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A CLASSIFICATION OF IRREDUCIBLE PREHOMOGENEOUS

VECTOR SPACES AND THEIR RELATIVE INVARIANTS

M. SATO AND T. KIMURA*

Introduction

Let G be a connected linear algebraic group, and p a rational re-
presentation of G on a finite-dimensional vector space 7, all defined over
the complex number field C.

We call such a triplet (G, p, V) a prehomogeneous vector space if V
has a Zariski-dense G-orbit. The main purpose of this paper is to classify
all prehomogeneous vector spaces when p is irreducible, and to investigate
their relative invariants and the regularity.

This paper consists of the following eight sections.
§ 1. Preliminaries
§ 2. Castling transforms
§ 3. Classification of reduced triplets (G, p, V) satisfying dim G ̂  dim V
§4. Relative invariants and the regularity
§ 5. The prehomogeneity and relative invariants of reduced triplets

obtained in § 3
§ 6. The semi-simple case
§ 7. Table of reduced irreducible prehomogeneous vector spaces
§ 8. Prehomogeneous vector spaces with finitely many orbits
We now make a brief survey of this paper. For the convenience

of the reader, we shall review, at the beginning of § 1, basic facts about
complex simple Lie algebras, especially their irreducible representations
and their classification. Then we shall construct a simple Lie algebra
of each type and calculate its representation degrees which will be used
in § 3. We shall introduce in § 2 an important notion of castling trans-
form, which is an irreducible prehomogeneous vector space obtained from
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2 MIKIO SATO AND TATSUO KIMURA

a given one by a certain process. It will be shown that each prehomo-
geneous vector space is obtained by successive castling transforms start-
ing from a reduced one, which is characterized by the property that it
has the smallest dimension in a "fixed tree" of those transforms.

Our solution of the classification problem consists of the explicit
description of the process of castling transform and the table of reduced
irreducible prehomogeneous vector spaces which will be given in §7.

Obviously a triplet ((?, p, V) is a prehomogeneous vector space only
when dim G > dim V, and hence as the first step, we classify in § 3 the
reduced triplets satisfying such a condition. To investigate these triplets,
we develop in § 4 a general theory about relative invariants and the re-
gularity of prehomogeneous vector spaces. By using the results of §4,
we investigate in § 5 the reduced triplets obtained in § 3, especially we
determine their prehomogeneity. By a well-known theorem of E. Cartan,
if p is irreducible, the Lie algebra g of p(G) is reductive with center at
most one-dimensional. We have assumed in § 3 and § 5 that the center
of g is one-dimensional. The remaining case will be discussed in § 6.
In the last section, we consider an irreducible triplet with finitely many
orbits. It will be shown that such a triplet is a reduced irreducible
prehomogeneous vector space with few exceptions.

The authors wish to express hearty thanks to Professor T. Shintani
for reading the manuscript and making many invaluable suggestions.

§ 1. Preliminaries

First of all, we shall review the basic facts about complex simple
Lie algebras, especially their irreducible representations and their clas-
sification. We denote by QΪ(V) the Lie algebra of all linear transforma-
tions of a vector space V. Similarly we denote by QΪ(n) the Lie algebra
of all n X n matrices.

The following two theorems give us a principle to solve the classifica-
tion problem in the irreducible case.

THEOREM 1 (E. Cartan). Let dp:Q-^$(y) be an irreducible repre-
sentation of a Lie algebra Q on V over C. Then the image dp(§) is
reductive with center at most one-dimensional, i.e., a semi-simple Lie
subalgebra of gϊ(V) or a direct sum of scalar multiplications (=gϊ(l)) of
V and a semi-simple Lie subalgebra of gl(V) (see [9]).
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PREHOMOGENEOUS VECTOR SPACES 3

THEOREM 2 (I. Schur). Let g = gx Θ Θ & be a Lie algebra of a

direct sum of Lie algebras g^l < i < £), and dp: g —> gl(F) an irreducible

representation of g on the complex vector space V. Then there exist

irreducible representations dpt: g* —> gi(^) of gέ on V/l < i < £) such

that (1) V ^ Vλ <8> Θ V£, (2) dp = dp,Θ <g> d^, i.e.,

ί = l

for X = (Z1? ,Xt) e g, v - (^ ® . . ® v4) e V (see [1]).

DEFINITION 3. Let g be a semi-simple Lie algebra over C. Then

there exists a subalgebra ζ of g satisfying the two conditions: (1) ζ is

a maximal abelian subalgebra, i.e., [Z, Y] = 0 for any X,Y e E), and any

element Z of g satisfying [Z, Y] = 0 for all Y e ϊj belongs to Ij. (2) For

any He^, the linear endomorphism ad (H) of g is diagonalizable (i.e.,

semi-simple). In this case, E) is called a Cartan subalgebra. Let ^ and

ζ2 be two Cartan subalgebras of g. Then there exists an automorphism

L of g satisfying \ — L \. Hence the dimension of a Cartan subalgebra

depends only on g which is called the rank of g.

DEFINITION 4. Let g be a semi-simple Lie algebra, Eι its fixed Cartan

subalgebra, dp: g -> gί(F) a representation of g on V. An element λ of

the dual space ψ of lj is called a weight of dp if gA ^ {0}, where ĝ  =

{x e V\dp(H)x = λ(H)x for any H e ί)}. A non-zero element of gA is called

a weight vector. Let dp': g —> gϊ(VΌ be another representation of g on 7 7.

Then dp and cίp/ are equivalent if and only if they have same weights.

A non-zero weight of the adjoint representation is called a root of

g(with respect to ζ). The totality Δ of roots is called the root system of

g(w. r. t. ί)). If a e Δ, then — a e Δ, dim gα = 1, g = ζ Θ Σ«ej 9« and hence

dimg = rankg +

DEFINITION 5. Let g be any Lie algebra. The symmetric bilinear

form B of g defined by B(X, Y) = Trad Z o ad Y is called the Killing

form of g. This is non-degenerate if and only if g is semi-simple.

DEFINITIOM 6. Let g be a semi-simple Lie algebra of rank L Then

the restriction B\ of the Killing form B to the fixed Cartan subalgebra

ζ is also non-degenerate. Hence, for each root a, there exists uniquely

an element Ha of Ij satisfying a(H) = B(H,HJ for any H e I). Let ^0 be
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4 MIKIO SATO AND TATSUO KIMURA

the vector space over the rational number field Q spanned by Ha for all

aeΔ. Then dimϊ)0 = £, and the restriction 2?|ίo of B to ί)0 is a Q-valued

positive definite symmetric bilinear form. Let Ijjf be the dual vector

space of £)0 over Q. For each λefyf, there exists uniquely an element

Hλ of ζ0 satisfying λ(H) = B(H, Hλ) for any H e ξ>0. Note that J c ζ0* and

for each aeΔ, Ha is the same as the previous definition. We can define

a positive definite inner product (λ, μ) on §f by (λ, μ) = JS(iϊA, ίί^) = λ(Hμ)

D E F I N I T I O N 7. Fix a basis Hly ",He of lj0 over Q. An element λ

of ΐ)o* is called positive if ^ i ^ ) = = λiH^) = 0, Λ(ίQ > 0 for some

k = l, -•-,£. We can define a lexicographical order in §*• Namely,

Λ > μ implies that λ — μ is positive for Λ,μ e I}?.

DEFINITION 8. The totality of positive roots will be denoted by J + .

A positive root is called simple if it is not a sum of two positive roots.

A subset Π = {«!, , a,} of Δ is called a fundamental root system if any

root a is written uniquely as a — mxax + + m/^ where all mt are

non-negative integers or all m< are non-positive integers. There exist

just ^ simple roots al9 9at and they form a fundamental root system.

Conversely, a fundamental root system is the totality of simple roots

under some lexicographical order in ϊjjf.

DEFINITION 9. Let n+ be a vector subspace of g generated by gα

for all aeΔ+. Let dp: g —> gϊ(F) be an irreducible representation of g on

F. Then there exists uniquely, up to constant, a non-zero element x of

V such that dp(v)x = 0 for any i/en+. For such # e F , there exists

J 6 ζ* such that dp(H)x = Λ(H)>x for any i ϊ e ζ . Moreover, this yί is an

element of ϊjjf and a dominant integral form, i.e., —^ >QΓ^ is a non-

negative integer for any aeΔ+. We say that x is a highest weight

vector and Λ is the highest weight of dp.

THEOREM 10. Let Λ be any dominant integral form of ϊj. Then

there exists an irreducible representation dp: g —> gl(7) of g, wiίfe ίfeβ

highest weight A. This gives a one-to-one correspondence between the

equivalence classes of irreducible representations of g and dominant in-

tegral forms. Sometimes we shall denote dp by A.

D E F I N I T I O N 11. Let al9 ---,ae be the simple roots w . r . t . (g,ϊj, J + ) .

Then there exist dominant integral forms Λx, * , Λ uniquely such t h a t
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'PREHOMOGENEOUS VECTOR SPACES 5

2{Ai9 a ) _ δ ^ y = 1, , ̂ ). These A19 , A4 are called fundamental

dominant weights, and the corresponding irreducible representations

dpi: 9 ~* sK^ί) (1 < i < •#) are called the fundamental irreducible repre-

sentations of g. Any dominant integral form A is of the form A =

2 L i ^ Λ where each m^ is a non-negative integer. Let i^ be the highest

weight vector of dpi(l < i < £), and let V be the least g-invariant sub-

® V, <8> ® F^ containing i; = ^ (x) <g)

Then the restriction dp of dpx® - - - ® dpλ® - - ®

dp& ® (x) d^ to y is an irreducible representation of g with the highest

weight A = 2] m i^ί I n view of Theorem 10, the dimension of V depends

only on the corresponding dominant integral form A, and hence we denote

it by d(A) which is called a representation degree of A (or dp).

THEOREM 12 (WeyΓs dimension formula).

d(A) = Π ^Λ + Pfά) where p = ~ Σ a .
«€Λ+ (̂ 0, α ) 2 «€4 +

COROLLARY 13. Lei J = Σ ί - i m ^ α ĉί ^ = Σi=i m ίΛ &β dominant

integral forms such that mt ^ m for each i — 1, , ί and A Φ A!. Then

d(A)

Proof. For any positive root a = 2*=i ^ Λ ( î ^ 0), (A, a) =

2]ί^ m ^ U i , or,) = i Σ i ^< î(«<» «€) > £ Σ* m ^ f e , αt) = Of, or) and this

implies d(i4) > dUO. Q.E.D.

Now, we shall review the classification of simple Lie algebras over C.

DEFINITION 14. Let i2* be an ^-dimensional vector space over the real

number field R with a positive definite inner product ( , ). Define the

length || a || of aeR* as | |α|| = V(a,ά) and denote the angle of two vectors

ai9 a3 e R£ by cQkj.

A subset Π = {a19 , a£} of i2̂  is called an irreducible admissible

system if the following three conditions are satisfied: (1) a19 , at are

linearly independent.

(2) — ^ i ? av is a non-negative integer if iΦj.
(ftp aj)

(3) There is no decomposition of Π such that Π = Πι U Π2 and 77i J_ Π2,
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6 MIKIO SATO AND TATSUO KIMURA

where Πλ J_ 772 implies that {a, β) = 0 for any a e Π1 and βeΠ2.

LEMMA 15. Let 77 = {a19 -,a£} be an irreducible admissible system

of R£. If ai9aj e 77, atΦ as and \\at\\ ^ ||α^||, then they satisfy one of the

following conditions.

(1) dip.* = — i.e. {at,a3) = 0
2

(2) cQtj = ξ-π and | |α < | | = \\aj\\
3

(3) a% = \π

(4) c&j = A r

DEFINITION 16. Let 77 = {a19 ,^} be an irreducible admissible

system in Re. To each vector α:̂  e J, associate a vertex and connect the

two vertices associated to at and aό if and only if (ai9a^ΦO, i.e.,

otfkj φ —. We connect vertices corresponding to at and α̂  with a single,

double, or triple line according to whether cqaj = |ττ, fπ , f̂ r respectively

(see Lemma 15). The arrows point from a longer to a shorter vector,

when the lengths are different. Thus we obtain a connected diagram

which is called the Dynkin diagram of 77.

LEMMA 17. Let 77 be an irreducible admissible system of R£. Then

its Dynkin diagram is one of the following diagrams.

(t ^ 1)

^ 3)
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<X\ a

0 C

oίi a

O (
2̂ «3

—O

O

= 6,7,8)

«1 «2

G2: o ^ # o (4 = 2)

DEFINITION 18. Let g be a semi-simple Lie algebra of rank ί over

C, and let ξ be a fixed Cartan subalgebra. We can extend the inner

product of ϊ)f (see Definition 6) to a positive definite inner product of

^-dimensional vector space R* = ζjf (x)Q /? over R. Let 77 = {αx, , ae) be

a fundamental root system of g. Then, g is simple if and only if Π

satisfies the third condition in Definition 14, i.e., there is no decomposition

such that Π = Π1Ό Π2 and Π1_\_Π2. Moreover, if g is a simple Lie algebra,

Π is an irreducible admissible system of R4, and we can get its Dynkin

diagram by Definition 16. This diagram depends only on g, and we can

call it the Dynkin diagram of a simple Lie algebra g.

THEOREM 19 (Classification of simple Lie algebras). Two simple Lie

algebras QX and g2 ure isomorphic over C if and only if they have the

same Dynkin diagrams. Thus Lemma 17 says that a simple Lie algebra

over C is isomorphic to one of A£(S :> 1), Bt(l ^ 2) Ct{t ^ 3), Όt(t ;> 4),

Eli = 6, 7, 8), FA9 G2.

DEFINITION 20. The simple Lie algebras of type A49Bi9Cί9D4 are

called classical Lie algebras, and those of type E£, F4, G2 are called ex-

ceptional Lie algebras.

We shall construct the all types of simple Lie algebras in Theorem

19 and calculate their representation degrees which will be used in §3.

EXAMPLE 21. Let g = 3ΐ(n, C) be a subalgebra {X e QΪ(n, C) \ Tr X = 0}

of Ql(n,C). Then the Killing form B of g is given by B(X, Y) =

Trad X° ad Y = 2n Tr XY for any X, Y e g. Since this is non-degenerate,

g is a semi-simple Lie algebra. We may take as a Cartan subalgebra

§ the totality of diagonal matrices of trace zero. Let Eiά be a matrix

unit with (i, y)-element 1, all remaining entries zero. Denote an element

λ of ψ by ΣsU aMat e C) if λ(H) = Σ3-i aΛ f o r H = ΣU **#« e ζ. Then
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8 MIKIO SATO AND TATSUO KIMURA

the root system Δ of g w. r. t . § is given by Δ = {λt — λj\ί Φ j , i,j — 1,

• , n) and gu^λJ = C-Etj. We have dim g = n2 — 1, rank g = w — 1. P u t

at — λt — Λί+1 for ί = 1, , % — 1. Since ^ — λό = ^ + αri+1 + + α:,;.!

a fundamental root system. For each root λt — λj9 we shall calculate HH_λj.

Put Hλ._λ. — Σlί=,iμkEkk. Then, by the definition, B(H,Hλ._λ) = 2nΣhμk =

λt — Λj for any H — 22-i Â β'fcfc e E). Thus we get that μt — — , ^ = — — ,

and μk = 0 for kφi9j9 i.e., Hλ._λj = — { E u — Ej3). The fundamental

root system Π = { ,̂ , α ^ J is the totality of simple roots under the

lexicographical order in ϊj? defined by a basis Hλl_λn, , Hλn_1_λn of ή0..

Moreover, by the definition,

0 |i-;|^2/

\i-!\ = l

1_
n

and this shows that Π is an irreducible admissible system and its Dynkin
diagram is of type An_λ. Thus, g = §l(n, C) is a simple Lie algebra of
type An_λ: An^ = gl(n, C).

We shall determine the fundamental dominant weights Λt = Σ * - i m i Λ

for i = 1, . ,n — 1. We may assume that m ί7i == 0 because Σ?=i^i ~ 0.

Since - A _ 1 L ^ _ = m^^ — m^ J + 1 = δυ for i, j = 1, . .,n — 1, and m ^ = 0,
(αrβ, αy)

we get that mί3 = 1 for y < i and m^ = 0 for j > i, i.e., ^ = ^ + λ2 +

• + ί̂ for i = 1, , 7i — 1.

As J + = {̂  - λj\i < j}, n+ = Σ«ej+ Q« = Σ « y CEυ i s t h e totality of

upper triangular matrices with diagonal elements 0 (see Definition 9).

Let Vλ be a ^-dimensional vector space over C spanned by uly -- ,un.

Define a representation dp1 of g by (u19 , un) ι-> (^, , ̂ n)A for any

i e g = 3l(w, C). Then dp1 is the fundamental irreducible representation

of g with the highest weight Λx and ux is the highest weight vector since

dpSv)^ = 0 for any y e n + and dp^H)^ = ^Jϊ for any H = Σ *<#« e 5

In general, let Vk(l <k <n — 1) be a ί ? j-dimensional vector space over

C spanned by exterior tensor products uiχ Λ Λ uik(l <ίi< <ik<n).
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Define a representation dpk of g by dp^A^u^ Λ Λ uik) = ΣjLi utl A

• Λ dpι{A)uij Λ Λ w*fc. Then d f̂c is the fundamental irreducible re-

presentation of g with the highest weight Ak — λx + + λk since

dpk(v)(u! A Λ uk) — 0 for any v e n + and dp(JΆ)uγ A Λ wΛ = (Λ +

• + ΛibX Λ Λ M J for any if = £?«i ^£7^ e ζ. In particular, we

obtain that d(Λk) = ί ? j for 1 < k < n. In view of Definition 11, any

irreducible representation space of gί(n, C) is obtained from a tensor

product of Vι>

Although one can use the WeyΓs dimension formula to calculate

d(Λ) = dim V, there is a simple method for g = gί(n, C) which is also

obtained from the WeyΓs dimension formula. We shall introduce this

method.

DEFINITION 22. To a dominant integral weight A = mkΛk(l <k<

n — 1), we shall attach the diagram

/

k\

In general, to A = mxAx + + m^.^^.j we shall attach the diagram

n-l\

mn-x m i

which is called the Young diagram (in detail, see [1]).

n

n - 1

n-2

n-S

n + 1

n

n-1

n-2

n + 2

71 + 1

n

n + 3

n + 2

n + 4 τι + 5

Figure I.
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10 MIKIO SATO AND TATSUO KIMURA

Write down the number n in each diagonal and to the right direction

the increasing numbers, and to the down direction the decreasing numbers

one by one like in Figure 1. Then, multiply all of them, which we shall

denote by do(Λ).

9

6

4

2

8

5

3

1

6

3

1

4

1

2 1

Figure II.

Write down the number of the hook's length, i.e., the number of squares

of right and down side including itself, like in Figure II. Then multiply

all of them which we shall denote by cLGί).

THEOREM 23. Let A be a dominant integral form of § — §ί{n, C).

Then the dimension d(Λ) is given by

d(A) =

EXAMPLE 24. (1) Let dp be an irreducible representation of g =

2l(n> C) with the highest weight A = Σ?«ί m%Λ-i* Then the highest

weight Λr of the contragredient representation dp* of dp is given by

A! — Σϊ-i mn-iAf Thus we obtain that <Z(Σ?=ίmiΛ) —

, AΛ (n + l)lv(2)
(n - v)! (v + 1)!

(1 < v < n - 1)

n

n-1

#

n — v + 1

n + 1

•

1

1

Figure III.

From the Young diagram in Figure III and Definition 22, we obtain

that do(A) = in + l)n in — 1) in — v + 1) = ^n + — — and d^A) =
(n — v)!

(v — 1)! (v + 1) = - ^ t — — . Hence by Theorem 23, we obtain our result.
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In particular,

( i ) d(2Λx) = in(n + 1),

(ii) d(Ax + Λ2) — \n{yι2 — 1),

(iii) d(Λx + Λn_2) — \n(n + T)(n — 2),

(iv) d(Λλ + Λn_^ = n2 — 1

(v) d(Λ3 + ^x) - in(n - 2){n2 - 1)

(3) d(A2 + AJ =
(n - v)! (v + 1)! 2

(2 < v < n - 1)

n - 1

n - 2

:

tι — v + 1

v + 1

v - 2

1

2

1

Figure IV.

From the Young diagram in Figure IV and Definition 22, we obtain that

do(Λ) = (n + ΐ)n\n - 1) (n - v + 1) = ! n and = 2(v +
in — v)!

l)v(v — 2)! = —¥-Jl—h-. Hence by Theorem 23 we obtain our result. In
(v — 1)

particular,

( i ) d(2A2) - -^nXn2 - 1)

(ii) d(Λ2 + Λn_2) - \n\n + ΐ)(n - 3)

(iii) d(A3 + Λ2) = i±n\n2 - l)(n - 2)

(4)
in — v)! (v + 1)! 6

(3 < v < n — 1)

n

n-1

n-2

n — S

n — v + 1

n + 1 v + 1

v - 3

:

1

3

2

1

Figure V.

From the Young diagram in Figure V and Definition 22, we obtain that

do(Λ) = in + l)n\n - l)\n - 2) . . (n - v + 1) = ( n + ΐ>ln(n"ΐ> and
(^ v)!
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12 MIKIO SATO AND TATSUO KIMUEA

dJUD = 3 2 (v + - l)(v - 3)! = (" + ^ ! 6 Hence by Theorem 23
( 2)(u — 2)

we obtain our result. In particular,

( i ) d(2Λ3) = τh(» + 1 M » - V)\n - 2)
(ii) d(Λ3 + Λ-i) = i»(»2 - 1)(« - 3)

(ϋi)

(5) d(2Λί + Au.d - Din + 2)

n

2

n + 1 n + 2 n + 1

n-2

:

1

2 1

Figure VI.

From the Young diagram in Figure VI and Definition 22, we obtain
that do(Λ) = in + 2)! and djjϊ) = 2(n + l) (n — 2)!. Thus we obtain our
result by Theorem 23.

__ n(n + 1) (n + m — 1) _ (n + m — 1)!
(6)

m! m! - 1)!

n w + 1 .. . n + m — 1

m m — 1 . . . 1

Figure VII.

From the Young diagram in Figure VII and Theorem 23, we obtain

our result. We shall construct the representation dp with the highest

weight mAx. Let V1 be a ^-dimensional vector space over C spanned by

u19 , wn. Define a representation c^ of g by (t^, , un) <-> ( 1̂? , un)A

for any 4 e g = §ί(n, C). Then as we saw in Example 21, this is a repre-

sentation with the highest weight Λx. Let V be a ^ + m ~ ) -dimen-
ml (n — 1)!

sional vector space of complex homogeneous polynomials of degree m in
variables ulf , un. Define a representation dp on 7 by dp(A)(uiχ w<m)
= Σ7=i% * {dpι{A)Ui) ^TO. Then d/? is an irreducible representation
with the highest weight mΛλ and the highest weight vector u?.
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(7) If m = 2, i.e., A = 2Aλ(= | |), we can construct a representa-

tion dp in another way. Namely, let V be the totality of n X n sym-

metric matrices and define dp by dp(A)X = AX + XιA for any A e g =

g[(n, C), X e V. Then dp(v)En = 0 for any ven+ and dp(H)En = 2 ^ u

for any H = Σ?=i ^Z?^ e ϊ). Thus d/? is an irreducible representation of

§l(n, C) with the highest weight 2Aλ. If we take V as the totality of

n x n skew-symmetric matrices and define dp by dp(A)X = AX + X*A

for any A e g = §l(n, C), X eV, then d/? is an irreducible representation

with the highest weight A2 = ^ + λ2 (= — ).

EXAMPLE 25. Let §ρ(w, C) = {Ae gt(2tι, C) (;A/ + JA = 0} be a Lie

/ 0
subalgebra of gϊ(2w, C) where / = — . Then by the definition, an

element A of gϊ(2w, C) is in g = §p(n, C) if and only if A is of the form:

(1.1) = Z, X,Y,Ze M{n, C) .

In particular, we have dim§p(n,C) = n(2n + 1). The Killing form B of

g = %p{n, C) is given by B(JJ9 V) = Trad U ad V = (2n + 2) Tr £77 for any

J7, V e g and as this is non-degenerate, g = %p(n> C) is semi-simple. Define

elements H(λ19 -,λn),E±λί±λ. of g as follows.

(1.2)

' ' ' 9 λn)

1

0

-

0

0

0

•

0

0

0

0

0

0

-En

Then the totality ζ of H(λu , Λn) is a Cartan subalgebra of g = ^ ( ^ , C)

and as ad(H)E±λi±λj = ( ± ^ ± ^ )£r

±,i±^., J = {±^<±^|i,y = 1, ,rc} is the
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14 MIKIO SATO AND TATSUO KIMURA

root system of g w. r. t . ϊ). P u t aλ — λx — λ2, <x2 = λ2 — Λ3, , ocn_x — λn_λ

~.χn9an — 2λn. Then Π = {α ,̂ , αn} is a fundamental root system because

Λ — λj = ocί + ai+ι + + tf^i for i < j , λt — λj = —{aj + aj+ι + + ^_i)

for i > j , and ±(λi + λj) == ±((Λ - Λn) + U, - Λn) + αn) As

i i + 1

ff LH(09 . X -X ,0)
+ 1)

for 1 < i < n - 1 and Ha = ff(0, , 0,2), we obtain that
4( + 1)

<, ̂ ) - 0 for |i - j\ ^ 2, (α4, ^ ) = - 1 for |i - j | = 1 and
4(w + 1)

i < n - 1, (arn-1, αn) = - -1 , (αr4, α4) - -1 for i = 1, ., n - 1,
2(n + 1) 2(n + 1)

and (an, an) = . This shows that g = gp(n, C) is a simple Lie
n + 1

algebra of type Cn. The fundamental dominant weights are Λλ = ^, A2 =
Λ + ^ ' , Λn — λx + ^2 + + λn.

Let 7X be a 2n-dimensional vector space over C spanned by u19
k

• , ̂ 2 n. For 1 < k < n, put Γ*(VΊ) = Vx ® ® V1 and define a map

φ\ Tk(Vί) -> Γ*-^^!) by £>(X ® ® wΛ) = e(^, ̂ 2 )^ 3 ® ® uk where ε is

a skew-symmetric bilinear form on VΊ such that ε(ui9ui+n) = 1 (1 < i < n)

and e(ui9 Uj) = 0 (i < and i ^ i + tz,). Let F fe = Λ*(VΊ) be a vector space

over C spanned by exterior products uitf\ Λ ^ (1 < ix < <ΐk< 2n).

Then 7fc is a subspace of Γfc(7i) and φ(Vk) = 7fc_2. Hence dim 7fc ΓΊ

fc/"~(fc — 2/" ^ s w e s a w * n E χ a m P l e 21, Ffc is a representa-

tion space of §l(2n,C). Since §j)(n, C) is a Lie subalgebra of %l(2n,C),

Vk can be considered as a representation space of &p(n, C). This is not

irreducible, but the subspace Vk Π Ker φ is an irreducible representation

space of 3p(n,C) with the highest weight Ak = λ1 + ••• + λkf i.e., a

fundamental representation of §p(n, C). Thus we obtain that d(Av) =

EXAMPLE 26. We shall calculate the representation degrees of &p(w, C)

for some cases which will be used in §3. Define the lexicographical

order in Ijjf such that Π = {aί9 •••,«»} in Example 25 are simple roots.

T h e n J + = {2^, , 2λn, λ t ± λ 3 (l<ί<j< n)} a n d
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PREHOMOGENEOUS VECTOR SPACES 15

= λ 2 a = Σ (n + 1 - k)λt .
2 «eJ+ fc=i

The inner product in ϊ$ is given by

ί»A» Σ w^) -
i ji J

Define another product { , } by {Σ mA> Σ n A l — Σ m Λ Then the
WeyΓs dimension formula (Theorem 12) says that

d(Λ) = Π .

Assume that A = m^i + m2Λ2 with mx ^ m2 ^ 0. Then (yl, 2λ%) = 0 (3 <

ί<ri), (Λ, λt ± λj) = 0 (3 <i< j <ri) and hence we obtain that

{Λ + p, 2^}μ + p, 2λ2}{Λ + p, Λ + Λ2}{Λ + p, Λ - λ2)
{p, 2λι}{Pf 2λ2}{p, λλ + λ2}{p, Λ - λ2)

X Π Π {Λ + p.λj + λMΛ + piλt-λj}
{ *

H e r e {p, ̂  + λ3) = 2 n + 2 - i - y (1 < i < j < n), {P, λ t - λj} = j-ί(l<

i<j< ri), {Λ, 2λt} = 2mS = 1,2), {Λ, λ1 ± λ2) = m1± m2> a n d {A, λ t ± λ3)

= mS = 1,2, / = 3, , %). Thus we obtain that

m2λ2)

— 3 + m2)! (2rc — 1 + m1 + m2)(l + mt — m2)

- 1)! (2n - 3)! (mx + 1)! m 2 !

In particular, we get

(1) dimAd = - ( ^ - 1 + m);(i.e., mx = mfm2 = 0)

(2n — 1)! m!

( i ) d(Aλ) = 2n

(ii) d(2Ax) = ?ι(2^ + 1) = dim £p(ra, C)
(iii) d&A1) = Mn + ! ) ( 2 ^ + 1)

(2) d(A, + A2) = |n(n 2 - 1) (i.e., mλ = 2ym2 = 1)
(3) d(2A2) = ^ι(n - l)(2rc - l)(2n + 3) (i.e., mι = m2 = 2)

(4) d(Λ2) = (w - D(2w + 1) = ( 2 ^) - ( 2 ^) (i.e., mι = m2 = 1)

This is a special case of d(Λv) = ( 2 ^) - ( v

2 Γ /

2 ) i n E χ a m p l e 25.

Now assume that w = 3 and A = m ^ + m2^2 + m3^3 with mx^m2^i
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16 MIKIO SATO AND TATSUO KIMURA

m3 ^ 0. Then J + = {2λl9 2λ2,2Λ3, λι ± λ2, λx ± λz, λ2 ± λ,} and p = 3^ + 2λ2 + λz.
Since {p, λt + λj} = 8 - i - j , {p, λt - λά) = j - i, {A, λ€ ± λj} = mί± mj9 we

^ + p ' ^ = 1
obtain that d(A) = fl

m2

5760
m3)(l(5 + mx + m2)(4 + mι + ms)(3

(2 + mx — m3). In particular,
(5) dUi + A3) = 70 (n = 3, m2 = 2, m2 = m3 = 1)
(6) d(A2 + A,) = 126 O = 3, m t = m2 = 2, m3 = 1)

(6 + 2m!)(4 + 2m2)(2 + 2m3)

mx — m2)(l + m2 - m3)

(7) = 84 in = 3, mx = ra2 = m3 = 2).

EXAMPLE 27. Let o(n, C) = {Z e gt(n, C) | £Z + X = 0} be a Lie sub-

algebra of gί(n, C). The Killing form 5 of o(n,C) is given by #(X, Y)
= Trad Z ad Y = (n - 2) Tr XY. If an element X of o(n, C) satisfies the
condition B(X, A) = 0 for any A e o(w, C), then Z = ιX since Tr (Z - ιX)Z
= Tr Z(Z - *Z) = 0 for any Z e βί(n, C). On the other hand, as Z e o(n, C)
implies Z = — *Z, and we get that Z = 0. This shows that B is non-de-
generate and hence o(n,C) is semi-simple. First, we shall consider the
case of n = 2m + 1. Put

(1.3)

1

0

(

0

/ .

I.

0

r =

1

0

1 7

0

VT" / r a

Λ ^ ϊ 7

Let 9 = {AG gt(2m + 1, C)\ιAK + KA = 0} be a Lie subalgebra of
gl(2m + 1, C). Since Γ-1gΓ = o(2m + 1, C), g is isomorphic to o(2m + 1, C)
over C and sometimes we denote g also by o(2m + 1, C). g is the totality
of elements of gl(2m + 1, C) of the form:

(1.4)

0

f 
f z

bi bm

Y

with = -Y,'Z= -Z

Denote by H = , λm) the element of g such that I is a
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PREHOMOGENEOUS VECTOR SPACES 17

diagonal matrix with diagonal elements λ19 , λm and Y = Z ~ 0, at =

6< = 0 (1 < i < m) in (1.4). The totality I) of such elements is a Cartan

subalgebra of g, and Δ = {±λi9 ±λj±λk (j < k)} is the root system

of g. w. r. 1.1). Put ax = ^ - Λ2, α2 = Λ2 - Λ3, , am_x = Λm_! - ΛTO, αm = λm.

Then TΓ = {a19 , am} is a fundamental root system because λt — ^ = α4

+ <*i+i + + αr, for i < j , λt - λj = — (α, + α,+1 + + at) for i > j , ±λt

= ± « Λ - ^m) + ;T O), and ±(λt + λj) = ± ( « 4 - ΛJ + α, - λj + 2λJ. As

i ί + l

Ha. = H(0, .. ,Y, -Y, 0, .. , 0)
1 2(2m - 1)

for 1 < i < m — 1 and £Γβ = H(Q, , 0,1), we obtain that
2(2m — 1)

u aj) = 0 for \ί - j\ ^ 2, (au a3) = ——— — for |ΐ - j | = 1, (a<, ^ ) =

for 1 < i < m — 1 and (am9 am) = . This shows that
2(2 1)

for 1 < i < m 1 and (am9 am)
2m — 1 2(2m — 1)

g = o(2m + 1, C) is a simple Lie algebra of type 5 m . The fundamental

dominant weights are Λλ — λ19 Λ2 = λλ + λ29 , Λm_i = ^ + + λm_19

Λm = JUi + + Λ J . If m = 1, then 4̂X = %λλ. Let VΊ be a %(= 2m +

l)-dimensional vector space over C spanned by u19 -,un. For 1 < k <

m — 1, let Ffc be a KΠ -dimensional vector space over C spanned by ex-

terior products uixf\ Λuik (1 < ίx < <ik<ri). Then as we saw

in Example 21, Ffc is an irreducible representation space of §l(n9 C) and

its restriction to o(n9 C) is still irreducible. Thus Vk is an irreducible

representation space of o(n, C) with the highest weight Λk (1 < k < m — 1).

Hence d(Λk) - (fy = ( 2 m

f c

+ Λ for 1 < fc < m - 1.

