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Turbine wake and farm blockage effects may significantly impact the power produced by
large wind farms. In this study, we perform large-eddy simulations (LES) of 50 infinitely
large offshore wind farms with different turbine layouts and wind directions. The LES
results are combined with the two-scale momentum theory (Nishino & Dunstan, J. Fluid
Mech., vol. 894, 2020, p. A2) to investigate the aerodynamic performance of large but
finite-sized farms as well. The power of infinitely large farms is found to be a strong
function of the array density, whereas the power of large finite-sized farms depends
on both the array density and turbine layout. An analytical model derived from the
two-scale momentum theory predicts the impact of array density very well for all 50 farms
investigated and can therefore be used as an upper limit to farm performance. We also
propose a new method to quantify turbine-scale losses (due to turbine–wake interactions)
and farm-scale losses (due to the reduction of farm-average wind speed). They both depend
on the strength of atmospheric response to the farm, and our results suggest that, for large
offshore wind farms, the farm-scale losses are typically more than twice as large as the
turbine-scale losses. This is found to be due to a two-scale interaction between turbine
wake and farm induction effects, explaining why the impact of turbine layout on farm
power varies with the strength of atmospheric response.

Key words: atmospheric flows, general fluid mechanics

1. Introduction

The global wind energy production is set to rise in the next few decades. To achieve this,
wind farm clusters are expected to be built which are an order of magnitude larger than
existing ones (Maas & Raasch 2022). To optimise their design, it is important to accurately
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predict the total farm power as well as aerodynamic loads on each turbine. However, it is
very difficult to model the aerodynamics of wind farms because of the multi-scale nature
of the wind farm flows (Porté-Agel, Bastankhah & Shamsoddin 2020). In 2019, Ørsted,
one of the largest offshore wind farm developers, announced that its wind farms were
producing less power than expected (Ørsted 2019). The underprediction of farm power
was attributed to two effects: wake and farm blockage effects.

Behind every turbine, there is a turbulent wake which has a reduced wind speed. When
turbine wakes interact with other turbines within a farm, this can cause substantial power
losses. This is known as the ‘wake effect’ and has been measured to reduce the power
of turbines in an existing wind farm by up to 40 % in the worst case (Barthelmie et al.
2010). This effect has been extensively investigated in the literature using large-eddy
simulations (LES) (Porté-Agel, Wu & Chen 2013; Wu & Porté-Agel 2015; Stevens, Gayme
& Meneveau 2016a). The ‘farm blockage’ is a recently observed effect in large wind farms
(Bleeg et al. 2018). The flow resistance caused by a wind farm reduces the wind speed
upstream as well inside the farm. Hence, the total power produced by the wind farm is
reduced compared to the ideal situation where the upstream wind speed is not affected by
the farm (Nishino & Dunstan 2020).

Wind farm aerodynamics have been traditionally modelled using ‘wake’ models, which
predict the velocity behind a turbine (e.g. Jensen 1983; Bastankhah & Porté-Agel 2014).
To account for interactions between multiple turbines, the wake velocity deficits are
superposed (e.g. Katic, Hojstrup & Jensen 1986; Zong & Porté-Agel 2020). However,
these models do not account for the response of the atmospheric boundary layer (ABL) to
the farm. As such, they tend to perform poorly for large wind farms (Stevens et al. 2016a).
A different approach to modelling wind farms is to use ‘top-down’ models (e.g. Frandsen
1992; Frandsen et al. 2006; Calaf, Meneveau & Meyers 2010). They model the response of
an idealised ABL (which follows a logarithmic law) to an infinitely large wind farm, but
cannot take into account the details of turbine–wake interactions explicitly. Hence, these
wind farm models cannot correctly capture the two-way interactions of turbine-scale and
farm-scale flow effects which determine the performance of large wind farms.

To capture this two-way interaction, it has been proposed to couple wake and
top-down models; for example, by adjusting parameters in both models to match the
hub-height-averaged velocities (Stevens, Gayme & Meneveau 2016b; Starke et al. 2021).
Examples of two-way coupling can also be found in existing engineering software, e.g. the
‘Deep Array Wake Model’ (Brower & Robinson 2012). However, these models involve the
coupling of low-order flow models and are therefore limited by the assumptions made by
the constituent models, e.g. wake superposition or a log-law wind profile. To account for
the effects of more realistic flow physics, it would be beneficial to use an approach based
on more fundamental laws of fluid mechanics.

The optimal design of a large wind farm under realistic atmospheric conditions remains
a challenge as it requires consideration of the complex atmospheric response to the farm. It
is often too expensive to run a large number of simulations which resolve both individual
turbines and the atmospheric response to the farm. In addition, to find an optimal design for
the long-term performance of a wind farm, such as the annual energy production (AEP),
the range of timescales we would need to consider is too wide. As such, Nishino & Dunstan
(2020) proposed the ‘two-scale momentum theory’ to split the multi-scale flow problem
into ‘internal’ turbine/array-scale and ‘external’ farm/atmospheric-scale problems. West
& Lele (2020) performed LES of infinitely large wind farms and the results showed a
good agreement with the two-scale momentum theory. However, their LES study was
limited to ‘fully aligned’ turbine layouts, and their discussion was also limited to the
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Figure 1. Control volume for an entire wind farm site: (a) without turbines and (b) with turbines.

special case where the momentum supplied by the atmosphere to the wind farm site was
fixed. In reality, the strength of atmospheric response to the wind farm resistance depends
on mesoscale weather patterns (Patel, Dunstan & Nishino 2021) as well as atmospheric
stability and gravity waves (Allaerts & Meyers 2017, 2018, 2019).

The aim of the present study is to better understand the fluid mechanics processes which
determine the power production of large wind farms, using a combined theoretical and
computational approach. First, we will perform a large suite of LES of infinitely large wind
farms with different turbine layouts and wind directions. We then combine the results of
LES with the two-scale momentum theory to investigate and explain expected performance
of large finite-sized wind farms with a realistic range of atmospheric response strengths.
Using this approach allows the combined effects of turbine-scale and farm-scale flow
characteristics on wind farm power to be determined.

In § 2, we summarise the definitions of key wind farm parameters in the two-scale
momentum theory (Nishino & Dunstan 2020). Section 3 details the methodology of the
LES and wind turbine implementation. In § 4, we present the results including validation
of the LES code. These results are discussed in § 5 and concluding remarks are given in
§ 6.

2. Theory

2.1. Two-scale momentum theory
Figure 1 shows a pair of control volumes for a given farm site. We first consider the
momentum balance of the control volume without the turbines (figure 1a). For this
scenario, the following equation can be derived for a ‘short-time-averaged’ flow:

∂[ρU0]
∂t

= X0 − C0 −
[

∂p0

∂xF0

]
− 〈τw0〉SF

VCV
, (2.1)

where U is the velocity in the hub-height wind direction (i.e. streamwise direction) xF, X
represents the net streamwise momentum injection through the top and side boundaries of
the control volume (due to advection and Reynolds stress), C is the streamwise component
of the Coriolis force averaged over the control volume, ∂p/∂xF is the pressure gradient
in the direction xF, τw is the bottom shear stress, SF is the wind farm area and VCV is
the volume of the control volume. The subscript 0 refers to values without the turbines
present, [�] refers to control-volume-averaged values and 〈�〉 refers to farm-area-averaged
values.
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By considering the control volume with the turbines present (figure 1b), the following
equation can be derived:

∂[ρU]
∂t

= X − C −
[

∂p
∂xF

]
− 〈τw〉SF + ∑n

i=1 Ti

VCV
, (2.2)

where Ti is the thrust of turbine i in the farm and n is the total number of turbines in
the farm. Equations (2.1) and (2.2) can be combined to obtain the non-dimensional farm
momentum (NDFM) equation (Nishino & Dunstan 2020):

