covariates is

high.

To distinguish the models in an applied setting, I next turn to an empirical example.

5 Empirical Examples

To apply the model, I examine data from the Aidt and Jensen (2014) study of the extension of suf-

frage in Europe as a function of the geographical spread of democratic revolutions in neighboring

countries. Their measure of suffrage is a 0–100 index, and they employ OLS as a primary model

with fractional logit as a robustness check. I re-estimate one of their main panel data (country-
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Figure 2. Bias in ZOIB estimates as a function of number and correlation of covariates.
Notes: Summary smooth calculated via generalized additive model. Variance of βx refers to estimated pos-
terior variance (uncertainty) of the marginal effect. Variance calculated conditional on simulated covariate
correlation ρx .

year) specifications (model 5 of Table 2 in Aidt and Jensen (2014)) with ordered beta regression,

transformed Beta regression, and the ZOIB.

Because of the inclusion of a lagged dependent variable with limited overtime variation,

I used theQRmatrix decomposition to avoid poor sampling due to highposterior correlation (Stan

Development Team 2016). I also do not employ the paper’s standard error corrections as these

do not have clear analogues in Bayesian inference, although the estimates for OLS are still quite

similar to those in the original paper.

A histogram of the dependent variable (normalized to [0,1]) is shown in Figure 3. The figure

reveals significant bunching around the lower end of the scale, and more modest bunching

at the upper end of the scale. I plot the estimated location of the cut points from an ordered

Beta regression fit as vertical dashed lines over the histogram, showing that there is substantial

reason to believe that the end points are qualitatively different from the continuous responses.

As such, it is potentially a useful empirical application for the ordered beta regression model,

as underlying the scale is a single-dimensional latent concept—inclusion in the electoral

system—but also reason to believe that moving from a suffrage value of 0 to 0.1 (at least some

inclusion) entails larger changes in the latent variable than a transition from 0.1 to 0.2 or from

0.5 to 0.6.

I fit each of the models in the simulation to the empirical data. Unfortunately, as I do not know

the “true” sample average marginal effects, I cannot calculate M-error or S-error rates, nor can

I directly compare the variance of the estimates to each other. However, I do calculate RMSE,
ˆel pd psi sl oo

, totalmarginal effect variance, and theeffectivenumberofparameters,which is shown

in Figure 4. It should be noted that the QR decomposition affected the number of parameters

calculation, deflating the total number, especially for the ZOIB. Nonetheless, the ordered beta

regression model is still noticeably less complex, and estimates marginal effects with remarkably

higher precision. Only the Beta regression model on transformed values has higher precision,

and as I explain later, this is most likely a sign of model misfit rather than an actual increase in

information.
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0

2000

4000

0 Less Suffrage 50 More Suffrage 100

Figure shows the distribution of 60,933 country−year suffrage index values.
The two vertical lines indicate the estimated cut points from an ordered Beta regression model
where responses have a 0.5 probability of being considered degenerate (i.e., close to 0 or 1).

Figure 3. Suffrage index from Aidt and Jensen (2014) with estimated cut point locations.

Interestingly, OLS has superior performance over other models in terms of ˆel pd psi sl oo
, and

RMSE, which is likely due to the prevalence of continuous values (in the (0,1) interval) in the

outcome. As the proportion of degenerate responses increases, OLS will perform less well on

these metrics. The fact that OLS can perform well while still being the “wrong” model shows the

limitation in solely focusing on predictive validity.

On theotherhand,we see thatorderedBeta regressiondoesquitewell inRMSEand ˆel pd psi sl oo
,

even if not, as well as OLS, while also having noticeably lower effective number of parameters

and coefficient (marginal effect) variance. Furthermore, we know from the simulation that this

superior performance will hold across very different distributions with more or less degenerate

versus continuous responses.

It should be noted here and later that the fractional logit underperformed. This is most likely

due to the prevalence of continuous responses; fractional logit is derived from the binomial

distribution and so it will usually perform better when the responses are at the extremes rather

than in the middle of the distribution. The peculiarly low effective number of parameters for

fractional logit and the transformed Beta regression, combined with the models’ higher variance

and poor predictive performance, suggests that these ad hoc approaches do not compare with
Beta regression variants that directly model the unique features of bounded distributions.