Now we shall calculate eZC4J. The inner product in ζ0* is

Define the inner product { , } by {Σ ^Λ> Σ nA) = Σ m Λ Under the

lexicographical order in ii0* such that 77 = {a19 , «:m} are simple roots,

A+ = {̂ , . . . , Λm, χt ± λό (1 < % < j < m)} and p = Σ?=i (m — fc + J)Λfc. Since

^m = iWi + * + Λ J , {̂ ίm, ^ - Λ̂ } = 0, μ m , Λ4 + λj} = 1, and μ m , ^} = J,

the WeyPs dimension formula says that
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18 MIKIO SATO AND TATSUO KIMURA

ί=i (m —

m + p, a) __ fr {Λm + p, λj} π {Λm + p, λt +
-, s 11 —Λ 11 r : — — ~ Λ(p,a) <-i {p,λi} i<i<J< {P + λ}

π (2m + 2 - i - j)
(2m + 1 - i - j)

Here

π (2m + 2 - i - j)
(2m + 1 - i - j)

1)) -i (2m + 2 - i -
Ji1 (2m + 1 - ί - m)

2-ί-(ί + 1))
*-i (2m + 1 - i - m)

(2m + 1 - i - i)

λi (m - i + 1)

and hence we get d(Am) — 2m = 2{n'l)/2. This 2m-dimensional representation

of g = o(2m + 1, C) is called the spin representation. We shall construct

the spin representation in §5. Finally, we shall calculate

By the WeyΓs dimension formula,

d(sAx) = IIIL ΓT λJ)(sΛι

= (m - I + Π
7=2

(p, λi + λj)(p, λx — λj)

(2m - j + s)(j - 1 + s)

(2m - j)(j - 1)

- (2m + s - 2)! (2m + 2s — 1)
~ (2m - 1)! s! '

Thus we obtain the following results.

(1) d(Av) = ^ j for 1 < v < m — 1 (w = 2m + 1)

(2) d(Am) = 2m = 2(w~1)/2 (n = 2m + 1)

(3) dζsA^ = , in particularAJ ?

(2m — 1)! s!
(30 d(2^i) = m(2m + 3) = \{n - ΐ)(n + 2) (n = 2m + 1).

EXAMPLE 28. We shall consider the Lie algebra o(n, C) with n — 2m.

Put

(1.5) Γ =

ί" x i
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PREHOMOGENEOUS VECTOR SPACES 19

B = {X e gί(2m, C) I ιAK + KA = 0}. Then a is isomorphic to o(2m, C)

over C since o(2m, C) = T^gΓ. One can easily check that

(1.6)
X

Ύ = - Γ , <£ = - Z

and the totality Jj of elements H = H(λ19 , 4 ) of g such that X is a

diagonal matrix with diagonal elements λ19 , 4 and Γ = Z = 0 in (1.6)

is a Cartan subalgebra of g. The root system Δ of g w. r. t. Ij is given

by Δ = {̂  ± ^ (i =?ί= it)} and 77 = {^ = ^ — λ29 , # w _! = 4 _ x — 4 , <*TO =

4 - i + 4 } is a fundamental root system because λt — ^ = at + ai+1 +

• + oίj for i < j9 λt — λ3 = — (αr̂  + α i + 1 + + a^ if i > ;/, and ±(

-H(0, . X-X
2(2m - 2)

J?(0, , 0,1,1), we obtain that

, 0) (1 < i < m - 1) and ί L =
2(2m - 2)

(1.7)

0

- 1
2(2m -

- 1
2(2m -

0

1

I (2m -

2)

•2)

2)

(K — i | ^ 2, i < m — 1, / < m — 1)

(i = m — 2, y = m)

(|i — y| = l , ί < m — 1, / < m — 1)

(ί φ m — 2, y = m)

(i = Λ

If m = 2, then Π = {al9 a2}, {aλ} J_ {a2} and this implies that o(4, C) is not

simple. In fact, o(4,C) ^ ^ί(2,C)Θ^(2,C). If m ^ 3, this shows that

g(^o(2m, C)) is a simple Lie algebra of type Dm, The fundamental domi-

nant weights are Λv = ^ + + Λw (1 < p < m — 2), ^m_i = \{λx + +

4 - i — m̂)> and Λm = K î + + 4 ) Similarly as in Example 27, we

can calculate the following results.

(1) d(Λv) - (Λ = f2™) for 1 < v < m - 2 (w = 2m)

(2) d{Λm_x) = dWJ - 2 - 1 - 2*'2-1 (n - 2m)

(3) d&Λ1) = (2m - l)(m + 1) - i(n - l)(w + 2) (n = 2m).

Here -42 is the adjoint representation (see Example 24 (7)).

The irreducible representation dpv with the highest weight Λv(v =

m — 1, or m) is called the even (resp. odd) half-spin representation of
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20 MIKIO SATO AND TATSUO KIMURA

g — o(2m, C) if v is even (resp. odd). Although dpm_x and ^ T O are not

equivalent, there exists an outer automorphism σ of g such that dpm_1oσ

and dpm are equivalent. The restrictions of dpm_x and dpm to o(2m — 1, C)

are equivalent and it is the spin representation of o(2m — 1, C). In the

case of m = 4, we have dO^) = eZC43) = d(^ί4) = 8, and moreover there

exist outer automorphisms σz, σ4 such that dplf dp3 o σz, dp4 o σ4 are equivalent,

where dp1 denotes the standard representation of o(8, C) with the highest

weight Λx (see (5.30) in §5). The weights of dp19dp39dρ4 are {±λif

i = l,2,3,4}, {±Aί,i = 1,2,3,4}, {±Af,i = 1,2,3,4} respectively, where

Λ't = itfi + λ2 + λ3 + λd - λi9 Af = iQi + 2̂ + Λ3 + W, A} = i ϋ i + Λ - h - λ4),

Af — £(^ — 2̂ + 3̂ — Ĵ> ̂ f = l ϋ i — Λ — Λ + Λ) We shall construct the

even half-spin representation in § 5.

DEFINITION 29. Let dp: g —> gt(V) be a representation of a Lie algebra

g on V. Let # be an element of V and let ĝ  = {A e g | ̂ ( A ) ^ = 0} be

a subset of g. Then ĝ  is a subalgebra of g and is called the isotropy

subalgebra of g at x.

EXAMPLE 30. Let g be the totality of elements of gί(7, C) of the

form:

0

(1.8) A =

2d

0
c

- 6

2e

X

— c
0
a

2/

b
—a
0

2α

0
-r

e

25
/

0
-d

-ιX

2c 1

— e
d
0 with Z e 31(3, C)

Then g is a Lie subalgebra of gϊ(7, C). In fact, this is the isotropy

subalgebra of gl(7, C) at a? = ^2 Λ uz Λ ^4 + uδ Λ ^6 Λ ^7 + uγ A (u2 Λ u6 +

u3 Λu6 + u4 Λ u7) under the irreducible representation with the highest

weight A A — (see Example 21 and (8) in §5).

The Killing form B of g is B(A, A') = Tr ad A ad A' = 2A(ad! + a'd

+ be' + bfe + cf + c'f) + 8 Tr XX', and as this is non-degenerate, g is

a semi-simple Lie algebra. The totality ζ of elements H = H(λ19 λ2) of g

such t h a t X is a diagonal matr ix with diagonal element λ19 λ2, λz = — Λ — ̂ 2,

all remaining entries zero in (1.8), is a Cartan subalgebra of g.

The root system Δ of g w . r . t . 1} is given by
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Δ = {±λlt ±λ2, ±λ1±λ2, ±(Λ + 2λ2), ±{2λ, + λ2)} .

A subset Π — {<*! = λx — λ2, a2 = λ2} of Δ is a fundamental root system

since ±λt = ±{ax + α2), ±Λ2 = ±α 2 , + (<?! + λ2) = ±(aλ + 2a2), ± ( ^ — λ2) =

±α» ±G*i + 2^) = ±(«! + 3α2), ± ( 2 ^ + λ2) = ± ( 2 ^ + 3α2). Since B(#, ίΓ)

= 8(2^ + λ2)λ[ + 8(Λ + 2 ; ^ , we obtain that

H _ 77/ 2mt
— m2 2m2 — m1

24 ' 24

and (m^j + m2^2, n ^ ! + %2Λ2) = x^-Cmin! + m2w2) — •^f(m1n2 + m 2 ^ ) , in par-

ticular, (OΓX, αx) = J, («!, αrg) = — £, (α2, α:2) = ^ i.e., H^H = Vr3"||αr2||> βWs = l ^

This shows t h a t the Dynkin diagram of g is o ^ ^ o (see Lemma 17),

and hence g is a simple Lie algebra of type G2.

We sometimes denote g by g2 or (g2). Now we shall calculate the

fundamental dominant weights Λλ = mλλλ + m2λ2 and A2 = wΛ + n2^2.

Since ^ x'ai' = mx — m2 = 1 and C^, <̂ 2) = — ( 2 m 2 — m ^ = 0, we obtain
G*i, QΓi) 24

t h a t mx = 2,m2 — 1, i.e., ^ x = 2 ^ + λ2(=2a1 + 3a2). Similarly as (A^aJ

— —{nx — n2) = 0 and ^ 2>a^ = 2n2 — nλ = 1, we obtain t h a t nx = π 28 (α2, a2)

= 1, i.e., y42 = Λj + ^2 (=<^i + 2α2). Define the lexicographical order in

5? such t h a t Π = {a19 a2} are simple roots. Then A+ = {aί9 a2, aγ + a2, aγ +

2a29 o^i + 3# 2 ,2^! + 3α2} and p = \ ΣaeΔ+ & = 3<̂ i + 5α2. For a dominant

integral form Λ = mxAx + m2yl2, since {A + p, aλ) = m * + — , (yί + p, a2) —
8

m<ι .—, (̂ o, aλ) = —, and (̂ , αr2) = > the WeyPs dimension formula says

that d(A) = Π ^ ^ ^ ^ = ^ ( ^ i + D(^2 + IX^i + m2 + 2)(2m1 + m2
«6i+ (/o,α) 120

+ 3)(3m1 + m2 + 4X3?^ + 2m2 + 5). In particular, d{A2) = 7, eZĜ ) = 14,

d(2^2) = 27, d(Aί + A2) = 64, d(24) = d(3^12) = 77, d(2Aί + A2) = 189. In

view of Corollary 13, 14 ( = dim (g2))-dimensional representation is only

Aί9 and hence Λ1 must be the adjoint representation of (g2). The identity

map of g into gί(7, C) is Λ2. (We denote the representation correspond-

ing to A, by A. See Theorem 10.) The derivation algebra of the Cayley

numbers is also (g2) (see Example 41).

Now we shall construct the exceptional Lie algebras of type F4 and E%.

https://doi.org/10.1017/S0027763000017633 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000017633


22 MIKIO SATO AND TATSUO KIMURA

DEFINITION 31. Let Q = CΛ + C eι + C e2 + C-e&iel = e\ = —1,
exe2 = — e2ej be the quaternion algebra over C. For a Q-module © =
Q + Qe, define the multiplication by (q + re) (s + te) = (#s — ϊr) + (fiq
+ rs)e where q,r,s,teQ and s,t are conjugates of s,t respectively.
Thus we obtain a non-associative algebra (£ of dimension 8, called the
Cayley algebra over C. The conjugate x oί x = q + re(q, reQ) is defined
by x = g—re. Then xy — y-x. The exceptional simple Jordan algebra
# over C is the non-associative algebra of dimension 27 whose elements
are 3 x 3 Hermitian matrices with elements in the Cayley algebra S,
multiplication being defined by XoY = \{XY + YX) where XY is the
ordinary matrix product.

(1.9)

We write the trace ξ 1 + ζ2 + ξ3 = Tr Z. The derivation algebra 2 of
/̂ is the Lie algebra of endomorphisms D of / satisfying D(X o Y) =

DZoY + XoDY.
We shall see that QJ is a simple Lie algebra of type F4. By a right

multiplication i?F is meant the endomorphism I ^ I o Y for every X in
</. Then [RX,RY] = RxoRγ — RγoRx is a derivation of ,/ and [D,i2J
= RDZtorDe®,Xef. Let o(8, C) = {X € gl(8, C) | 'Z + X = 0} be the
simple Lie algebra D4. We regard the elements of o(8,C) as endomor-
phisms of the Cayley algebra ©. This algebra is equipped with a trace
function tr # = x + x satisfying tr xy — tr yx, tr x(yz) = tr (^τ/)^(= tr ##2).
Also, tr α?2/ is a non-degenerate bilinear form. An endomorphism U of
© is in 0(8, C) if and only if U leaves the norm form xx invariant:

(1.10) (Ux)x + x(Ux) = 0 .

PROPOSITION 32 (Principle of Triality). For U in 0(8, C), ί&ere
unique U', V" in 0(8, C)

(1.11) tr (Ux)yz + tr αClPiOs + tr xy(J]"z) = 0

/or all x9y,z in ©. Γfcese U' and V" are the inequίvalent half-spin
representations of U in DA (see Example 28).

Associated with the exceptional simple Jordan algebra f are the
bilinear form TrZoY and the trilinear form
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φ(X, Y,Z)=:Ύr(XoY)oZ = ΎrXo(YoZ) .

PROPOSITION 33. An endomorphίsm D of / is a derivation if and

only if D leaves both T r Z o Γ and φ(X,Y,Z) invariant^ i.e.,

(i)
(ii) φ{DX, Y, Z) + φ(X, ΌY, Z) + φ{X, Y, DZ) = 0.

DEFINITION 34.

E» =

for α e S .

Λ = {(α,)e/ |αee} (1 < i < 3)

^o = {Ae&\AEt = 0 for 1 < i < 3}

PROPOSITION 35. ^ 0 ^ o(8, c), dim ^ 0 = 28.

Proof. Since Eio(a)t = 0 and (α)̂  = 2Ejo(a)i(j Φ i), we obtain that

jDCα)̂  = 2£^ o D(α)ί for D e So, i ^ i. This implies that ^^At c Άt for

1 < i < 3, and let U, Uf

9 U" be the restriction of D to Ά19 Ά2, Ά3 respec-

/0 \2

tively for each D e ^ 0 . As D leaves Tr 0 xΛ — 2x^ invariant, U
\ ^ 0/

is an element of o(8, C) and so do TJr and U/; similarly. Since D leaves

the trilinear form φ(X, Y, Z) invariant, U, U\ TJ" satisfy the principle of

triality, i.e., U;,U" are two inequivalent half-spin representations of U.

Thus we get

0 U'% U'x,

(1.12) X^DX =\ U'% 0 Uxx I for D e

\U'x2 TJx, 0

Conversely, as a linear transformation of this type leaves both ΎrXoY

and φ(X9 Y, Z) invariant, it is a derivation of / by Proposition 33, and

hence we obtain our assertion. Q.E.D.
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DEFINITION 36. (α)ί = LR* a,# ( e ) 1], (α)ί - [ β ^

for α e g . & = {(α)ί e S | α e © } (1 < i < 3)

PROPOSITION 37. 0 = ^ 0 Θ Si Θ & θ &> dim ^ = 52.

Proof. Let D be any derivation of /". As EioEi = Eί9 we get

22?̂ o(ZλE )̂ = IλE^ for 1 < ί < 3 and hence there exist a,b,c,d,e,f,g eK

satisfying D ^ = (α)3 - (6)2, Z>JS72 = (c)x - (d)3 and D# 3 - (/)2 - (#)3. On

the other hand, we get EλoφE2) + (DE1)oE2 = 0 from EλoE2 = 0. This

implies (α)3 — (d)3. Thus we get DEX = (α)3 — (6)2, <D£72 = — (α)3 + (c\

and Dί73 = (6)2 - (c\. Put T = 4(αX - 4(6% + 4(c)ί. Then T is a deriva-

tion satisfying TEX = (α)3 - (δ)2, Γ£?2 - - (α) 3 + (c)1? T# 3 = (&)2 - (<0i and

hence φ - Γ ) ^ = 0 (1 < i < 3), i.e., Z> - T e So. This implies that

^ = ^ o θ S i θ S 2 Θ S 3 and dim ® = 52 since dim ^ 0 = 28, dim S< = 8

(l<i<3). Q.E.D.

EXAMPLE 38. We shall study the derivation Lie algebra g = 2 of

the exceptional simple Jordan algebra </. Let D be an element of ^ 0

of the form in (1.12). Then αdφ).(α)ί = [ZJ, [β^,/2(β)1]] = WE*, W,RiaH]]

+ [[D,RE%]9RWι] = [ ^ 2 , ^ ( a ) J + [β ΰ £ 2 ,β ( α)J = [RB,,RιuaΛ = (Ua)i. Simi-

larly we have ad(D).(a)'2 = (JJ'ay* ad(D).(a% = (Z7;/α) .̂ Since ί/7, E7" are

two inequivalent half-spin representations of Z7 in o(8, C), the adjoint

representation of g induces a representation of S o = o(8, C) on g which

is the sum of the adjoint representation Λ2 on ^ 0 , the standard repre-

sentation Λλ on ^!, and two inequivalent half-spin representations Λ3,Λ4

on $2>$3 (see Example 28). Hence a Cartan subalgebra ^ of ^ 0 = o(8, C)

is a Cartan subalgebra of g and the root system Δ is the sum of the

weights of Λ29Λ19ΛZ,ΛA, i.e., Δ = { ± ^ t ± ^ , i < ; = 1,2,3,4; ± ^ , ± 4 , ±Λf,

i = 1,2,3,4} where Λ'iy Λf are defined as in Example 28. Put ^ = λ2 — λ3,

Mi — \ — h, a3 = λi9 a4 = %(λλ — λ2 — λz — 24). T h e n , Π = {alf a2, a3, <*4} i s a

fundamental root system, and under the lexicographical order of 5? such

that aid < ί < 4) are simple roots, Δ+ = {#!, α2, αr3, <̂ 4, αx + a2, a2 + α3, a3 +

a4, aλ + a2 + α3, α2 + a3 + ccA, a2 + 2a3, ccλ + a2 + a3 + a4, aλ + a2 + 2a3, a2 +

2α3 + α4, «! + a2 + 2a3 + α4, αx + 2α:2 + 2α3, a2 + 2α3 + 2α4, ax + a2 + 2a3 +

2α4, ax + 2a2 + 2a3 + a^ ax + 2a2 + 2a3 + 2a4, ax + 2a2 + Sa3 + a4, aγ + 2a2

+ 3a3 + 2aiy ax + 2a2 + Aaz + 2a,, ax + Sa2 + 4a3 + 2a,, 2a, + Sa2 + 4a3 + 2a,}

and p = ΣΛ«QΔ+ a = 8a, + 15a2 + 21a3 + llaA. Let B be the Killing form

of β . Then for D = Do + (a)ί + (δ)ί + (c% e g, Do e ®0, B(D, D) = fB'(D 0, Do)

— f(aa + bb + cc) where B' is the Killing form of ^ 0 = o(8, C) (see p. I l l
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[5]). As B is non-degenerate, g is semi-simple. Since B(H,H) =

for H = H(λίf λ2fλ3, λ4) e Eι, we get

Tj ττi Wfc\ Wi/ ?. ΎW").

^ V and in part icular (α^, aγ) = (a2, oc2) = £,

(or3, αr3) = (α4, a4) = -jig, (α1? α2) = (α2, αr3) = — -fa, (aZ9 a4) — —fa> (al9 a3) =

(«!, or4) = (a2, a4) = 0. This shows t h a t the Dynkin diagram of g is

and g — S is the simple Lie algebra of type FA.

P u t Aλ = 18(2^ + 3«r2 + 4αr3 + 2aΛ), Λ2 = 18(3^ + 6a2 + 8^3 + 4*4), ^ 3 =

18(2^ + 4*2 + 6<23 + δαrj, and A, = ISia, + 2a2 + Sa3 + 2a4). Then since

^ i9aJ'. — 8^ for 1 < i, y < 4, yli, yί2> Ay Λ are the fundamental dominant
((Xj, (Xj)

weights. Let A = 2]ί=i ^ ^ < ( m i ^ 0, integer) be any dominant integral

form. Then the WeyΓs dimension formula says that d(J) = fl - ^ + p' °^
e^ ( 0 0 : )

7Π,
o l 5 9 7 K4 Γ72 H ^ 1

2 o o 7 11

+ 3)(m3 + m4 + 2)(m2 + m3 + 2)(2mi + 2m2 + m3 + 5)(2m2 + m3 + m4 + 4)

(2m1 + 2m2 + m3 + m4 + 6)(m! + m2 + m3 + 3)(2m2 + 2m3 + m4 + 5)(m2 +

m3 + m4 + 3)(m! + 2m2 + m3 + 4)(2mi + 2m2 + 2m3 + m4 + 7)0^ + m2 +

m3 + m4 + 4)(2m! + 4m2 + 2m3 + m4 + 9)(mi + 2m2 + mz + m4 + 5)(2mι +

4m2 + 3w3 + m4 + 10)(2m! + 4m2 + 3m3 + 2m4 + ll)(m1 + 2m2 + 2m3 + m4

+ 6)(m1 + 3m2 + 2m3 + m4 + 7)(2m1 + 3m2 + 2m3 + m4 + 8). For example,

= 26, dWO = 52, d(yί3) = 273, d(2AA) = 324, ^(2^0 = d(A, + A,) = 1053,

- 1274, d(3^ί4) = 2652, d(2Λ3) = 19448, d(2τl2) == 226746, etc. Let / 0 =

{X G / 1 Tr X = 0} be a 26-dimensional subspace of / over C. Then, / 0

is an invariant subspace of the derivation algebra F 4 = S of f, i.e., ,/0

is an irreducible representation space of A4. Obviously, Λ1 is the adjoint

representation of F 4 .

EXAMPLE 39. Let g be the Lie algebra spanned by the derivations

(=F4) of f and the right multiplications of elements Y of trace 0. If

X and Y are in /, then [RX,RY] is in @(=F4); moreover, if De@, then

[D, Rγ\ = β ΰ F and Tr DY = 0. It follows that g = ^ + {Rγ}, Tr Y = 0.

Since D(l) = 0 for every derivation Z) of f, D + Rγ = 0 implies Y = 0,

D = 0 thus g is of dimension 78, and the adjoint representation of g
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induces a representation of 3 (=F4) which is the sum of the adjoint
representation Λx and of the representation A4 whose space is the set 0t
of right multiplications of elements in $ § Since 3 and 01 yield irreduc-
ible representation spaces of 3 of distinct dimensions, the only possible
ideals are {0}, 3,0£ and 3 + 01 — g; but 3 and 0t are obviously not
ideals, which proves that g is simple (these are quoted from [4]). Let
B be the Killing form of g. Then

B(Ra + D,Ra + D) = 12Trαoα + ±B'φ,D)
ό

where B' is the Killing form of F 4 = 3. Let ty be a Cartan subalgebra of
F4 = S and let ffx, iϊ2, £Γ3, #4 be its basis satisfying H(λl9 λ29 λ39 λ4) = Σ t i k^i
for any £ % , , λ4) e I)'. Set ΐί5 = # £ l , H6 — REi, H7 — REz where Et are as
in Definition 34. Then ϊ) = {ΣI=i^Λ \ h + λQ + Λ7 = 0} is a Cartan subalgebra
of g. The root system J of g w.r.t.Ij is given by Δ — {±λi±λj9i < j =
1, 2, 3, 4 ± ^ ± i ϋ β ~ « ± 4 ± έ a - Λ) ±Λ*±έΛ ~ Λ), < = 1, 2, 3, 4}
where ί̂ , Jf are defined as in Example 28. Put ax = — Ĵ + ^U5 — ̂ 6), α:2

= Λ — Λ Then Z? = {̂ , , a6} is a fundamental root system. Since

B (Σ ^Hi, Σ X&i) = 24 Σ ^ ί + 12 Σ Vi ,
i l 5

we obtain that (Σ m^i> Σ nj^j) — ~h Σί-i m*% + "A" ΣI=5 m ^o i n particular
(ai9 α<) = ^ for 1 < ΐ < 6, («<, α<+1) = — ^ for 1 < i < 4, and (or*, αy) = 0 for
\i — j\ Ξ> 2 except for (α3,αβ) = —&. This shows that the Dynkin diagram

O O 0

of g is i.e., g is the simple Lie algebra of type

E&. Under the lexicographical order in ϊ)<f such that Π = {a19 , a6} are
simple roots, all positive roots Δ+ is given by A+ = {a19 a2, a3, a4, aδ, a6

ax +. or2, α2 + <z3, α3 + ^4> ^4 + &δ> a3 + a6; ax + a2 + a3, a2 + a3 + a4, a3 + a4 +

a5, a3 + a4 + a6, a2 + a3 + aQ aλ + a2 + a3 + a4, a2 + a3 + a4 + aδ, a3 + a4 +

a5 + aβ, ax + a2 + a3 + αβ, a2 + a3 + a4 + a6, ax + a2 + a3 + a4 + a5, a2 + a3

+ a4 + a5 + αβ, a2 + 2a3 + a4 + a6, aλ + <x2 + a3 + a4 + <x6 ax + a2 + a3 + a4

+ aδ + α 6,a x + a2 + 2a3 + a4 + a6,a2 + 2az + a4 + a5 + a6; ax + a2 + 2a3 + a4

+ a5 + a6, <xx + 2a2 + 2a3 + a4 + a6, a2 + 2a3 + 2a4 + a5 + a6 ax + a2 + 2a3

+ 2a4 + a5 + αβ, ax + 2a2 + 2a3 + a4 + aδ + a6; ax + 2a2 + 2a3 + 2a4 + aδ +
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a6 a1 + 2a2 + 3#3 + 2a4 + a6 + ad; ^ + 2a2 + Sa3 + 2a4 + aδ + 2ad}. Hence

we obtain that p = \ Σ«ej+ α = 8ατi + 15α2 + 21αr3 + 15αf4 + 8a5 + llα:6, and

(p, at) — £Ϊ for 1 < i < 6. Let y ,̂ , A6 be the fundamental weights,

i.e., 2(Ai>a^ = 3 t i for i, , = 1, - . . , 6. Let A = Σ ^ M , (m< ̂  0, integer)

be any dominant integral form of g = £76. Since (Λ + p, at) = ^m^^^, or̂ )

+ Tϊ = T4(mί + 1) f ° r 1 < ί < 6, the WeyPs dimension formula says that

d(A) = π ( y ί + ^? ̂  = π (ΣLi %( m ^ + i)) β

( ) ( Σ ? ^ )

For example, dWJ = d(^ί5) = 27, d(A) = 78, d(2A1) = d(A2) = d(A,) = 351,

d(A3) — 2925, d(2A6) = 2430, etc. Here Λx and ί̂5 are contragredient of

each other and so do A2 and AA. Let dpt be the fundamental irreducible

representations of E6 (1 < i < 6). Then there exists an outer automor-

phism a of £76 such that dp5 and dpxoσ are equivalent. The representa-

tion space of Aλ (and Λ5) is the exceptional simple Jordan algebra β.

A6 is the adjoint representation.

Let N(X) = det Z = ξ1ξ2ξ3 + tr ^!^2^3 — ξ&fit — f2̂ 2̂ 2 — ξz^z be the

determinant of X of the form (1.9) in / . Then E6 leaves N(X) invariant.

Let N(X, Y,Z) be the trilinear form obtained by polarizing N(X). Then

the Lie algebra E6 can be characterized as the set of linear transforma-

tions L of / such that N(LX, Y,Z) + N{X,LY,Z) + N(X, Y,LZ) = 0.

EXAMPLE 40. We shall construct the Lie algebra of type E7. Let

#6(/) be the Lie algebra spanned by the derivations @(=FJ of β and

and the right multiplications of elements Γ, but not necessarily of trace

0, i.e., #«,(/) = EQΦCRJ where / is the unit matrix in / . Let J be

a vector space isomorphic to f under the mapping X *-> X. We shall

define the structure of a Lie algebra in a vector space g = β 0 / 0 S

of dimension 133 over C such that ij<J) is a subalgebra and

[Z,Γ] = 0 = [X,Γ] for I J e /

(1.13) [L, Z] = LX for L e #6(/), Z 6 /

[L, Z] = LX where L = - β Γ + D if

L = Rγ + D,De ^(=F 4 ) .

The Killing form B of g is given by B(A, Af) = 2Bfφ,Df) + 18Γ(Z,Z0
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- 36(T(X, Y') + T(Y, ZO) for A = (X, F, # z + £>), A' = (X', F ' , β z , +

DO eg where B' is the Killing form of F 4 and T(X, Y) = T r Z o Γ for

I , Y e / . Since B is non-degenerate, the Lie algebra g is semi-simple.

Let ϊj = { Σ L i ^ H t l ^ , •• ,Λ7eC} be the subalgebra of # 6 ( / ) where {ίZΊ,

• , i?4} is a basis of a Cartan subalgebra of F 4 and Hδ = β ^ , i ί 6 = ##,,

iϊ 7 = β^3 (see Example 39), but here we don't assume that λ5 + X6 + λ7 = 0.

Then ^ is a Cartan subalgebra of g, and the root system Δ of g w. r. t. £}

is given by Δ = {±^±Λ, , i < j = 1,2,3,4, ± ^ ± J U 6 - ^7), ± 4 ± έ W 5 - Λ),

±Af ±i(λ9 - λ7), ±λt ±i(λ5 + Λ), ±ΛΪ±i(λι + λj, ±Λf ±i(Λ + Λ), i =
1,2,3,4, ±^ 5 , ±^ 6 , ±Λ7} where yl ,Λ* are defined as in Example 28. Put

OCX = ^ 2 — ^ 3 , Of2 = ^ 3 — ^ 4 , a3 — ^ 4 — J ( ^ β + Λ)> <̂ 4 = 5̂» ^5 = i U l ~ ^2 ~ ^3 ~ h

— λ5 — A6),αr6 = >l6,αr7 = /l7. Then ZΓ = {a19 -,a7} is a fundamental root

system of g. Since B (Σ λtHi9 Σ KHt) = 36 Σί- i *A + 18 ΣU λtK, we

obtain the inner product (Σ ™A> Σ nj*j) == ^ B " Σ ί - i m Λ + ΊV Σ ϊ - β ^ Λ

Hence (α4, αr<) = -^ for 1 < i < 7, (αr3, αr7) = (αr4, ai+1) = — ^ ( 1 < i < 5), and

(ai9(Xj) = 0 if |i — /I ^ 2 except ( 3̂,αf7) = (αr7, αr3). This shows that the

oίi a2 a3 cίi aδ

o o o o-
Dynkin diagram of g is , i.e., g is the

a7

simple Lie algebra of type E7. Since we have Δ and 77, we can easily

determine 63-positive roots Δ+ and we get 2p = Σ«ei+ a = 34^ + 66a2 +

96^3 + 75a4 + 52a5 + 27a6 + 49α:7 and (p, at) = ^-(1 < i < 7). Let ^ , , Λ7

be the fundamental weights of g = E7, i.e., ^ iyOίi' = dtJ ί,j = l,- ,7,

and let A = Σ L i mί^-ί (mι ^ 0, integer) be any dominant integral form.

Then (A + p9at) = Hk.(at,aJ + {p9at) = -^-im, + 1), and hence (Λ + p,

1 7

+ — Σ ni(mi + 1) The WeyΓs dimension formula says that
36 ΐ=ι

= π

 iΛ + p f = π Σ L

For example, dUO - 133, d(A2) = 8645, dW3) = 365750, d(A4) = 27664,

d(A5) = 1539, dWβ) - 56, d(Λ) = 912, ^(2^0 = 7371, d(2AQ) = 1463, dCΛ +

^6) = 3920, etc. Obviously Λι is the adjoint representation of g = E7.

We shall construct the representation A6 of degree 56. For this purpose,

we shall define the Freudenthal product x in / " b y a x b = α o & —

I Tr (α)6 - I Tr (6)α + | [Tr (α) Tr (6) - Tr αo 6] 1 for a, b e / . Let A*
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denote the adjoint of a linear transformation A in β relative to the

trace form Γ(α, 6) = Trαo6, i.e., T(Aa, b) = Γ(α,A*6). Then we know

that Ra is self-adjoint.

We now define Wl — C®C®f®f a vector space direct sum of

two copies of C and two copies of / , so dim SW = 56. We write the

elements of 3ft as X = (ξyη,x,y) where ξ9 η e C, x9 y ef, and we define

an action of g = / ® / 9 <?6(/) by the following formulas:

[a, X] = (Γ(α, y), 0,37a, 2α χιc) for α e /

[3, X] - (0, - Γ(α, »), - 2α x y, - fα) for α e /

[2β7,Z] = (3f, - 3 7 , -£,?/)

[L, X] - (0,0, Lx, - L*») for L e βjj) .

Here, <?βC/) is a subalgebra of dFβ(/) of elements of the form Ra + D,

Tr a — 0, D a derivation. Then the action of g on 2K thus defined gives

an irreducible representation of g on Tt of the highest weight Λ6. Define

a non-degenerate skew bilinear form { , } and a quartic form q on Sft by

(1.15) {Xlf X2} = ξlV2 - ξ2Vl + T(x19 y2) - T(x2, yx)

(1.16) q(X) = T(x\ t) - ξN(x) - rjN{y) - \{Ύ{x, y) - ξηf

where a" = α2 - Tr (a) α + £ {(Tr α)2 - Tr (α2)}. 1, and ΛΓ(x) = det a? (see

Example 39), T(x, y) = Ύvχoy, X = (f, ^, ̂ , 2/), X* = (f*, ^ , »«, yt) for

< = 1,2.

It can be shown that if q(X19 X2, X%> Xd is the symmetric 4-linear form

obtained by polarizing q, then the Lie of algebra linear transformations

in 9K corresponding to g can be characterized as the set of linear trans-

formations A of 1 such that q(AXly X2y Z3, Z4) + q(X19 AX2y XZ9 X4) +

q(Xu X2, AXZ, Z4) + q(X19 X2, XZ9 AZ4) = 0. Also direct verification using

(1.14) shows that {AXlfX2} + {X19AX2} = 0 for A eg.