C∗
T
λ

Cf 0
β2 + βγ = M, (2.3)

where β is the farm wind-speed reduction factor defined as β ≡ UF/UF0 (with UF defined
as the average wind speed in the nominal farm-layer of height HF, and UF0 is the
farm-layer-averaged speed without the presence of the turbines); λ is the array density
defined as λ ≡ nA/SF (where A is the rotor swept area); C∗

T is the (farm-averaged) ‘local’
or ‘internal’ turbine thrust coefficient defined as C∗

T ≡ ∑n
i=1 Ti/

1
2ρU2

FnA; Cf 0 is the
natural friction coefficient of the surface defined as Cf 0 ≡ 〈τw0〉/1

2ρU2
F0; γ is the bottom

friction exponent defined as γ ≡ logβ(〈τw〉/〈τw0〉); and M is the momentum availability
factor given by

M =
X − C −

[
∂p
∂xF

]
− ∂[ρU]

∂t

X0 − C0 −
[

∂p0

∂xF0

]
− ∂[ρU0]

∂t

. (2.4)

Note that the first term on the left-hand side of (2.3) can be extended to include the impact
of support structure drag (see Ma, Nishino & Antoniadis 2019), but its impact is usually
small and is therefore neglected in this study for simplicity.

The height of the farm-layer, HF, is used to define the reference velocities UF and
UF0. The value of HF is typically between those of 2Hhub and 3Hhub (where Hhub is the
turbine hub-height); the NDFM (2.3) is valid as long as the same HF value is used for both
‘internal’ and ‘external’ problems. In this study, we use a fixed definition of HF = 2.5Hhub.
This is discussed further in Appendix A.

Equation (2.3) helps the analysis of large wind farm aerodynamics. This is because C∗
T

and γ on the left-hand side are expected to depend primarily on the turbine/array-scale
flow physics or ‘internal’ conditions, for example, the turbine layout, operating conditions
and local wind conditions, whereas M on the right-hand side is expected to depend largely
on ‘external’ conditions. Following Nishino & Dunstan (2020), in this study, we assume
that the ‘internal’ problem (to be modelled using LES in § 3 to calculate C∗

T and γ ) can be
modelled without explicitly considering the effects of ‘external’ conditions such as wind
farm size and location, and the response strength of the atmosphere.

The ‘external’ problem is to determine the parameter M, which represents how much
the amount of momentum available to the farm site differs from its ‘natural’ value. This
problem is largely independent of the small-scale flow features and can be modelled using
a numerical weather prediction (NWP) model with a wind farm parameterisation, i.e.
without resolving individual turbines. Patel et al. (2021) used such an NWP model to
demonstrate that, for most cases, M varied almost linearly with β (for a realistic range of
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β between 1 and 0.8). Therefore, M can be approximated by

M = 1 + ζ(1 − β), (2.5)

where ζ is called the ‘momentum response’ factor or ‘wind extractability’ factor. Patel
et al. (2021) found ζ to vary between 5 and 25 for a typical offshore wind farm site. Note
that ζ = 0 corresponds to the case where momentum available to the farm site is assumed
to be fixed, i.e. M = 1. An infinitely large value of ζ corresponds to the case where there is
no wind speed reduction in the farm-layer, i.e. β = 1. Preliminary results of an extended
study from Patel et al. (2021) show that ζ changes according to atmospheric conditions
and decreases exponentially with increasing farm size (see Appendix B). Although the
details of how ζ changes with weather conditions are still unclear and need to be clarified
in future studies, in the present study, we take 0 < ζ < 25 as a typical range of the wind
extractability for large offshore wind farms.

Using β obtained from (2.3) for a set of C∗
T , γ and ζ , the following equation can be used

to calculate the power coefficient of the turbines within the farm:

Cp = β3C∗
p, (2.6)

where Cp is the (farm-averaged) turbine power coefficient defined as Cp ≡∑n
i=1 Pi/

1
2ρU3

F0nA (Pi is power of turbine i in the farm) and C∗
p is the (farm-averaged)

‘local’ or ‘internal’ turbine power coefficient defined as C∗
p ≡ ∑n

i=1 Pi/
1
2ρU3

FnA.

2.2. Analytical model of ideal wind farm performance
In this study, we consider arrays of actuator discs (or aerodynamically ideal turbines
operating below the rated wind speed). For an actuator disc, C∗

p = αC∗
T , where α is the

turbine-scale wind speed reduction factor defined as α ≡ UT/UF (UT is the streamwise
velocity averaged over the rotor swept area). We can estimate α using the expression

α =
√

C∗
T/C′

T , where C′
T ≡ T/1

2ρU2
TA is a turbine resistance coefficient describing the

turbine operating conditions (noting that this is strictly valid only for infinitely large regular
arrays of turbines where the farm-averaged turbine thrust is identical to the thrust of each
individual turbine). The theoretical Cp of an actuator disc is therefore given by

Cp = β3αC∗
T = β3C∗

T
3/2C′

T
−1/2

, (2.7)

where C∗
T may be predicted using a simple analytical model (Nishino 2016) given by

C∗
T = 4α(1 − α) = 16C′

T
(4 + C′

T)2 (2.8)

using the expression C′
T = C∗

T/α2 to express C∗
T as a function of C′

T . The model predicts
C∗

T as a function of turbine-scale wind-speed reduction by using an analogy to the classical
actuator disc theory. This simple analytical model will be compared with LES results later
in § 4. Using the analytical model of C∗

T , (2.8), and the linear approximation of M, (2.5),
(2.3) and (2.7) can be solved to give a theoretical prediction of Cp, which we will call
Cp,Nishino. Note that West & Lele (2020) also introduced this, but only for the special case
with ζ = 0. As shown by Nishino & Dunstan (2020), Cp,Nishino is sensitive to ζ but much
less sensitive to γ . If we assume that γ = 2.0, then we can obtain an analytical expression
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for Cp,Nishino, i.e.

Cp,Nishino = 64C′
T

(4 + C′
T)3

⎡⎢⎢⎢⎢⎣
−ζ +

√
ζ 2 + 4

(
16C′

T
(4 + C′

T)2
λ

Cf 0
+ 1

)
(1 + ζ )

2
(

16C′
T

(4 + C′
T)2
λ

Cf 0
+ 1

)
⎤⎥⎥⎥⎥⎦

3

. (2.9)

It is worth noting that the power coefficient of an isolated turbine, Cp,Betz, is given by

Cp,Betz = 64C′
T

(4 + C′
T)3 , (2.10)

which takes the well-known maximum value of 16/27 at C′
T = 2. This equation can be

obtained by substituting (2.8) into (2.7) with β = 1 (i.e. assuming flow mechanisms as
described by the classical actuator disc theory and no farm-scale wind speed reduction).
Note that this is the same as solving (2.9) for two special cases: (1) with λ/Cf 0 = 0; and
(2) with an infinitely large value of ζ .

3. LES modelling

3.1. Governing equations of the flow
We performed LES of flow over periodic turbine arrays using the MetOffice/NERC Cloud
(MONC) Model (Brown et al. 2018). The flow is driven by an imposed pressure gradient
and is neutrally stratified. The flow is governed by the incompressible Navier–Stokes
equations, i.e.

∂ui

∂xi
= 0, (3.1)

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂

∂xi

(
p′

ρ

)
+ 1

ρ

∂τij

∂xj
+ fi − 1

ρ

∂p∞
∂xi

, (3.2)

where ui is the resolved velocity in the i direction, p′ is the pressure perturbation from the
reference state, ρ is the reference density, τij is the subgrid stress term, fi is the force added
to model the wind turbines and ∂p∞/∂xi is the imposed pressure gradient.