Figure 5 shows draws of the posterior predictive distribution in gray with the empirical (true)

distribution in blue. OLS is the only one of the models considered that predicts outside of [0,1]. In

general, it would seem that OLS, ZOIB, and ordered beta regression have the best overall fit to the

distribution (so longasOLS’sout-of-samplepredictionsare ignored).OLS fits the lower continuous

mode better, whereas ZOIB and ordered beta fit the higher mode more closely. The fractional

logit tends to overemphasize the degenerate responses and underemphasize the continuous

responses,whereas the transformedBetaplot reveals that the transformationdoes induce serious

model misfit.

I next compare estimated sample average marginal effects from each model in Figure 6. For

some covariates, such as Revolution (whether a neighboring country experienced a democratic

Robert Kubinec � Political Analysis 530

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
2.

20
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2022.20


4,650

53.8

0

224

106

9.24

11.4

0.243

6.4

12.6

7,300

7,850

−2,760

9,130

7.9

5.4

6.08

7.24

6.52

No. of Parameters RMSE

Coefficient Variance

(% Change vs. Ordered Beta)
ELPD−LOO

0 5 10 15 6 7 8

0 1,000 2,000 3,000 4,000 0 4,000 8,000

Fractional

Logit

OLS

Transformed

Beta

ZOIB

Ordered

Beta

Fractional

Logit

OLS

Transformed

Beta

ZOIB

Ordered

Beta

Uncertainty intervals are the empirical 5%–95% posterior quantiles.

Figure 4. Comparison of model diagnostics for replication of Aidt and Jensen (2014).

revolution), the estimates are of the same sign, though not necessarily the same magnitude. In

other cases, such as Populationt−1, OLS and the ZOIB/ordered beta regression estimates have

opposite signs, and for gross domestic product (GDP), GDPt−1, ordered beta regression shows a

strongly positive effect, whereas the ZOIB shows an estimated effect of zero. However, generally

speaking, the twomodels have coefficients that are of the same sign, although themagnitude can

vary significantly.

The heterogeneity in the transformed Beta regression estimates is another worrying sign that

nudging thedegenerate responseshasavery strong implication for inference. Themarginal effects

for this model vary quite significantly from ordered Beta regression and the ZOIB even though

these latter two specifications also incorporate the Beta distribution. Because the data transfor-

mation depends on N, the minimum allowed value for the outcome in this case is 0.0000082,

whereas themaximumvalue is0.9999918. As such, this seeminglyminute transformationwill have

strong consequences on the estimation of the Beta regression as it takes into account these very

unlikely observations. The fact that the variance is less than half that of ordered beta regression is

another concerning sign that the data transformation may also lead to an inflation of certainty in

the results.

While it can be difficult to identify differences in uncertainty intervals visually, Figure 4 shows

that the total variance in estimated marginal effects is much lower for ordered beta regression

than for the ZOIB and OLS. While in this particular estimation the amount of uncertainty did not
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Figure 5. Comparison of sample to posterior empirical cumulative distribution for models.

impede inferenceacrossmodelsdue to the sizeof thedata, theabilityoforderedbeta regression to

capture both the peculiar features of the distribution and precise marginal effects over the entire

distribution is a clear advantage. As was shown in Figure 1, ordered beta regression is likely to

require a smaller sample size to detect an effect relative to alternatives.

Finally, Figure 7 disaggregates the estimated effects for ordered beta and the ZOIB to make it

clear why themodels in some cases diverge. To do so, I calculate themarginal effect of covariates

on the probability of the three possible outcome types separately (i.e., P r (y = 1), P r (y = 0),

and P r (y > 0) ∩ P r (y < 1)). I also include the marginal effect of the covariate on the Beta

density of y.
First, it should be noted that the disparities do not arise from the underlying Beta regression.