EXAMPLE 41. We shall construct the Lie algebra of type E8. Only

the fact that the least dimensional representation of E8 is the adjoint

representation will be used later. For this purpose, we consider first

the derivation algebra Der (K) of the Cayley algebra © (see Definition

31). Put fx - 1 + ^ Z Ϊ \ f2 = 1 - ^ ΐ f r = 1 _ u

(t = 1,2), /,/„ = /2Λ = 0, / , + / , = 1, and f, = f2, f2 = /,. Since

=1 Cfi (i = 1,2), we obtain the Peirce decomposition © = (/!

fύ = CfιφCfί®f1®fi®f&fι of S, where /,©/, and Λ©/, are three-

dimensional.
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Let S)o be the subalgebra of Der(S) of derivations mapping fx (and

hence f2) into 0. Such a D maps the Peirce components fi&fj into

themselves. The representations of S)o in the space fflϊfj (i Φ j) can be

considered as the standard representation of S)Q ̂  31(3, C) and its con-

tragredient. Let D be any derivation in ©. We have Dft = fiΦfd +

(Dfi)fi since /f =/< (£ = 1,2) and hence, together with J9/Ί = -Z>/2,

+ /2®/i so that we have 2?/j = α12 — 621, Z>/2 = — α12 + 621 where

&2i e/ 2 e/ x . Put D β f δ = (α&)Λ - (α&)x - 3 ^ 6 ^ ] for d , δ e S where

we write aR for X —» Xα and aL for -X" —» αX. Then Dα>δ is a derivation

of S and Dfx>a^fx = α12, ΌMJ2 = &21 for al2ef&f2, 621 e/2©/!. Thus we

obtain that E = D- DfuajΛ - D / β f δ β l e ^ 0 , i.e., D = E + Dfl,ai2 + DMu.

Since this expression is unique, we have DerifE) = &0 0 J& 0 ^ 2, ^ =

P/,.»,J&2ie/2®/1}, S2 = {D/lfαM I ^ e / ^ Λ } and dimDer(©) - 8 + 3 + 3 =

14. Let / be a Cartan subalgebra of 30 ^ 31(3, C). Then ^ acts

diagonally in Der(&) and has weights of the adjoint representation, the

standard representation and the contragredient of this. It follows that

Jf is a Cartan subalgebra of Der(©) and the root system Δ of Dβr(S)

w. r. t. Jf is given by

Δ = {±Λ, ±Λ, ±(Λ + Λ2), ±(Λ - λύ, ±Wi + 2 ^ , ±(2Λ + Λ)} .

Squaring these and adding we obtain ζh, hyDerm = I6U1 + 1̂̂ 2 + ΛD for

/?, = h(λlfλ2) e $? where < , yDer^) is the Killing form of Dβr(S). Thus we

obtain that Der(&) is a simple Lie algebra of type G29 i.e., Der(S) = g2

(see Example 30), and (So = {̂  € ©| tr α = a + α = 0} is a 7-dimensional ir-

reducible representation space of g2 = Der((S). Let ^ be the exceptional

simple Jordan algebra and JΌ = {X e β \ Tr X = 0}. As we saw in Example

38, /Ό is a 26-dimensional irreducible representation space of F4 = Der(f).

We are now ready to define Lie algebra g = Der(S) θ δ o ® / o θ Der(f)

of dimension 14 + 7 X 26 + 52 = 248. We require Der((S) 0 Der(jf) the

Lie algebra direct sum of Der((£) and Deri/) to be a subalgebra of g.

We define that [a®x,D + E] = (Z>α) <g) aj + α ® (£?a?) for D eDerQS),

E e Der(f), ae&0,xe / „ . Finally we require [a®x,b®y]= -^T{xy y)Dath

+ (a*b)(g)(x*y) + \t(a, b)[Rx,Rγ], a, b e £0> >̂ V e /Ό where α*6 = α& —

|ί(α, 6) 1, a?*]/ = α;o]/ — ^ Γ(x, 1/) 1, t(a, b) = t r ab, T(x,y) = Ύr xoy. Then

one can check that this defines the Lie algebra structure in g (see [5]).

The Killing form B of g is given by B(D + α (x) x + E,D' + b®y + Ef)

m + 15 ί(α, 6)Γ(Z, Y) + ^<£7, S% β r ( / ) , Z), Ώf e
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e Der(f), a, be <£0, x,yef0 where < , >Derm and < , }Deri/) is the Killing

form of g2 = DerdS) and F 4 = Der(J) respectively. Let 3K0 = (ΣLi CEt)

Π βo, n0 = C(/Ί — /2) and put ζ = \% Θ n0 ® SK0 θ ^Fι where ϊj02, ^ 4 are

Cartan subalgebras of g2 = DerQS) and F 4 = Der(f). Then ζ is a Cartan

subalgebra of g. Let {HlfH2,H3,H4} be a basis for ^ 4 such that

H(λ19 λ2, λ3, Λ4) = Σί=i Λ#* in Example 38, {£Γ6, 776} a basis for \2 as in

Example 30, and put H7 = (A - f2) <g) ( ^ - Ez), H% - (/, - /2) ® (^2 - # 3 ).

Then {Hj, , H8} is a basis of ϊ), and if we denote an element 2 V?«

i of ζ* by 2 α^€, the root system Δ of g w. r. t. Ij is given by

Δ = | ± ^ ± ^ i < j = 1,2,3,4; ± U5 - λ6), ±(λ, + 2λ6), ±(2λ5 + λQ); ±^±

\ ±Λ'i ± A ^ - , ±Λf ± izJ_^L < = l f 2, 3, 4; ± «β - «, ± A

+ *
2

i = 1,2,3,4I where ΛJ, Λf are as in Example 28. (See [5], but there are

mistakes about the roots of E8 in p. 102 ~ 103 of [5].)
PJ-,4- ^ — ΣΠ 1 7 7 7 7\ 7 7 sv 2 _ L 2 _L 2 rv

J. KΛV m\ — 2 1 1 2 ^ 3 " 4 *^1 ^8J ^ 5 **6> ^2 — ^ 6 "T™ *^Ί ~\ ^8> ^ 3

5 6> 6 89 5 4 5 6 ^ 9 6 ~ 4> ^7 ~

— ^7. Then 77 = {a19 ,α8} is a fundamental root system. For example,
Λi + ̂ 2 = 2αi + 4α2 + 6a:3 + 5α4 + 4ocδ + 3α6 + 2α7 + Sas. Since JB(Σ λiHi9

Σ
") TT \ Rf\ί ^2 ι_ *)2 î  }2 ι_ T2\ i 1QΛ/'52 ι ") Ί ι ^2\ i (2C\( "52 I 0 3 I }2\ Λ T T Λ
Λi-Lli) — Uv/\,Λi ~γ~ Λ2 \~ Λ3 ~y" Λ4y/ ~J~ A.£i\J\Λvi ~p Λ5Λg ~τ~ Λg^ -γ ΌUv^Λ7 ~γ~ Λ7Λ3 ~j~ Λg/, Wv5

obtain that ( Σ m A> Σ m ^ ί ) = Fσ(mi + m\ + ml + ml) + wu(ml ~ mδmβ +

ml) + -jtimγ — MJWIQ + ml). Tn particular, (ai9 at) = •£$ for 1 < i < 8,

(α«>α<+i) = ~ F O ί o r 1 < ̂  < 6? fe?«i) = 0 f o r K — ίl ̂  2 except for

(α3, αrs) = — -eV This shows that the Dynkin diagram of g is
oίz oίi a5 (XQ a7

, i.e., g is a simple Lie algebra of

type Es. Since we have Δ and 77, we have 120 positive roots Δ+ and
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P = jΣae*+ oc = 46αχ + 91α2 + 135αr3 + HOα* + 84α5 + 57a6 + 29a7 + 68a8.

Let Λ19' ,ΛS be the fundamental weights of ES9 i.e., ^ i'a^ — δίjf

(aj9 ctj)

%yj = 1, . ,8. Let Λ = Σ?-i m <Λ (m* ^ 0> integer) be any dominant in-

tegral form. Then

(Λ + p,ad = -5-(«i,α*) + 0>,«*) - -J-(m, + 1) ,

= -̂ o for 1 < i < 8. The WeyΓs dimension formula says that

d(Λ) =

For example dUO = 3875, d(Λ2) = 6696000, d(yί3) = 6899079264,

146325270, d(Aδ) = 2450240, d(Λ6) = 30380, d(τl7) - 248, d(Λ8) = 147250,

d(2J7) = 27000, d(3Λ7) = 1763125, etc. This shows that the least dimen-

sional irreducible representation of E8 is the adjoint representation Λ7.

PROPOSITION 42. Let § be a simple Lie algebra over C and let

dp: Q-* QΪ(V) be any representation of g on V with g = dim g and d =

dim V > 1. Then we have g < }d(d + 1) except when g ^ §ϊ(d, C).

Proo/. Jf g is of type An_x (w ^ 2), we have d(Λ) ^ d(A2) = d(Λn_2)

in(n - 1) ^ 2(n - 1) (n ^ 4) and ώ(Λ) ^ ^(2^) - £w(ti + 1) ^ 2(w - 1)

(n = 2,3) for any Λ ^ ^ , Λn_u and hence, Jd(d + 1) ^ (w - l)(2n - 1) ^

n2 — 1 = g for d = d(Λ),Λ Φ ΛιyΛn_γ. If A = Λγ or Λ = Λn_l9 we have

d = d^i) = cZC^.i) = ^ and hence g = §ί{d9 C). If g is of type Cn, we

have d(A) ^ ^ j ) = 2n for any J , and hence \d{d + 1) ^ w(2n + 1) = g.

If g = o(n, C) (n ^ 5), we have d(/ί) >̂ dCilj) = n for any A and hence

£d(eZ + 1) ^ \niyι + 1) ^ Jw(% - 1) = g. If g is of type G2 (resp. F 4, EQ9

E7, E8)9 we have seen that the least representation degree is 7 (resp. 26,27,

56,248) and g = dim g is 14 (resp. 52,78,133,248), hence \did + 1) ^ g.

Q.E.D.

Remark 43. If d = 2, then g = §Γ(2, C), φ? = ^ . If d = 3, then

g = §1(2, C), φ = 2/ίi, or g = §ί(3, C), efy) = ylχ or its contragredient Λ2.

DEFINITION 44. Let F b e a ^-dimensional vector space over C. Then

all non-singular endomorphisms of V form a group GL(V). By fixing

a basis of V, we may identity GL(V) with the group GL(n, C) of all non-

singular n x n matrices, which is called the general linear group. A
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subgroup G of GL(n, C) is called a linear algebraic group if there exists
a finite number of polynomials P19 , Pμ on M(n, C) such that the group
G is the intersection of GL(n, C) and the common zeros of these poly-
nomials. In this case, the tangent space g of G at the unit matrix In,
i.e.,

β= \ξeM(n,C) Σ ξJ^-dn)) = 0 for 1 < k < μ

is a Lie subalgebra of gl(n, C), which is called the Lie algebra of G.
For example, the special linear group SL(n, C) = {A e GL(n, C) | det A —
1 == 0} is a linear algebraic group and its Lie algebra g is, by definition,

= {f e M(n, C) = θ

i.e., g = Sί(n, C) (see Example 21). The orthogonal group 0{n, C) = {Ae
M(n, C) I ιAA = /J and ίfeβ special orthogonal group SO(n, C) = {A e
0(n,C) I det A = 1} are linear algebraic groups and their Lie algebras are
the same as o(n,C) (see Example 27). The Lie algebra of the symplectic
group Spin, C) = {A e GL(2n, C) \ ιAJA = J) is a simple Lie algebra 3p(n, C)
of type Cn, where / is defined as in Example 25. Here SL(n, C) and
Sp(n,C) are connected and simply connected, SO(n,C) is connected but
not simply connected, and O(n, C) is not connected. We shall construct
the spin group Spίn(n, C) in § 5, which is connected and simply connected
and whose Lie algebra is isomorphic to o(n,C).

In general, the Lie algebras of two linear algebraic groups Gx and
G2 are isomorphic if and only if Gx and G2 are locally isomorphic, and
in this case we write Gx — G2. We say that a connected linear algebraic
group is almost simple when its Lie algebra g is simple. Note that an
almost simple algebraic group might have the center of finite numbers.

Let p: G -* GL(V) be a representation of a linear algebraic group
G on 7. Let g be the Lie algebra of G. Then exp tXit e C, X e g) is in
G and there exists a representation dp: g -> QΪ(V) of g on V defined by

dpiX) = lim —(p (exp tX) — 1), i.e.., p (exp tX) = exp t dp(X) for Z e g.

This representation dp is called the infinitesimal (or differential) repre-
sentation of p. Assume that G is connected. Then p is irreducible if
and only if dp is irreducible. Moreover, two representations of G are
equivalent if and only if their infinitesimal representations of g are
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equivalent. Conversely, if G is connected and simply connected, for any
given representation dp of g, there exists a representation p of G uniquely
such that its infinitesimal representation is dp. For example, there is no
representation of SO(n,C) corresponding to the (half-) spin representa-
tion of o(n, C) (see Example 27, 28), and we have to consider the spin
group Spίn(n,C).

EXAMPLE 45. Let g be a Lie algebra over C. Then there exists,
uniquely up to isomorphism, a connected and simply connected linear
algebraic group G with the Lie algebra g. For example, since the Dynkin
diagrams of type A2 and D3 are the same as o o o, the correspond-
ing connected and simply connected algebraic groups SL(4, C) and
Spίn(6,C) are isomorphic. Two inequivalent half-spin representations
of Spin(6, C) correspond to the standard representation Λx and its con-

tragredient representation Λ3 of SL(4, C). The representation Λ2\— —)

of SL(A9 C) has a kernel {±1} and its image is <SO(6, C) since its image
leaves the Pfaffian of 4 x 4-skew symmetric matrices invariant (see De-
finition 22, (7)). This fact corresponds to the exact sequence 1—>{±1}
-> Spίn(6, C) -> SO(6, C) -> 1 (see (5.27)). Similarly the Dynkin diagrams
of B2 and C2 are the same as o = φ o , the corresponding connected and
simply connected algebraic group Spin(5, C) and Sp(2, C) are isomorphic.
The restriction of Λγ (and also of Λ3) of SL(4,C) to Sp(2,C) is Λx of
Sp(2,C) which is corresponding to the spin representation of Spin(5,C).

The representation Λ2( = — , d(A2) = 5j of Sp(2,C) has a kernel {±1}

and its image is SO(5, C). This fact is corresponding to the exact
sequence 1 -> {±1} —> Spίn(5, C) —> SO(5, C) -»1. Since the Dynkin diagram
of o(4, C) and $ί(2, C) Θ 31(2, C) are the same as o ==> o, we have the
isomorphism Spm(4, C) = SL(2, C) X SL(2, C). The two representations
Λι®l,l®Λι (i.e., • ® 1,1 <8> D) of SL(2, C) x SL(2, C) are correspond-
ing to the two inequivalent half-spin representations of Spίn(4,C). Let
7 be all 2 x 2 matrices M(2,C). Define ^: SL(2) x SL(2) -> GL(F) by
X H-> A Z ^ for X e V, (A, B) e SL(2) χSL(2). Then ^ ^ ® Λ ( = D ® D )
and its kernel is {±1}. The image is SO(4, C) since it leaves άetX(X e V)
invariant. This fact is corresponding to the exact sequence 1—>{±1}—>
Spin(A, C) —> SO(4, C) -> 1. Since the Dynkin diagrams of Al9 B19 Cλ are
the same as o, we have SL(2, C) ^ Spin(3, C) ^ Sp(l, C). Under the
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isomorphism Spin(4, C) ^ SL(2) x SL(2), the subgroup {(A, A) eSL(2) x

SL(2) IA e SL(2)} ^ SL(2) corresponds to Spίn(3, C). Thus the restriction

of Λι (x) 1 (and 1 (x) 4 ) to that subgroup =SL(2, C) is Ax which corresponds

to the spin representation of Spin(S,C). The representation 2Λλ of

SL(2,C) has a kernel {±1} and the image S0(3,C). This fact is cor-

responding to the exact sequence 1 —> {±1} —> Spin(3, C) —> SO(3, C) —> 1.

DEFINITION 46. Let ^: SL(n, C) -> GL(7) be an irreducible representa-

tion of G on 7 with the highest weight A. Then there exists canonically a

representation / : GL(n, C) —> GL(F) of GL(ti, C) such that the restriction

of pf to SL(n,C) is |O. In this case we say that the highest weight of

p' is A. We also apply the Young diagram to GL(n,C).

§2. Castling transforms

DEFINITION 1. Let G be a connected linear algebraic group, V a

finite dimensional vector space (dim V ^ 1), and p a rational represen-

tation of G on V, all defined over the complex number field C. We call

a triplet (G, p, V) a prehomogeneous vector space (abbrev. P. V.) when

there exists a proper algebraic subset S of V such that V — S consists

of a single G-orbit. In this case, points of S (resp. V — S) are called

singular (resp. generic) points. Let g be the Lie algebra of G and let

dp: Q—> QΪ(V) be the infinitesimal representation of p. For an element

x of V, the Lie algebra of the isotropy subgroup Gx = {g e G \ p(g)x = x}

ofGatx is the isotropy subalgebra $x = {A e Q\dp(A)x — 0} of g at #.

PROPOSITION 2. Γfce following conditions are equivalent.
(1) A ίnp^βί (G, p, V) is a P. V.

(2) There exists an element x of V satisfying dim GΛ = dim G —

dim V, i.e., dim ĝ  = dim g — dim V.

Proof. (1) Φ (2): Let x be a generic point. Then we have V — S

= /o(G) α « G/G;, and hence dim G - dim Gx = dim (7 - S) = dim 7.

(2) => (1): In general, we have p(G) x = /?(G) a? — (^(G) x — p(G) x)

where denotes the Zariski closure. The second condition implies that

dim p(G) x — dim p(G)>x = dim 7. Since 7 is irreducible, we have 7 =

p(G).α and p(G)>x - 7 - S where S = (^(G) x - p(Ghx). Q.E.D.

Proposition 2 implies that the prehomogeneity of a triplet is an in-

finitesimal condition.
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PROPOSITION 3. Let (G, p, V) be a triplet. Assume that there exists
a non-constant rational function fix) satisfying fipig)x) = fix) for all
g eG, xeV. Then this triplet (G, p, V) is not a P. V.

Proof. Assume that a triplet iG,p,V) is a P. V. and let x0 be a
generic point. Then fix) is constant on the open orbit piG)-x0. Since
fix) is a rational function, it is constant on the Zariski closure of piG) x09

i.e., on V. Q.E.D.

These propositions will be used in § 5 to investigate the prehomogeneity
of a given triplet.

DEFINITION 4. Two triplets (G, p, V) and (G', pf, Yf) are called equiv-
alent (or strongly equivalent) if there exist a rational isomorphism σ: piG)
—> /(GO and an isomorphism τ: V -> V, both defined over C such that
the following diagram is commutative for all g e G. This equivalence

Kg) I c!

v—>v
τ

relation will be denoted by (G, p, V) ^ iG',p', V). Note that we consider
only the image piG), not G itself. For example, we have (SL(4, C), Λ29 V(6))
^ iSOiβ, C), Λl9 7(6)) although SL(4, C) and 50(6, C) are not isomorphic
(see Example 45, §1). A triplet (G, p, V) is called irreducible when p is
irreducible. In this case, by Theorem 1 in § 1, the Lie algebra g of the
image piG) is reductive, with center at most one-dimensional. In partic-
ular, a triplet (G, p, V) is equivalent to its dual iG,p*,V*) where p* is
the contragredient representation of p on the dual vector space F* of
V. In the following, except §4, we shall assume that a triplet is
irreducible.

LEMMA 5. Let G be a connected algebraic group and let W, W/ be
irreducible algebraic varieties on which G acts. Let f:W->W; be a
generίcally surjective iί.e.y f(W) = W), G-equίvariant morphism ii.e.,
compatible with the action of G). Then the following conditions are
equivalent:

(i) W is G-prehomogeneous, i.e., it has a Zarίski-dense G-orbίt.
(ii) W is G-prehomogeneous, and for a point xf of a Zariski-dense
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orbit, f~\x') is Gx,-prehomogeneous, where Gx, is the isotropy subgroup
of G at xf.

DEFINITION 6. Let (G, p,V) be a P. V. The isotropy subgroup Gx

of G a t a generic point xeV — S is called a generic isotropy subgroup.

Note that all generic isotropy subgroups of (G, p, V) are isomorphic to
each other. Similarly, the isotropy subalgebra of a generic point is
called a generic isotropy subalgebra. Since we consider everything over
C, we shall denote GLin, C) (resp. SL(n, C), O(n, C), SO(n, C), Spinin, C),
Sp(n,C)) by GL(n) (resp. SL(n), O(n), SO(n), Spin(ri), Spin)).

Let G be a linear algebraic group, and let p: G —> GL(V(m)) be a
faithful irreducible representation of G on the m-dimensional vector space
Vim). Let p*: G -+ GL(Vim)*) be the contragredient representation of
/? on the dual vector space V(m)* of 7(m), and let w be a positive integer
with m> n^>l.

PROPOSITION 7. A triplet (G x GL(ri), p ® 4 , 7(m) ® V(n)) is a P. V.
if and only if a triplet (G x GL{m - n), p* (x) Λl9 V(m)* ® Vim — n)) is
a P.V., and in this case, their generic isotropy subgroups are isomorphic
to each other.

Proof. Identify V = Vim) <g> V(n) with V(m) Θ Θ Vim), and let
W be an algebraic variety whose points are vectors v = (v19 , vn) 6 F(v< e
7(m)) such that ^1? -—,vn are linearly independent in Vim). Then the
triplet (G x GLin), p x ^ , Vim) ® 7(n)) is a P. V. if and only if W is G-
prehomogeneous for G — G x GLin). Let TF; be the Grassmann variety
Grassπ (Vim)) whose points are ^-dimensional subspaces of Vim). For
an element v — (v19 , vn) in W, let /(v) be the n-dimensional subspace
of Vim) spanned by v19 -,vn. Then f:W—*W is a surjective, G-equi-
variant morphism. By Lemma 5, W is G-prehomogeneous if and only
if W' = Grassn (F(m)) is G-prehomogeneous, i.e., G-prehomogeneous since
GLin) acts on Grassw (Vim)) trivially, and it acts on each fibre homo-
geneously. As Grassw (Vim)) is G-prehomogeneous if and only if
Grassm_w (V(m)*) is G-prehomogeneous, again by Lemma 5, that is so if
and only if (G X GL(m - n), p*®A19 V(m)* <g) Vim - n)) is a P. V., and
thus we obtain our first assertion. Since each fibre is a principal homo-
geneous space of GL(a), the generic isotropy subgroup of (G x GL(n),
p®Λλ, V(m)®Vin)) is isomorphic to that of (G, Grassn (Vim))). As the

https://doi.org/10.1017/S0027763000017633 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000017633


38 MIKIO SATO AND TATSUO KIMURA

generic isotropy subgroups of (G, GrassTO (Vim))) and (G, Grassm_w (Vim)*))
are isomorphic, we get our second assertion. Q.E.D.

LEMMA 8. Let G be a connected semi-simple algebraic group and
let p: G —> GL(V) be an irreducible representation. Assume that the
triplet (G x GL(1), p® Π, 7 ® 7(1)) is a P. V. with the generic isotropy
subgroup H. Then the triplet (G,p, V) is a P.V., if and only if the con-
nected component of H is not contained in G.

Proof. The triplet (G, p, V) is a P.V. if and only if dim G - dim G Π H
= dim 7 (= dim G x GL(1) - dim H), i.e., dim G Π H = dim if - 1. Since
dim G Π H = dim ff — 1 if and only if the connected component of if is
not contained in G, we obtain our assertion. Q.E.D.

PROPOSITION 9. Let G be a linear algebraic group and let p\G-^
GL(V(m)) be a faithful irreducible representation of G on the m-dimen-
sional vector space Vim). Let n be a positive number with m > n ̂  1.
Then a triplet (G x SL(ri), p®Λί9 Vim)®V(n)) is a P.V. if and only if
(G X SL(m — n), p*®Λly V*(m)® V(m — n)) is a P.V.9 and in this case,
their generic isotropy subgroups are isomorphic to each other.

Proof. Note that G is reductive with at most one-dimensional center
by Theorem 1 in § 1. When G has the one-dimensional center, our as-
sertion is the same as Proposition 7, and hence we may assume that G
is semi-simple. Assume that (G x SL(n), p®Λ19 V(m)®V(n)) is a P.V.
with the generic isotropy subgroup H. Then (G x GL{n), p ® Λlf Vim)
®V(n)) is a P.V. and its generic isotropy subgroup is isomorphic to H
X GL(1) by Lemma 8. Then Proposition 8 says that (G X GLim — n),
p*®Ax, Vim)*® Vim — n) is a P.V. with the generic isotropy subgroup
H'^Hx GL(1). Since Hf Π (G x SL(m - n)) ^ H, (G X SLim - ri), p*
®Λ19 Vim)*® Vim - n)) is a P.V. by Lemma 8. Q.E.D.

This Proposition 9 is very important because it gives us a general
method to obtain infinitely many new prehomogeneous vector spaces from
a given prehomogeneous vector space. Let (G, p, V) be any P.V. with
dim V = m ^ 2. Then since SL(1) = {1} and V ® 7(1) ^ 7, we have (G,
p,V) ^ (G X iSL(l), p ® ^ 7 ® 7(1)) and by Proposition 9, we obtain a
new P.V. (G x SLim - 1)), <o*(x)Λ, V*®Vim - 1)). Since we may as-
sume that G is reductive, this P.V. is equivalent to (G X SLim — 1), p
®Λ19 V®Vim — 1)). Applying this procedure again to this new P.V.,

https://doi.org/10.1017/S0027763000017633 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000017633


PREHOMOGENEOUS VECTOR SPACES 39

we obtain the second new P.V. (G x SL(m — 1) x SL(m2 — m — 1), p® Ax

®A19 7 ® Vim — 1) (g) Vim2 — m — 1)). Now there are two ways to apply

Proposition 9 to this second new P.V., namely we have two new P.V.

(G x SL(m2 — m — 1) x SL(ra3 - m2 - 2m + 1), p (x) Aγ ® A19 V <g) Vim2 -

m — 1) <g> 7(m3 - m2 - 2m + 1)) and (G x SL(m - 1) X SL(m2 - m - 1)

X SL(m4 - 2m3 + m - 1), ^ ® A, <g) Λ ® Λ, V® Vim - 1) <g) 7(m2 - m - 1)

(x) 7(m4 — 2m3 + m — 1)) where m4 — 2m3 + m — 1 = m(m — l)(m2 — m —

1) — 1. If m ̂  3, these new P.V. are not equivalent to the original P.V.

For example, a triplet (SL(3), A19 7(3)) is obviously a P.V. and hence (SL(3)

X SL(2) X SL(5) X SL(29), Λ ® Λ ® Λ ® Λ, ^(3) ® 7(2) (x) 7(5) ® 7(29)) is

a P.V., etc. Repeating this procedure, we can obtain infinitely many new

P.V.'s. Although these prehomogeneous vector spaces obtained from a

given P.V. are in general not equivalent, they have many common prop-

erties. For example, their generic isotropy subgroups are isomorphic to

the original one. Thus we attain the concept of castling transforms or

castling classes of prehomogeneous vector spaces. It is convenient to

define these concepts among irreducible triplets.

DEFINITION 10. We say that two triplets (G, p, 7) and (G7, p', 70 are

castling transforms of each other when there exist a triplet (G, p, Vim))

and a positive number n with m > n ̂  1 such that

(G, p, V)^iGχ SLin), β <g> A19 Vim) <g> V(n))

and

(G', p', V) = (G x SLim - ri), p* ® Al9 Vim)* ® Vim - n))

where β* is the contragredient representation of p on the dual vector space

Vim)* of Vim). A triplet (G, p, 7) is called reduced if there is no castling

transform (G',,(/, 70 of (G, /?, 7) with dim V < dim 7.

DEFINITION 11. We say that two triplets (G, p, V) and iG',p', 70 be-

long to the same castling class when one is obtained from the other by

a finite number of castling transforms, and in this case we write (G, p, V)

~iG',p',V')

We can obtain the reduced triplet from any given one by a finite

number of successive castling transforms for the dimension reasons. For

any given triplet, such a reduced one is unique; namely,

PROPOSITION 12. Each castling class contains one and, up to strong

equivalence relation, only one reduced triplet.
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Proof. Suppose that a triplet (G, p, 7) has at least two castling trans-
forms (G', p'9 70 and (G", ph', 7"), then we may assume without loss of
generality that there exists a triplet (G, p, V(m)) such that

(G, p, 7) s (G x SL(^) x SL(n2), 0 <g> A ® Aί9 Vim) ® Vin,)

with m ;> 2, and

(G', p', F ) ^ (G x SL(nx) x

p* ® Λ* ® 4 , 7(m)* ® 7(O* (8) 7(m^ - n2))

(G",p", V") s (G x SL(n2) x SL(mn2 - O ,

(g)

In this case dim 7 = m ^ , dim 77 = mn^m^ — w2) and dim 7" =
mn2(mn2 — ̂ i). Assume that dim 77 < dim 7 and dim 7" < dim 7. This
implies that mnx < 2n2 and mn2 < 2n19 and hence m2 < 22, i.e., m < 2, a
contradiction. This shows that if there exists a castling transform
(G', pr

9 70 of (G, p, 7) satisfying dim 77 < dim 7, then it is unique. Since
dim 7 < +oo, we obtain our assertion. Q.E.D.

Proposition 12 implies that a reduced triplet (G, p, 7) satisfies the
condition that dim 7 < dim V whenever (G,p,V) ~ (G',p',V). By a
classification of irreducible prehomogeneous vector spaces, we mean the
determination of all reduced irreducible prehomogeneous vector spaces
up to strong equivalence relation. Note that in this paper we shall use
essentially Lie algebras even if we use the terminology of groups for
the convenience. Finally we shall show two propositions which are
obtained from Lemma 5 as Proposition 7.

Let G be a linear algebraic group and let p: G —> GL(V(d)) be a re-
presentation of G on the cϋ-dimensional vector space V(d). By choosing
a basis of V(d), we may identify V(d) with Cd. Thus we may consider
p(g)(9 e G) as a d x d matrix. Define the vector space Λ2(V(d)) (resp.
S2(V(d))) as the all d x d skew-symmetric (resp. symmetric) matrices.
Define the representation p~ (resp. prn) of G on Λ\V(d)) (resp. S\V(d)))

bylπ>p(g)Xtp(g) for X e Λ\V{d)) (resp. X e S2(V(d)))> geG. Then p-

are up to equivalence uniquely determined by p.

PROPOSITION 13. Assume that 2n ^ d. Then a triplet (Sp(n) x G,
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, V(2n) ® V(d)) is a P.V. if and only if the triplet (G,p-, Λ2(V(d))

is a P.V.

Proof. Let < , ) be a skew-symmetric bilinear form on V(2ri) x V(2ri)

which is left invariant under the action of Sp(ri). Identify V(2ri)® V(d)

with W = V(2ri) ® 0 V(2n) and for an element v = (vί9 , vd e W(vt

e V(2ri)), let f{v) be a d x d skew-symmetric matrix with (i, ;/)-element

<vi9Vj> (i,j = 1, ,2n). Then f(v) is an element of W = τ!2(7(d:)) and

f:W-*Wf is a generically surjective, G-equivariant morphism for G =

Sp(n) X G. By Lemma 5, (Sp(n) x G, Λ®^>, V(2n)®V(d)) is a P.V. if

and only if W is G-prehomogeneous, i.e., G-prehomogeneous since

each generic fibre is Sp(n)-prehomogeneous and Spin) acts trivially on

W = Λ2(V(d)). Q.E.D.

PROPOSITION 14. Assume that n^d. Then a triplet (SO(ri) x G,

A,®p, V{ri)®V(d)) is a P.V. if and only if the triplet (G,pΓΓ]9S
2(V(d)))

is a P.V.

Proof. Let ( , > be a symmetric bilinear form on V(n) x V(n) which

is left invariant under the action of SO(n). Then the rest of a proof is

the same as Proposition 13. Q.E.D.

Proposition 13 and Proposition 14 will be used in § 3.

§ 3. Classification of reduced triplets (G, p, V) satisfying dim G > dim V

PROPOSITION 1. // a triplet (G,p,V) is a P.V., then we have

dim G > dim V .

Proof. By Proposition 2 in § 2 we have dim G — dim V — dim Gx > 0

for some x in V. Q.E.D.

According to this proposition we shall determine in this section all

the irreducible reduced triplets (G, p, V) satisfying dim G > dim V. By

Theorem 1 in § 1, the Lie algebra g of p(G) is reductive with at most

one-dimensional center. We shall consider in § 6 the case when g is

semi-simple. In this section we shall consider the case that the center

of g is of one dimension. Then by Theorem 2 in § 1, we may assume that

a triplet (G,p, V) is of the form: G = GL(1) x Gx x X Gft, p = • ®

pic, V = V(T) ® V(d,) (x) (8) V(dk) with dx > d2 > > dk > 2,
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where each Gt is a connected almost simple algebraic group, pt is an

irreducible representation of Gt on the drdimensional vector space Vid^

(1 < i < k), and • is the standard representation of GL(1) on the one-

dimensional vector space 7(1).

Put g% = dim Gt (1 <i<k). These notations such as Gi9 pi9 du giy k

will be used throughout this section. We shall denote by (G2) the ex-

ceptional simple algebraic group of type G2 of dimension 14 to distinguish

it from the second group G2.

Proposition 1 implies:

(3.1) 1 + gx + + gk > dλd2 - dk .

We shall induce some inequalities from (3.1).

LEMMA 2. Let n be a natural number, and let a, c be any real

numbers satisfying a < can~ι — α. Then

n n

2 x\ — c f] xi < na1 — can

ί=l i = l

holds for any real numbers xv with a <xv< can~ι — a (v — 1, ,n).

Proof. Let M be the maximum value of

f(Xi, , xn) = Σ A - c Π Xi

on the closed interval [α, b]n, where b = can~ι — a. Since / is quadratic

in each variable with a positive leading coefficient, the maximum is at-

tained at the boundary points. Hence if Mμ (1 < μ < n) denotes the value

of / at those points where xt = a for μ distinct indices i and xs = b for

n — μ distinct indices /, then M = maxJIί^. We have Mn = na2 — can,

and Mn - Mμ = -(n - μ)(b2 - a2) + caΐ{bn-« - an~μ). If a = 6, then M^

= MTO for all μ. On the other hand, if α < b, then we have (Λfn — Mμ)/(b

— a)> -in - /i)(6 + α) + (w - μ)can~ι = (n - μ){can-1 - a - b) = 0, and

hence Mμ < Mn for all μ. This implies that M — Mn = na2 — eαΛ

Q.E.D.