The subgrid stress model is a standard Smagorinsky model (Smagorinsky 1963) given
by τij = ρνSij, where ν is the subgrid-scale eddy viscosity and Sij is the rate of strain
tensor. The eddy viscosity is given by a mixing length model ν = l2S, where l is the
mixing length scale and S is the modulus of the rate of strain tensor S = ‖Sij‖/

√
2. Near the

bottom boundary, the mixing length scale l is damped using the function 1/l2 = 1/(l0)2 +
1/[κ(z + z0)]2 described by Brown, Derbyshire & Mason (1994), where l0 is the basic
mixing length scale. Here, l0 is given by l0 = csΔ with a coefficient of cs = 0.23 and a
grid spacing given by Δ = max(�x, �y) (Brown et al. 1994).

All velocity components are set to zero at the bottom boundary. The shear stress at
the surface is parameterised by specifying ν following the classical Monin–Obukhov
similarity theory. The horizontal boundary conditions are periodic for all prognostic
quantities. The top boundary has a zero vertical velocity boundary condition and a
damping layer for the top 200 m of the domain (which was not necessary in the present
study for neutrally stratified flows, but still included for future studies to explore the effect
of atmospheric stability).
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3.2. Actuator disc implementation
We model individual turbines as actuator discs following the methodology used by
the KULeuven code described by Calaf et al. (2010). The approach uses a Gaussian
convolution filter to apply the turbine force from the rotor plane onto the LES grid.
This allows the position and orientation of turbines to be changed easily. The thrust force
exerted by a single turbine is given by

F = −1
2
ρC′

TÛT
2 π

4
D2, (3.3)

where ÛT is the time-filtered disc-averaged velocity and D is the turbine diameter. This
turbine thrust force is spatially distributed using a normalised indicator function R(x),
defined as

R(x) = 4
πD2

∫∫
G(x − x′) d2x′, (3.4)

where G(x) is a filtering kernel. This integral is calculated over the surface of the disc.
We divide the disc area into 10 segments in the radial and angular directions, respectively.
This was sufficient for R(x) to be independent of the number of segments. MONC uses a
staggered grid where the u and v velocities are evaluated at different points. As such, two
different indicator functions, Rx(x) and Ry(x), are calculated for the x and y directions.
We use the same filtering kernel as described by Shapiro, Gayme & Meneveau (2019),

G(x) =
(

6
πδ2

)3/2

exp
(

−6‖x‖
δ2

)
, (3.5)

where δ is the filter width, which, following the approach of Shapiro et al. (2019), is given
by δ = 1.5

√
�x2 + �y2 + �z2.

The force per unit density at a given grid point x in the direction i is given by

fi = 1
2

C′
TÛT

2 π

4
D2Ri(x). (3.6)

The disc-averaged turbine velocity UT is calculated using the indicator function R(x)

as a weighting function,

UT =
∫∫∫

u(x)Rx(x) cos θ d3x +
∫∫∫

v(x)Ry(x) sin θ d3x, (3.7)

where θ is the wind direction relative to the x direction. We use a constant value for θ

which is the direction of the pressure gradient forcing. Note that u refers to the velocity in
the x direction whereas U describes velocities in the wind direction.

The spatially averaged velocity UT is then temporally averaged using a one-sided
exponential time filter with a time window of 10 minutes to calculate ÛT . To calculate
C∗

T from the LES, we use the following relationship:

C∗
T = C′

T

nU2
F

n∑
i=1

(ÛT
2
)i, (3.8)

noting that turbine velocity UT is time filtered before being squared and then averaged over
all n discs. Here, UF is calculated by integrating the streamwise velocity (u cos θ + v sin θ )
between the surface and 2.5Hhub across the entire domain. Unlike ÛT , no time filter is used
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0 50 000 100 000

0.2

0.4

0.6

C∗
T

0 50 000 100 000

t (s)t (s)

0.50

0.55

u ∗
 (

m
 s

–
1
)

(b)(a)

Figure 2. Time series of 10-minute-time-averaged (a) internal turbine thrust coefficient C∗
T and (b) friction

velocity u∗ for validation case V-1. Note that the time-averaging here is different from the time-filtering used
to calculated ÛT .

to calculate UF. The C∗
T varies with time during the LES so is time-averaged over a long

period to give a single value of 
C∗
T .

To calculate the (farm-averaged) turbine power coefficient from the LES, we use the
expression,

Cp = C′
T

nU3
F0

n∑
i=1

(ÛT
3
)i, (3.9)

where UF0 is the farm-layer-averaged velocity in an LES without turbines. The Cp varies
with time so 
Cp is calculated by time averaging over a long period.

4. Results

4.1. LES code validation
We first validate our LES framework with the new actuator disc implementation by
comparing with the benchmark cases reported by Calaf et al. (2010). We then investigate
the sensitivity of our results to horizontal resolution, domain size and pressure solver.

For the validation cases summarised in table 1, we use a surface roughness length of
z0 = 0.1 m and a pressure gradient of (1/ρ) dp∞/dx = 1 × 10−3 m s−2. The turbines
all have a hub height of 100 m and a diameter of 100 m. We use a turbine resistance of
C′

T = 1.33 and the same turbine spacing as for Case A1 of Calaf et al. (2010) (Sx = 7.85D
and Sy = 5.23D). The surface roughness length, pressure gradient, turbine design and
resistance are chosen to match the values used by Calaf et al. (2010). Validation cases
V-1, V-2 and V-3 use a fast Fourier transform (FFT) pressure solver, whereas V-4 uses
an iterative pressure solver. Cases V-1, V-3 and V-4 have a domain size Lx × Ly × Lz of
3.14 × 3.14 × 1 km (with 24 turbines) and case V-2 has a domain size of 6.28 × 6.28 ×
1 km (with 96 turbines). All validation cases were run for 100 000 seconds and flow data
averaged between t = 30 000 and 100 000 s. The convergences of two flow statistics for
case V-1 are shown in figure 2. Figure 3 shows the instantaneous streamwise velocity
plotted on a cross-streamwise plane 2.5D behind a row of turbines in the validation case
with a double horizontal resolution.

Figure 4(a) shows the time and horizontally averaged streamwise velocity for the four
validation cases. The velocity profiles agree well with the results of Calaf et al. (2010).
Figure 4(b) shows the profiles of total shear stress and the results reported by Calaf et al.
(2010). The shear stress profiles match well except for the region near the bottom surface.
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Figure 3. Instantaneous streamwise velocity behind a row of turbines in validation case V-3.
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Figure 4. (a) Mean velocity profiles and (b) mean shear stress profiles for all validation cases, compared with
Case A1 of Calaf et al. (2010).

Note that the shear stress in our LES does not approach zero at the bottom surface as it
includes both modelled and resolved components; the latter of which approaches zero as
in the results of Calaf et al. (2010). The velocity profiles are insensitive to the horizontal
domain size and the pressure solver.

In wind farm LES using the actuator disc method, the disc-averaged velocity is usually
overpredicted (Shapiro et al. 2019). This is because at coarse resolutions, the vorticity shed
from the disc edge is not fully captured. This can be seen in our results by considering
cases V-1 and V-3 in figure 4(a). In the coarse grid case V-1, the disc-averaged velocity
is overpredicted so the turbine thrust applied is greater. This results in a slightly lower 〈ū〉
throughout the entire domain. This effect is also seen in the higher uncorrected 
C∗

T value in
case V-1 compared to V-3 (table 1), which is due to the overprediction of the disc-averaged
velocity.