In all cases, the estimated marginal effects from the Beta regression are similar for both the

ZOIB and ordered beta. Rather, the dissimilarities arise from the effect of the covariates on the

probability of degenerate versus continuous responses. If a covariate has a positive effect in the

ordered beta regression model, then by necessity, P r (y = 0) will decrease, and P r (y = 1) and

P r (y > 0)∩P r (y < 1) will increase, though not necessarily in equal proportions. This pattern can

be seen for the ordered beta regression results: although the marginal effects for P r (y = 1) are

smaller due to its rarity as an outcome, they are always the opposite sign of the P r (y = 0) effects.

By contrast, for the ZOIB, marginal effects can have independent influences on these three

probabilities. This pattern can be seen for the GDPt−1 covariate. The ZOIB estimates that rising

GDP will increase the probability of zero suffrage (P r (y = 0)), and increase the probability of

full suffrage (P r (y = 1)), while simultaneously reducing the probability of intermediate suffrage

(P r (y > 0)∩P r (y < 1)) and increasing the value of intermediate suffrage conditional on interme-

diate suffrage being reached (Beta(y )). The ordered beta regressionmodel, by contrast, estimates

that risingGDP is associatedwitha lower chanceof zero suffrage, risingprobability of intermediate

and high suffrage, as well as a higher value of intermediate suffrage. This latter set of associations

seems to follow more logically from the definition of the outcome as a single scale of democratic

inclusion.
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Figure 6. Estimatedmarginal effects of Aidt and Jensen (2014) covariates on suffrage index (0–100).

It is of course possible that the ZOIB and ordered beta regression produce the same interpre-

tation. The Revolution covariate, which has a similar aggregate effect in Figure 6, likewise has

similar disaggregated effects across outcome types in Figure 7, revealing that the two models

can overlap if the ZOIB meets the ordered Beta model’s assumptions. In summary, both the

ZOIB and the ordered beta model treat the degenerate responses as qualitatively different, but

the ZOIB goes as far as allowing them to be completely independent processes, which can have

confusing implications for inference when the scale is a single construct. By allowing for limited
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Figure 7. Comparison of intermediate probabilities for ordered beta regression and ZOIB.

heterogeneity in the bounded outcome, ordered beta regression can estimate a single marginal

effect across the entire distribution, which correspondsmore closely to the desired interpretation

in this study andmany others with a single measured construct.

6 Discussion

Given these discrepancies between the ZOIB and the ordered beta regression, I consider in this

sectionwhen the ZOIB should be employed. To do so, I return to the zero-or-onemodel addressed

earlier (Ospina and Ferrari 2012). While I did not consider this model because it does not produce

a definedmarginal effect over the full distribution, it may also bemorewidely applicable than the

ZOIB. In the empirical example presented, a zero-or-one model could be used if the value of zero

suffragewas treated as a different regime type (i.e., dictatorship) rather than a continuation of the
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latent measure. This parameterization would follow from the idea of a selection model in which

cases must first select into continuous responses.

The ZOIB could then be understood as an even more specific case of the zero-or-one model

in which selection could occur at both ends of the response. That is, units could begin in one

category (0), proceed through a continuous process (0,1), and then end in a separate category (1).

While this type of situation can certainly occur, it is a more specific process than selection at only

one end of the scale as the zero-or-one model proposes.

As such, while the ZOIB and ordered beta regression can fit a [0,1] distribution accurately,

and can even return similar marginal effects, they make quite different statements about how

degenerate responses are produced. The ordered beta model considers all of the response to

be generated by a single latent process, which permits more precise estimation and also a clear

interpretation about what the underlying components of the parameters mean. If a scholar is

looking to model a single bounded continuous scale, ordered beta regression should provide a

reasonable fit to the data andmeaningful covariate estimates.

7 Conclusion

This paper presented a new model for bounded continuous distributions with considerable

observations on the bounds. This paper builds on prior models in the literature incorporating the

Beta distribution, which has admirable properties for evaluating the unique features of bounded

data. The extension of Beta regression to cover degenerate responses at the bounds is made

possible by employing cut points that permit the 0 and 1 values to be jointly estimated with

the Beta distribution. Compared to existing approaches, particularly ZOIB and OLS, ordered Beta

regression is able to capture a more precise and interpretable marginal effect of a given covariate

on the outcome over the full response range.
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