PROPOSITION 3. Assume that a triplet (G,p,V) is a P.V. with 2k~2dx

— 2>d2. Then we have

1 + Λ > 2*-% - 3(fc - 1) .
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Proof. Since the image piiG^ of the simple algebraic group Gt is

contained in SL(di), we have d\ — 1 > gt for 2 < i < k, and hence from

(3.1), we get

(3.2) 1 + ffl > (k - 1) - (dt + + d\ - dλd2 . dk) .

Putt ing xx == d2, , xn = dk, n = k — 1, c — d19 a = 2 in Lemma 2, we

have the inequality

d2

2 + + dl - dA .. dk

<(k- 1)22 - d,'2k-1 (2<d,< 2k~2d, - 2) .

From (3.2) and (3.3), we obtain the desired inequality. Q.E.D.

PROPOSITION 4. If a triplet (G,p, V) is a P.V. with k > 3, then the

following inequality holds.

- 1) for k>ko>3 .

In particular, we have

(3.4) 1 + gx > Ad, - 6 .

Proof. Since k > 3, we have 2k~2d1 — 2> d2, i.e., the assumption of

Proposition 3 is satisfied. Put f(k) = 2k~1d1 — 3(fc — 1). Then we have

fik) - f(k0) = (2*"1 - 2*°-1H - 3(fc - fc0) > 8(2fc-fc0 - 1) - 3(fc - fc0) > 0 for

k > k0 > 3, and hence 1 + gx > f{k) > f(k0) > /(3) = Uλ - 6. Q.E.D.

DEFINITION 5. Let G be a semi-simple algebraic group, and let p: G

-> GL(V(n)) be an irreducible ^-dimensional representation of G. Then

a triplet (G x GL(m), p (g) ̂ t , V(ri) ® 7(m)) is an irreducible P.V. for

n<m, because the natural action of GL(m) on V(ή) Θ Θ V(ri) (m-

copies) for m>n, yields a P.V. This triplet is called a trivial P.V.

It is reduced except for G = SL(w) with m> n> m/2, p = ^1# When

G = SL(n) with m> n> m/2, p = ^ , its castling transform (SL(m — n)

X GL(m), Λλ® Λιy V(m — n)(g)7(m)) is a reduced trivial P.V.

From now on, we shall consider case by case according to the type

of the Lie algebra Q1 of Gλ.

I) The case for Gx - SLin) {i.e., & = §i(n,C))

We may assume that Gλ = SL(n). First of all, we shall determine

the irreducible representations p: SL(ri) —> GL(V) satisfying dim V < n2.

We denote p by A when the highest weight of the infinitesimal represen-
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tation dp of p is Λ. Let A19 , Λn_λ be the fundamental dominant weights

(see Example 21 in § 1 and let A — Y^ zl m^i (mi > 0, integer 1 < i < n

— 1) be a dominant integral form satisfying d(Λ) < n2.

LEMMA 6. (1) 1 < m1 < 3 (n = 2).

(2) 0 < m1 + mn_x < 2 (n > 3).

(3) m2, mn_2 — 0 or 1, and if m2 — 1 (resp. mn_2 = 1), ί/̂ en ^n-2 = 0

(resp. m2 = 0) and mι — mn_λ = 0 (^ > 4).

(4) m2,mn_3 = 0 or 1, ami if m3 — 1 or mn_3 = 1, ί/̂ en m^ = 0 /or

aίί otfcβr y (8 > n > 6).

(5) m4 = 0 (w = 8).

(6) m^ = 0 for 3 < j < n - 3 (n> 9).

Proof. To prove this lemma, we shall use Corollary 13 in § 1 and

the results of Example 24 in § 1.

(1) When n = 2, we have Λί = mλΛx and dim^) = m1 + 1. Hence

d(Λ) = m1 + 1 < 4c =: n2 if and only if m1 < 3. Since /I =£ 0, we have

(2) Since diSΛJ = dCS^.x) = i^(^ + l)(n + 2) > n2 and d(2Λ + Jn_ t)

= d{Ax + 2^n_x) = \n{n — l)(n + 2) > n2 if n > 3, we have 0 < mlf mn_x

< 2 and mn_λ = 0 (resp. Wj = 0) if mx = 2 (resp. m ^ = 2), i.e., 0 < mι

+ m2 < 2 in view of Corollary 13 in § 1.

(3) Since d(2Λ2) = d(2Λn_2) = - ^ ( n 2 - 1) > ^2 if n > 4, we have ra2,

mw_2 = 0 or 1. Since d(Ax + yl2) = d(An_λ + An_2) = | ^ (n 2 — 1) > n2, d(Λ

yίw_2) = d{An_x + A2) = Jn(w + l)(w - 2) > n2, and d U a + An_2) = \n2in +

l){n — 3) > n2 if n > 4, m2 = 1 (resp. mn_2 = 1) implies that mn_2 == 0

(resp. ra2 = 0) and m1 — mn_x = 0 in view of Corollary 13 in § 1.

(4) It is sufficient to show that d(Az + AJ > n2 for 1 < v < n — 1,

6 < n < 8. For y = 1,2, we have d(Λ3 + Λ) = in(n2 - l)(n -2)>n2 and

d(A3 + ί̂2) = 2^2(w2 - l)(n -2)>n2 (6<n< 8). Since d(A, + Av+1)/d(Az

+ Av) = (p - l)(n - ^)/(P 2 - 4) > 1 for 3 < v < \{n + 1 + Vna - 6n + 33),

we have d(A3 + Av) > d{2Az) = y ^ n 2 ^ - l)2(n + l)(n - 2) > n2 for 4 <v <
\{n + 5 + V^2 ~ 6^ + 33). Similarly if \(n + 5 + V^2 - 6^ + 33) < v <

n - 1, we have d(Λ3 + Av) > d(Az + J^.O = ±n(n2 - l)(n - 3) > n2 (see Ex-

ample 24, (4) in § 1).

(5) Since d(A4) = fi\ = 70 > 64 = n2, we have m4 = 0 (n = 8).

(6) Since cZ(Λy = ^ > (%\ = d(A3) - ^ ( w - l)(n - 2) > n2, we have

mj, = 0 for 3 < j < n - 3, n > 9. Q.E.D.
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PROPOSITION 7. Let p: SL(n) —> GL(V) be an irreducible represen-

tation satisfying dim V < n2. Then,

i) p is one of: Λ1,2Λ1,3Λ1 (n = 2).

ii) p is one of: Ax,An_λ\ Λ2,Λn_2; 2Λί,2Λn_1; A, + An_x

in > 9 or 5 > n > 3).

iii) p is one of: AuAn^; A2,An_2; 2A1,2An_ι; A, + An_λ; A,,An_z

(8>n> 6).

Proof, i) is from (1) in Lemma 6. By (5) and (6) in Lemma 6, we

may assume that A is of the form A — mxAx + m2A2 + m3A3 + mn_zAn^z

+ mn_2An_2 + wιn-\An_λ. Assume that 6 < n < 8. If m3 = 1 (resp. mn_z

= 1), we have A = A3 (resp. A = An_3) by (4). If m3 = mn_3 = 0, we have

Λ = m^i + m2J2 + mn_2Λn_2 + mn^An^. By (6), A is always of this form

if n > 9, or n < 5. Assume that n > 4. If m2 = 1 (resp. mn_2 = 1), we

have A — A2 (resp. Λ = ^ .̂.2) by (3). If m2 = mn_2 = 0, we have Λ =

m ^ ! + ^ . A . ! . If n = 3, yί is always of this form. Assume that

w > 3. Since A Φ 0 and by (2) in Lemma 6, we have 1 < m1 + mn_λ <

2, i .e., A - Λ19 An_l9 2Λ19 A, + An_l9 2An_,. Q.E.D.

COROLLARY 8. Let p: SL(n) -> GL(F) δe an irreducible representation

of SL(ri) with n>3. Assume that p Φ A19 An_u A2, An_2. Then if we put

d = dim V, we have d > ^n(n + 1) (nΦ 6) and d > 20 (w = 6).

Proof. Since d ( Λ + Λn_x) = n2 -1> d(2A1) = d φ Λ ^ ) = %n(n + 1)

(n > 3), we have d > d(2A1) = |n(tι + 1) for n > 9 or 5 > n > 3 by Pro-

position 7, ii). Since d(A3) = d(An_3) = ^-n(n — l)(w — 2), we have d(Λ3)

> d(2i4x) for w = 7,8 and d(2A1) = 21 > d(^3) = 20 for % = 6. By Pro-

position 7, iii), we obtain our assertion. Q.E.D»

PROPOSITION 9. Let (G, p, V) be a reduced triplet with k = 1, Gλ ~

SL(ή) satisfying dim G > dim F. Tfeen it is equivalent to one of the fol-

lowing triplets.

(1) (GL(n),A»V(n)) (n>l).

(2) (GL(n), 2A19 V{±n{n + 1))) (n > 2).

(3) (GL(n), A2, V(in(n - 1))) (n > 4).

(4) (GL(n), ^ + An_u V(n2 - 1)) (w > 3).

(5) (GL(n), A3, V(in(n - l)(n - 2))) (n = 6, 7, 8).

(6) (GL(2), 3J1? 7(4)).
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Proof. A triplet (G, p, V) with k = 1 is always reduced. Since the

contragredient representation Λ* of A — Σl=imiΛ-i is Λ* = J>ilmn_iAi for

SL(ri), and (GL(ri),Λ, V) ~ (GL(ri),Λ*, V*), we have our assertion from

Proposition 7. Q.E.D.

Now we shall prove the following proposition.

PROPOSITION 10. Let (G, p, V) be a reduced triplet with Gx ~ SL(n)

satisfying d i m G > d i m y . Assume that it is not a trivial P.V. Then

we have 1 < k < 3. Moreover, when k = 3, it is equivalent to the triplet

(SL(n) x SL(n) x GL(2), A, <g> A, ® 4 , ^00 <g> 7(w) <g> 7(2)).

Proof. Assume that dj = n, i.e., pλ = Ax or ^ - i Then (3.1) implies

that n2 + g2 + + gk>nd2 - - dk, i.e., #2 + + gk > n(d2 dk —

n). If n > d2 - - - dk, then it is a trivial P.V. (see Definition 5), and if

d2 - - - dk > n > \d% - - - dk, it is not reduced. Therefore we may assume

that \d2 - dk> n> d2. In this case, we have n(d2 dk — n) — d2(d2

• dk — d2) = {n — d2)(d2 - - dk — n — d2) > (n — d2)(d2 dk — \d2

f̂c — ̂ 2) — \d2(jι — d2)(d3 dk — 2) > 0 for k > 3. Now assume that

& > 4. Then we have 2*'2 > Λ, and hence ik - l)((ξ - 1) > (<% - 1) +

+ ( 4 - 1) > 92 + -" + gk > n(d2 " dk-n)> d2(d2 dk - d2) > dl(2k~2

~ 1) > (k — ϊ)d2

2, i.e., a contradiction. Thus we have 1 < k < 3. Assume

that k = 3. Then we have (d* - 1) + (<ζ - 1) > d2( 2̂rf3 - d2) = d2

2(d3 - 1),

and hence d? - 2 > ^(d3 - 2) > d (̂d3 - 2), i.e., d̂  - 3dίj + 2 = (d3 - l)(dj

— 2d3 — 2) < 0. Together with d3 > 2, we have d3 = 2, and hence G3 =

SL(2), g3 = 3, ^3 == Ax (see Remark 43 in §1). By the assumption that

d2 = |d 2d 3 >n>d2, we have d2 = ti. Since n2 + g2 + gz — n2 + g2 + 3 >

nd2d3 = 2n2, we have g2 > n2 — 3. Assume that G2 ^ SLin). Then by

Proposition 42 in § 1, we have g2 < \n{n + 1) and hence n2 — 3 < Jw(w + 1),

i.e., n < 3. Again by Remark 43 in § 1, we have n — 3, G2 = SL(2) and

p2 = 2ΛX. In this case, however, the dimension of G is less than that of

V since dim G = n2 + g2 + g3 = 9 + 3 + 3 = 15 and dim V = nd2d3 = 18.

Thus we have G2 = SL(ri), p2 = Λ19 d2 — n, and hence we obtain our as-

sertion when d1 = n. Now assume that d2 Φ n, i.e., ^ 9̂  A^A^. Then

we have dx > d(A2) = | n(n — 1) (w > 4) and dx > d(2Aλ) — \n{n + 1) (n =

2,3). Assume that k > 3. Then by (3.4), we have n2 > 4dx - 6 > 2n(^

- 1) - 6 (w > 4), i.e., n < 2, and w2 > 4dx - 6 > 2n(n + 1) - 6 (n = 2,3),

i.e., 4 > 6 (n = 2), 9 > 18 (n = 3). This is a contradiction and hence

we have 1 < k < 2. Q.E.D.
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Finally, we shall consider the case for k = 2.

PROPOSITION 11. Let (G,p, 7) be a reduced triplet tvith k = 2, G1 ~

SL(ri) satisfying dim G > dim 7. Assume that pλ Φ A2, An_2 and it is not

a trivial P. 7. Then it is equivalent to the triplet (SL(3) x GL{2), 2Aλ®

A, 7(6) x 7(2)).

Proof. If p1 = Λ1 or An_19 then it is a trivial P.V., and hence we

may assume that pλ Φ Λ19 Λn_19 Λ2, An_2. First we shall consider the case

when dγ — 2 > d2 > 2. Then by Proposition 3, we have n2 = 1 + g1 >

2d1 — 3, in particular, n > 3 since dλ > 4. By Corollary 8, we have d1

> \n{n + 1) (nφ 6) and dλ > 20 (n = 6) and hence n2 > n(n + 1) - 3

(n Φ 6), i.e., n = 3, and %2 > 37 if n = 6, i.e., w =£ 6. Thus we get n =

3, and 9 = 1 + g1 > 2dι — 3, i.e., 6 > dx (> 4). Since 6 > d(A) > 4 implies

A = 2 ^ (or its dual 2Λ2) for SL(3), we have Pι = 2J1 ? ^ = 6. If G2 =

SL(d2), we may assume that 3 > d2 > 2 since it is not reduced in the case

of 6 > d2 > 3. Since 9 + (d\ — 1) > 6d2 with 3 > d2 > 2 implies that d2 =

2, we have a triplet (SL(3) X GL(2), 2A ® Λ, V(6) ® 7(2)). If G2 Φ SL(d2),

we have Jd2(d2 + 1) > g2 > 6d2 — 9 (dx — 2 = 4 > d2 > 2) by Proposition 42

in §1 and (3.1), and hence d2 = 2. This implies that G2 = SL(d2) by

Remark 43 in §1, i.e., a contradiction.

Next, we shall consider the case when d2 = dλ or d2 = ^ — 1. As-

sume that G2 = SL(d2). In this case it is a trivial P.V. if d2 = c ,̂ and

it is not reduced if d2 — dx — 1 since it belongs to the same castling class

as a triplet (GL(ή), p19 7(d1)). Assume that G2Φ SL(d2). Then we have

w2 + ^2(^2 + 1) > 1̂̂ 2 by Proposition 42 in § 1. Since d2 = cZx or d2 =

di — 1, we have

(3.5) n2 > KWi ~ 1)

On the other hand, by Corollary 8 we have

(3.6) dλ > \n{n + 1) in Φ 6) , dλ > 20 (n = 6) .

From (3.5) and (3.6), we have

n2 > \n(yι + l){%n(n + 1) - 1} (n Φ 6) and
( 8 > 7 ) 36 > 190 if n - 6 .

Since (3.7) holds only for n = 2, we have dx = 3 from (3.5) and (3.6).

As we have assumed that G2 Φ SL(d2) with d2 — dλ or c£2 = d1 — 1, we
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have G2 = SL(2), d2 = 3, ρ2 — 2Λλ by Remark 43 in § 1. In this case,

however, the dimension of G is less than that of 7 since dim G = 1 +

3 + 3 = 7 and dim 7 = 3 x 3 = 9. Q.E.D.

PROPOSITION 12. Le£ (G, p, 7) be a reduced triplet with k = 2, Gi ~

satisfying dim G > dim 7. Assume that pί = J 2 or Λw_2 αmZ iί is

α trivial P.V. Then it is equivalent to one of the following triplets.

(1) (SL(ri) x GL(2), Λ2 ® Λ19 V{\n(n - 1)) <g> 7(2)) (n > 4).

(2) (SL(4) X GL(3), Λ Θ Λ , 7 ( 6 ) 0 7(3)).

(3) (SL(5) X GL(3), Λ2®ΛU 7(10)0 7(3)).

(4) (SL(5) X GL(4), Λ ® Λ , 7(10)0 7(4)).

(5) (SL(4) X GL(2), Λ ® 2 ^ , 7(6)® 7(3)).

(6) (GL(4) x Sp(2), Λ2®Aιy 7(10)® 7(4)).

(7) (GL(4) x Sp(3), ί̂2 ® Λ, 7(10) ® 7(6)).

Proof. We may assume that ^ — ^12 and n > 4. First we consider

the case when G2 = SL(d2), i.e., ^2 = ^ or its dual. If d2 = 2, then dim G

= w2 + 3 > dim 7 = n(n — 1) and it is reduced since dι = | n ( ^ — 1) > 6,

i.e., dι — d2> d2. Thus we obtain (1), and we may assume that d2 > 3.

If Jw(w — 1) = d2, it is a trivial P.V., and if \n{n — 1) > d2 > Jw(w — 1),

it is not reduced. Therefore, we may assume

(3.8) \n(yι - 1) > d2 > 3 .

Thus if n = 4, we have d2 = 3, i.e., (2). Since (3.1) implies that n2 + d\

— 1 > \n(n — V)d2 (n > 5), together with (3.8) we obtain

(3.9) \[n(n ~ 1) - Vn\n - I)2 - 16(n2 - 1)] > d2 > 3 (n > 5) .

Thus if n = 5, we have d2 = 3 or 4, i.e., (3) or (4). If n > 6, then (3.9)

has no solution d2. Now we shall assume that G2 φ SL(d2). In this case

we have d2 > 3 by Remark 43 in § 1. By Proposition 42 in § 1 and (3.1),

we have n2 + \d2{d2 + 1) > \n(n — l)d2, i.e.,

(3.10) d\~{n2 - n - ΐ)d2 + 2n2 > 0 .

On the other hand, we have

(3.11) dx - n ( n ~ 1 ) - > d2 > 3 .

Now we shall prove that there is no solution d2 which satisfies both (3.10)
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and (3.11) if n > 6. Let d2 be a solution of (3.10) satisfying d2 > i(n2 —

n - 1 + V O ^ n - l)2~^8n2). Then by (3.11), we have n(n - 1) > n2 -

n-1 + Λ/ΪΉΓ^VΓ^ I)2 - 8n2, i.e., 1 > V ^ ^ ^ ^ ^ Π T ^ Γ S n l Since n > 6,

we have 1 > in2 - n - I)2 - 8π2 > (%2 - 2?02 - Sn2 = ?z2{(̂  - 2)2 - 8} > 8n2,

i.e., a contradiction. Hence we have

(3 12) ^ d ^
where f(x) - x2 - x - 1 - V(x2 ~ x - I)2 - 8^2 .

Since |/(6) < 3, it is sufficient to show that fix) (x > 6) is monotone

decreasing, i.e.,

— 0 * 0 < 0 (x > 6) .
dx

Since

dx

= (2x - 1)Λ/IX2^~X~~-1)2~^~W

- (2x - l)(x2 - x - 1) + 8£ < 0

if and only if 2x2 + 3^ + 2 > 0 (a; > 6), we have (βf/dx)(x) < 0, and hence

w < 5. If n = 5, we get d2 - 3 from (3.10) and (3.11). Since G2 Φ SL(d2),

we have g2 = 3 by Remark 43 in § 1. In this case, however, we have

dim G = 28 < dim 7 = 30. Finally, assume that n = 4. Then from (3.1),

(3.11) and Proposition 42 in §1, we have

(3.13) U2{d2 + I)>g2> 6cl2 - 16 (3 < d2 < β) .

If d2 — 3, we have 6 > ί/2 > 2, and hence by Remark 43 in § 1, G2 —

SL(2), flr2 = 3, i.e., (5).

If d2 = 4, then 10 > g2 > 8. Note that in the case of d2 = 4, G2 must

be one of SL(2), SL(4), Sp(2), and hence we have G2 = Sp(2), g2 = 10, i.e., (6).

If d2 = 5, then 15 >g2>U by (3.13). Note that d2 - 5 only if G2

= SL(2), SL(5) and Sp(2). Hence we have d2 φ 5.

If d2 = 6, then we have 21 > (/2 > 20. Note that d2 = 6 only if G2

= SL(2),SL(3)?SL(4),SL(β) and Sp(3). Hence we have G2 = Sp(S), g2 =

21, i.e., (7). Q.E.D.

II) The case for G1 - Sp(ri)

We may assume that Gλ — Spin) and n > 2 since £p(l) ^ SL(2) (see
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Example 45 in § 1). First of all, we shall consider the irreducible repre-

sentations p: Sp(n) —> GL(V) satisfying dim V < 1 + dim Spin) = n(2n + 1)

+ 1. Let A19 -,An be the fundamental dominant weights of Sp(ri), and

let A — Σi^iWiiAi be a dominant integral form satisfying d(A) < n(2n +

D + l .

LEMMA 13. (1) 0 < mι < 2 in > 2).

(2) m2 = 0 or 1, and if m2 — 1, ί/̂ en mλ = 0 (n > 2).

(3) m3 = 0 or 1, and i/ m3 = 1, then mι — m2 — § (n = 3).

(4) my = 0 /or 3 < y < n (n > 4).

Proo/. (1): Since d(3Λx) = fw(w + l)(2w + 1) > n(2n + 1) + 1 (n > 2),

we obtain (1) in view of Corollary 13 in § 1 (see (1) in Example 26 in § 1).

(2): Since d(2A2) = in(n - l)(2n - l)(2n + 3) > n(2n + 1) (n > 2), we have

0 < m2 < 1, and by d(A1 + A2) = |tι(n 2 - 1) > n(2n + 1) + 1 (w > 2), we

obtain (2) (see (2), (3) in Example 26). (3): Since d(2A3) = 84, d(A, + A3)

= 70, d(Λ2 + ^ί3) = 126, we have d(A3 + Av) > dim Sp(S) + 1 = 22 (1 < v <

3, % — 3) and hence we obtain (3) (see Example 26). Note that d(A3) =

14 < 22 = dim Sp&) + 1 (n = 3). (4): Since d(Λ) - M - Γ ^ 2 ) ' w e

have d(^3) = %n(n — 2)(2w + 1) > n(2n + 1) + 1 (n > 4). Next we shall show

that d(An) = [2(2n + 1) ! /n ! (n + 2)!] > n(2n + 1) + 1 (n > 4). Put cw =

2n(n + ΐ)/d(An) = n(n + 1)! (w + 2) !/(2w + 1)!. Since c4 < 1 and c^/c,,

= in + 2)(n + 3)/2n(2n + 3) < 1 (n > 2), we have cn < 1 and hence d(An)

> n(2n + 1) for n > 4. Finally, we shall show that d(Av) > min (d(A3),

d(An)) for 3 < v < n (n > 4). Since d(Av) - d(Av_x) = 2(2n + 1)! (2n - 2v

+ 3 + Λ/2U + 3){J(2n + 3 - Λ/2U + 3) - y}/^! (2w — y + 3)!, dW.) is mono-

tone increasing if 1 < v < \{2n + 3 — V2n + 3) and monotone decreasing

if ±(2n + 3 - V2n + 3) < y < n. This shows that d(Av) > min (d(^3), (dW,,))

(3 < v < n) and hence d(Av) > n(2n + 1) + 1. In view of Corollary 13 in

§1, we obtain our assertion. Q.E.D.

PROPOSITION 14. Let (G, p, V) be a reduced triplet with k = 1 and

G1 — Sp(ri) satisfying dim V < dim G. Then it is equivalent to one of the

following triplets.

(1) (GL(1) X Sp(n), • ® ̂ , 7(1) ® F(2n)).

(2) (GL(1) x Sp(w), D ® Λ, 7(1) ® 7((w - l)(2w + 1))).

(3) (GL(1) X 5p(w), D Θ2Al9 V(l)®V(n(2n + 1))).

(4) {GUI) X Sp(3), D ®Λ,f 7(1)® 7(14)).
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Proof, Since dim G = n(2n + 1) + 1, we have d(Λ) < n(2n + 1) + 1

for p1 = A. By Lemma 13, A must be one of Λ192Λ19Λ2 (n> 2) and Λs

(n = 3). Since a triplet with k = 1 is always reduced, we have our as-

sertion. Q.E.D.

PROPOSITION 15. Let (G, <o, 7) be a reduced triplet with Gι ~ Spin)

satisfying dim 7 < dim G. Assume that pλ Φ Λx. Then we have 1 < k < 2.

Moreover, if k = 2, i£ is equivalent to one of the following triplets.

(1) (Sp(2) x GL(2), Λ 2®Λ, 7 ( 5 ) 0 7(2)).

(2) (Sp(2) x GL(3), Λ Θ Λ , 7(5)® 7(3)).

(3) (GL(1) X Sp(2) X Sp(2), D ® Λ ® Λ19 7(1) ® 7(5) ® 7(4)).

Proof. Assume that k > 3. Since ^(2^) > d(A2), we have ĉ  = d(A) >

d(A2) = (n — l)(2n + 1) for Λ Φ Λ1 in view of Proposition 14. Then to-

gether with (3.4), we have 1 + n(2n + 1) > 4(n — l)(2n + 1) — 6, i.e.,

(fin — ll)(n + 1) < 0. This is a contradiction since n > 2, and hence we

have 1 < k < 2. Now assume that k = 2. If dx — 2 > d2 > 2, we have

1 + n(2n + 1) > 2dγ - 3 > 2(n - l)(2w + 1) - 3 by Proposition 3. This

implies that n = 2 and 7 > dx > 5. Thus we have p1 = yl2, ^ = 5, and

hence d1 — 2 = 3 > d 2 > 2 . By Remark 43 in § 1, we obtain (1), (2) and

a triplet (Sp(2) x GL(2), Λ2 ® ̂ 2, 7(5) ® 7(3)). This latter triplet, however,

does not satisfy dim 7 < dim G since dim 7 — 15 and dim G = 14. As-

sume that d2 — dι or dx — 1. In this case we have c ^ — id2(d2 + 1) =

Jdi(di — 1). Therefore, if G2 ̂  SL(d2), together with Proposition 42 in

§ 1 and (3.1), we have 1 + n(2n + 1) > id^d, - 1) > i(n - l)(2n + ΐ){(n -

l)(2n + 1) — 1}, and hence n = 2, dx = 5, i.e., ^ = yl2. If d2 = ^ = 5,

then G2 must be SL(2) or Sp(2) (G2 ̂  SL(5) by assumption). However,

in both cases we have dim G < dim 7. If d2 = dx — 1 = 4, then G2 is

again SL{2) or Sp(2). If G2 = SL(2), we have dimG < dim 7, and if G2

= Sp(2), we obtain (3). Finally, if G2 = SL(d2), it is a trivial P.V. when

d2 = d2, and it is not reduced when d2 — dx — 1. Q.E.D.

We shall consider the case of px — Aλ.

LEMMA 16. Let (G, p, 7) be a triplet with Gλ Φ SLidJ satisfying

d i m 7 < d i m G. Tfoew w e have dλ> d2 dk.

Proof. Assume that d2 dfc > dx> d2 and hence fc > 3. By Propo-

sition 42 in § 1 and (3.1) we have 1 + jd^ + 1) + g2 + + gk> dλd2

"- dk, i.e., g2 + + gk> idλ(2d2 dte - 1 - dλ) - 1 = Jd^A - dx) - 1
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where A = 2d2 dk — 1. Since A/2 > dλ>d2 and x(A — #) is a mono-

tone increasing function for x < A/2, we have d^A — dx) > d2(A — d2).

Assume that k > 4. Then we have 2k~2 > k, and hence (k — l)(d2

2 — 1)

> (dl - 1) + + (dl - 1) > g2 + . + gk > idx(A - dj - 1 > \dlA -

d2) - 1 = d2

2(d3 dfc - 1) + \d2{d2 - 1) - 1 > d\{2k~2 ~ 1) > {k - l)d\.

This is a contradiction, and hence we have k = 3. In this case we have

d3 = 2 since 2(d^ — 1) > djiWs — 1) + Id2(^2 — 1) — 1 and d3 > 3 implies 0

> id2(d2 - 1) + 1. Therefore, we have (d2

2 - 1) + (22 - 1) > d|(2 - 1) +

jd2(d2 — 1) — 1, i.e., dz(d2 — 1) < 6. This implies d2 — 2 or d2 — 3. By

Eemark 43 in § 1 and G1 Φ SLidJ, we have dx > 3, and dx = 3 implies

gλ — 3. Hence if d2 = 2, then d2d3 = 4 > ^ > 2 and we have dj = 3, gλ

= 3. In this case, however, we have 10 = 1 + g1 + g2 + g3 > dγd2dz — 12,

i.e., a contradiction. Hence we have d2 = 3, and d2d3 = 6 > dx > d2 — 3.

Assume that dλ = 3. Then 15 = l + 3 + 8 + 3 > l + flr1 + flr2 + flr3> dxd2d3

= 18, i.e., a contradiction. Since di = 4 or 5 does not satisfy the in-

equality 1 + dx(di + l)/2 + 8 + 3 > l + #1 + #2 + #3> d!d2d3 = 6d1? there

is no triplet such as Gλ Φ SLid^, dim V < dim G and d2 < dλ < d2 dk.

Hence we have dx> d2 dk. Q.E.D.

LEMMA 17. Let (G,p, V) be a triplet satisfying dimG > dimA2(V) =

^d(d — 1) where d = dim V. Then it is equivalent to one of the following

triplets.

(1) (GL(d), A, 7(d)).

(2) (GL(1) x Sp(m), D ® Λ, V(ΐ) ® 7(d)) (d - 2m).

(3) (GL(1) x SO(d), DΘΛi, F(D®7(d)).

Moreover, if d i m G > S\V) — \d(d + 1), it is equivalent to (1) or (2).

Proof. First assume that & > 2. In this case, we may assume that

G = G1 x G2, V — FOO (x) 7O2)> d = WjWg, ^i > 2̂ > 2, where (?! and (52

are not necessarily simple. If n2 > 3, then we have 2n\ — 1 > 1 + (n\ — 1)

+ (nl - 1) > dim G > \d(d - 1) = ^n^n.n, - 1) > fw? - f^i > Sn\. This

is a contradiction, and hence we have n2 = 2. Then we have nλ = 2 since

^i + 3 > dim G > ^d(d ~ 1) = 2wJ — ^ , i.e., ^ ( ^ — 1) < 3. In this case

we have (SL(2) x GL(2), Λx ® A19 7(2) <g> 7(2)) - (GL(1) x 50(4), Π ® Λ, 7(1)

<x) 7(4)) (see Example 51 in §1), i.e., (3) for d — 4. Next, assume that

k = 1. Since we have seen in § 1 that the least representation degree d

of (G2) (resp. FA, E6, E7, Es) is 7 (resp. 26,27, 56,248) while the dimension

g of (G2) (resp. F 4, E6, E7, EQ) is 14 (resp. 52,78,133,248), we have g <

https://doi.org/10.1017/S0027763000017633 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000017633


PREHOMOGENEOUS VECTOR SPACES 53

\d{d — 1) and hence Gx is not an exceptional algebraic group. If Gx =

SL(n), i.e., G = GL{n) we have p = A, (n> 1), i.e., (1), p = 2ΛX (n = 2),

and p = Λ2 (w = 4) in view of Proposition 9. Note that (GL(2), 2Λ1? 7(3))

~ (GL(1) X £0(3), D ® 4 , 7(1)® 7(3)), i.e., (3) for d = 3, and (GL(4),

4a, 7(6)) - (GL(1) X S0(6), D ® ^ , 7(1)® 7(6)), i.e., (3) for d = 6 (see

Example 45 in § 1). If Gi = Spin), we have ^ = Λ, i.e., (2) and pλ = A2 (n

= 2) in view of Proposition 14. Note that (GL(1) x Sp(2), D ® Λ2, 7(1)

® 7(5)) ~ (GL(1) x SO(5), D ® Λ, 7(1) ® 7(5)), i.e., (3) for d = 5. If Gx

= SO(n)9 p! = J 1 ? i.e., (3) since in this case dimG = 1 + ^n(^ — 1) > |d(d

— 1), i.e., d = n. The second assertion is now obvious. Q.E.D.

PROPOSITION 18. Let (G, p, 7) be a reduced triplet with k>2,G1~

Spin), px = Ax. Then it is not a P.V. unless it is a trivial P.V. or equiva-

lent to one of the following triplets.

(1) (Sp(n) X GL(m), A, ® A19 V(2n) ® Vim)) (n>m> 2).

(2) (GL(1) x Spin) X Spim), Π ® Ax ® Λ, 7(1) ® 7(2n) ® 7(2m)) in >

m>2).

(3) (GL(1) x Spin) X SOim), Π ® A1 ® Λ, 7(1) ® 7(2w) ® 7(m)) (2w >

m > 3).

Proof. From Proposition 13 in §2, Lemma 16 and Lemma 17, our

assertion is obvious. Q.E.D.

III. The case for Gλ - SO(n)

Since SO(n) is not simply connected, we have to consider its cover-

ing group Spin(n) when px is a (half-) spin representation. However, we

need not consider Spίn(&) since (SO(8), A19 7(8)) cr: iSpίniS), half-spin rep.

7(8)) (see Example 28 in § 1). Note that if Am_λ and Am are two in-

equivalent half-spin representations of Spini2m), we have iSpίn(2m), Am_19

7(2m~1)) - (Spin(2m), Am, 7(2m"1)). We denote it by (Spm(2m), half-spin

rep. 7(2m-1)). Since we have seen in Example 45 in §1 that SpiniG) ~

SL(4), Spin(5) ~ Spi2), SpίniA) - SL(2) X SL(2), Spira(3) ^ SL(2), we may

assume that n>7.

PROPOSITION 19. Let (G,p, V) be a reduced triplet with Gλ - SOiri),

px =z Aλ Then it is not a P.V. unless it is a trivial P.V. or equivalent

to one of the following triplets.