To correct the overprediction of disc velocity in coarse LES, the following correction
factor was proposed by Shapiro et al. (2019):

N =
(

1 + C′
T

2
1√
3π

δ

D

)−1

. (4.1)

We apply this correction factor to the disc-averaged velocity by multiplying our
uncorrected 
C∗

T values by N2. The correction is applied after the simulation and not
during. After correction, the horizontal resolution used in cases V-1 and V-3 only had
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Case �x/D �y/D �z/D Lx × Ly × Lz (km) Pressure solver Uncorrected 
C∗
T


C∗
T

V-1 0.245 0.245 0.0787 3.14 × 3.14 × 1 FFT 0.8517 0.6845
V-2 0.245 0.245 0.0787 6.28 × 6.28 × 1 FFT 0.8587 0.6902
V-3 0.1225 0.1225 0.0787 3.14 × 3.14 × 1 FFT 0.7844 0.6957
V-4 0.245 0.245 0.0787 3.14 × 3.14 × 1 Iterative 0.8603 0.6914

Table 1. Summary of validation cases.

V-1 V-2 V-3 V-4

0.75 1.00

−2

0

2

y/D

(a)

0.75 1.00

−2

0

2

(b)

0.75 1.00

−2

0

2

(c)

ū/UF ū/UF ū/UF

Figure 5. Normalised wake velocity deficit for each validation case (a) 2D, (b) 4D and (c) 6D downstream.

a small impact on 
C∗
T , suggesting that this correction factor can be successfully applied to

a periodic array of actuator discs. For the value of C′
T used here, the analytical model of

C∗
T in (2.8) gives a value of 0.75. All the validation cases in table 1 have a lower 
C∗

T than
this because of wake interactions among turbines.

We also consider the effect of resolution on the wake velocity deficit. Figure 5 shows the
average wake profiles for each of our validation cases in table 1. The wake velocity profiles
are normalised by the farm-averaged velocity 
UF for each validation case. This shows the
far wake velocity deficit does not vary with the domain size, horizontal resolution and
pressure solver. Comparing the wake profiles for V-1 and V-3 at 2D downstream (figure 5a)
shows a small difference in the velocity deficit at the centre. This is because V-3 uses a
different filter size for the projection of the turbine area (see § 3.2). When comparing
the wake profiles 4D and 6D downstream, this difference is negligible. This shows that
the far wake velocity profile is insensitive to the filter size used for the turbine area
projection.

To validate the capability of the code to simulate different wind directions, we also
performed a simulation with a wind direction of 45◦. The turbine layout in this simulation
corresponds to Case K of Calaf et al. (2010) and is shown in figure 6(b). We used
a resolution of �x/D × �y/D × �z/D of 0.227 × 0.227 × 0.0787 and a domain size
of Lx × Ly × Lz of 3.61 × 3.61 × 1 km (with 32 turbines). The horizontally averaged
streamwise velocity is shown in figure 6(a). There is an excellent agreement with the
results of Calaf et al. (2010) for the same turbine layout, demonstrating that our new
actuator disc implementation for various wind directions (see § 3.2) is valid.
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Figure 6. Validation case with 45◦ wind direction: (a) mean profile of the horizontally average streamwise
velocity and (b) turbine layout.

4.2. LES results
The LES cases for this study have the same setup as the validation case V-4 (see § 4.1)
except for the domain size, the surface roughness length and the streamwise pressure
gradient. To model offshore wind farms, we use a surface roughness length of 1 × 10−4 m
and a pressure gradient of (1/ρ) dp∞/dxF = 8.38 × 10−5 m s−2 in the wind direction
xF, which results in UF0 = 10.103 m s−1 and Cf 0 = 1.607 × 10−3 for a fixed nominal
farm-layer height of HF = 250 m (both obtained from LES with no turbines). All cases
were run for 100 000 s and flow data averaged between t = 60 000 and 100 000 s. Note that
we adopted a different spin-up and averaging period (compared to § 4.1) because of the
different pressure gradient forcing.

We performed a suite of 50 simulations with different turbine layouts which are
described by the parameters Sx, the turbine spacing in the x direction, Sy, the turbine
spacing in the y direction and θ , the wind direction relative to the x direction (see
figure 7a). The turbine operating conditions are the same for all simulations and are
given by C′

T = 1.33. We consider a realistic range of turbine layouts and wind directions:
Sx ∈ [5D, 10D], Sy ∈ [5D, 10D] and θ ∈ [0◦, 45◦]. We only consider regular arrays and so,
by symmetry, we only need to consider wind directions up to 45◦. We adopt the minimum
possible horizontal domain size (Lx and Ly) within the range between 3.14 and 6.28 km
(depending on Sx and Sy) as the validation results presented in § 4.1 suggest that the results
would be insensitive to the domain size within this range.

We use a space filling maximin design (Johnson, Moore & Ylvisaker 1990; Santner,
Williams & Notz 2018) to select different turbine layouts in the parameter space (Sx, Sy, θ ).
The maximin algorithm iteratively selects a point which maximises the minimum distance
to other points and to the boundaries of the parameter space. Figure 7(b) shows the 50
different turbine layouts selected in the parameter space.

Figure 8 shows the time-averaged flow fields from 4 of 50 cases. Figure 8(a) is for a case
where the wind direction is almost perfectly aligned with a relatively small streamwise
spacing between turbines of 5.76D. This case gives a low 
C∗

T value of 0.585 due to strong
wake effects. High speed regions between rows of turbines are formed because of the large
cross-streamwise turbine spacings and aligned wind direction. Figure 8(b) is for a case
with a high turbine density and the wind direction almost aligned along the diagonal. This
arrangement is similar to a staggered layout. The streamwise spacings between turbines is
larger than for figure 8(a) so the 
C∗

T has a higher value of 0.669 because of the increased
wake recovery between turbines.
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Figure 7. Design of numerical experiments: (a) input parameters and (b) maximin design of 50 wind farm
layouts.
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Figure 8. Time-averaged streamwise velocity at the turbine hub height for: (a) Sx = 5.76D, Sy = 8.51D, θ =
1.32◦; (b) Sx = 5.27D, Sy = 5.07D, θ = 43.8◦; (c) Sx = 7.59D, Sy = 5.47D, θ = 16.7◦; (d) Sx = 6.00D, Sy =
6.21D, θ = 37.6◦.

The flow field for a case with an intermediate wind angle is shown in figure 8(c). The
turbine wakes are mostly misaligned with downstream turbines which minimises wake
effects and gives a high 
C∗

T value of 0.752. This result agrees qualitatively with Stevens,
Gayme & Meneveau (2014) in which it was found that the maximum farm power was
produced by an intermediate wind direction. The results also give further evidence that
the analytical model of C∗

T proposed by Nishino (2016) can be used to predict an upper
bound to wind farm performance as it gives C∗

T = 0.75 in this case. Figure 8(d) shows the
streamwise velocity for a partially waked turbine layout. The partial wake effects cause the

C∗

T to be reduced slightly to 0.713.
Figure 8 also shows the effect of the turbine layout on the farm-averaged wind speed UF.

The farm shown in figure 8(a) has a low array density and so has a high farm-averaged
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Figure 9. Scatter plots of 
C∗
T against (a) turbine spacing in the x direction Sx/D and (b) turbine spacing in the

y direction Sy/D with the colour given by the wind direction θ .
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Figure 10. Scatter plots of 
C∗
T against wind direction with the colour given by (a) turbine spacing in the x

direction Sx/D and (b) Sx tan(θ)/Sy.

wind speed of β = 0.347 (shown by the brighter colour). Figure 8(b) shows a farm with a
high array density which resulted in a low farm-averaged speed of β = 0.248. Figures 8(c)
and 8(d) have similar intermediate array densities and so had intermediate farm-averaged
wind speeds of β = 0.289 and β = 0.284.

Figure 9 shows that 
C∗
T was not a strong function of Sx or Sy. The 
C∗

T was found to be
a much stronger function of θ (see figure 10). The lowest 
C∗

T values were for small values
of θ because of the high degree of turbine–wake interactions. When θ was very small 
C∗

T
was also sensitive to the value of Sx (see figure 10a). As θ increases, 
C∗

T increases rapidly
until the maximum value around 15◦. As θ increases further, 
C∗

T slowly decreases. This is
because turbines start to become aligned along the diagonal (similar to the layout shown
in figure 8b). When θ is greater than 15◦, the minimum 
C∗

T value tends to be observed
when Sx tan(θ)/Sy is close to 1 (figure 10b). This corresponds to layouts where turbines
are aligned along the diagonal (similar to the layout shown in figure 8b).

Figure 11 shows that the range of γ̄ from the wind farm LES is small (varying between
1.7 and 1.8). Nishino (2016) suggested that γ would be slightly less than 2 because the
presence of turbines would increase the turbulence intensity in the ABL. These results,
along with the findings of Dunstan, Murai & Nishino (2018), provide evidence for this.
Figure 11 shows that there is a slight variation of γ̄ with wind direction and effective array
density.
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Figure 11. Scatter plot of γ̄ against the wind direction θ with the colour given by the effective array density
λ/Cf 0.

4.3. Prediction of wind farm performance
Now we compare the (farm-averaged) turbine power coefficient 
Cp from the wind farm
LES with the analytical model derived from the two-scale momentum theory, Cp,Nishino,
(2.9).

To make a fair comparison of Cp between the theory and the LES, we need to consider
the fact that the coarse LES resolution caused the turbine thrust to be overpredicted. For

C∗

T , this was corrected for in post-processing using the correction factor N, (4.1). However,
for 
Cp, there are two simultaneous factors that need to be corrected. The first is that the
disc velocity (relative to the farm-layer velocity) has been overpredicted, which increases
the turbine power. The second is that the farm-layer velocity has been underpredicted
(as shown earlier in figure 4a), which reduces the turbine power. The first effect can be
corrected by using the correction factor N (i.e. multiplying the raw 
Cp from the LES by
N3), but the second effect cannot be corrected in this manner.

To adjust for the second effect, we estimate the farm wind-speed reduction that would
be obtained if a sufficiently fine resolution was used for the LES, βfine,LES. This should be
higher than the value obtained from the coarse resolution LES, βcoarse,LES. To calculate
βfine,LES, we assume

βfine,LES

βcoarse,LES
= βfine,theory

βcoarse,theory
, (4.2)

where βfine,theory and βcoarse,theory are the predictions from the two-scale momentum
theory. Here, βfine,theory is calculated by solving (2.3) (with M = 1) using 
C∗

T from the
LES and the corresponding array density λ/Cf 0. To calculate βcoarse,theory, we do the same
but with the uncorrected turbine thrust (i.e. 
C∗

T/N2). Since (2.3) is derived from the law
of momentum conservation, the only assumption we are making in (4.2) is that the flow
is independent of Reynolds number (which is a reasonable assumption as the change in
Reynolds number between the fine and the coarse resolution cases is only of the order of
10 %). We can therefore estimate the turbine power from a fine resolution LES, using the
expression


Cpfine,LES


Cpcoarse,LES
=

(
UT fine,LES

UT coarse,LES

)3

=
(

UT fine,LES/UFfine,LES

UT coarse,LES/UFcoarse,LES

)3

×
(

UFfine,LES

UFcoarse,LES

)3

= N3
(

βfine,LES

βcoarse,LES

)3

, (4.3)

where 
Cpcoarse,LES is from the coarse resolution wind farm LES, (3.9).
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Figure 12. Average turbine power coefficient 
Cp from the 50 wind farm LES adjusted for different wind
extractability factors (ζ ). The Cp predicted by the two-scale momentum theory ((2.9) with C′

T = 1.33) is shown
by the blue lines for comparison.

The green symbols marked by ζ=0 in figure 12 show the corrected 
Cp for each of the
50 wind farm LES runs. These are plotted against the effective array density λ/Cf 0. The
blue line shows the Cp prediction using the theoretical model (2.9). The theory matches
remarkably well with the LES results, despite that the theory does not account for the
turbine layout parameters, namely Sx, Sy and θ . The reason for this excellent agreement for
ζ = 0 will be discussed later in § 5.

Next, we use the results from LES of infinitely large wind farms to estimate the
average power coefficients for large but finite-sized wind farms, following the concept of
the two-scale momentum theory. We combine the infinite wind farm LES results with
the simple linear model of the momentum availability factor M, (2.5). This does not
capture the finite-size effects observed near the edge of the farm, but reveals general
trends of turbine layout effects with different atmospheric responses. We assume that
the farms are still sufficiently large that the flow over the farm is mostly fully developed
(or more specifically, the dependency of C∗

T on Sx, Sy and θ is still approximately the
same as that in the corresponding infinitely large farm). ‘Sufficiently large’ depends on
atmospheric conditions (Wu & Porté-Agel 2017), but it is likely to be of the order of
10 km.
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First, we consider the balance of the pressure gradient forcing (PGF) with surface stress
and turbine thrust in our LES,

ρ(SFC∗
f + nAC∗

T)U2
F/2 = SFLz�p/�x, (4.4)

where C∗
f is the ‘local’ or ‘internal’ friction coefficient C∗

f ≡ 〈τw〉/1
2ρU2

F and �p/�x is
the PGF applied to the LES of an infinitely large wind farm.

If we assume C∗
f and C∗

T are independent of the PGF (as the Reynolds number of the
flow is very high), then (4.4) shows that U2

F should be proportional to �p/�x; hence,

U2
F,finite

U2
F

= �pfinite

�x

/
�p
�x

, (4.5)

where UF is the farm-layer-averaged wind speed in the LES and �p/�x is the
corresponding PGF, and UF,finite is the new farm-layer-averaged wind speed that would
result from an unknown PGF for a finite-sized wind farm, �pfinite/�x.

As the flow is quasi-steady and horizontally periodic with no Coriolis force in this
study (meaning that we ignore the contributions of all terms except the PGF in (2.4)),
the right-hand side of (4.5) is equivalent to the momentum availability factor M in (2.4).
This will not be true for real wind farms under real atmospheric conditions. However, this
is valid for our simplified analysis where the flow across the farm is mostly fully developed
and is driven purely by a PGF. As noted earlier, it was found by Patel et al. (2021) that M
can be well approximated by M = 1 + ζ(1 − β) and ζ was typically between 5 and 25 for
an offshore wind farm site. Substituting this expression for M into (4.5) gives

U2
F,finite

U2
F

= 1 + ζ

(
1 − UF,finite

UF0

)
. (4.6)

Since UF and UF0 are both known from LES results, UF,finite can be calculated analytically
for a given ζ . Finally, we assume (again based on the Reynolds number independency) that
the disc-averaged velocity UT scales with UF and as such

Cp,finite = Cp

(
UF,finite

UF

)3

, (4.7)

where Cp,finite is the average turbine power coefficient of the large finite-sized wind farm.
Figure 12 also shows the average power coefficients 
Cp estimated for three different ζ

values. This shows that the atmospheric response can significantly impact the farm power.
The 
Cp for ζ = 25 are roughly an order of magnitude higher than 
Cp for the same layout
with ζ = 0. Note that these results are with a constant turbine operating condition of C′

T =
1.33 which may not be optimal for a given ζ . Figure 4 of Nishino & Dunstan (2020) shows
how the theoretically optimal turbine power coefficient, Cp,max, varies with the strength of
atmospheric response.