(1) (SOin) X GL(m), Λ1®Alf V(n) ® Vim)) in > 7, n/2 > m > 1).

(2) (GL(1) x SOin) x Spim), U®Aλ® Λlf 7(1)® Vin)® 7(2m))

in > 7, n>2m> 4).
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Proof. From Proposition 14 in §2, Lemma 16 and Lemma 17, our

assertion is obvious. Q.E.D.

PROPOSITION 20. Let (G, p, 7) be a reduced triplet with G, ~ SO(ri),

pλ φ Au satisfying dim V < dim G. Then we have 1 < k < 2. Moreover,

if k = 1, it is equivalent to one of the following triplets.

(1) (GL(ΐ) X Spin(Ί), • ® spin rep., 7(1) ® 7(8)).

(2) (GL(1) x Spm(9). Π Φ s p m r e p . , 7(1)® 7(16)).

(3) (GL(1) x Spin(10), Π ® half-spin rep., 7(1) <g> 7(16)).

(4) (GL(1) X Spm(ll), D ® spin rep., 7(1) <g> 7(32)).

(5) {GL{1) x Spin(12), Π ® half-spin rep., 7(1) ® 7(32)).

(6) (GL(1) x Spm(13), D ® spm rep., 7(1) ® 7(64)).

(7) (GL(1) x Spm(14), D ® half-spin rep., 7(1) ® 7(64)).

(8) (GL(1) X SO(n), • ® Λ2, 7(1) ® V(%n(n - D) fa > 7).

Proof. First we shall show that ^ > \n(n — 1) fa > 15) and ^ >

2C(w-1)/2] (14 > n > 7) where [a] is an integer satisfying 1 > a — [a] > 0.

As we have seen in Example 27 and Example 28 in § 1, d(Λv) = ί J for

1 < v < [(n - 3)/2] and d(^,) = 2[(n"1)/2] for y = (n - l)/2 when n is odd,

and for ^ = n/2, n/2 — 1, when n is even. Since d(2Λ1) = J(^ ~ l ) ( w + 2)

> d(Λ2) = \n(n - 1), we have dγ = d(yί) > min{Jw(n - 1), 2[(w-1)/2]} for any

A φ Ax. Since 2C(w~1)/2] > \n{n -ΐ) (n> 15) and \n{n - 1) >2 [ ( w" 1 ) / 2 ] (14 >

n > 7), we have d, > \n(jι - 1) (n> 15) and ^ > 2[(w"1)/2] (14 > n > 7).

Here if n — 8, we may assume that dλ > d(A2) = 28 since (SO(8), J ^ 7(8))

^ (Spίn(8), half-spin rep., 7(8)). Assume that k > 3. Then together with

(3.4), if n > 15 or n = 8, we have 1 + \n(rι — 1) > 2n(n — 1) — 6, i.e.,

n(n — 1) < -^. This is a contradiction. If 14 > n > 7 and n ^ 8, we have

1 + \n(n — 1) > 4 2C(w~1)/2] — 6. This is also a contradiction and hence

we have 1 < k < 2. Since 2[(w"1)/2] > \n{n - 1) + 1 (n > 15), and d(2Aλ) >

\n(n — 1) + 1 (n > 7), we have d(A) < \n(n — 1) + 1 if and only if A is

a (half-) spin representation for 7 < n < 14, n Φ 8, or A — A2. Hence

we obtain our assertion. Q.E.D.

PROPOSITION 21. Let (G,p, 7) be a reduced triplet with k = 2, Gλ~

SO{n), ριφΛι satisfying dim 7 < dim G. Then it is a trivial P.V. or

equivalent to one of the following triplets.

(1) (Spin(l) x GL(d), spin rep. ® Λlf 7(8) ® V(d)) (2 < d < 4).

(2) (Spίn(7) x GL(2), spin rep. ® 2Alf 7(8) ® 7(3)).
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(3) (GL(1) x Spin(Ί) x Sp(2), • <g> spin rep. <g> A19 7(1) <g> 7(8) ® 7(4)).

(4) (Spin(9) X GL(2), spin rep.® Aιy 7(16)® 7(2)).

(5) (SpinilO) X GL(d), half-spin rep. <g> 4 , 7(16) <8> 7(d)) (2 < d < 3).

(6) (Spm(lO) X GL&), half-spin rep. <g> 2^, 7(16) <g> 7(3)).

(7) (Spin(12) X GL(2), half-spin rep. 0 A19 7(32)® 7(2)).

Proof. First assume that ^ — 2 > d2 > 2. Then by Proposition 3,

we have 1 + \n{jι — 1) > 2dx — 3. If ^ is not a (half-) spin representa-

tion, by the proof of Proposition 20, we have d1 > d(Λ2) = ^n(n — 1) and

hence 1 + \n{yι — 1) > n(n — 1) — 3, i.e., n(n — 1) < 8 (n> 7). This is a

contradiction, and hence pι is a (half-) spin representation (n Φ 8). In

this case we have 1 + \n{n — 1) > 2 2C(r>-1)/2] — 3 (nφS, n>7) and hence

we get n = 7, 9 (spin rep.) and n = 10,12 (half-spin rep.). We shall con-

sider each case. In the case of n = 7, we have 2 < d2 < dx — 2 = 6. If

G2 — SL(d2), we have 2 < d2 < 4, i.e., (1) since otherwise it is not reduced.

If G2ΦSL(d2), by Proposition 42 in § 1 and (3.1), we have 1 + 21 +

\d2{d2 + 1) > 8<22 (2 < d2 < 6), hence d2 = 3, G2 = SL(2), i.e., (2) or d2 =

4, G2 = Sp(2), ^ = A19 i.e., (3) since otherwise the condition (3.1) or G2

Φ SL(d2) is not satisfied. In the case of n = 9, we have 2 < d2 < 14 =

cZ2 — 2. If G2 Φ SL(d2), we have #2 < \d2{d2 + 1) and d2 > 3, and hence

(3.1) implies 1 + 36 + \d2{d2 + 1) > 16d2, i.e., ( ^ - d2)
2 > 166 + \ (14 > d2

> 3). This is a contradiction and hence we have G2 = SL(d2). In this

case we have 2 < d2 < 8 since otherwise it is not reduced. Then (3.1)

implies that 1 + 36 + (d\ — 1) > 16d2 (2 < d2 < 8) and hence d2 = 2, i.e.,

(4). In the case of n = 10, we have 2 < ώ2 < 14 < dx - 2. If G2 = SL(d2),

we have 2 < d2 < 8 since otherwise it is not reduced. Then (3.1) implies

1 + 45 + (d2

2 - 1) > 16d2 (2 < d2 < 8) and hence 2 < d2 < 3, i.e., (5). If

G2 Φ SL(d2), we have 1 + 45 + \d2{d2 + 1) > 16d2 (3 < d2 < 14) and hence

d2 = 3, G2 = SL{2), p2 = 2Λlf i.e., (6). In the case of n = 12, we have

2 < d2 < 30. If G2 Φ SL(d2), we have 1 + 66 + \d2{d2 + 1) > 32rf2 (3 < d2

< 30). This has no solution and hence G2 = SL(d2). In this case we

may assume that 2 < d2 < 16 since otherwise it is not reduced. Then by

(3.1) we have 1 + 66 + (d\ - 1) > 32d2 (2 < d2 < 16) and hence d2 = 2, i.e.,

(7). Finally, we shall consider the case when d2 = dλ or d2 = dx — 1. In

this case we have dxd2 — \d2{d2 + 1) = \dγ{dγ — 1). Hence if G2 Φ SL(d2),

by (3.1) we have 1 + \n(n — 1) > \dγ{dx — 1), i.e., n = dιy px = Aλ. As our

assumption is px Φ A19 we have G2 = SL(d2). However, in this case it is

a trivial P.V. if d2 = dl9 and it is not reduced if d2 — dι — 1. Q.E.D.
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IV. The case when Gx is an exceptional algebraic group

We shall denote by (G2) the exceptional simple algebraic group of

dimension 14, of rank 2, to distinguish it from the second group G2.

PROPOSITION 22. Let (G, p, 7) be a reduced triplet satisfying dim 7

< dim G with an exceptional simple algebraic group Gx. Then we have

1 < k < 2. Moreover, if k — 1, it is equivalent to one of the following

triplets.

(1) (GL(l)χ(G 2 ), D®Λ2, 7(1)® 7(7)).

(2) (GL(l)χ(G 2 ), D ® Λ , 7(1)® 7(14)).

(3) ( G L ( l ) χ F 4 , Π ® Λ , 7(1) (8)7(26)).

(4) ( G L ( l ) x F 4 , Π®/ii, 7 ( 1 ) 0 7(52)).

(5) ( G L ( l ) χ # 6 , Π ® Λ , 7(1)® 7(27)).

(6) (GL(1) x # β , π ® Λ, 7(1) ® 7(78)).

(7) (GL(l)χ£7 7, D ® A , 7(1) ® 7(56)).

(8) (GL(1) X #7, G ® Λ, 7(1) ® 7(133)).

(9) ( G L ( l ) χ B 8 , D®A> 7(1) ® 7(248)).

Proof. If & = 1, we obtain our assertion from the calculation of

representation degree in § 1 (see Example 30 for (G2), Example 38 for FAf

Example 39 for Ed, Example 40 for E7 and Example 41 for E8). Assume

that k > 3.Then we have gx > Adί — 7 by (3.4). However, as we see above,

there is no solution of this and hence we have 1 < k < 2. Q.E.D.

PROPOSITION 23. Let (G, p, 7) be a reduced triplet satisfying dim 7

< dim G with an exceptional simple algebraic group and k — 2. Then it

is a trivial P.V. or it is equivalent to one of the following triplets.

(1) ((G2)χGL(2), A2®Aif 7(7)® 7(2)).

(2) ((G2)χGL(3), Λ2®ΛU 7(7)® 7(3)).

(3) (F4 x GL(2), A4 ® Al9 7(26) ® 7(2)).

(4) (E6 x GL(2), A, ® A19 7(27) ® 7(2)).

(5) (£76χGL(3), Λ ® Λ , 7(27)® 7(3)).

(6) (S 6 χGL(2) , Ax®2Al9 7(27)® 7(3)).

(7) (E7 x GL(2), A6 ® Al9 7(56) ® 7(2)).

Proof. First we shall show that dλ < gx. Assume that d1 > gλ. In

this case, (3.1) implies that 1 + dx + (d\ — 1) > dxd2. Since dx > 14 and

d2 > 2, we have d2 > ^(d1 + Vd\ — 4^) > dλ — 1 and hence d2 = dx or d2 =

d1 — 1. Hence if G2 Φ SL(d2), together with Proposition 42 in § 1, we
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have 1 + dx > dxd2 - \d2{d2 + 1) = \dx{dλ - 1), i.e., dY{dx - 3) < 2 {dγ > 14).

This is a contradiction and hence G2 = SL(d2). In this case, however,

it is a trivial P.V. when cZ2 = dx and it is not reduced if d2 = dι — 1.

Hence we may assume that d1 < gx. Assume that Gλ = (G2). Then we

have dλ = 7 since 2 < dx < ^ = 14. If G2 Φ SL(d2), we have 1 + 14 +

\d2{d2 + 1) > ld2 (2<d2< 7) and hence d2 = 3, G2 = SL(2). However, in

this case we have 18 = 1 + g1 + g2 > dxd2 = 21, i.e., a contradiction.

Hence G2 = SL(d2). Then we have 2 < d2 < 3, i.e., (1) and (2) since other-

wise it is not reduced. Next assume that Gγ = F 4 . Then dx = 26 since

2<d,< g1 = 56. If G2 Φ SL(d2), we have 1 + 52 + J d ^ + 1) > 26d2

(26 > d2 > 3). There is no solution and hence G2 — SL{d2). In this case

we have 2 < d2 < 13 since otherwise it is not reduced. Since 1 + 52 +

(dl - 1) > 26d2 (13 > d2 > 2), we have d2 = 2, i.e., (3). Assume that Gx

= £̂ 6. Then dx = 27. If G2 = SL{d2), we may assume that 13 > d2 > 2

since otherwise it is not reduced. Then (3.1) implies that 1 + 78 + (d\

— 1) > 27cZ2 (13 > d2 > 2), and hence 2 < rf2 < 3, i.e., (4) and (5). If G2 Φ

SL(d2), we have 1 + 78 + \d2id2 + 1) > 21 d2 (27 > d2 > 3) and hence d2 =

3, G2 = SL(2), i.e., (6). Assume that Gλ = ί77. Then dx = 56. If G2 Φ

SL(d2), we have 1 + 133 + \d2{d2 + 1) > 56d2 (56 > d2 > 3). Since there

is no solution we have G2 — SL(d2). We may assume that 2 < d2 < 28.

By (3.1) we have 1 + 133 + (d\ - 1) > 56d2 (28 > d2 > 2) and hence d2 = 2,

i.e., (7). Finally assume that 6^ = EB. Then the least representation of

Es is the adjoint representation (see Example 41 in § 1), we have gι = dγ

< gr̂  i.e., a contradiction. Thus we obtain our assertion. Q.E.D.

THEOREM 24. Let (G, p, V) be a reduced triplet and let g be the Lie

algebra of p(G). Assume that the center of g is one-dimensional. Then

it is not a P.V. unless it is equivalent to one of the following reduced

triplets.

( 1 ) (G X GL(m)y p® Λ19 V(n) (x) V(m)) where p:G-> GL(V(n)) is an

n-dimensίonal irreducible representation of a semi-simple alge-

braic group G(Φ SL(ri)) with m>n>3.

( 2 ) (SL(ri) x GL{m), Λι ® Λ19 V(ri) ® V(m))

(m/2 > n > 1, or n = m > 1).

(3) (GL(1) x G, • (x) adjoint rep., V(l) (x) 7W) where G is an almost

simple algebraic group of dimension n(>3).

( 4 ) (GL(n)9 2Λ19 V(±n{n + 1))) (n> 3).

( 5 ) (GL(w), Λ, 7(itι(w - 1))) in > 5).
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( 6 ) (GL(2), 3ΛU 7(4)).

( 7 ) (GL(6), At, 7(20)).

(8) (GL(7), A3, 7(35)).

(9) (GL(8), Av 7(56)).

(10) (SL(3) X GL(2), 2A1®Aί, 7(6)0 7(2)).

(11) (SL(n) x GL(2), Λ 2 0A, 7(|»(w - 1))® 7(2)) (% >*5).

(12) (SL(5) X GL(3), Λ20 Au 7(10)0 7(3)).

(13) (SL(5) x GL(4), Λ 20 Ax, 7(10)0 7(4)).

(14) (SL(n) x SL(n) x GL(2), A,® Aλ® A,, V(n)0 7(n)0 7(2))

in > 3).

(15) (Sp(n) x GL(m), A,04, 7(2%)0V(m)) (n>m> 1).

(16) (GL(1) x Sp(n) X S0(m), D ® Λ ® A, 7(1)0 7(%)0 V(m))

(2n>m> 3).

(17) (GL(1) x Sp(n), D 0 Λ2, V(l) 0 V((w - 1)(2« + 1))) (« > 3).

(18) (GL(1) x Spin) X Sp(m), Π 0 Λ, 0 Alt 7(1)0 7(2%)0 7(2m))

in>m> 2).

(19) (GL(1) x SpiS), Π 0 A3, 7(1) 0 7(14)).

(20) iSOin) X GL(m), yί, 0 Alt 7(») 0 7(w)) in > 3, n/2>m> 1).

(21) (GL(1) x SO(w) X Sp(m), Π®Λ®-4i, 7(1)07(w)07(2m))

(n>2m> 4).

(22) iSpiniT) X GL(d), spiw rep. 0 Au 7(8) 0 7(d)) (1 < d < 4).

(23) (SpiniT) x GL(2), spin rep. ®2AU 7(8)0 7(3)).

(24) (GL(1) x Sptw(7) X Sp(2), Q 0 βρt» rep. 0 Λ,, 7(1) 0 7(8)0 7(4)).

(25) iSpinilO) x GLid), half-spin rep. 0 Au 7(16) 0 7(d)) (1 < d < 3).

(26) iSpinilO) X GL(2), half-spin rep. ®2AU 7(16)0 7(3)).

(27) (Spm(9) x GL(d), spi» rep. 0 Λx, 7(16) 0 7(d)) (1 < d < 2).

(28) (Spί«(12) X GL(d), half-spin rep. 0 Λlf 7(32) 0 7(d)) (1 < d < 2).

(29) (GL(1) x Spinill), D 0 spin rep., 7(1) 0 7(32)).

(30) iGLQ.) x Spinill), Π® half-spin rep., 7(1)0 7(64)).

(31) (GL(1) x SpίnilS), D 0 spin rep., 7(1)0 7(64)).

(32) ((G2) x GLid), At®Au 7(7) 0 7(d)) (1 < d < 3).

(33) (ί1! X GLid), At 0 yί1; 7(26) 0 V(d)) (1 < d < 2).

(34) (£7e x GLid), A, 0 Λ,, 7(27) 0 7(d)) (1 < d < 3).

(35) iEβχGLi2), Aί®2Aι, 7(27)0 7(3)).

(36) iE7 x GLid), A 0 Au 7(56) 0 V(d)) (1 < d < 2).

Proo/. By Propositions 9,12,14,15,18 ~ 23, and Example 45 in § 1,

we obtain our assertion. Note that the adjoint representation of SLin)
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(n> 2) (resp. Sp(n), SO(n)) is Λλ + An_x (resp. 2Λ19Λ2). A triplet (5) in
Proposition 12 is equivalent to the triplet (GL(1) X SO(6) x SO(3), Π ® Ax

®ΛX, 7(1) (x) 7(6) (x) 7(3)). Hence it should be omitted in view of Pro-
position 14 in §2 and Lemma 17 in §3. Q.E.D.

§4 Relative invariants and the regularity

Before going on to investigate the reduced triplets in Theorem 24
in §3, we shall prepare some general notions about prehomogeneous
vector spaces. Since it is convenient to consider them in a general
situation, we do not assume the irreducibility in this section. The results
in this section are already published in Japanese (see [11]) except Propo-
sitions 15, 16, 18, and 23.

DEFINITION 1. Let G be a connected linear algebraic group. A
rational homomorphism χ: G —> Cx (Cx = C — {0}) is called a rational
character of G. The group of all rational characters of G will be denoted
by X(G). Rational characters χ19 -' ,χe are called multiplicatίvely inde-

pendent if they generate a free abelian group of rank I in Z(G).

DEFINITION 2. Let (G, p, 7) be a triplet where p is not necessarily
irreducible. A non-constant rational function f(%) on 7 is called a
relative invariant of (G, p, 7) if there exists a rational character χ of G
satisfying f(pig)x) = χig)f(x) for any g e G and xeV. A relative in-
variant corresponding to the identity character χ = 1, is called an absolute
invariant.

PROPOSITION 3. Let (G, p, 7) be a P. 7. Then a relative invariant
is, up to a constant multiple, uniquely determined by its corresponding
character. In particular, any relative invariant is a homogeneous func-
tion.

Proof. Let fλ(x) and f2(x) be relative invariants corresponding to
the same character. Then the quotient fi(x)/f2(x) is an absolute invariant,
and hence constant by Proposition 3 in §2. Let f(x) be any relative
invariant. Since ft(x) = f(tx) (t e Cx) is also a relative invariant with
the same character as fix), we have f(tx) = c-f(x) for some ceC. This
implies the homogeneity of fix). Q.E.D.

LEMMA 4. Relative invariants f19 •,/, corresponding to multiplica-
tively independent characters χu , χe, are algebraically independent.
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Proof. Assume that/j, ,f£ are algebraically dependent. Then there

exist monomials Uί9 , Us of f19 ,f4 such that they are linearly depend-

ent and any (s — 1) of them are linearly independent. By the defini-

tion, the subspace W of Cs defined by W = {(c19 •• , c s ) e C ί | ΣUi CiU€ == 0}
is one-dimensional. On the other hand, J7t is a relative invariant cor-
responding to some character μi (1 < i < s). Then (c19 , cs) e W implies

ifiiPiiSJ)* '"9 csμs(g)) e W for any g eG. Since dim W = 1, we have ^ =

. . . = μ,. This is a contradiction since multiplicative independence of

χlf - - -,χe implies that μ19 ••-,/*, are different from each other. Q.E.D.

Let (G,p,V) be a P. V. and let S be its singular set, i.e., V — S

= p(G) x0 (xQe V — S). Let Si, ,S, be the irreducible components of

S with codimension one. Then we may assume that each Si is the zeros

of some irreducible polynomial ft(x) (1 < i < £): Si = {xe V\ft{x) = 0}.

PROPOSITIONS. These f^x), -,f£(x) are algebraically independent

relative invariants. Moreover, any relative invariant fix) is of the form

fix) = c/ iθ) m i f4(x)mi (c e C, (m1? . ., m,) e ZO

Proof. First we shall show that each /*($) is a relative invariant

(1 < i < £)• Since G is connected and St is irreducible, the Zariski

closure p(G) Si of p(G)-St = {p(flθ#|flr 6 G, a; eS4} is also irreducible and

as Si C p(G)-Si C S, We have p(G) S, = S<. In particular, we have
p(Gτ)'Si = >Sέ. Therefore, a polynomial fidptσ)'1^ coincides with j^(x) up

to a constant multiple and hence there exists a character χ̂  of G satisfying

fιQ>(g)x) = χ*(^)/ί(») f o r ^ e G , cc e F. Since /iίaO, •,//«) are irreducible

and different from each other, corresponding characters χ19 , χe are
multiplicatively independent. Hence fλ(x)9 •,//#) are algebraically inde-
pendent by Lemma 4. Finally, let fix) be any relative invariant. Since
G is connected, every prime divisor of fix) is also a relative invariant.
Hence we may assume that fix) is an irreducible polynomial. Then the
zeros of f(x) must coincide with S€ for some i (1 < i < ΐ) since it is a
G-invariant irreducible hyper surf ace. This implies that fix) = c/4(a0 for
some c e C . Q.E.D.

COROLLARY 6. Let (G, /?, V) be a P. V. and let S be its singular set.

Then there exists a relative invariant of (G, p, V) if and only if S has

an irreducible component of codimension one.

DEFINITION 7. A prehomogeneous vector space is called regular if
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there exists a relative invariant fix) such that the Hessian Hf(x) —

detί -—(x)) of fix) is not identically zero.
V dXidXj )

PROPOSITION 8. Let (G,p,V) be a regular P. V. Then there exists
a relative invariant corresponding to the character χo(g) = det p(g)2 (g e G)
where det pig) denotes the determinant of pig) in V.

Proof. Let fix) be a relative invariant satisfying Hf(x) Φ 0, and
let χ be the character of fix). By choosing a basis of V, we may
assume that V ~ Cn and G c GLin, C) where n = dim V. Then we have

kj 0Xί0Xk

i.e.,

^ifigX))) g
dXidXj / \dxkdx£

for g == (gtj) e G. Since figx) = χig)fix), we have

and hence by taking the determinant, we have Hfigx) = χig)n det ig)~2*
Hf(x). This implies that Hfix) is a relative invariant corresponding to
the character χ(#)w det,o(#;r2. Hence the quotient fnix)/Hfix) is a relative
invariant with the character χoig) = d e t ^ ) 2 . Q.E.D.

Let iG,p,V) be a P. V. and let S be its singular set. Assume that
this P. V. has a relative invariant fix). By choosing a basis, we may
identify V with Cn. Moreover, by the inner product <#, 2/> = Σ?=i #«2/«
(x,ijeCβ), we identify the dual vector space 7* of V with Cw. Then
we can define a rational map ψ: V — S —> V* by

/(aO 3a?! fix)

Sometimes we denote ψ by grad log / .
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Let χ be the character of fix) and let δχ be its infinitesimal char-

acter, i.e., χ(exp tA) = exp tδχ(A) for any teC, Aeg, where g is the Lie

algebra of G. Similarly, let dp be the infinitesimal representation of p

(see Definition 44 in § 1).

PROPOSITION 9. A rational map φ = grad log / of V — S into V*

does not depend on the choice of coordinate systems and it satisfies the

following conditions.

(1) φ(p(g)x) = p*(g)φ(%) for x e V — S, g eG, where p* is the con-

tragredient representation of p.

(2) <dp{A)x, φ(x)> = δχ(A) for A eg, x eV - S.

Proof. We may assume that G c GL(n, C) and g c gί(^, C). Since

JLjigx) - Σ ^ ( < 7 a O ^ ^ = Σ ^£-(9x)g*ι for ^ = (^,,) e G, we have
5^^ k dχk dXi Jc dχk

grad f(gx) = χ{gYg~ι grad f(x) where grad /(α?) = (-J—(χ), - - , -J—(χ)\

\ dxx dxn )

and hence we obtain (1). By differentiation of the equality f(gx) =

χ(g)f(%) for g — exptAeG, we obtain (2), i.e., (Ax, grad /(#)> =

δχ(A)f(x). Note that this condition (2) characterizes 9 = grad log/ since

{d/o(A)a? IA e g} = V for any a e F - S . This shows that the definition of

grad log/ does not depend on the choice of coordinate systems.

Q.E.D.

PROPOSITION 10. The following conditions are equivalent.

(1) grad log/: V — S -> F* is generίcally surjectίve, i.e., the image

is Zariski dense.

(2) Hlogfix) Φ0 (xeV-S).

(3) Hf(x)Φθ(xeV-S, deg/ > 2); det (-M-.JIΛ Φ 0 (deg/ - 1).
\ to^ toy /

Proo/. For α? e V - S, let (c2p)β: TX(V - S) -> Γ f ( β )7* be the differ-

ential map of p = grad log / . By (1) in Proposition 9, φ is generically

surjective if det (dφ)x Φ 0 for some x e V — S. Since

det (dΨ)x = det 4 |
f dxt

the equivalence of (1) and (2) is obvious. Moreover, since
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det (dp), = det (JLίJLJLyx))
\ OJb j \ J OJU^ / /

\ / dXidXj P dxt dXj

if deg/ = 1, we have

det (dp), - (-l)*/(aθ-2n det (J=L _AL) ,
\ dxt dXj /

i.e., (3) for deg/ = 1. Assume that r — deg/(α;) > 2. Then the Euler's

identity says that

n ί/ 1 32-

V x I L r^
έl * V / 3^0

c* / 3^n3^i / d%i

_ V r - l 5/ r - 1 df
dx, f dχn

λ

and hence we have

det (dφ)
x
 = det

- det

f p dχt

/ i

V/
92/

dxjxj
1

/ 2

0

9/
dxt

df
dXj )

1

/

1

/

9/
dXi

df
dXn

1

= det

1

/

V/

9/
9*! '

92/

>
1

/

9/

dxn

1

1

/

df
dx,

df
dxn

1

f{x)n r - l

i.e.,
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Hence we obtain our assertion. Q.E.D.

Remark 11. If deg/ = 1 and d e t f - ^ - ^ Λ Φ 0, then Hf2(x) φ 0
\ dXt dXj I

since *£- = -U2f.M-\ = 2^ ^L (note that -*l
^ 9 ^ dxt \ dx3 I dXi dXj \ dXiβX

= 0 since

deg/ = l ) . Hence (G,p, V) is regular if and only if there exists a

relative invariant fix) such that gradlog/ is generically surjective. In

general, a prehomogeneous vector space (G, p, V) is called quasi-regular

if there exist ωeg* (= the dual space of g) and a regular rational map

ψ: V — S -> F* satisfying the following conditions:

(1) pQofoOaO = P*(g)<p(x) (geG, x e V - S),

(2) <dp(A), 9(α?)> - ω(A) (A e fi, a? e F - S),

(3) ψ is generically surjective, i.e., φ(V — S) = F*.

In this case it can be proved that a triplet (G,p*,V*) is also a P. V.

and φ is a biregular rational map of V — S onto F* — S*. Moreover,

the number of irreducible hypersurfaces in S is the same as in S*.

Note that in general the dual triplet (G, p*, F*) is not a P. V. even if

(G, ̂ , F) is a P. V. For example, G = {ί1 ^ I a, b e C, α Φ o), F - C2,

^(ί / / ( ^ / " ( ^ )' ^ Propositions 9 and 10, a regular P. V. is

always quasi-regular. But the converse is not true. For example, put

this triplet (G, ̂ , F) is a quasi-regular P. V. but not regular. However,

if G is reductive, then the regularity and the quasi-regularity are

equivalent. Hence we omit the detail of quasi-regularity.

Now we shall return to the irreducible case.

PROPOSITION 12. Let (G,p,V) be an irreducible P. F. Then there

is, up to a constant multiple, at most one irreducible relative invariant

polynomial f(x), and hence any relative invariant is of the form c-f(x)m

{ceC*, meZ).

Proof. Assume that there exist two such polynomials fx{x),

Let r< be the degree of ft(x) (1 < i < 2). Then the quotient fix) =

/ I W ' / Λ W 1 i s n °t constant by Propositions 5. Moreover, it is an abso-

lute invariant by Theorem 1 in § 1. This is a contradiction in view
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of Proposition 3 in §2. Q.E.D.

DEFINITION 13. Let (G, p, V) be an irreducible P. V. By the relative

invariant of (G, p, V), we mean the irreducible relative invariant poly-

nomial which is, if it exists, uniquely determined up to a constant multiple

by Proposition 12. Note that its degree is uniquely determined by

iG,P,V).

PROPOSITION 14. Let (G, p, V) be an irreducible regular P. V. and

let fix) be the relative invariant and χ its character. Put r = deg f(x)

and n = dim V. Then we have r \ 2n and χ(g)2n/r = det pig)2.

Proof. By Proposition 8, there exists a relative invariant F(x) with

the character det pig)2. Then by Proposition 12, we have F(x) = c-f(x)m

for some ceCx, meZ. Hence we have χig)m = det pig)2. If we take g

such as pig) = tln it e C x), we have tmr = t2n it e Cx) and hence m =

— . Q.E.D.
r

PROPOSITION 15 (The degree formula). Let iG,p, V) be an irreducible

regular P. V. and let fix) be the relative invariant. Assume that there

exists an orbit piG)x0 of codimensίon one, i.e., piG)x0 — {xe V\fix) = 0}.

Then

(4.1) deg fix) = t r^(A) + t r a d 9 , o A d i m γ ( A e t γ d ( A ) φ Q)

tr dpiA)

where tr dpiA) is the trace of dpiA) in V and tr ad9a;o A is the a trace

of the adjoint representation of the isotropy subalgebra QXO at xQ.

Proof. By differentiating the equality χig)2n/r = det (̂̂ O2 in Propo-

sition 14, we have —δχiA) — tr dpiA) (Aeg = the Lie algebra of G), i.e.,
r

deg / - δχ(;A)

Λ »dim V (A e β ) . Let VXo = V/dpiφ-x0 be the normal
tr dpiA)

vector space at x0. Then the isotropy subgroup GXQ at x0 acts on VXo

since piGXo) dpiφ xQ c dpiφ x0. We shall show that χig) = detFa;o g for

g e GXQ. Since fix0) = 0 and df(x0) φ 0, we have fix) = (x — x0, dfix0)}

+ higher term of (x — x0). Since fipig)x) = χig)fix) and pig)x — x0 =

pig)ix — x0) for g e GXo, we have <p(g)x — ^0> dfixQ)} = χ(^)<α; — a?Of dfixQ)}.

On the other hand, Euler's identity says that <(#0> dfixj) = deg/ /fe)
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= 0, and hence we have (p(g)x, df(xQ)} = χ(gXx,df(xQ))9 i.e., (p(g)x —

χ(g)%, df(xQ)} = 0 (g e Gβ0). Since <dp(A)xQ, df(x0)} = δχ(A)f(x^ = 0 for

any A e g (see Proposition 9, (2) note that (dp(A)x grad /(x)> =

, df(x)} by definition), and codimF dp(o)xo = 1, we have ρ(g)x =

^Cg)-^. In fact if p(g)x — χ(g)x £ dp(o)xQ we have <FcZ/(xo)>

= 0, i.e., df(xQ) — 0. This is a contradiction. Hence we have detF a ; o#

= χ(g) (note that dim V^ — 1). By differentiation of this equality, we

have δχ(A) = tr F χ o A (A e g^0). Since g is reductive, we have tr adg A = 0

and hence trFa;o A = tr dp{A) — t r ^ ^ . ^ A = tr dp(A) + t r ad9α;o A, i.e., βχ(A)

= tr ̂ (A) + tr ad* A(Ae ΰxo). Together with deg/ - * * ( A ) --dim V,
tr dp(A)

we obtain our assertion. Q.E.D.

PROPOSITION 16. Let (G, p, V) be an irreducible P. V. satisfying

dim G •=• dim V ( = n). Then it is regular and there is a relative invari-

ant polynomial f(x) of degree n. Moreover, if there exists an orbit of

codimensίon one, then f(x) is irreducible.

Proof. Since G is reductive and the generic isotropy subgroup is

finite, it is regular by the following Proposition 25. By choosing a basis

we may assume that V ~ Cn and G c GL(n, C). Let g(C βϊ(w> C)) be the

Lie algebra of G, and let A19 •• ,AW be a basis of g over C. Then

A19 , An are n x n matrices. Define a polynomial f(x) by /(a?) =

det (Axx, - , Ana;) for x e (?\ We shall show that f(x) is a relative in-

variant. Let (Cijig)) be an n x n matrix of the adjoint representation

of G w. r. t. a basis A19 , ATO, i.e., {g^A.g, , g~ιAng) = (A1? , An)

(Cίj(g)) Then we have

/(flfa?) = det flr det (flr-̂ xflra;, , g~ιAngx)

= det flr ί Σ

= det flr det (

Assume that there exists an orbit Gx0 of codimension one. Then

dim ĝ 0 = dim g — in — 1) = 1 and hence gXo is abelian. This implies that

tr ad9xo A = 0 (Ae gXo), and hence the degree of the relative invariant is

n by Proposition 15. Therefore fix) is the relative invariant of (G, p, V),

i.e., irreducible. Q.E.D.

Remark 17. Consider a triplet (G, <o, V) where G = GL(2, C), 7 =
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M(2,C), p(A)X = AX (A e G, XeV). Although it is not irreducible, it

is regular and its singular set S is an irreducible hypersurface: S =

{x e V\ det x = 0}. Moreover, we have

dim G - dim F, deg/ = _M£L dim V
trv A

where dχ is the differential character of fix) = det x. However, there

is no orbit of codimension 1, and deg / = \ dim V.