Of particular interest in figure 12 is that, for a given λ/Cf 0, the variation of 
Cp (due to
different turbine layouts) increases with ζ . To better understand this trend, the 
Cp values
for the 50 turbine layouts are presented together with their 
C∗

T values in figure 13 for
six different ζ values separately. Figure 13(a) shows the results for infinitely large farms
with ζ=0. This shows that the average turbine power coefficient is a strong function of
the effective array density and insensitive to 
C∗

T meaning that turbine–wake interactions
have little effect on the farm power. However, for finite-sized farms (figure 13b–f ), the
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Figure 13. Turbine power coefficient 
Cp for (a) infinite wind farms (ζ = 0) and (b)–( f ) finite wind farms with
the colour giving the 
C∗

T recorded for each layout. The Cp predicted by the two-scale momentum theory is
shown by the blue line.

layouts with high wake interactions and a low 
C∗
T value tend to produce less power. These

are shown by the darker plots which fall well below the theoretical prediction (blue line).
Interestingly, some of the layouts seem to produce slightly higher power than predicted
by the two-scale momentum theory. These layouts have a 
C∗

T slightly higher than 0.75 (the
value for an isolated turbine) and this seems to be due to locally accelerated flow caused by
the local blockage effect (Nishino & Draper 2015; Ouro & Nishino 2021). These results
suggest that both the array density and turbine–wake interactions are important for the
performance for large finite-sized wind farms.

Figure 13 also suggests that finite-sized wind farms are less sensitive to the effective
array density than infinitely large farms. Figure 13(a) shows a roughly inverse relationship
between 
Cp and λ/Cf 0, whereas figure 13(b–f ) show a more linear decrease of 
Cp. Overall,
the analytical model (2.9) predicts the variation of 
Cp with the effective array density well
for all of the atmospheric responses. The theoretical model does not predict the effect of
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turbine–wake interactions because the model of C∗
T (2.8) is a function of turbine operating

conditions only. These results support the argument that the two-scale momentum theory
can be used to provide an approximate upper limit on wind farm performance.

5. Discussion

The analytical model of C∗
T (2.8) has been shown in this study to provide an approximate

upper bound to wind farm performance. The model is based on the classical actuator disc
theory with an upstream velocity of UF. Equation (2.8) would provide accurate predictions
of C∗

T if the following two conditions are met: (1) the wind speed upstream of each turbine
in the farm is UF; and (2) the mechanism of the flow around each turbine is the same as
that around an isolated actuator disc. In reality, the wind speed upstream of each turbine
is often lower than UF due to wake effects, reducing C∗

T (and thus Cp). Conversely, local
blockage effects (Nishino & Draper 2015) may increase C∗

T because: (1) it creates locally
accelerated flows which may allow the upstream velocity of most turbines to be higher than
UF (see e.g. Ouro & Nishino 2021); and (2) it changes the mechanism of the flow around
each turbine, allowing for a higher UT (for a given C′

T ) than that predicted by the classical
actuator disc theory. However, such a positive effect of local blockage can be exploited
only when the layout is carefully optimised for a specific wind direction. As such, (2.8)
can be used to predict the upper bound of farm performance or the performance of an ideal
wind farm without the negative effect of turbine–wake interactions.

The results from this study also show that the 
Cp of infinitely large wind farms depends
mainly on the effective array density (see figure 13a), i.e. the farm power is insensitive
to the turbine-scale flow interactions. A closer look at the results suggest that the limited
impact of turbine-scale interactions is due to the fact that the turbine drag is typically much
greater than the surface drag. The ratio of total turbine drag to surface drag is given by∑n

i=1 Ti

〈τw〉SF
=

1
2ρC∗

TnAU2
F

1
2ρC∗

f SFU2
F

= λC
∗
T

C∗
f

. (5.1)

We measured the time-averaged value of λC∗
T/C∗

f for all 50 turbine layouts simulated. The
mean value was 5.22, the minimum value was 2.93 and the maximum was 8.59. Therefore,
the turbine drag was typically five times greater than the surface drag. Consider an offshore
farm where λC∗

T/C∗
f = 5, λ/Cf 0 = 10 (both typical values) and ζ = 0. This means the

turbine drag is five times greater than the surface drag and the momentum supplied by
the atmosphere does not change in response to the farm. The composition of the total
drag (normalised by 〈τw0〉SF) for this scenario is shown by the bar 1 in figure 14(a). This
state 1 is an equilibrium state, i.e. the normalised drag is balanced by M as in (2.3). If
there is a sudden small change in wind direction which increases the degree of wake
interactions, then this will decrease C∗

T (or the ratio of T to U2
F) for the farm. In this

example, the turbine drag is now only four times greater than the surface drag (bar 2 in
figure 14a). This corresponds to C∗

T decreasing from 0.75 to 0.6 (which is close to the
largest difference observed in the 50 wind farm LES). This state 2 is a non-equilibrium
state, i.e. the normalised drag is not balanced by M (due to the sudden small change of wind
direction). However, if the momentum supplied by the atmosphere is unchanged, the wind
speed in the farm UF will eventually increase to compensate for the reduced turbine drag.
The surface and turbine drag both scale with U2

F so they are both expected to increase at the
same rate. Bar 3 in figure 14(a) shows the new equilibrium state with a new composition
of turbine and surface drag after the increase in UF. Comparing states 1 and 3, the total
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Figure 14. Examples of offshore wind farm drag composition at 3 different states: (1) equilibrium state before
wind direction change; (2) non-equilibrium state immediately after a small change of wind direction; and (3)
new equilibrium state after atmospheric response, for (a) ζ = 0 and (b) ζ = 15. (c) Schematic of the three
states on the M versus (1 − β) plot.

turbine drag has been reduced only slightly because of the constant amount of momentum
supplied by the atmosphere to the farm site. Therefore, for aerodynamically ideal turbines
(or turbines operating below the rated wind speed), the average turbine power coefficient
Cp is also insensitive to turbine-scale flow interactions when the momentum supplied by
the atmosphere is constant (ζ = 0).

Figure 14(b) explains why turbine-scale flow interactions become more important as
ζ increases. Now, the momentum supplied by the atmosphere changes with the farm
wind-speed reduction factor β according to M = 1 + ζ(1 − β). The ratios between turbine
and surface drag for states 1 and 2 are exactly the same as for the ζ = 0 case in figure 14(a).
However, now when the wind speed increases in response to the reduced turbine drag,
the momentum supplied by the atmosphere to the farm site changes. As the wind speed
UF increases, β increases so the momentum supplied by the atmosphere decreases (see
figure 14c). Therefore, the sum of the turbine and surface drag for state 3 decreases
compared to state 1. This explains why there is a much greater reduction in turbine drag
(and thus power) for the non-zero ζ case than for ζ = 0. As ζ increases, there will be a
larger decrease in the total drag in response to an increased wind speed. Therefore, the
power losses due to turbine-scale flow interactions also increase as ζ increases.

To better understand the factors which determine the power output of wind farms, we
propose three power loss factors. First, the turbine-scale loss factor ΠT which is defined
by

ΠT ≡ 1 − Cp

Cp,Nishino
, (5.2)
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Figure 15. Turbine-scale loss factor ΠT for (a) infinite wind farms (ζ = 0) and (b)–( f ) finite wind farms with
the colour giving the 
C∗

T recorded for each layout.

where Cp,Nishino is given by (2.9). Here, ΠT represents the power losses due to
turbine-scale (or internal) flow interactions only, separate from the losses due to the
farm-scale atmospheric response. For real turbines, ΠT would also include turbine design
losses (i.e. power losses due to a non-ideal rotor design for a given C′

T ). Figure 15(a)
shows that the losses caused by turbine interactions are small for infinitely large farms,
typically less than 5 %. For some turbine layouts, ΠT is negative, meaning that Cp exceeds
Cp,Nishino. These layouts have 
C∗

T values greater than 0.75 which is the value given by
(2.8). As discussed earlier, this is likely to be due to local blockage effects increasing the
turbine incident velocity above the farm-layer velocity UF. Figure 15(b–f ) show that the
turbine-scale losses are greater in finite-sized farms with the same turbine layout. Under
different atmospheric conditions, the same turbine layout can give different turbine-scale
losses. Across a realistic range of wind extractability factors, the turbine-scale losses from
the same layout can vary significantly. As an example, the losses from one layout vary
from 13 % to 22 % as ζ changes from 5 to 25. Figure 15 suggests the maximum losses
due to turbine-scale flow interactions is likely to be approximately 20 % for large offshore
wind farms.
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The farm-scale loss factor, ΠF, represents the power loss due to the atmospheric
response to the whole farm, and is defined by

ΠF ≡ 1 − Cp,Nishino

Cp,Betz
, (5.3)

where Cp,Betz is given by (2.10). Note that in this study, C′
T = 1.33 and hence Cp,Betz =

0.563 (C′
T = 2 would give the optimal performance for an isolated turbine of Cp,Betz =

16/27). Here, ΠF represents the power loss accompanied by the reduction of the
farm-average wind speed. Figure 16 shows that the farm-scale losses are typically more
than twice the turbine-scale losses (i.e. ΠT/ΠF is generally less than 0.5). This suggests
that for large offshore wind farms, the atmospheric response to the array density is more
important than the turbine-scale interactions (i.e. wake effects). Similarly, the total power
loss factor, Π , can also be defined as

Π ≡ 1 − Cp

Cp,Betz
= 1 − (1 − ΠT)(1 − ΠF). (5.4)

It is important to note that the turbine-scale loss factor discussed above is smaller
than what is typically referred to as ‘wake losses’ (see figure 17). ‘Wake losses’ are
traditionally evaluated by comparing the farm power with the power produced by the first
row of turbines (Cp,1 in figure 17). However, this includes not only the losses due to wake
interactions between turbines, but also the atmospheric response to the array density. In
contrast, ΠT represents the power losses solely due to the interactions between turbines.
For the same reason, the farm-scale loss factor, ΠF, is larger than what is often referred to
as ‘farm blockage losses’. These two different classifications of power losses (one using
Cp,Nishino and the other using Cp,1 as a point of reference) are both useful in different
ways. The latter classification is straightforward when the value of Cp,1 is known; however,
sometimes Cp,1 cannot be defined unambiguously (e.g. when there is no regular ‘front row’
which is perpendicular to the wind direction). The merit of using Cp,Nishino is that this can
be predicted analytically using (2.9).

It should be noted that figure 17 is for actuator discs (i.e. ideal turbines). Real turbines
will experience additional power losses due to practical (non-ideal) turbine design.

As demonstrated earlier in figures 13, 15 and 16, the strength of the atmospheric
response alters the wind farm performance. The importance of array density and turbine
layout vary with the large-scale atmospheric conditions. The results shown in Appendix B
suggest that the value of ζ tends to decrease as the wind farm size increases (at least
within the range between 10 and 30 km; note that the values of ζ reported by Patel et al.
(2021) were for a fixed wind farm size of 20 km). These results seem to suggest that
larger wind farms will be less sensitive to turbine-scale wake effects and more sensitive to
farm-scale losses. This could have significant implications for the design of future wind
farms.

It is also worth noting that similar trends of large wind farm aerodynamics have
already been reported in the literature, e.g. in the wind farm LES performed by Wu &
Porté-Agel (2017) in which they also used a relatively low surface roughness length of
0.05 m. They performed LES of finite and infinite wind farms under a weak and strong
free-atmosphere stratification, using a rotational actuator disc model (representing Vestas
V-80 2MW turbine) with an aligned and a staggered turbine layout with the same array
density. The varying free-atmosphere stratifications change the strength of atmospheric
response, which affects the wind farm blockage. Figure 11 of Wu & Porté-Agel (2017)
shows the power production of different turbine rows for the different wind farms. For both
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Figure 16. Ratio of turbine-scale to farm-scale loss factors ΠT/ΠF for (a) infinite wind farms (ζ = 0) and
(b)–( f ) finite wind farms with the colour giving the 
C∗

T recorded for each layout.

Cp,BetzCp,1Cp
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Power generated

Power generated

Cp,BetzCp,NishinoCp

Figure 17. Comparison of turbine-scale loss (TSL) and farm-scale loss (FSL) with what is known as wake loss
(WL) and farm blockage loss (FBL). Here, Cp,1 is the power coefficient recorded by the first row of turbines in
a farm.

atmospheric conditions, the layout of the infinite wind farm did not change the farm power.
This agrees with our finding that the power output of infinite wind farms is insensitive to
turbine interactions. The stronger free-atmosphere stratification induced a larger pressure
gradient across the farm which implies a larger ζ value. The power output of the finite
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farm under the strong free-atmosphere stratification was more sensitive to the turbine
layout. Under a weak stratification, the layout had a smaller impact on farm power. This
is further confirmation that the large-scale atmospheric response changes the importance
of turbine-scale interactions. Other LES studies have also generally found that the power
output of finite wind farms (e.g. Archer, Mirzaeisefat & Lee 2013; Porté-Agel et al. 2013;
Stevens et al. 2014) is more sensitive to turbine layout than infinite farms (e.g. Yang, Kang
& Sotiropoulos 2012; Abkar & Porté-Agel 2013; Yang & Sotiropoulos 2014). However,
these previous studies used surface roughness lengths typical of rough onshore locations
rather than offshore, meaning that the ratio of total turbine drag to surface drag (5.1) was
smaller than the present study.

The impact of turbine layout on wind farm performance is typically investigated by
reporting the normalised turbine power, where the turbine power is normalised by either
the power of a turbine in the first row or that of a standalone turbine. The normalised power
is often used as a measure of turbine–wake interactions within the wind farm. However,
this could be misleading for a large wind farm where the power is also reduced due to the
ABL response to the farm resistance. The turbine-scale loss factor, ΠT , gives the power
losses due to wake interactions separated from farm-scale effects. Our results suggest
that the power losses in large farms with the same layout can change with the strength
of the large-scale atmospheric response. Hence, the relative performance of different
turbine layouts can also vary with the strength of the atmospheric response. Layouts which
produce more power with a specific large-scale atmospheric response may not perform as
well under different responses.

A limitation of this study is that the wind farm LES consider only neutrally stratified
atmospheric boundary layers. One uncertainty is how different stratifications would affect
wake recovery within large wind farms, which could affect the 
C∗

T value for a given
turbine layout. However, since the two-scale momentum theory has been derived from
the principle of momentum conservation, which is valid for all atmospheric conditions,
we expect that the trends found in this study (on how the importance of turbine-scale
interactions changes with the strength of the atmospheric response) would be observed
generally. The study also used a fixed turbine operating condition given by C′

T = 1.33.
This is typical for the current wind turbines operating below their rated wind speed (at
which the farm blockage effects are most significant). Therefore, the results of this study
give the trends for large farms if the operating conditions are similar to those currently
used. As discussed earlier, the trends found in this study have also been observed in LES
of finite wind farms with different atmospheric conditions and a different turbine model,
supporting the generality of our findings.