Now we shall consider relative invariants and regularity of the

castling transform.

Let (G x SL(ri), p ® Λ19 Vim) ® V(n)) be a triplet with m > n > 1.

I d e n t i f y V(m)®V(n) w i t h a l l mxn m a t r i c e s M(m,n,C). W e m a y

assume that G c GL(m). Then we have p® Λ1(gί,g2)X = gιX
tg2 for

X e M(m, n, C), #! eG, g2e SL(ri). Let / O n , α12, , xmn) (X = {xtj) eM(m,

n,O) be a relative invariant of this triplet. Put

Since / is invariant under the action of SL(n), the first main theorem

for SL(ri) (see p. 45 in [1]) says that there exists a polynomial F of

(^-variables satisfying f((xtj)) = F((Xiu...iin)) (1 < i,ίx, , i n < m, 1 < /

< n). Now we shall consider the castling transform (G x SL(m — n),

p* ® A19 V(m) ® Vim — n)) of this triplet. Similarly, we may assume

that V(m) ® Vim — n) = M(my m — n,C) and G c GL(m). Then we have

p t9I1Xtg2 for X = (^^X^^m e M(m, m -

Put

:

and to each Xίu...4n, correspond -X"in+1,...,im under the condition that

{ii, , in9 in+ι, , ϊTO} = {1, , m} and sgn (?•' ' ' ' ' f1) = 1. This gives

a one-to-one correspondence between Xiu...tU and Xin+1,...tim.
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Hence in this case, we denote Xin+1,...,tm by X'ilt...tin. We shall show

that f(Xίj) — F((X'iu...iin)) (1 < ί < m, n + 1 < j < m) is a relative invari-

ant of (G x SL(m - n), p* <g) Λ19 Vim) <g) V(m - n)). Since each X'iu...ttn

is invariant, / is also invariant under the action of SL(m — ri). To see

/ invariant under the action p* of G, we may assume that G C SL(m).

Then an element of the Lie algebra g of G is an m x m matrix of

trace 0. Since / is absolutely invariant under the action p* of G if and

only if it becomes zero under the action dp* of g, we may consider

infinitesimally.

It is sufficient to show that the action dp of g to Xiu...,ίn is the same

as the contragredient action dp* of g to X'iu...,in since in that case / =

F((Z ί l 5... ? iJ) is invariant under the action p of G if and only if / =

F((X'iu...tii)) is invariant under the contragredient action p* of G. To

show this, we may assume that Xilr..tin — Xlt...%n. Then dp induces

Note that Σl
dp* induces

Xί...» = x».

ti au = 0. On

m

Σ

X...,» for A = (αo) e g .

On the other hand, the contragredient action

Σ= (On + + ίO^ί,...,, + Σ
s = l r = n + l

for A = (α^ ) e g .

Hence we obtain our assertion that / is a relative invariant of

(G x SL(m — n), p* ® Λ19 V(m) (x) V(m — n)). Since this correspondence is

one-to-one, if / is irreducible, then / is also irreducible. Therefore, we

obtain the following proposition.

PROPOSITION 18. There is a one-to-one correspondence between rela-

tive invariants fix) of (G x SL(ri), p ® A19 Vim) (x) Vin)) (m > n > 1) and

relative invariants f(x) of its castling transform (G X SLim — n), p* (x) Λlf

Vim) (x) Vim — n)). Moreover, there exists a positive integer d for each

fix) such that deg fix) — nd and deg/(£) = (m — n)d. If f is irreducible,
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then f is also irreducible.

Next we shall consider some conditions that a given P. V. has no

relative invariant.

PROPOSITION 19. Let (G,p,V) be a P.V. where p is not necessarίyl

irreducible. Let χ (Φ 1) be a rational character of G. Then there exists

a relative invariant f(x) corresponding to χ if and only if the restriction

X\GXQ of χ to a generic isotropy subgroup GXo (xQeV — S) is identity.

Note that the property χ\GXQ — 1 does not depend on a generic point x0

since Gp(g)XQ = gGXQg~\

Proof. If there exists a relative invariant fix) satisfying f(p(g)x)

= X<WO)> we have f(xQ) = χ(g)f(xQ) and f(x0) ψ 0, oo f or g e GXQ, xQ e

V — S. This implies that χ(g) = 1 for any g e GXQ. Conversely, assume

that χ\GXΰ = 1 for xQe V — S. Then χ can be regarded as a rational

regular function on G/GXQ « V — S, and hence there exists a rational

function f(x) on V satisfying f(p(g)x0) = χ(g) for any g e G. Clearly, f(x)

is a relative invariant corresponding to the character χ. Q.E.D.

PROPOSITION 20. Let (G,p,V) be an irreducible P.V. and let g be

the Lie algebra of G. Denote by §ί(V) the Lie algebra of all endo-

morphisms of V of trace 0. Then

(1) // dp(φ c £l(F), there exists no (non-constant) relative invariant

and hence (G, p, V) is not regular.

(2) Let QXO (xQeV — S) be a generic isotropy subalgebra. If dp($Xo)

ζ£ 3tty)y there exists no (non-constant) relative invariant and hence

(G, p, V) is not regular.

(3) // dp($) ςzί Sl(V) and dp($XQ) c 3l(V), then there exists a (non-

constant) relative invariant of (G,p,V).

Proof. (1) By Theorem 1 in § 1, dp(φ c £l(V) implies that dp(φ is

a semi-simple Lie algebra, and hence we may assume that g is semi-

simple. If there exists a non-constant relative invariant fix) satisfying

f(p(g)x) = χ(g)f(x), then the infinitesimal character 5χ of χ is not identi-

cally zero since G is connected. Hence δx: g —> gl(l) is an onto map and

its kernel Ker 5χ is an ideal of g of codimension one. Since g is semi-

simple, this is a contradiction.

(2) Assume that there exists a relative invariant fix) corresponding

to χ. Then by Theorem 1 in § 1, 5χ = c t r F for some ceC where t r F is
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the trace of dp in V, and hence δχ\Qxo Φ 0. In particular, we have χ\Gxo

Φ 1. This is a contradiction in view of Proposition 19.
(3) In this case trF is not identically zero and det̂ CCr̂ ) is a finite

group. Hence some power (det p)e satisfies the condition (det pY Φ 1,
and (det pY\GχQ = 1. By Proposition 19, there exists a relative invariant
corresponding to (det^y. Q.E.D.

Remark 21. Let (G, p, V) be an irreducible P. V. and let GXo be a
generic isotropy subgroup. Let SL±(y) (resp. SL(V)) be the group of
all non-singular transformations of V of determinant ± 1 (resp. 1). If
(G, p, V) is regular, then we have p(GXo) c SL^V) by Propositions 8 and
19. In general, if p(G) £ SL(V), then p(GXΰ) c SL*(y) (resp. p(GXQ) c
SL(V)) if and only if there exists a relative invariant of degree 2n
(resp. n) corresponding to the character det p(g)2 (resp. det p(g)) where
n = dim V. (Note that since G is connected, p(G) ς£ SL(V) implies that
dρ(φ ςzί SKY)). In particular, if dim G == dim 7, then p(GXo) is a finite
group contained in SL(V) by Proposition 16.

PROPOSITION 22 (D. Luna). Le£ G be a reductive algebraic group
which acts on a smooth affine variety X. For x e X, let Gx be the iso-
tropy subgroup of G at x. Assume that, for any point x in X, there
exists a non-degenerate symmetric Gx-invariant bilinear form on the
tangent space at x. Then there exists an open dense subset of X which
consists of closed G-orbίts in X. In particular, an open orbit in X is
closed.

Proof. See ([21]).

COROLLARY 23 (J. Dorfmeister). Let (G,p, V) be a regular P.V. with
a reductive algebraic group G where p is not necessarily irreducible.
Then its generic isotropy subgroup is also reductive.

Proof. Let f(x) be a relative invariant satisfying Hf(x) Φ 0. We
may assume that f(x) is a polynomial, and hence its Hessian Hf(x) is
also a polynomial. Put X = {x e V\Hf(x) Φ 0}. Then I is a smooth

affine variety and, for each x e X, Bx(u, u) = 2 —-—(x^Vj is a non-
ίj ϋXX

degenerate symmetric G^-invariant bilinear form on the tangent space
of X at x (see the proof of Proposition 8). Since Hf(x) is also a rela-
tive invariant, the open G-orbit in V is contained in X. It is dense in
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X, and closed by Proposition 22; hence it coincides with X. Since G
is reductive and the open orbit is affine, the generic isotropy subgroup
is reductive. Q.E.D.

Finally, we shall prove the converse of Corollary 23.
Let (G, p, V) be a P. V. with a reductive algebraic group G, where

p is not necessarily irreducible. Let (G, p*,V*) be the dual P. V. of
(G, p9 V), i.e., p* is the contragredient representation of p on the dual
vector space V* of V. Choosing a basis of V, we may identify V with
Cn (n = dim V) and 7* with Cn by the inner product <#, y} = Σ?=i #ί2/ί
In this case we may assume that G c GL(n). It can be proved that a
reductive algebraic group G is a Zariski closure of a maximal compact
subgroup K. Moreover, by choosing a suitable basis of V, we have
K c U(n) where U(n) is the group of all n x n unitary matrices, i.e.,
U(n) = {ge GL(ri) \ ιgg = In}. Then we have p*(g)y = ιg-ιy = £# for ^ e K,
P C " 2̂  V*. Let /(a;) be any relative invariant polynomial of (G,p,V)

corresponding to a character χ. Put f*(y) = /(F) where is the complex
conjugate (yeCn ~ F*). Then for each p Z , we have f*(p*(g)y) —
f*(gy) - fW) = χ(g)JW - χ~ι(g)f*(v) (yeCn~ 7*). Note that \χ(g)\ =
1 for geKd U(ri). Since G is the Zariski closure of K, we have
f*(p*(g)y) = χ~\g)f*{y) for any #eG, p Y * , i.e., /* is a relative in-
variant polynomial of (G,p*,V*) corresponding to χ"1. Put

— X~" n{nι) /y,ίi /y.in

where r = deg/ = deg/*. Then we have

f*(y)m = Σ ί̂Π ^n î1 * * * yιn

and

/* (gradj- f(x)m = Σ Kί .^J 2 -^ 0 (i« !)

where

/*

and m is any non-negative integer. By choosing a suitable basis of V,
we may assume that /((I, 0, , 0)) Φ 0, i.e., α = αr0,...,0 =£ 0. Then we haev
/((1,0, , 0))w = αrm,o,...,o = am. Since (/* (gradj fm)(gx) = /* (grad,s)-
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fm(gx) = x(g)m'1'f:¥(gYSidx)f(x)m

9 f*(gradx)f(x)m is a relative invariant
corresponding to χm~\ and hence there exists a constant b(m) satisfying
/* (gradx) f(x)m = b(m)f(x)m-\ Clearly b(m) is a polynomial in m with
degree < r. Put rf = deg &(m). Then there exists a constant C satisfy-
ing \b(m)\ < Cm7" for any m > 1. Hence we have

Cm'(m\y > |6(m)6(m - 1) 6(1)| = \f* (gradJw f(x)m\

= Σ K ! ,,J2 (ίi Or dn !) > | α Γ

for any m > 1. Since there exists a positive number m0 satisfying m!
> Cm/|α|2m for any m > m0, if r7 < r, we have (m!)r > (m!) r/+1 > (rm)l
for any m > ra0. This is a contradiction for r > 2. If r — 1 and r' =
0, we have Cm >\afm-m\ for any m > 0 and again a contradiction.
Hence we have deg&(m) = r (= deg/ = deg/*). Since

/* (gradx) f(x)m = rnr f* (grad/(#))./0r)m-r + (lower term in m)

= b(m)f(x)m-1 = mrbof(x)m-1 + (lower term in m) ,

we have /* (grad f(x)) f(x)m-r = bj{x)m~\ i.e., /* (grad log /(a)) = &0//(a0
where &0 ̂  0 since deg 5(m) = r. Therefore, we obtain the following
proposition.

PROPOSITION 24. Let (G,p,V) be a P. V. with a reductive algebraic
group G where p is not necessarily irreducible. Assume that there exists
a relative invariant polynomial corresponding to a character χ. Then
there exists a relative invariant polynomial f*{y) of (G,p*,V*) corre-
sponding to χ"*1, where p* is the contragredient representation of p on
the dual vector space F* of V. Moreover, we have f* (grad log fix)) Φ 0
for x e V — S.

Now we are ready to prove the following proposition.

PROPOSITION 25. Let ((?, p, V) be a P. V. with a reductive algebraic
group G where p is not necessarily irreducible. Assume that a generic
ίsotropy subgroup GXo (x0 e V — S) is also reductive. Then it is a regular
P. V.

Proof. It is well known that the quotient G/GXo « V — S of reduc-
tive algebraic group G is an affine variety if and only if GXo is reductive
(see [8]). Since V — S is affine if and only if S is a hypersurface, in
our case the singular set S is a hypersurface. Let f(x) be a relative
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invariant polynomial satisfying S = {x e V\f(x) = 0}. Then by Proposi-

tion 24, there exists a relative invariant polynomial / * of (G,p*9V*)

corresponding to fix). Moreover, the singular set S* of (G, <o*, V*) is

also a hypersurface defined by /*, i.e., S* = {yeV*\f*(y) = 0}. Since

/ * (grad log fix)) Φ 0 for x e V — S by Proposition 24, we have

grad log/(F — S) = 7* — S*, i.e., grad log/ is generically surjective.

This shows that (G,p,V) is regular by Remark 11. Q.E.D.

Remark 26. Let (G, p9 V) be a P. 7. with a reductive algebraic group

G. Then it is regular if and only if its generic isotropy subgroup is

reductive, and hence the regularity is invariant under the castling trans-

form (see Proposition 9 in §2). Since its generic isotropy subgroup is

reductive if and only if the singular set S is a hypersurface, a reductive

P.V. is regular if and only if its singular set is a hypersurface. How-

ever, if G is not reductive, it is false. For example, put G —

{{l b

a)\a,ϊeC,a*θ},V = C',P(l J)(J) - f +/"). Then a triplet

(G,p,V) is a P.V. and its singular set is a hypersurface defined by

y = 0. But it is not regular. Conversely, it is an open problem that

the singular set of any regular P.V. is a hypersurface or not.

§ 5. The prehomogeneity and relative invariants of reduced
triplets obtained in § 3

In this section we shall investigate the reduced triplets obtained in

Theorem 24 in § 3, especially we shall determine their prehomogeneity.

(1) (G x GLim), p <g) A19 V(n) <g> Vim))

where p is an ^-dimensional irreducible representation of a connected

semi-simple algebraic group G iΦ SL(n)) with m ^ n >̂ 2. This is a trivial

P.V. (See Definition 5 in §3). We may identify V(ri)<8)V(m) with the

totality of n x m matrices M(n,m). We may assume that G c SL(n).

Then ip <g) Λλ)igιy g2)X = ^ X ^ for gγ e G, #2 e GLim), and Z e M(n, m). If

m — n, then the isotropy subgroup at In is {(#!, tg^1) \g1eG} = G and hence

it is a regular P.V. by Proposition 25 in § 4. The relative invariant is

detX. If m>n, the generic isotropy subgroup GXQ at x0 = [InOn>m_n]

where On>m_n is the n X (m — n) zero matrix, is the totality of (g19 g2) of

the form
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92 =

and hence GXQ is isomorphic to the semi-direct product of (G X GLim — n))

and the n(m — ^-dimensional vector group (Gα)n ( m~w ) i.e. GXo ^ ( G x

GL{(m — n)) ( G J Λ ( m " n ) where (Gα) denotes the one-dimensional additive

group: Ga^C. By (2) in Proposition 20 in § 4, it is not regular. There

are no relative invariants.

(SL(n) x GLim), Aγ <g> A19 V(n) <g> Vim))

(m/2 > ?ι ^ 1 or n = m ^ 1)

This is also a trivial P.V. Similarly it is regular if n = m and not regular

if n <m. (1) and (2) are essentially of the same type. The reason why

we separated (2) from (1) is only to avoid the triplets (SL(n) x GLim),

Aλ® Λx, Vin)<S)V(m)) (m > n > m/2) which is not reduced.

PROPOSITION 1. A trivial P.V., (G x GLim), p0Λu Viri)®Vim))

in < m) is regular if and only if m = n.

( 3 ) (GL(1) x G, D ® adjoint rep., 7(1) <g> 7(n))

where G is an almost simple algebraic group of dimension n ^ 3.

Let g be the Lie algebra of G. We may assume that G c GLO) and

g c gϊ(n). Then the adjoint representation Ad is given by Adig)X — gXg'1

for any geG, Xe g. Put gCX) = { F e g | ad(X)wF = 0 for some n > 0} for

X e g. An element X in g is called a regular element if dim g(X) is mini-

mum. If Xo is a regular element, then ΐ) = g(X0) is a Cartan subalgebra.

Note that dimg(Z) is the multiplicity of the eigenvalue 0 of ad(X). Let

A19 , An be a basis of g and put det (tl — ad (X)) = ίw + ^G^, , α J i* " 1

+ + φn-A%i> -"f %nW Ψ ^ 1) for X = 2]?-i^^A^ e g, where ί = rank g

= dim ΐ). Then the totality of non-regular elements is a hypersurface S

given by S = {X = Σ ? β l a5*Ax e g | ̂ n_^ (^1? , xn) = 0}. Since QigXg'1) =

^g(Z)^"1, this hypersurface is G-invariant, and hence if this triplet is a

P.V., then a generic point must be a regular element. Let Xo be a

regular element. Let g ô be the isotropy subalgebra QXQ = {(c, Z) e gl(l)

® g | c Z 0 + [X,X0] = 0} at Z o . Then it is a P.V. if and only if dimgXo

= dim(GL(l) x G) — dimg = 1. Since ϊj = g(Z0) is a Cartan subalgebra

and hence commutative, we have 1} = {(0, X) e gl(l) 0 g | [X, XQ] = 0} c gX().

This shows that dim g z ί> dim ζ = rank g and hence it is not a P.V.
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if rankg > 1. Assume that rankg = 1. Then g = 3ί(2) (= 3p(l) = o(3))
(See Example 45 in §1), and it is equivalent to (GL(2),2A19V(S)). The
representation space can be considered as the space of all binary quad-
ratic forms Fx(u, v) = xxu

2 + x2uv + x3v
2 with x = (x19 x2, x3) e C3. The

action p = 2ΛX of GL(2) is given by (p(g)Fx)(u, v) = Fx((u, v)g) for # 6 GL(2).
Since the isotropy subgroup GΣ at Zo = ^ is

«»={(," ^ )
0

it is a regular P.V. by Proposition 25 in § 4. The relative invariant f(x)
is a discriminant of Fx i.e. f(x) = x\ — 4xxx2 for x = ίV

PROPOSITION 2. 27&e composition of scalar multiplications and the
adjoint representation of an almost simple algebraic group G is prehomo-
geneous if and only if rankG = 1. If rankG = 1, it is a regular P.V.
equivalent to (GL(2)92A19V(3)).

(4) (GL(n), 2Λ19 V{±n(n + 1))) (n ^ 3)

Put V = {Xe M(n, C) \ ιX = X}. Then the action p = 2AX of GL(n) is
given by p(A)X — AX'A for A e GL(n), X eV. The isotropy subgroup
at the unit matrix In is by definition the orthogonal group O(n) =
{A e GL(n)\AtA = 1} and since dim O(w) = £w(w — 1) = dim GL(ri) —
dim V(£n(n + 1)), it is a P.V. By Proposition 25 in §4, it is regular
and the relative invariant is given by detZ for XeV.

PROPOSITION 3. A triplet (GL(ri), 2A19 V(%n(n + 1))) is a regular
P.V. and its generic isotropy subgroup is the orthogonal group 0{n).

(5) (GL(n), Λ2, V(\n(n — 1))) (n ^ 5)

Put V = {XeMin, 0 1 ^ = -X}. Then the action p = A2 of GL(n)
is given by p(A)X = AX1 A for A e GL(ri), XeV. Assume that n is even,
i.e., n = 2m. Then the isotropy subgroup at

is by definition the symplectic group Spim) = {Ae GL(2m) \ ιAJA = /} since
ιAJA = / if and only if A/JA = AJ(tAJA)A~1J~1 = AJ(J)A~ιJ~x — — J"1

= J. Since dim Sp(m) = m(2m + 1) = dim GL(2m) — dim V(m(2m — 1)),
it is a P.V. By Proposition 25 in §4, it is regular and the relative in-
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variant is the Pfaffian of a skew-symmetric matrix X in V.
sume that n is odd i.e. n = 2m + 1. Put

Next as-

Since

(5.1)

we have

C

B J

D \ 0

QCn

B

0

C D

AJ(A

CJΆ

APC

CJ'C

for
C

B

D
eGx

AJtA = J\ = (Sp(m) x GL(l)) (Gα)
2

Since

dim (Sp(m) x GL(l)) (Gay
m

= (m + l)(2m + 1)

= dim GL(2m + 1) - dim F(TO(2TO + 1)) ,

it is a P.V. By (2) in Proposition 20 in § 4, there is no relative invariant
and hence it is not regular. Thus we have the following proposition.

PROPOSITION 4. A triplet (GL(2m), Λ2, V(m(2m — 1))) is a regular
P.V. and its generic isotropy subgroup is the symplectic group Sp(m).
The relative invariant is the Pfaffian and hence of degree m.

PROPOSITION 5. A triplet {GL(2m + 1), Λ2, V(m(2m + 1))) is a P.V.
There is no relative invariant and hence not regular. The generic isotropy
subgroup is isomorphic to the semi-direct product (Sp(m) x GL(l)) (Ga)

2m.

( 6 ) (GL(2), SΛιt 7(4))

The representation space can be identified with the space of all binary
cubic forms Fx{u, v) = xλu

z + x2u
2v +x3uv2 + xtv

3 with x = (xu x2, x3, xt)eCK
Then the action p = 3Λ; of GL(2) is given by (p(g)Fx)(u, v) = Fx((u, v)g)
(See (6) in Example 24 in § 1). For each binary cubic form Fx = Fx(u, v)
= xγu

% + x2u
2v + x3uv2 + xtv

3, let F'x be the binary quadratic form denned by
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Fx = — det
4

dudu

dΨ

dudv

dΨ

dvdu dvdv

— det
x2u

x2v,

x3v,

xzu

x3u

xzv

E4 - xl)v2 .

Then the correspondence Fx >-» F'x gives a generically surjective GL(2)-

equivariant morphism ψ of V into V7 where V (resp. V) denotes the space

of all binary cubic (resp. binary quadratic) forms. As we have seen in

(3) just before Proposition 2, a triplet (GL(2), 2Λl9 V) is a regular P.V.

and the generic isotropy subgroup GZ>Q at XΌ = Quv is given by Gx> = 0(2)

= UΛ - I ) α =£ 0>. The fiber αΓ^XJ) of G> at XQ is by definition φ~\X§
\\κ) a ) I J

^__ ί* jC"' / / i / /oi"̂  /2 X^ I QΎ* 'y — ^ ^ — ^'V o4 — ^ ^ — Cί Q ŷ ŷ* o* o^ —— Q\ — Sϊϊ^ (11 /))"} —
— I/ 7 ajV^J ^ / ^ ' I «->«*/l Λ-/3 «^2 — OcΛ/2^4 *^3 — ^> Όth ^h^ «̂ 2<^/3 — ^J — t * arV^> "/ —

xxv? + xς1v3\x1 Φ 0}. Since an element (Q -λ of Gx̂ o acts on the fiber

φ~KX'o) such as x{u? + f̂1^3 ^ (axju* + (ax^)~ιvz, φ~ι(Xβ is Gx^-homogene-

ous, and hence by Lemma 5 in § 2, a triplet (GL(2), SAί9 F(4)) is a P. V.

We shall determine the isotropy subgroup GΣQ at Z o = ^3 + ^3 in f ) " 1 ^)-

If we identify V with C4 by an isomorphism Fx(u, v)^->x — ι{xu x2f xz, x4) e C\

we have

p(g)x =

Γ a3 a2β aβ2 β3

Sa2γ a2δ + 2aβγ 2aβδ + γβ2 3β2δ

(5.2)
Saγ2 2aγδ + γ2β

. f fδ
aδ2 + 2βγδ Sβδ2

γδ2

for g (a
e GL(2)

and hence

α3 + β* = f + δ3 = 1, a2γ + β2δ = af + βδ2 = θ}

From (5.2), the kernel of ^ is the central cyclic group & of order 3:

Thus the isotropy subgroup Gx is a finite group of order 18 and
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its image p{Gx) ^ GXJ & is a finite group of order 6. In particular, it
is a regular P.V. by Proposition 25 in §4. Since φ is equivariant, the
discriminant of F' i.e.

is a relative invariant, and its character is (det#)6 for geGL(2). Note
that P(x) = (ίφ J + 18̂ 2̂X3̂ 4 — 4xx^ — 4cφ4 — 2Ίx\x^) is the discriminant
of the binary cubic form Fx(u,v).

Let χ be any rational character of GL(2) i.e. χ(#) = (det#)m for some
integer m.

Since the restriction χ\Gχo of χ to GXo is identity if and only if
(aδ)m = ( - ^ ) w = 1 for any a, β, γ, δ satisfying a" = /33 = γz = ^3 = 1 i.e.,
m = 6^ for some integer w. Hence any relative invariant is of the form
cP(x)n (ceC, ne Z) by Proposition 19 in § 4. In particular P(x) must
be irreducible. The existence of the equivariant polynomial map φ of
degree 2 is based on the fact that the symmetric product S\V) of the
representation space V of SAλ decomposes into the direct sum S2(V) =
Vλ Θ V2 as a representation space of GL(tι) where 7X (resp. V2) is cor-
responding 6JX (resp. 2ΛX + 2Λ2) i.e.

i) = 6 ^ Θ 2Λ2)

or

by the Young diagram (See § 1). For n = 2, we have (SL(2), 2ilx + 2Λ2,
V2) = (SL(2), 2^, V) and hence we know that ψ is a map obtained by
the composition V->S2(V) = 7 1 θ 7 2 - > 7 2 ^ V. Since dimGL{2) = dim7,
we can also use Proposition 16 in §4 to construct a relative invariant.
By (6) in Example 30 in § 1, we have

(5.3)
dρ(A)x =

(Za b 0

3c 2a + d 2b

0 2c a + 2d

L O O c

O Ί

0

31

3d)

c a
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Note that (5.3) is also obtained from (5.2) by putting

CD-UK'S)
in (5.2) and taking out the coefficients of the linear term t since

K K" S))-«"*
for any ί e C . The isotropy subalgebra at Xo = v? + v3 (i.e. Xo = '(1,

0,0,1)) is 0 from (5.3) and hence it is a regular P.V. by Proposition 16

in §4. The isotropy subalgebra gz, at X'o = u2v (i.e. X£ = '(0,1,0,0)) is

and hence the orbit of XQ is of codimension one. By Proposition 16 in

§ 4, there exists an irreducible relative invariant polynomial fix) of degree

4 ( = dim 7). We shall construct it according to the proof of Proposition

16 in § 4. Let Aλ (resp. A29 A3, A4) be the 4 x 4 matrix with a = 1 (resp.

6, c, d = 1), all remaining entries zero in (5.3). Then {A19 •• ,A4} is a

basis of efy>(gl(2)) and for # = *(#!, #2, x3, x4)y we have

(5.4)

'Sx1 x2 0 0 i

fix) = det (AiX, , A4x) — det

. 0 0 x3 Si .

PROPOSITION 6. A triplet (GL(2),3Λ1? 7(4)) is a regular P.V. and its

generic isotropy subgroup is a finite group of order 18. The represen-

tation space can be identified with the space of binary cubic forms Fxiu, v)

= x{u? + x2u
2v + xzuv2 + xAv

3 ϋxu x2y xz> x4) e C4) and then the action p =

SΛi of GLi2) is given by iipig)Fx)iu, v) = Fx((u,v)g) for geGLi2). The

relative invariant fix) is the discriminant of Fx i.e. fix) = x\x\ +

( 7 ) (GL(6), Λz, 7(20))

Let Vι = Σi=iCUi be a vector space with a basis {uu ,u6}. Then

GL(6) acts on Vx as iuu , u6) ι-> (^, , ̂ 6)^r for ^ G GL(6). In general,
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let Vυ = Σix<...<ίυCuiL/\ - f\uiv be the skew-symmetric tensors of rankv

(1 < v < 6). Then dim Vv = Q\ V6 = CV where r = uγ A Λ u6, and the

representation space of (GL(6), Λ3> F(20)) can be identified with V3 under

the induced action of GL(6). Denote by A the Grassmann algebra gen-

erated by Vι i.e. A = C + VΊ + + 7β, and define the polarization

Dv: VV—>VV® Vι as a part of the derivation map D from A to a left

A-module A®VX determined by Όλ: V1-> C® V1 which is given by A(ω)

= l ® ω . Namely A, is defined by DXuuA Λ % ) = Σά-i (—l) υ~^ xΛ

• Λ ^ _ x Λ wί/l+1 Λ Λ Miv ® ^ . For each η e F 4 and # G V3, we have

(η ® 1) Λ Z)3(^) e 7 6 ® 7X = CT ® 7χ = T (8) Vi, and hence there exists a bili-

near map L\V,χVz-^Vι satisfying (rj ® 1) Λ D3(^) = r ® Lfy, tf) for any

37 e V49 Θ e V3. Now for each θ e V3, define a linear endomorphism Sθ of

Vλ by S/ω) = L(ω A θ, θ) for ω e Vλ. Note that matrix elements of Sd are

quadratic forms of coefficients xίjk of θ = 2] ^ ^ Λ ^ Λ % Λ ^Λ e V3. For

ΘQ~UXAU2A Us + u4 A u6 A uQy from τ ® S (̂ω) = ((ω Λ ί ) ® l ) Λ A(^)> we

have Soo(Ui) — v,t{\ < i < 3) and S^^) = —^(4 < i < 6). Hence we can

divide VΊ into eigenspaces Vfo of 5^o.

(5.5) F, - V;o + Vjo where F+ - Σ Cw,, 7," - Σ Cu, .

On the other hand, for ω e F 1 ? TeGL(6), we have r ® Sτ{Q)oT(ω) =

τ ® L(Γ(ω) Λ Γ(ff), Γ(ί)) - (Γ(ω) Λ Γ(ί) ® 1) Λ AΓ(β) - Γ((ω Λ ί) ® 1 Λ A(^)

= Γ(τ®S,(ω)) = (det T)τ®To Sθ(ω) and hence ST(Θ) = (det Γ)Γo S, o Γ"1. Let

GΘQ be the isotropy subgroup {T e GL(β) \ T(βQ) = ΘQ} of GL(6). Then we

have SθT(ux) = (detT)Γ(^) for T e G v This implies (det Γ) = ± 1 since

eigenvalues of SΘQ is ± 1 . If det T = 1, then we have S,oT = TS0Q and

hence T ( 7 ί o ) c F ; o and T(YJQ)C:VJO. Therefore T(θ0) = d e t ( Γ | 7 + K Λ ^

Λ ^3 + det (Γ |F - K Au5Au6 = θ0 and hence Γ must be in SL(7,+

o) x SL(Vj).

Conversely it is clear that SL(7+) x SL(Vj) c G,ft. Put

T —

Then TQeGθ0 and det To = — 1, moreover for any Γ in G*o with detΓ =

— 1, TTo1 is in SL(Vt) X SL(7jo). Hence the isotropy subgroup G0Q is

given by
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= O S L ( 3 ) x S L ( 3 ) ) x { ± l } .

Since dim GΘQ = 16 = dim GL(fi) - dim 73, a triplet (GL(6), Λ3> 73) is a P.V.

and by Proposition 25 in § 4, it is regular. Hence we obtain the first

assertion of the following proposition.

PROPOSITION 7. (1) A triplet (GL(6), Λ3, 7(20)) is α regular P.V. and

its generic isotropy subgroup is isomorphic to (SL(3) X SL(3)) X {±1}.

(2) trace $0 = 0 /or any θ e 73. (3) There exists an irreducible relative

invariant polynomial P of degree 4 satisfying S2

Θ = P(0)/β for any θ e 73.

(4) Let K be a sub field of C, and put Vk = J^6

i=1Kuίt Then SL(Vk) operates

transitively on K-rational points of the hypersurface W = {θe V3\P(Θ) = 1}.

Proof. (2) Since eigenvalues of S ô is 1,1,1, — 1, — 1, — 1, we have

trace S,o = 1 + 1 + 1 - 1 - 1 - 1 = 0. For θ = Tβ0 (det T Φ 0),

traced, = trace (det T)TSβT-λ = 0 .

Since the Zariski closure of {θeVz\θ = T(θ0), detT=£θ} is VZf we have

our assertion. (3) Since S2

θ(Ui) — ut (1 < i < 6), we have S2

ΘQ — /6. For

θ = T0o(det T Φ 0), we have °S2, = ((det T)TSΘT-1)2 = (det T)2/6.° Since the

Zariski closure of {θ e V3\θ = Γ(50), det Γ ^ 0} is V3, there exists a poly-

nomial P on 7 3 satisfying £> = P(Θ)I6. Clearly P(θ) is a relative invariant

corresponding to (det T)2.

Since (detT)m\Go — 1 if and only if m is even i.e. m = 2n (neZ),

P(θ) is irreducible and any relative invariant is of the form cP(θ)n (c e C,

neZ) by Proposition 19 in §4. For T = ί/β (ί e Cx), since (detΓ)2 = ί12

and PiTΘ) = έ3 d e g P. P(^), we have £12 = ί3degP (ί e Cx) and hence degP = 4.

(4) Let θ be a Z-rational point in W. Then Ŝ  is defined over K and

7?,x = J(/β ± 5^)7^ is an eigenspace of Ŝ  corresponding to ± 1 since S2

Θ

= /6. Note that Vk = 7,+,̂  + 7j f*.

Since P(6>) ̂  0, there exists T e GL(6) satisfying ff = Γ(fl0). Put vt =

Γ^i (1 < ί < 6). Then we have ^ = ϋx A v2 Λ v3 + t)4 Λ ^5 Λ v6 and jS (̂t)f) =

(det T)TSeT-\Tθi) = (det Γ)̂ < (1 < i < 3), S,(#«) = -(det Γ)?), (4 < < < 6).