6. Conclusions

In this study, we performed a combined theoretical and computational analysis of large
wind farms, using the two-scale momentum theory (Nishino & Dunstan 2020) and new
LES of infinitely large wind farms with different turbine layouts and wind directions. To
consider a range of wind directions, we used a new implementation of the actuator disc
model which is not aligned with the structured grid. First, we validated the LES against
the results published by Calaf et al. (2010) and found an excellent agreement. We also
confirmed that when the correction factor proposed by Shapiro et al. (2019) is applied,
the average internal turbine thrust coefficient 
C∗

T (representing the turbine thrust relative
to the square of the average wind speed across the wind farm layer) is insensitive to the
grid resolution. We then performed 50 wind farm LES with different turbine spacings and
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wind directions. The 
C∗
T was found to be a strong function of wind direction with a weaker

dependence on turbine spacings.
This study adopted an approach to adjust the average power coefficient 
Cp of an

infinitely large wind farm to estimate the power of large but finite-sized farms with the
same layout, following the concept of the two-scale momentum theory. A full validation
of this approach is currently infeasible as it would require a large set of finite-size wind
farm LES, which will be the subject of future studies. However, we have provided detailed
theoretical arguments on why we can estimate the power of large finite-size farms from the
results of infinitely large farm LES. For infinitely large farms, 
Cp was found to be a strong
function of the array density and agree remarkably well with the analytical model (2.9).
The power produced by large finite-sized farms was found to depend on both the array
density and turbine layout (including the effect of wind direction), although the analytical
model still provides an approximate upper limit of the power (for a given array density).
These results confirm that to model large but finite-sized wind farms, it is important to
consider both the effect of array density and the turbine layout.

The impact of array density and turbine layout on farm power varies with the strength of
atmospheric response or the ‘wind extractability’. The analytical model seems to predict
very well the impact of array density for a given farm-scale atmospheric response. As
such, we propose a new classification of power losses in large wind farms by introducing
new metrics, namely a turbine-scale loss factor ΠT , a farm-scale loss factor ΠF and
a total loss factor Π . The turbine-scale loss factor describes the power losses due to
turbine-scale wake interactions only (which is smaller than what is commonly called
‘wake losses’). Importantly, the turbine-scale loss factor varies with the strength of the
large-scale atmospheric response. As an example, ΠT varied from 0.13 to 0.22 for a given
layout across a realistic range of the extractability factor (from ζ = 5 to 25 in this study).
Although further studies are required to better quantify the extractability factor, the results
obtained to date suggest that as wind farms get larger, the proportion of power losses due to
turbine–wake interactions will decrease. This is because (1) having a better turbine layout
(with less wake interactions and higher C∗

T ) does not substantially increase the momentum
available to the farm site when ζ is small (figure 14) and (2) ζ seems to decrease as the
wind farm size increases. The farm-scale loss factor describes the power loss due to the
atmospheric response to the array density (which is larger than what is often called ‘farm
blockage losses’). The ΠF was typically more than twice as large as ΠT for the 50 offshore
wind farms considered in this study with a realistic range of atmospheric responses. This
suggests that farm-scale flow effects have a greater impact than turbine-scale flow effects
on the performance of large offshore wind farms.
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Figure 18. LES and theoretical results for 
Cp with ζ = 25 for (a) HF = 250 m and (b) HF = 300 m.
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Appendix A. Sensitivity of results to nominal farm-layer height HF

The height of the farm-layer, HF, can be defined in several ways. This study uses the
definition HF = 2.5Hhub, where Hhub is the turbine hub height. Differences in the value
of HF will change the values of UF, UF0, 
C∗

T and Cf 0 of the LES results presented in
§ 4. However, as noted by Nishino & Dunstan (2020), the conservation of momentum
arguments used to derive (2.3) and to eventually predict Cp from (2.6) are valid irrespective
of the HF value, provided that the same HF value is used in both ‘internal’ and ‘external’
sub-problems. The question here is how much the results of the ‘internal’ sub-problem (i.e.
LES results in this study) and ‘external’ sub-problem (i.e. the value of ζ obtained from
NWP simulations) change with the choice of HF. Although the ‘external’ sub-problem is
outside the scope of this paper, Patel et al. (2021) reported that the sensitivity of their NWP
results to the choice of HF was minor. In the following, we present how the sensitivity of
the LES results to the choice of HF eventually affects the value of Cp obtained (assuming
that ζ is not affected by HF).

To investigate the sensitivity of the results to HF, we repeat the analysis with ζ = 25
using HF = 3Hhub. Figure 18 compares the 
Cp values obtained for HF = 2.5Hhub and
3Hhub. Changing the value of HF has no effect on the theoretical predictions of Cp for
a given ζ . Increasing HF decreases the LES-based results of 
Cp for each farm because
the reference velocity UF0 slightly increases. The increase in UF0 is the same for all wind
farm cases. Therefore, increasing HF to 3Hhub reduces the 
Cp of all wind farm cases by the
same factor of 1.043 in this study. The absolute values of 
Cp are affected by the value of
HF, but the trends reported in this study remain unchanged. The 
C∗

T values obtained from
the LES are also reduced when the farm-layer height is increased. This is because the
reference velocity UF slightly increases. Nevertheless, the two-scale momentum theory
still captures the trend well and can provide an upper bound estimate to wind farm
performance.

Nishino & Dunstan (2020) proposed a definition for HF based on the undisturbed
velocity profile U0(z). Here, HF is defined as the farm-layer height with which the
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Figure 19. Variation of normalised wind farm-layer height HF/Hhub with surface roughness length z0 and
turbine design parameter D/Hhub for a log law wind profile.

farm-layer average of the undisturbed velocity is equal to that of the rotor average, i.e.∫ HF

0

U0 dz

HF
=

∫

U0 dA

A
. (A1)

Using this definition, the exact value of HF will vary with turbine design and (undisturbed)
ABL profile. Figure 19 shows the value of HF according to (A1) for a wide range of
velocity profiles and turbine designs. We assume that the velocity profile is given by the
logarithmic law for a wide range of surface roughness lengths that includes onshore and
offshore locations. For the turbine design, we assume that the distance between the surface
and bottom of the rotor is fixed at 50 m. The range of D/Hhub used corresponds to turbine
diameters from 100 m up to 300 m. Across a wide range of turbine design and velocity
profiles, the value of HF obtained from (A1) only varies between 2.5Hhub and 3Hhub.

The average turbine power coefficient 
Cp is changed only slightly when HF is increased
from 2.5Hhub to 3Hhub. The trends reported in this study are unaffected by a change in HF.
The HF is relatively insensitive to velocity profiles and turbine design and is expected to
be in the range 2.5Hhub to 3Hhub. Therefore, the results of the present study are insensitive
to the exact value of HF.

Appendix B. Effect of wind farm size on the wind extractability factor ζ

To explore the effect of wind farm size on the wind extractability factor ζ , we performed
additional twin NWP simulations using the same methodology as Patel et al. (2021).
Within the simulations, the diameter of a hypothetical circular wind farm (located off the
east coast of Scotland) was varied from 10 to 30 km. Example results for a 24-hour period
with a relatively constant wind speed across the farm site (corresponding to Case B of
figure 9 of Patel et al. 2021) are shown in figure 20. It can be seen that the value of ζ tends
to decrease with increasing the wind farm size for all the time. Further simulations are
required in future studies to derive a correction function for the effect of wind farm size on
ζ , but our preliminary results suggest that an exponential relationship may exist between
the wind farm size and ζ . Such an exponential correction would satisfy the expected
asymptotic behaviour of ζ (i.e. ζ approaches to +∞ and 0 as the farm size approaches
to 0 and +∞, respectively). Figure 20 also shows that ζ varies significantly with time due
to changing atmospheric conditions. These preliminary results show that ζ depends both
on wind farm size and atmospheric conditions.
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Figure 20. Variation of ζ throughout a 24 h period (corresponding to Case B in figure 9 of Patel et al. 2021)
for different wind farm diameters.
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