Since 7 3 = 7J5C + 7 ^ c where VfiC = | (1 ± S^)73, an eigenvalue of Sfl is

± 1 , and hence (detΓ) = ± 1 . Therefore by changing indices if necessary,

we may assume that θ — ϋλ A v2 Λ vz + t)4 Λ z>5 Λ #β, 7 ^ c = 2]LiC^< and

Vj,c = Σ?=4C^^. There exist v{ (1 < i < 6) in 7 π and c f e C ( i = l,2) such

that 0 - c^ί Λ v ί Λ ^ + c2vί Λ v'δ A u'6, Vt,κ - ΣU Kv'< and 7,"^ - ΣU KVt.
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If cx = 0 or c2 = 0, we have P(θ) — 0 by simple calculation. This is a

contradiction since θ e W. Therefore cx Φ 0, c2 Φ 0 and moreover cγ and

c2 are in K since θ is iί-rational.

Put v1 = c^ί, ^4 = c2̂ 4, vϊ = v[ (i Φ 1,4). Then we have β = v1 Av2

Avz + v,/\v,A v6, V2> = Σ L i X^ί and F,> = XU^Xi;*. Hence there ex-

ists T' in GL{VK) satisfying T'(ut) = v, (1 < i < 6). Since 5, = (det T')T

o S,o o Γ'-1, we have Sθ{vz) = (det T ' K = ^ (1 < i < 3) and S,(Vί) = (-det T')vt

= -Vi (4 < i < 6), and hence det T = 1 i.e. T7 e SLίF,,). Q.E.D.

The existence of the equivariant polynomial map θ ̂ > Sθ of degree 2

from 7 3 to £ί(6,C) is based on the fact that S2(Λ3) = 2Λz®{Λγ + A6) i.e.

Θ

by the Young diagram. The representation {Λλ + Λδ) of GL(6) is the

composition of the adjoint representation of SL(6) and scalar multiplica-

tions (det#) (g e GL(6)). We can also say that the existence of a rela-

tive invariant of degree 4 is based on the fact that

—
Θ

—

Θ —

—

—

—

Θ

—
— Θ

— —

Θ

— —

for GL(6). The representation space 2ΛQ is one-dimensional and the action

of GL(6) is given by scalar multiplications (det#)2 for geGL(6).

We shall determine the explicit form of P(x) for x = 2 χijkui Λ Uj Λ

uk e V(20) where (xijk) forms an alternating tensor of rank three with

coefficients in C.

For example xm = x23ί = xm = — #132 = — x321 = — xm. Since degP(x)

= 4, P(α) is a linear combination of xixi%izxuuuXi,uuXi1Oillil% where 1 < i19

- , in < 6. Under the action of ^ ι-> aui9 uά »-> ̂  (j ^ i) for 1 < ί < 6,

each term xiχUi% Xiloilli12 is multiplied by α2 and hence we have {i\, , i12}

= {1,1,2,2, , 6, 6} as a set. Moreover P(x) is invariant under the

action of ©6 c GL(6) where ©6 denotes the permutation group of {1, , 6}
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and hence P(x) is of the form

Γ\X) = d 2_ι ^σ(l)σ(2)σ(3) ^σ(4)σ(5)σ(6) " T 0 /_i ^σ(l)σ(2)σ(3)^σ(l)σ(2)σ(4)^σ(3)σ(5)σ(6)^σ(4)σ(5)<7(6>
<τ6@6 σβ@6

+ C 2_Λ ^σ(l)<r(2)σ(3)^«τ(l)σ(4)σ(5)^<r(2)σ(4)σ(6)^<7(3)σ(5)σ(6)
<x€@6

where 27 denotes the sum of distinct terms.
Since P(0O) = 1 for θ0 = uλ A u2 A u3 + u4 A uδ A u6, we have α = 1.

For θ = ux A u2 A u3 + uλ A u2 A uA + u3 A ub A uQ + u± A ub A u6 we have

Sθ(Ui) = 0 (1 < i < 6) from r (g) Sβ(ut) = {{ut Λί)(8) l )Λ A(#) Hence we

have P(0) = 2 α + δ = 2 + & = 0 i.e. b = - 2 . For 0 = ^ Λ ^2 Λ u, +

ί ί j Λ ^ Λ ^ + ^ Λ ^ Λ ^ + ^ Λ ^ Λ wβ, we have <S,0O = — 2^6, AS^( 6̂)

= - 2 ^ and hence P(#M = S2,(^i) = Sθ(-2u6) = 4 ^ i.e. P(0) = c = 4.

Hence we have α = 1, b = —2, and c = 4.

We can also express P(#) as follows.

Put

(^ 4 2 3

^523 ^153 ^125 I a n d X = I ^256 ^426 ^523 ^153 ^125 I a n d X = I ^256 ^426 ^452

^623 ^163 ^126/ \^356 ^436 ^453/

We denote by Xtj (resp. Ytj) the matrix obtained from X (resp. Y) by

crossing out its ΐ-th line and i-th column. Put xQ = xm and yQ = xm.

Then we have

P(x) = (̂ 07/0 - tr XY)2 + 4x 0 detΓ + 4τ/odetZ

- 4 Σ d e t ( Z < i ) det(Y i <).

One can also use Proposition 15 in § 4 to check that the degree of the

relative invaiant is four since the orbit of X'Q = uγ A u2 A u3 + uγ A u4 A u$

+ u2 A u± A uQ is of codimension one.

( 8 ) (GL(7), 4,^(35))

Let VΊ be a vector space spanned by uλ, , uΊ. Then GL(7) acts on Vx

as pi(g)(u19 -,u7) = (^1? •,%)# for βr e GL(7). Let 7 be a vector space

spanned by skew tensors Ut AUj Auk (1 < ΐ < / < k < 7). Then GL(7)

acts on 7 as /?(#)(>* Λ Uj A uk) = ftCflr)^ Λ ^i(^)^ Λ pi(flr)wΛ for g e GL(7),

and p = J 3, 7(35) = 7. We shall prove the prehomogeneity by seeking

a generic point Xo in 7. Let H be a subgroup of GL(7) defined by if

= {# = (&ίi) e GL(7) I gkl = 0 for 2 < fc < 7}. Then if is isomorphic to
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(GL(1) x GL(6)) (Gα)6 and GL(6) acts prehomogeneously on the subspace

of 7 spanned by ut A us A uk (2 < i < j < k < 7). As we have seen in

(7), u2 A u3 A u4 + uδ A u0 A %7 is a generic point and a generic isotropy

subgroup is isomorphic to (SL(3) X &L(3)) X {±1}. Therefore we may

assume that Xo is of the form

u2 A u3 A uA + uh A uQ A U7 + ux A Λ ) ,

and (GL(1) x SL(3) X SL(3)) (Gα)6 leaves this form invariant. By the

action of (GJ6, we may assume that ais = 0 (2 < i, y < 4 or 5 < i, i < 6).

In fact for r̂ = (flrίy) where ^ = 1 (1 < i < 7), g12 = - α 3 4 , #13 = α24, flf14

= -α23> 1̂5 = -^67, 1̂6 = α57> 1̂7 = - ^ e , all remaining entries 0, we have

p(g)X0 = u2 A u3 A u4 + u5 A uQ A u7

V = 2 j = δ )

and GL(1) x SL(3) x SL(3) = SL(3) X GL(3) leaves this form invariant.

The action of SL(S) x GL(3) on the 3 x 3 matrices (α^) 2 <^ 4 is isomorphic

to a triplet (SL(3) X GL(3), ^ ® 4 7(3) (x) 7(3)). As we have seen in

(2), it is a regular trivial P.V. and (aυ) = 73 is a generic point with the

isotropy subgroup SL(3). Hence we have XQ — u2 A u^ A u4 + u5 A u6 A uΊ

+ ux A (u2 A uδ + u3 A u6 + u4 A uΊ) and the (connected component) of the

isotropy subgroup HXQ of H is isomorphic to SL(3). Since d i m ί ί ^ = 8

= dim H — dim 7(35), a triplet (H, Λ3 \s, 7(35) is a P.V. and hence a triplet

(GL(7), Λ3, 7(35)) is a P.V. with a generic point XQ = ^2 Λ u3 A uA +

u5 Au6 Au7 + uλ A (u2 Auδ + u3 Au6 + u4A u7). Let gXo be the isotropy

subalgebra of g = gl(7, C) at Xo, and let ζ be the Lie algebra of H, i.e.,

E, = {A = (βij) e gt(7) | akl = 0 for 2 < jfc < 7}. Then we have dim gXo =

= dim GL(7) - dim 7(35) = 14 and

, C)

Therefore to determine gXo, it is sufficient to show that dp(A{)XQ = 0

(1 < i < 6) where Ax (resp. A2, •• ,A6) is the matrix of the form (1.8)

in Example 30 in § 1 with a = 1 (resp. 6 = 1 , . . . , / = 1), all remaining

entries zero.

For example we shall show that dp(A^)X0 = 0. Since Aι acts on Vι
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a s uλ F-» u2, ιt31-> u7, u± f-> — u6, ub f-» 2 ^ , ^ >-> 0 (j — 2, 6, 7), w e h a v e

u2 /\M3 Au4 = u2 Au7 AUi — u2 Au3 A uQ ,

^ Λ %6 Λ uΊ — 2Ui Au6 Au7 ,

z^ Λ (w2 Λ ^e5 + 2̂ 3 Λ wβ + ih A u7)

= ιι2 A (ih A uQ + uA A u7) + uγ A (u7 A u6 — u& A u7) ,

and hence dp(A^XQ = 0.

This shows that the isotropy subalgebra gXo at Z o is a simple Lie

algebra of type (G2) (See Example 30 in § 1) and hence a triplet (GL(7),

/i3J F(35)) is a regular P.V. by Proposition 25 in §4.

Now we shall determine the isotropy subgroup GXo, not infinitesimally

but globally. First we shall show that Gx c GO(7). There exists, up

to constant, uniquely a quadratic form q{x) = ιxAx (x e V(7), A G M(7))

which is invariant under the action of gXo i.e. *SA + AB = 0 for any

B e Qχo (See the case of d — 1 in (32)). In general the quadratic form

q(g~1x) = ^^g^Ag'^x is invariant under the action of the isotropy sub-

algebra QgZo = g§xβ~ι at gXQ where geGL(l). In particular, if geGXQ

i.e. £/X0 = XQ> q(g~ι%) is invariant under the action of gXo and hence it

must coincide with q{x) up to a constant multiple. This implies that

GJΓo c GOO)- Next we shall show that an element T of GOO) can be

written uniquely as Γ - c/7 T0 where c e C x and T eSOO)>

Assume that T = cT0 = c7!^ where To, ΓJ e £0(7). Put α = c'c"1. Then

we have al7 — TQTΌ'1 e SOO) and hence det(α/7) = α7 = 1, α2A = A, i.e.,

α2 = 1 where q{x) — ^Ax. Therefore we have a — 1, i.e., c — cr and

hence To = ΓJ. Finally7" we shall show that GJΓO can be written as the

direct product of the connected component G°XQ and the finite group H

which is contained in the centralizer of Gx in GL(7). Note that by the

Schur's lemma, an element of H is of the form cl7 where ceCx.

In general let G be a connected and simply connected semi-simple

algebraic group with the Lie algebra g. Then we have the exact sequence

1 -> Z(G) ~> G -> Aut (g) -> Aut (Dynkin) -> 1 where Z(G) is the center of G

and Aut (Dynkin) is the automorphism of the Dynkin diagram of g. Since

the Dynkin diagram of gXo = (g2) is 0 = ^ 0, we have Aut (Dynkin) = 1

and hence G —> Aut (gXo) —> 1 (exact). Since G is connected, Aut(gXo) is

also connected. On the other hand, we have the exact sequence

1 —•> H — • GXn ^> Aut (gXn) — > 1
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where ψ is defined by ψ(g)X = gXg~ι for g e GXQ and I e gJo. As we

have gQxfl-1 = g,(g)Z-o = gXo for gr e GXo, p(#) is well-defined for g e GXo.

Since the Lie algebra of GXo and that of Aut(gXo) are g2o, /o(G ô) is an

open subgroup (and hence closed subgroup) of AutCg^), and hence we

have P(G°XQ) = Aut (g^). This implies that an element T of GXQ can be

written as T = c/ Γ0 where c/eίf and T0eGXo c S0(7). Since this ex-

pression is unique, we have GXQ = G^o x i ϊ .

If c/7 e ff, then p(cI7)X0 = c3X0 = Zo, and hence we have GXQ = (G2) X

{α>/7|ω
3 = 1}. Any rational character χ of GL(7) can be written as χ(g)

= (det^)m for some integer m (geGL(7)). Since χ|GίBo — 1 if and only

if m = 0 mod 3, by Proposition 19 in § 4, any relative invariant is of the

form cf(x)£ (ceCx, & e Z) where /(#) is the relative invariant with the

character (det#)3. For g = ί/7eGL(7), we have (det#)3 = £21 = *3 d e g / w ,

i.e., deg/(a;) = 7.

PROPOSITION 8. A ίnpίeί (GL(7), Λ3> ^(35)) is α regular P.V. and its

generic isotropy subgroup is (G2) X {ω/7|ω
3 — 1}. Γfee relative invariant

is of degree 7.

Remark 9. Let T7 be the totality of 7 X 7 symmetric matrices. By

the inner product (X, Y} = t r Z Γ (Z, Ye W), we may identify the dual

J
vector space W* of W with W. Since the symmetric product S

decomposes as S3\ ΘΓ there, exists

a polynomial map p of degree 3 from F(35) to W satisfying φ(p(g)x) =

(det g)g-<p(x)'g for geGL(Ί), xeV(S5). On the other hand, S4\ con-

tains Note that this fact corresponds to the existence of the
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relative invariant of degree 4 of (GL(6), A39 7(20)). Therefore there exists

a polynomial map 9* of degree 4 from 7(35) to T7* satisfying φ*(p(g)x)

= (detflO^-VGiOflr1. Hence /(a;) = <p(a), p*G*0> = trφ(x)-φ*(x) is a rel-

ative invariant of degree 7 satisfying f((p(g)x) = (det gff(x) for # e GL(7)

and xe 7(35). However, it is necessary to prove that ζ<p(x),φ*(x)y is not

identically zero.

One can also use Proposition 15 in § 4 to check that deg / = 7 since

the orbit of X'o = u2 A u3 A t£5 + u3 Au, AuQ + uλ Au2 Au7 — ux Au4 A u5

is of codimension one.

( 9 ) (GL(8), 4,^(56))

Let VΊ be a vector space spanned by u19 , u8 over C Then GL(8)

acts on VΊ as p^gXu^ ,^8) = (π1? ,%8)# for g e GL(8). Let 7 be a

vector space spanned by skew-tensors ut A uό A uk (1 < ί < j < k < 8) of

rank 3 over C. We identify F(56) with 7. Then the action p — Λz of

G L ( 8 ) i s g i v e n b y p(g)(ut A Uj A u k ) = px{g)Ui A pλ(g)Uj A p i ( g ) u k ( l < i < j

< k < 8). We shall determine the prehomogeneity by seeking a generic

point Xo. By the action of GL(7), we have Xo — ωQ + u8 A η where ω0 =

u2 A u3 A u4 + uδ A u6 A uΊ + ux A (u2 Aub + uz AuQ + u± A uΊ) and η is a

2-form of u19 -,u7 (see (8)). The isotropy subgroup (G2) of GL(7) at ω0

acts on the space 7(21) of all 2-forms of u19 ,uΊ. Let ζ be the Cartan

subalgebra of (g2) defined in Example 30 in § 1. Then the weights of

this action of (g2) on 7(21) w. r. t. ϊ) is given by {0, ±λu ±λ2, ±UX + Λ2)}

U {0, 0, ±λ19 ±λ2, ±λι ± λ2J ±{λι + 2λo), ±(2λi + λ2)} and hence this action of

(G2) is AX@A29 i.e., 7(21) decomposes into the direct sum of the 7-dimen-

sional representation space 7(7) and the adjoint representation space 7(14)

^ (g2): 7(21) = 7(7) Θ 7(14) (see Definition 4 and Example 30 in § 1).

Let ηι = dcoo/dUi (1 <ξ ί ^ 7) be the polarizations of ω0 i.e. -ηι — u2A

u5 + u3 Au6 + uA A uΊ, η2 = u3 A u4 — uλ A uδ, η3 = —u2 A u4 — ux A uβ9 η4

= u2 A u3 — ux A u7, η5 = uδ A u7 + uλ A u2, η6 = — u5 A u7 + ux A u3, ηΊ —

^5 Λ uQ + uλ A uA.

Since

•, u7) = ωo((%!, , O # )
3w4
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for g = (gυ) e (G2), we have

, uΊ)g\ , - ^ - ( ( ^ , , uΊ)g) =
du7 \ aux du7

for g e (G2), and hence {η19 , η7) is a basis of 7(7). P u t Xo = ω0 + u8 A ηf

+ u8 A τ]o where η0 = ayx + + a7η7 and 5/ e 7(14). Then by the action

of uv*-> uv — αυ^8 (1 < p < 7) and u8 -̂> u8, we have Z o = ω0 + u8 A ηf where

rf e 7(14) ^ (g2). Moreover we may assume that rf is a regular element

of (g2) (see (3)). A regular element η' can be transferred to an element

of the Cartan subalgebra ζ by the action of (G2). We shall determine

the subspace of 7(14) corresponding to I). Let φ: (g2) ~> 7(14) be the

(G2)-equivariant isomorphism. Since § is abelian, we have Aφ{X) =

j)([A, X]) = φ(0) = 0 for A, Z e ίj, and hence φ<$) = {xe 7(14) | Aa? = 0 for

any A efy = {cγu2 A u5 + c2^3 Λ uβ + c3%4 Λ % 7 |c x + c2 + c3 = 0}.

Therefore we may assume t h a t Xo = ω0 + u8 A {β{iι2 A u5 + c2u3 A uQ

+ c3uA A u7) with cλ + c2 + c3 = 0. By changing indices and generalizing

this form, we shall consider the 6-dimensional subvariety V of 7 con-

sisting of the forms nλ A u2 A u3 + uA A u5 A uQ + u7 A (βγnλ A u4 + a2u2 A

u5 + α3^3 Λ u6) + U8 A (&I^I Λ U4 + b2u2 A u5 + b3u3 A u6). Let H be the

subgroup of GL(8) defined as follows

Λ, Af e SL(3), A e GL(2), A, ^ί/ - diagonal .

Then the subgroup H acts on the subvariety V as

Obviously this action is prehomogeneous, and we may take X —

L ~ Q _Λ as a generic point. Hence the triplet (GL(8), Λ3, 7(56))

is a P. V. and the corresponding point Xo = uλ A u2 A u3 + u± A u5 A u6

+ u7 A (uλ A u4 — u2 A ub) + u8 A {nx A u4 — u3 A u6) is a generic point.

We shall calculate the isotropy subalgebra g 2 o a t Z o . The infinitesimal

action dp of p is given by dp(A)(Ui A u3 A uk) — dp^A)^ A us A uk + u{

https://doi.org/10.1017/S0027763000017633 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000017633


PREHOMOGENEOUS VECTOR SPACES 89

Λ dρι{A)uj A uk + ut A Uj A dpx(A)uk. For example dp{A)(ux Au2 A u3) =

(dn^i + α4 1^4 + α5 1^5 + a6lu6 + anu7 + a8lu8) A u2 A u3 + ux A (a22u2 + ai2ιt4 +

»52^5 + ^62^6 + ^72^7 + ^82^8) A Uz + Uχ A U2 A (CL33U3 + ^43^4 + (£53^5 + CL63UQ +

a73u7 + a83u8) where A = {atj) e gl(8). Such a calculation shows that

dp(A)X0 = 2 α f̂cttί A Uj A uk where α<iΛ are given by the following table.

ijk

123

124

125

126

127

128

134

135

136

137

138

145

146

147

011 + 022 + 033

043—027 — 028

053 — 017

063

015 + 024 + 073

024 + 083

— 037~ 038 —042

— 052

— a l s — a 6 2

034-072

016 + 034—082

016 + 057 + 058

067 + 068 — 015

011 + 044 + 077 + 078

ijk

148

156

157

158

167

168

178

234

235

236

237

238

245

246

Clίjk

011 + 044 + 088 + 087

014

054—012

054

064

064 — 013

074 — 084

041

037 + 051

061—028

071 — 035

026 + 081

026 + 047

— 025

ijk

247

248

256

257

258

267

268

278

345

346

347

348

356

357

Clijk

021--045

021

024—067

— 022 — 055 — 077

- 0 8 7

— 065

— 023

085

036

048-035

031

031-046

034 + 058

— 032

ijk

358

367

368

378

456

457

458

467

468

478

567

568

578

678

<kjk

— 056

- 0 7 8

— 033—066—088

— 076

044 + 055 + 066

076—051—042

086 — 051

— 0 6 i — a 7 5

— 043 — 061 — 085

081-071

062 + 074

084 — 053

— 082

073

Hence by simple calculation we have dp(A)X0 = 0, i.e. aijk — 0 for

i < y < f c < 8 , if and only if A is of the following form (5.7).

(5.7) A =

<Xi

0
0

0

A
β>

n
n

0

0

- / 3 s

0

~ β l

0

0
0
α3

-A
βl

0

0

n

0

~h
~Ϊ2

0
0

βl

βl

h
0

ΐl

0
— a 2

0

-A
0

-n
0

0
0

— α 3

0

ft

A
-2A
-ft

n
- 2 r 2

-r s

c

A
ft

2ft
n
Ϊ2

I

with oil + a2 + oc3 = 0 .

Let I) be the subalgebra of gXo = {Ae gl(7) | d^(A)Z0 = 0} consisting

of the diagonal matrices H(ax, a2, a3) in (5.7).

For 1 < i < 3, let Et (resp. F<) be the element of the form (5.7)

with βi = 1 (resp. ^ = 1), all remaining entries zero. Then one can

easily check that for each i = 1,2,3, ad (ϋOZ?* = aiEi and ad (fl)F< =
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—oίiFi where H = H(a19a29az) e ϊ). This shows that ϊj is a Cartan sub-

algebra of QZO and the root system of QZO W. r. t. E) is given by Δ =

{±cx19 ±a29 ± α s | α i + a2 + a3 = 0} i.e. gXo ^ §1(3) and A in (5.7) is the ad-

joint representation Λx + Λ2 of §1(3). Hence this triplet is regular by

Proposition 25 in §4.

P u t X'o = uγ A u2 A u3 + ux A u5 A u6 + u2 A u4 A u6 + uΊ Λ (^i A u4 —

u2 A uδ) + u8 A (ux A u4 — u3 A u6). Then by the same calculation as the

case of Xo, the isotropy subalgebra qx, is given by

(5.8)

I a

A

0

A -
A

^ A

A
a

-A
A
0

Ϊ2

n
-2cc

-A
A

0

ΐi

h
—n

A
-2a

A
Ϊ2

- f t
—ft

n
A
A

-2a

n
γ2

0

-A
-A

a

0

-A

2A
- 4 / 8 ,

0

2A
a

0

2A
2A

- 4 A
0
a

(a)®
A

- A
2

~2~

θ (TΊ, ̂ 2> rs? r4> re)

S (gI(D ® §ί(2)) Θ F(5)

where the second Θ denotes the semi-direct sum and V(5) denotes the

Lie algebra of the 5-dimensional vector group. Hence the isotropy sub-

group GΣ,o at X'a is locally isomorphic to (GL(1) x «SL(2)) (Gay.

Since dim GL(8) — dim G x, = 55, the orbit of X'o is of codimension

one. For an element A of gX6, we have fay A = —21α and t r ad gχδA =

and hence deg / = -21α + 15α X 56 = 16 by Proposition 15 in § 4.
-21a

The orbital decomposition of this space was completed by I. Ozeki

(see [20]).

PROPOSITION 10. A triplet (GL(8),^3, 7(56)) is a regular P.V. and

its generic isotropy subgroup is locally isomorphic to SL(3). The relative

invariant is of degree 16.

(10) (SL(3) X GL(2), 2ΛX ® A19 7(6) <g> 7(2)) .

We identify 7(6) ® 7(2) with 7 = {X = (X19X2)\X19X2eM(S), ιXλ =
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X19

 ιX2 = X2}. Then the action p = 2Λ1®Λι of SL(3) X GL(2) is given

by <o(A,B)X = (A^X, + &JQΆ, A(cXx + dX2YA) where X = (X19XJ e V,

(A, B) e SL(3) x GL(2), and B = (* h\ For each X = (Z1? Z2) in 7, we

can obtain the binary cubic form Fx(u, v) = det (w^ + u3f2) which is

invariant under the action of SL(S). Let GXo be the isotropy subgroup

of G = SL(3) X GL(2) at Z o = (Y1 1 Λ fi ω λ\ where ω3 = 1, ω Φ 1,

and let (A,B) be an element of GXo where AeSL(3), BeGL(2). Then

β must be in the isotropy subgroup

of GL(2) at FX o(^,^) = ^3 + ^3 (see (6)). In the case of B = f1 A we

have AfA = 73, Aί ω 2YA — ί ω A and hence

/I

This implies that A is diagonal. Since A1 A — 73, we have A =

ί— ± 1 + i ) > i e., {A} is an abelian group of order 8 of type (2,2,2).

Similarly we have

± ω

when B = (ω Vresp. (ω

 2 ) ? ( i ))• This implies that GXQ is a finite

group of order 8 x 18 = 144. Hence it is a regular P.V. by Proposition

16 in § 4. The kernel of p is a finite group {(±(ω <» A (ω

 ω ) ) I ω3 = l |

of order 6, and hence the image p(GXo) is a finite group of order 24.

Since X •-> Fz(u, v) is equivariant, the discriminant f{X) of Fx(u, v) is

a relative invariant of SL(S) x GL(2) (see (6)). Any rational character

χ of SL(3) X GL(2) is of the form χ((A,B)) = (detfi)m for some meZ

where (A,B) eSL(3) X GL(2). Since deg/(Z) = 12, if (detB)m is the

character of f(X), we have (det B)m = t2m = ί12 for S = (ϋ Λ and hence
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m = 6. Since χ\GXo = l if and only if m = 6n for some neZ, by
Proposition 19 in §4, any relative invariant is of the form cf(X)n and
hence f(X) is irreducible.

PROPOSITION 11. A triplet (SL(3) x GL(2), 24 ® 4 , 7(6) ® 7(2)) is
& regular P.V. and its generic isotropy subgroup is a finite group of
order 144. The relative invariant is of degree 12.

(11) (sL(n) x GL(2), Λ2 <g> Al9 v ( ^ ^~) <g> 7(2)) (n ^ 5)

I) The case of n — 2m.

We identify 7 = 7(m(2m - 1)) <g> 7(2) with {X = (Xl9 X2) e M(2m) Θ

M(2m)\tX1 = -Xu *X2=:-X2}. Then the action p = Λ2®Λλ on 7 is
given by p(g)X = (A(aX1 + βX2)

ιA, A(γX1 + δX2YA) for

GL(2) .

For each X = (X19 X2) in 7, we can obtain the binary m-f orm Fx(u, v) —
Pff(uX1 + vX2) which is invariant under the action of SL(m) where Pff de-
notes the Pfaffian. This map φ: X-+Fx(u, v) is clearly equivariant. More-
over it is generically surjective since φ(X) = ±(u — λxv) (u — ̂ mi;) for

o i/.wo - ft w

-IJ 0 0

For m ^ 4, a triplet (GL(2),mΛlf V(m + 1)) is not a P.V. and hence the
triplet (SL(2m) x GL(2), Λ2 ® 4 , 7(2m2 - m) ® 7(2)) is not a P.V. for
m ^ 4 by Lemma 5 in § 2. Assume that m = 3. Put

0 0

0/ \-Λ

A

0.

In general the infinitesimal action dp of p is given by

X*A + aXι + bX2, AX, + XtΆ + cX, + dX2)

where X = (XUX2) in V, Ae§l(2m,C) and (* J)egt(2,C). Hence we

have dpU, (* J ) )z β = (Zo

ι,Z?) where A = (aυ) e 8l(2m), and ZJ = (cw),
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XI = (c^ ) are 6 x 6 skew-symmetric matrices given as follows.

(5.9)

Ci2

013

Cu

c16

^ 2 3

^ 2 4

C25

^ 2 6

^ 3 4

α24

d u

a + b H

« Ί 2

» 1 3

^ 3 5

d2l

a + c

dlZ

d3ι

—

—

- a

+
+
—
+

+
+

α15

11 +

α54

α64

α26

α45

+ α

d4Q

d u

55

^ 3 5

^ 3 6

C45

^ 4 6

^56

Cί2

cί3

α —

c +

^ 3 2

& -

α42

^ 4 3

d53

dί6

d -

dM

+
- a

—
—
—

d u

+

au

—

33 + α 6 6

^ 5 1

^ 6 2

^ 3 4

U + ^44

^ 1 3

^ 2 3

^ 2 4

^ 2 5

^ 2 6

C34

035

c36

C4δ

c

d2e

d2ι

C

^ 2 3

α 3 1 — <£46

— ^56

- d - a33 - dm

tt/43 U/gi

— ^53

Therefore the isotropy subalgebra g J o at Z o is given by

gXo = {(A, ( α * ) ) e 31(6) θ flt(2) I etί = c'i} = 0 in (5.9)}

(5.10) a β

— a t

θ §1(2) θ :

(0) I or, j8, ^ a r e d i a g o n a l 3 x 3 m a t r i c e s

it is aSince dim gXo = 9 = dim SL(6) X GL(2) - dim 7(15)
P.V., and by Proposition 25 in §4, it is regular.

The discriminant f(X) of the binary cubic form Fz(u,v) (= Pff(ιιXx

+ vX2)) is a relative invariant of degree 12 (see Proposition 6). We
shall show that f(X) is irreducible.

Put

where J1 =
- 1

Let X be a 3 x 3 quaternion matrix. In general a quaternion can be

represented as a 2 x 2 matrix (- ~~1) and hence we can consider X as

a 6 x 6 matrix. In this case, if X is a quaternion hermitian i.e. ιX =

Z, then *(XJ)=:— (XJ). This gives a one-to-one correspondence from

3 χ 3 quaternion hermitian matrices to 6 x 6 skew-symmetric matrices.

Moreover we can define the determinant of quaternion hermitian matri-

ces which corresponds to the Pf afRan of skew-symmetric matrices. There-

fore f(X) can be considered as a discriminant of the binary cubic form

i + vX2) where X19X2 are 3 x 3 quaternion hermitian matrices.
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We have seen in (10) that the restriction of /(Z) to Z = (Xly Z2) where
Xu Z2 are 3 x 3 symmetric matrices over C, is irreducible and hence
/(Z) itself must be irreducible.

PROPOSITION 12. A triplet (SL(2m) x GL(2), Λ2 <g> Λly 7(m(2m — 1))
•<g> 7(2)) is not a P.V. if m ^ 4. A ίripZeί (SL(6) X GL(2), Λ2 <g) Λ> "̂ (15)
(x) 7(2)) is a regular P. 7. and its generic isotropy subgroup is locally
isomorphic to SL(2) x SL(2) x SL(2). The relative invariant is of
degree 12.

II) The case of n — 2m + 1.
We identify 7 = V(m(2m + 1)) ® 7(2) with {(Z1? Z2) e M(2m + 1) Θ

Λί(2m + 1)| % = - Z i , JZ2 = ~Z2}. The subgroups GL(2m + 1) = SL(2m
+ 1) x GL(1) of SL(2m + 1) X GL(2) acts on 7 as Z = (Zx, Z2) »->

, AZ2

JA) for A e GL(2m + 1). Let Zo be a point

0

Then the isotropy subalgebra $Xo of gl(2m + 1) at Zo is

<5.H)

m + 1
(X/Q

a$

0

•

Since dim gXo = 2m + 1 = dim gl(2m + 1) — dim 7, it is a P.V. and
there is no relative invariant by (2) in Proposition 20 in §4. Hence
(SL(2m + 1) x GL(2), Λ2 <8> 4 , 7(m(2m + 1)) ® 7(2)) is a P.V. and there
is no relative invariant.

PROPOSITION 13. A

+ 1)) ®7(2)) is a P.V.
not regular.

triplet (SL(2m + 1) x GL(2), A2 ® 4 , 7(ra(2m
There is no relative invariant and hence it is

(12) (SL(5) X GL(3), Λ2®Λ19 7(10)0 7(3)).

https://doi.org/10.1017/S0027763000017633 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000017633


PREHOMOGENEOUS VECTOR SPACES 95

Let Vλ be a vector space spanned by u19 , u6. Then SL(5) acts

on V1 as pλ{g){ux, - - -, ̂ 5) = (^, , uδ)g for # e SL(S). Let 7 2 be a vector

space spanned by 2-forms ut Auό (1 < ί < j < 5). Then SL(5) acts on

"̂ 2 as p2(g)(Ui A ^ ) = ftίflr)^ Λ pι(g)uj for # e SL(δ). The infinitesimal

action cfy>2 of p2 is given by dρ2{A){ui A u3) — dpx{A)Ui A Uj + uk A dpx{A)Uj

for A e §1(5). P u t ωλ = ^ Λ %2> ω2 — u2A u3, ωz = uλ A u3, ωA = u2 A uA,

ω5 z=z uλ A u4y u6 — u3A u4, ω7 = u4 A uΰ, ω8 = u2 A uδ, ω9 = u3 A u6, ωί0 =

ux Auδ. Then {ω19 ,ω10} is a basis of V2, and for A = (α^ ) e§Γ(5), by

simple calculation we have

dρ
2
(A)(ω

19 , ω
1 0
) = (α>i, ! | A

2
)

(5.12)

αx + a2

^31

^32

— α 4 1

α42

0
0

0

^52

~^13

ίl2 + tt3

^12

^43

0

^42

0

0*3

-CL52

0

^23

(hi

a, + a3

0

^43

— a41

0
0

^53

- α 1 4

^34

0
α2 + a,

«Ί2

^32

- ^ 5 2

^54

0
0

«24

0

α34

<Xi + α 4

^31

0
0

^54

A,=

0
- α 2 4

— au

a2Z

a3 + α4

^53

0

α54

0

0
0
0

- a 2 5

- a 1 5

—a35

α4 + α5

α24

^34

α14

^35

0

^45

0

0

α42

0^2 "I ^ 5

^32

0
— ^25

— «Ί5

0
0

^45

^43

^23

a3 + aδ

α13

^25

0

^35

0

^45

0

aA1

d2l

»31

«Ί + ^5

where α 4 i = at and = 0.

We denote this matrix also by dp2(A), i.e., dp2(A) e M(10). Identify

7 = F(10) (x) 7(3) with 10 x 3 matrices M(10,3). Then the action p = Λ2

® A1 on 7 is given by /o(flr)Z = p2{gdXιg2 for r̂ == (c/̂  g2) e SL(5) X GL(3),

XeM(10,3). The infinitesimal action dp of p is given by dp(A)X =

d f t(A)Z + Z ^ for A = (A,β)'e 9 - Sl(5) Θ βl(3). We shall calculate the

isotropy subalgebra QXQ at Xo = ^/s 0173 0) e M(10,3). Then for A = (A, B)

with A = (α^) G §1(5), B = (&ί<; ) e gl(3), we have
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dp(A)X0 - dp2(A)X0

aλ + a2 + b,

O l 2 &3i <X24

^32 — «Ί4 + &13

^23 ^41

α 4 2 + α 1 3

a3 + a, + &!

υu tt53

&13 ~ »51

^54

^52

2 + ^3 + &

^ 1 2 I ^ 2 3

(X43 C 6 2 5

^24 + ^53 + ΐ>2:

+ ^35 + &3

+ α3 + 63

^ 4 5

+
where d^C^-) is given by (5.12).

Hence the isotropy subalgebra $Xo — {A \ dp(A)XQ = 0} is given as

follows.

T 0
-Sγ
3/3

\

-β
2a

- r

r

-2a

β

-2/3

4a

2γ

-4a

Θ

r -2a

r
"C

D

r
β
2a)

1

This is 4ΛX Θ 2ΛX of §1(2). Since dim gXo = 3 = dim SL(5) X GL(3) -

dim 7(10) ® 7(3), it is a P.V. and moreover it is regular by Proposition

25 in §4.

Next we shall calculate the isotropy subalgebra gXό at

γ i 0 0 0 0 0 0 0 0 o\
Zί = 0 0 0 0 0 1 0 0 0 1 .

\0 1 0 0 0 0 1 0 0 0/

Similarly, we have

dp(A)X'o =

6i

613

bu

^ 3 2

— α 4 1

α42

612

613

^35 —

0^23

&13 +

α3 + α4

(X 4 1 (X 5 3

α14

^45

+
+

^31 ^13

^43 — ^25

— 0-16

2 ^ 4 2 Cvoi

α 3 4 — α 5 :
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Hence the isotropy subalgebra gX6 = {A \ dp(A)Xo = 0} at X'Q is given
•π

as follows.

(5.13)

2a + 4/3

α + 2/3,

Since dim g — dim QX,Q — 33 — 4 = 29, the orbit of ZJ is of codimen-

sion one. For A e gx,, the trace t r F A o n 7 = 7(10) ® 7(3) is 10(-2/3 -

(a + β) + (a + 2/3)) = —10/3 and the trace t radg z ,A of the adjoint repre-

sentation on gXό is 5/3. By the degree formula, i.e., Proposition 15 in

§4, the degree of the relative invariant f(x) is given by

de g /(x) =
trF

y = -10/3 χ

PROPOSITION 14. A ίripίeί (SL(5) x GL(3), Λ2 (8) ̂ , 7(10) ® 7(3)) is

α regular P.V. and its generic isotropy subgroup is locally isomorphic

to SL(2). The relative invariant is of degree 15.

(13) (SL(5) X GL(4), , 7(10)® 7(4)) .

We identify 7 = 7(10) (x) 7(4) with 10 x 4 matrices M(10,4). Then

the action of p2 = Λ2 Θ Λλ is given by p(g)X = p2(gdXtg2 for g = (glf g2)

e G = SL(5) x GL(4), Z e 7 where ^ is defined as in (12). The infini-

tesimal action e^ of p is given by dp(Ά)X = d!θ2(A)Z + Z ^ for A =

(A,JB)eB = δr(5)ΘBl(4) where d^(A) is the 1 0 x 1 0 matrix of (5.12).

We shall calculate the isotropy subalgebra gXo at Z o = '(/4 0|/4 0) e M(10,4).

Similarly as in (12), we have

dp(A)X0 = dP2(A)X0 + XJB

https://doi.org/10.1017/S0027763000017633 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000017633


MIKIO SATO AND TATSUO KIMURA

0 1

&12

032

023

0 3

+
—

—
042

+
&12

&13

bu

0 2

031

014

041

+
0 4

—

—

+
0β2

-f* bι

~ 024

+ 1̂3

+ &14

013

+ &1

053

051

054

&21 — 013

02 + 03 + &2
0i2 + δ 2 3

043 025 + ^24

— 015

£>21 - 042 - 035

04 + 05 + b2

024 + 053 + &23

034 ~ 052 + &24

014

023 —

Cl'21 ~\

01 +

045

&31

042

02 +

032 ~

012

015

035

0 3

+
043

—

+
0 5

051

+

+
+
+

041

K
+
+

053

ί>32

63

&34

034

0 2

032

043

054

0 3

6«
—

δ43

+

+
—
+
+

—
025

—

α4

012

045

052

023

0 5

013

014

-f- f ) 4 2

015

+ &4

+ 641

+ δ42

+ b43

"f" ^ 4

Hence the isotropy subalgebra gXo = {A e g | dp(A)X0 — 0} at Xo is zero.
Since dim gXo = 0 = dim SL(5) x GL(4) - dim 7(10) ® 7(4), it is a regular
P.V.

Since dim G = dim V, there is a relative invariant polynomial of
degree 40 by Proposition 16 in §4.

Similarly one can check that the isotropy subalgebra QZ, at

= (ω7> 0>io) =

0 0 0 0 0 1 0 0

[0 0 1 0 0 0 0 1 0 01

0 1 0 0 1 0 0 0 0 o |

^0 0 0 1 0 0 0 0 0

is of one-dimension, i.e., the orbit of X'Q is of codimension one. Hence
by Proposition 16 in § 4, the relative invariant of degree 40 is irreducible.
This point X'Q was found by I. Ozeki ([20]).

PROPOSITION 15. A triplet (SL(5) x GL(4), Λ2 <g> A19 7(10) ® 7(4)) is
a regular P.V. and its generic isotropy subgroup is a finite group.
The relative invariant is of degree 40.

(14)
(SL(ri) x SL(n) x GL(2), Al9 V(n) ® Vin) ® 7(2))

^ 3) .

We identify V(n) ® Vin) <g> 7(2) with 7 = M(w) Θ Aί(n). Then the

action ^ = Λ (x) ̂  (x) ̂  is given by p{g)X = (A(arZx + βX2YB, A{γXx +

.aZJ^) where «r = ( A , B , ^ ξ\\ e SL(ri) x SL(n) X GL(2) and Z - (Z1?

Z2) e 7. For each X = (Z1? Z2) in 7, we can obtain a binary w-form

Fz(u, v) = det (^Zj + vZg) which is invariant under the action of SL(n)

X SL(n). Clearly the map φ: X *-> Fz(u,v) is equivariant. Moreover,

it is generically surjective since φ(X) = (u — λxv) (u — λnv) for
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in V. Therefore by Lemma 5 in § 2, if n ^ 4, then it is not a P.V.
since (GL(2)9nΛu V(n + 1)) is not a P.V. for n ^ 4. Assume that ti =
3. The infinitesimal representation dp of ^ is given by

for (A, β, (*

+ X^tf + aXλ + bX2, AX, + X2

ιB

e δl(n) Θ sl(«) Θ βΓ(2). Hence for

0

-V

we have

where A =

Therefore the isotropy subalgebra

Θ §1(3) Θ flt(2) dp (A, B, (^ = 0

—a
= 0 ^

Since dim gXo = 2 = dim SL(3) x SL(3) X GL(2) - dim 7, it is a regular
P.V. by Proposition 25 in §4. The discriminant f(X) of the binary
cubic form Fx(u, v) = det (uXλ + vX2) is a relative invariant of degree 12.
This is irreducible since we have seen in (10) that the restriction of f(X)
to {X = {Xl9 X2) e M(3) Θ M(3) | *XX - Zx, 'X2 = Z2} is irreducible.
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PROPOSITION 16. A triplet (SL(n) x SL(n) x GL(2), A1 ® Ax ® A19 V(ri)

<g> V(n) <g> 7(2)) is noί α P , y . i / ^ 4 . A ίripteί (SL(3) x SL(3) X GL(2),

Λ1 (x) idi ® idi, 7(3) <8> 7(3) Θ 7(2)) is a regular P.V. and its generic isotropy

subgroup is locally isomorphic to GL(1) x GL(1). The relative invariant

is of degree 12.

(15) (Sp(n) X GL(m), A, 0 Aί9 V&ri) <g) Vim)) in ^ m ^ 1) .

We identify 7 = 7(2n) (x) V(m) with 2n x m matrices M(2^, m).

Then the action ^ = A1 (x) ̂  is given by p(g)X = gιXιg2 where Z e ilί(2w, m)

and g = (gl9 g2) e Sp(n) x GL(m). Let g = &p(n) 0 gl(m) be the Lie algebra

of Sp(ri) x GLim). Then the infinitesimal action dp of p is given by

dp(A)X = AXZ + Z£A2 where A = (A1? A2) e g - δp(w) © gΓ(m).

I) The case when m is even, i.e., m = 2β (n ^2-β ^> 2). We shall

calculate the isotropy subalgebra qXo at

h o
0

0

o
e M(2n, 2ί)

where 1$ denotes the identity matrix of size

be written as follows.

(5.14) A =

A,
A3

<c2

A2

A4

c2

>B2

- Ά ,
- Ά 2

Bt

tΛ ®

An element A of g can

A
A

where A,, £

for 1 < j < 4 A2, β2, C2 e M(£, n-S);A3e M(n -£,£); A4, B

and '^i = β 1 (

 tBi = Bt,
 ιCx = Cu

 ιC, - C4. Then we have

; C1; D^ e

C4 e

dP(A)X0 =

(5.15)

Ax A2

4 A

Cr C2

A, + £L>

tΛ tλ
/±1 /i3

- 'A, tΛ
-Λ4

0
0

.0

0~
0

It

0.

/, 0 '
0 0

o /,
lo oJ

•A £A

A3

Λ + Ά
'C2

Hence the isotropy subalgebra gXo = {A e

follows.

+ Ά

= 0} is given as
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0

cί
0

0
A4

0

ct

0

- ' A ,

0

0
Bt

0
— Ά 4

7A, i

Since dim gXo = ^(2^ + 1) + (n - £){2n — 2i + ΐ) = {n(2n + 1) + U2} -

= dim SpOO x GL(2£) — dim 7(2n) (x) 7(2-0), this triplet is a regular P. V.

by Proposition 25 in §4.

The relative invariant f(X) is given by PffQXJX) where

0

0

and Pff denotes the Pfaffian of the 2£ x 2£ skew-symmetric matrix ιXJX.

Since Sp(n) = {gιe GL(2n)\tg1Jgι = J}, we have f(p(g)X) = f(g1X
tg2) =

Pff(g2

tXtgίJg1X
tg2) - PffίgfXJX'gd = det #2 PffϋXJX) = det #2 #(Z) for

g = (gίyg2) eSp(ri) X GL(2£). By Proposition 18 in §4, the degree of

any relative invariant is multiple of 2^. Since deg/(X) = 2S9 f(X) is

irreducible.

PROPOSITION 17. A triplet (Sp(ri) x GL(2m), /ίi (x) ̂ , 7(2%) (x) 7(2m))

(n ^ 2m ^ 2) is α regular P.V. and its generic isotropy subgroup is

locally isomorphic to Sp(m) x Sρ(n — m). The relative invariant is of

degree 2m.

Note that this proposition holds even if 2n >̂ 2m > n, but in this

case, it is not reduced.

II) The case when m is odd, i.e., m = 2ί + 1.

We shall calculate the isotropy subalgebra gXo at

Ίl, 0 0 ,
e M(2n, 2£ + 1) .0 0

An element A of g can be written as follows.

(5.16)

A =
£{

A21

A31

A ]
A32

c2

ΐ
AΓ
C2

Cί

c3

t A

— tAl2

— *A1 3

— M
21

— «A2

A 2 3

θ
'A"
A i

A i

'A?
A
A2

'AT
As

A
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Then we

(5.17)

\Aλ

A21

ASI

Cx
4Cί

.'Cί

tiave

dP(A)X0 =

A i2 A 1 3

A A
Λ 2 Λ 23
A A

" 3 2 " 3

l/j O 2

L^2 v-^3

^ 3 ^ 3

5 X Bί B^ *
•D \ J->2 -*-*Z

t Έ>' t Z?' I?
i_>2 JB§ -LJ O

- ' A x - ^ - ^ 3 !

tΛ tλ tΛ
"^•12 - ^ L 2 " 3 2

A 1 3 A 2 3 A 3

' A : + tDι

CΊ + ^12

*Cί + ^13

^ 2

Si + ιD2l
ιB[
ιB'2

-tA1 + *D2

- ί A 1 2 + Φ 2 3

— «A 1 3

β

ί

1.

-f-

I,

s

1.

Ά

. 'As

'D2

'D23

' • D 3 2

ί + * Ai "
B2

A2l + <A2

A2 + ' A

423

and hence the isotropy subalgebra gZo = {A e g | d|θ(A)X0 = 0} is given as

follows.

I Ax

0

0

d
'Cί

1 0

A12

A2

A32

Cί

c 2
' C j

0
0

A3

0

Cί

c3

B1

0

0
t A

t A

0

0
0

0

0
t A

~~~ JL*-2

0

0
0

B3

0

_ Ά 3 2

— «A3

— 4A 2

0

0

o

*CΊ
A,

— Z A 1 2

0

0

Cί

A3

—

0

0

^ - 3 2

i?3

" 1 2

A32

'Cί

A2

- Cx - ' A ,

θ - I - 1))

where u(2n — 1) is the nilpotent Lie algebra of dimension (2n — 1). The

first isomorphism is obtained by changing rows and columns from

{1, , 6} to {5,1,4, 3, 6,2}. Since

d i m 9χ0 - 1 + S(2£ + l) + (n-S~ l)(2n - 2i - 1) + (2n -

= n(2n + 1) + (2£ + I)2 - 2^(2^ + 1)
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= dim Sp(n) X GL(2£ + 1) - dim V ,

it is a P.V. Since gXo gt 3ί(F), by (2) in Proposition 20 in
no relative invariant. In particular, it is not regular.

14, there is

PROPOSITION 18. A triplet (Sp(n) x GL(2m + 1), Aι®Aι, V(2n)0
V(2m + 1)) (n >̂ 2m + 1 ^ 1) is a P.V. and its generic isotropy subgroup
is locally isomorphic to (GL(1) x Sp(m) x Spin — m)) U(2n — 1) where
U(2n — 1) is a unipotent group of dimension (2n — 1). There is no
relative invariant and hence it is not regular.

(16) x Sp(n) X SO(rn), D <g> A,

^ m ^ 3)

By Proposition 13 in §2, this triplet is a P.V. if and only if
(GL(1) x S0(m), • ® i42, 7(1) <g> 7(im(m - 1))) is a P.V. Since J 2 is the
adjoint representation of S0(m), it is a P.V. only when rank S0(m) — 1,
i.e., m = 3, by Proposition 2. Assume that m = 3. We identify F =
F(l) Θ F(2n) ® F(3) with 2 ^ x 3 matrices M(2w,3). Then the action
p = Π(S)A1(S)A1 is given by p(g)X = cAZ^ where ^ = (c, A, JB) e GL(1)
X Sp(?ι) x SOim) and ZeM(2tι,3). Let g be the Lie algebra of GL(1)
X Spin) x SOim) i.e.

8 =
A B

-a 0

A,B,Ce M(n)

The infinitesimal action dp of p is given by ^((ί, A, B)X = t?X + AX +
Z'β for (d, A, B) e g. Put

γi o
Xo = 0 1 0

\0 0

0 e V = M(2n, 3) .
01

Then we have

(5.18) dp(d,A,B)X0
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d 0
0 d

0 0 0
d

a,
(hi

Urn

Cl

C\2

Cm

«Ί2 *

a2

. . .

C\2 ' ' '

c2

. . .

dm

.

an

Cm

Cn

&1

bu

bln

-a,

(Xl2

— <hn

b12

b2

- α 2 i

— a 2

• bn

-<*>n

1 o •
0 1 0

1
0

0
1 0

0
1

0 -b -a
a c 0
b 0 -c

Ίax + d a2ί + a α3

— \an — b a2 + d + c α3

\61 2 — a b2 62 • b2n

H e n c e t h e i s o t r o p y s u b a l g e b r a g>Xo = {(d, A ,

given by
, A , B ) Z 0 — 0} a t Z o is

(0)Θ

0
0
0

0

0
0
0

0

0
— c
0

0

0
0
0

0

0
α3

an3

0
0

c:

•••am

... o
:'' aιn

• • • a n

. . . 0

... o
• Ci?

••• Cn

bι

0

bu

bln

0
0

- ά i »

0
0
0

0

0
c
0

0

bπ • •

0 ••

6a ••

b 3 n • •

0 ••
0 ••

- α 3 ••

-a'zn • •

• b ι n

• 0
• b3n

• bn

• 0

• 0

• - α , 3

— c

Since d i m g X o = 2n2 - 5n + 4 = d i m GL(1) x Sp(ri) X SO(3) - dimikί(-2n, 3),

this triplet is a P.V.
However, its generic isotropy subgroup is not reductive since it is

locally isomorphic to the semi-direct product of Sp(n — 2) x SO(2) with
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a unipotent group U(2n — 3) of dimension (2n — 3).
By Corollary 23 in §4, this P.V. is not regular. Since gXo c sl(V),

there exists a relative invariant fix) by (3) in Proposition 20 in § 4. In
fact, a polynomial fix) = tr iιXJXK)2 is a relative invariant where
Spin) = {Ae GLi2n) | ιAJA = J} and SOim) =-{B e SLim) \ ιBKB = K) since
fiAX'B) = tr iB'X'AJAX'BK)2 = tr iB'XJXKB-1)2 = tr QXJXK)2 = /(Z)
for AeSpW,BeSO(m). Since /(Zo) = 2,/(X) is not identically zero.
Note that tr ιXJXK is identically zero.

Since this P.V. is not regular, the Hessian of /(X) = tr i'XJXK)2

must be identically zero. We can check this directly as follows.
The infinitesimal character δχ of /(Z) is given by δχ(A) = 4d for

A = (d, A,B) e g. By Proposition 10 in §4, Hessian ίί/^) of /(a?) is not
identically zero if and only if grad log / : V — S -> V* is generically
surjective. In view of (1) in Proposition 9 in § 1, the map grad log/
is generically surjective if and only if grad log fiXQ) is a generic point
of the dual P.V. By the inner product <Z, Y> = tr ιXΎ for X,Y e
Mi2n, 3), we may identify this P.V. with its dual. By (2) in Proposition
9 in § 1, we have (dp(d, A, B)X0, grad log /(Zo)> = δχid, A, B) = 4<2 for any
(d, A,J5)eg. This condition completely characterizes grad log/(Zo) since
{dp(d, A, B)X01 (d, A, B) e g} = M(2n, 3).

From (5.18), we have

γo o
(5.19) grad log/(Z o )- 0 2 0 0

\0 0 0 2

Since the rank of this 2n x 3 matrix is 2, it cannot be a generic
point and hence the Hessian of /(Z) is identically zero.

PROPOSITION 19. A triplet (GL(1) x Sp(rc) x SOim), • (g) Λ (x) ̂ , 7(1)
(g) F(2n) (x) F(m)) is noί α P.V. for 2n^m^Δ. A triplet (GL(1) X Sp(n)
X SO(3), D ® Λ ® Λ, 7(1) (x) 7(2%) ® 7(3)) is a P.V. and there exists a
relative invariant of degree 4. However it is not a regular P.V.

(17) (GLCD X Spin), • 0 Λ2, 7(1) ® 7((w - l)(2n + 1))) in ^ 3)

Let 77 - {Z G M(2n) | ιX = -Z} and Io
/(^)Z = sAXM. for ^ = (s, A) 6

GL(1) x Sp(tι). Then

0
-\eV
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and its complement 7 can be identified with V((n — l)(2w + 1)) (see
Example 25 in § 1). Then p = • ® Λ2 is the restriction of p' to 7. Since
ιAJA = J for A e Sp(n), we have (p(g)X)J = sAZΆJ = sAX/A"1 and
hence eigen-values of XJ are invariant under the action of g — (1, A) e
GL(1) x Sp(rc). Therefore if n ^ 3, it cannot be a P.V. Note that the
trace, i.e., the sum of eigen-values, of skew-symmetric matrices is zero.

PROPOSITION 20. A triplet

{GUI) x Sp(n), D ® Λ, 7(1) ® 7((rc - l)(2n + 1)))

is woί α P.V. for n ^ 3.

(18) (GL(1) x Sp(w) x Sp(m), D ® Λx ® Λ1? 7(1) ® 7(2w) ® 7(2m))
(n ^ m ^ 2)

Let 7 be the totality of 2m x 2m skew-symmetric matrices, i.e., 7 =
{XeM(2m)\tX = -Z} . Define the action p - of G = GL(1) x Sp(m) on

7 by /?-(^)Z = tAXιA where Z 6 7 and # =7t, A) e GL(1) X S^(m). Note

that Λ- is not irreducible. By Proposition 13 in §2, our triplet is a

id
if and only if a triplet (G, p—,, 7) is a P.V. As a representation space
of G, 7 decomposes to the direct sum 7 = 7(1) 0 V((m - l)(2m + 1))
where 7(1) is a one-dimensional vector space spanned by

-L 0

and the action of p on V((m — l)(2m + 1)) is equivalent to a triplet
(GL(1) x Sp(m), • ® Λ, 7(1) ® V((m - l)(2m + 1))) (See (17)). The pro-
jection of 7 into V((m — l)(2m + 1)) is clearly surjective and G-equi-
variant. By Proposition 20, a triplet (GL(1) x Sp(m), Π ® Λ2, 7(1) ®
V((m — l)(2m + 1))) is not a P.V. for m ^ 3, by Lemma 5 in § 2. Assume
that a triplet (G, pr-, V) is a P.V. for m = 2 and let Zo = (â , ajg) e 7 —

7(1) Θ 7(5) be its generic point. Then x2 is a generic point of a triplet
(GL(1) x Sp(2), D ® Λ, 7(1) ® 7(5)) s (GL(1) x SO(5), D ® Λ, 7(1) ® 7(5))
and the isotropy subgroup at x2 is isomorphic to SO(4) x {±1} by Pro-
position 23. Since the action of SO(4) x {±1} on xλ is given by x1 «-> ±^ 1 ?

Zo = (χly χ2) can not be generic point. This is a contradiction and hence
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a triplet (G, p—, 7) is not a P.V. for m >̂ 2, i.e., our triplet is not a

P.V.

9 D ® A ® APROPOSITION 21. A ίnpίeί (GL(1) x Sp(n)

7(2m)) O ^ m ^ 2) is not α P. 7.

(19) (GL(1) x , 7(1) <g> 7(14))

First we consider (GL(6),Λ3, 7(20)) (See (7)). If we restrict Λ3 to

the subgroup GL(1) x Sp(S) of GL(6), 7(20) decomposes into a direct

sum 7(20) = 7(6) 0 7(14) since the restriction of weights {λt + λj + λk | 1

< i < j < k < 6} of GL(6) decomposes into {±λt | i = 1,2,3} U {±Λ ± λ2 ± λzy

±λi, ±λ2> ±h). The action p of GL(1) x Sp(S) on 7(14) is • ® ^ 3 . Note

that the same notation A3 is used for GL(6) and Sp(3). Every element

of 7(20) can be written uniquely in the form x = Σ«y < Λ a ? ^ ^ Λuj Λuk

with (ίCίy*) forming an alternating tensor of rank three with coefficients

in C Moreover the element x is contained in 7(14) if and only if xm

+ ooί25 + xiz% = 0 for 1 < i < 6. Let g be the Lie algebra of GL(1) x Sp(3).

(5.20) g = ^ A =

d + a
(hi

(hi

Cι

cn

!
d

α12

+ a2

&Z2

Cl2

Cz

c23

« Ί 3

^23

i + a3

23

c3

d

&12

&13

—— (X/Λ

— (X,, 2

- α 1 3

&12

&2

&23

- t t 2 1

d - a2

' ^ 2 3

& 1 3

&23

&3

" ^ 3 2

d — a3

e βl(6)

+

uQ

We shall calculate the isotropy subalgebra gXo at Z o = ^i Λ u2 A n3

w4Λw5Λ wβ. Since dp(A)X0 = (3d + αx + α2 + dg)^ Λ u2 A u3 + (Sd —

— α2 — a3) u4Au5Au6 + bxuλ Au5Au6 + b2u4 Au2Au6 + b3u4 AuδAu3

cxuA A u2 A u3 + c2uλ A u6 A u3 A c3uλ A u2 A uQ + (c12u3 — b12u6) A (uλ A

— u2 A ub) + (c23ux - bnιQ A (u2 Auδ- ιιz A uQ) + (cnu2 - b13uδ) A (u3 A

— ιιλ A ud> we have

= {A eQ\d = ax + a2 + a3 = 0, (bu) = (cυ) = 0}

0

Since dim gXo = 8 = dim GL(ΐ) x Sp(3) - dim 7(14), it is a regular P.V.

by Proposition 25 in § 4. Similarly, for X'o = uλ A u2 Λ us + u3 A («i Λ
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± — u2 A ttβ), we have dp(A)X'o = {(3d + a3)u3 + c3^6} Λ iux AuA — u2A uδ)

{(α13 + α 3 2 K + c13^4} Λ (u2 A uδ - u3 A u6) - {ia23 + a3ί)u2 + c23u5} A (u3 A

— ux A u4) + (c2u6 — 2al2u3) A ux A u5 — icλu6 + 2a21u3) Au2Au4 — 2c12u3 A

± A u5 + (b3 + 2b12)u1 A u2 A u3 + (3c£ + aλ + a2 — a3)ux A u2 A u6 and hence

, = {A e g | dp(A)X'o = 0} is given by

(5.21)
2d +

0

^23

a 0
— 2d - a

_ α - 2 d -26 1

— a
0

0
Ad + a

^23

^23

aί3

U

Θ Θ u(5)

where u(5) is the Lie algebra of a 5-dimensional vector group. Since

dim {dp{A)XfQ \ A e g} = 13, the orbit of X'Q is of codimension 1. For

A e &yδ, the trace trF A in V — F(14) is 14 x 3d = 42d and the trace

tradgx,A of the adjoint representation is — 30d, and hence we have

d e g y = trF A + tr ad A
trF A

dimF =
42d -

42<Z
X 14 = 4

by Proposition 15 in § 4, where /(#) is an irreducible relative invariant

polynomial. This shows that the restriction of the relative invariant of

degree 4 of (GL(6), Λ3, F(20)) is still irreducible, and it is the relative

invariant of (GLQ.) X Sp(β), D ® ΛZ9 V(l) ® 7(14)).

Put

V"

^ 4 2 3

^ 5 2 3

^ 6 2 3

^ 1 4 3

^ 1 5 3

^ 1 6 3

^ 1 2 4

^ 1 2 5

^ 1 2 6

and Y =
^ 4

Since α?ίl4 + xi2δ + xί3<s = 0, X and Y are symmetric matrices. We denote

by Xij the matrix obtained from X by crossing out its i-th line and /-th

column. Put x0 = x123 and /̂0 = ^456- Then the relative invariant fix)

for # = 2 χijkui Λ Wj Λ % e 7(14) is given by fix) = (a?o2/o — tr XY)2 +

4^0 det Γ + 4i/0 det Z - 4 2]ίf,/ det (Z^) det (Y^) (See (7)). This space was

investigated in detail by J. Igusa (See [2]).

PROPOSITION 22. A triplet (GL(1) x Sp(3), • ® Λ3, 7(1) ® 7(14)) is a

regular P.V. and its generic isotropy subgroup is locally ίsomorphic to
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SL(3). The relative invariant is of degree 4.

(20) (SO(ri) x GL(m), A1 <g> A19 V(n) <g> Vim)) (w ̂  3, — ̂  m ^

The special orthogonal group SOin) is defined by

SO(n) = {ge SL(n) \ 'gKg = K)

for some symmetric n x n non-singular matrix K. Since we consider
them over the algebraically closed field C, we may assume that K = In,
i.e., the identity matrix of size n. We identify V = V(n)0V(m) with
w x m matrices M(n,m). Then the action p ~ Λγ® Aλ is given by />(#)X
= gιX

tg2 for ^ = (g19 g2) e SO(n) x GL(m). We shall calculate the isotropy
subgroup GXo at Zo =

 ι(ImO) eM(n,m). An element of SO(n) can be
written as follows.

(5.22) A = f̂ 1 ^ 2 ) where Ax e M(m), A29

 ύA3 e M(m, n - m ) ,
\A3 A4/

A,eM(n - m), and JAA = l n , det A = 1. Then for g = (A,β)
X GL(m), we have

and hence the isotropy subsroup GXt is given by GXo = {(A, B) e SO(n) x
GL(m)\A1

tB = ln,AJB = 0}. The equation Aλ

ιB = /„, A3

4J? = 0 implies

that A3 = (Aj'β)^" 1 - 0 and B = «Ar1. Since ("J1 ^Λ is in SO(n) if

and only if det Ax det A4 = 1, tAιAι = Im9

 tAlA2^=Q (i.e. A2 = 0) and
Ά4A4 = In_m, we have

\e O(ra), A 4e O(n — m),det Ax.det A4 = 1
0

^ S0(m) x SO(^ — m) x {±1} .

Since dim GXo = |w(m + 1) + \{n — m)(w — w + 1) = \n{n + 1) + m2

- » « = dimSOOi) x GL(m) — dim V, it is a regular P.V. by Proposition
25 in § 4. The relative invariant f(X) is given by f(X) = det CZX).
In general, f(X) = det^XKX) if SO(ri) is given by {£r e SL(ri) \ ιgKg = K}
since f(AX'B) = det (B^AKAX'B) = det (B'XKX'B) = (det By f(X) for
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(A,B)eSO(ri) x GL(m). Any rational character χ of SO(n) x GL(m) is

of the form χ(g) = (detBy for some £eZ where # = (A,B) eSO(n) x

GL(m). Since χ|Gχo = 1 if and only if £ is even, any relative invariant

is of the form c-f(X)r (reZ,ceCx) by Proposition 19 in §4 and hence

f(X) = det eXKX) is irreducible.

PROPOSITION 23. A triplet (SO(n) x GL(m), A1 ® Λ, V(ri) ® 7(m))

n ^ 3, — ^ m >̂ 1, is α regular P.V. and its generic isotropy subgroup
Li

is ίsomorphίc to S0(m) x SO(n — m) x {±1}. The relative invariant is

of degree 2m.

Note that Proposition 23 holds even if n ;> m > ~ although in this
Δ

case, it is not reduced.

(21) (GL(1) x SO(ri) X Sp(m), D ® Λ ® Λ, V(l) ® F(n) ® 7(2m))

(n>2m^ 4)

By Proposition 14 in §2, it is a P.V. if and only if a triplet

(GL(1) x Sp(m)9 • ® 24L, F(l) ® 7(m(2m + 1))) is a P.V. Since 2 4 is the

adjoint representation of Sp{m) and rank Sp(m) ^ 2 (m ̂  2), it is not a

P.V. by Proposition 2.

PROPOSITION 24. A triplet (GL(1) x SO(τι) x Sp(ra), • ® 4 ® Aιy 7(1)

7(2ra)) is ^oί α P. 7.

A short outline of the theory of the spin representation necessary

for the following exposition will be presented below.

Let 7 be a vector space over the complex number field C of even

dimension n = 2m. Let Q be a non-degenerate quadratic form on 7,

and let B{x,y) be the associated bilinear form, i.e., B(x,y) = Q(x + y)

-Q(x)-Q(y) for x,yeV.

Then there exists a basis {e19 , em9fl9 ,/m} of 7 satisfying

J?(e<, e,) = B(fiffj) = 0, B(ei9fj) = <^ and we have

Σ *iβi + Σ 2/i/i) = Σ <<W«

for any x^yiβC. Let Bo be the bilinear form on 7 x 7 defined by

(5.24) Bo (Σ Xiβi + Σ Vtfi, Σ <et + Σ »ί/i) = Σ <Vi .
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Note that B0(x, x) = Q(x) for x e 7.
k

Let T(V) = ]Γ£β0 V (§Γ"^§) 7 be the tensor algebra over 7, and let

/Q be the two-sided ideal of T(V) generated by the subset {x <g) x — Q(x)

l|a? 6 7}. Then the quotient algebra C(Q) = T(V)/IQ is called the Clifford

algebra. Put T+(7) = Σΐ=o 7(§Γ^(8) y and let p : T(7) -> C(Q) be the

canonical map from T(V) onto C(Q). The image φ(T+(V)) of Γ+(F) is

called the even Clifford algebra and denoted by C+(Q). It is known that

C(Q)^M(2m,C) and C+(Q) = M(2m-1,C)ΘM(2m-1,C). The orthogonal

group O(Q, 7)w, r, t, Q and the special orthogonal group SO(Q, V)w, r, t, Q

are defined as follows.

O(Q, V) = {ge GL(V) \ Q(gx) = Q(a?) for any xeV}

SO(Q, V) = O(Q, 7) ΓΊ SL(7)

We shall also define the Clifford group Γ(Q) and the even Clifford

group Γ+(Q) as follows.

Γ(Q) = {s e C(Q) 13s-1, sVs^ c 7}

Γ+(Q) Γ(Q) Π C+(Q)

Let χ be the representation of Γ(Q) on 7 defined by χ(s)v = svs'1 for

s e Γ(Q) and α e 7. Since Q(χ(s)ι;) = (s^s"1)2 = sv's'1 = sQ^s" 1 = Q(v),

we have χ(s) 6 O(Q, 7). This χ is called the vector representation of Γ(Q).

Let α be the anti-automorphism of Γ(7) defined by a(vι ® ® vΛ)

= Â; ® ® vi- As <̂ (/ρ) c /ρ, a induces the anti-automorphism on C(Q),

which is also denoted by a. Note that a fixes an element of 7 and

hence svs'1 = aisvs'1) = a{s)~ιa{v)a{s) = α^-^αCs) for s e Γ(Q), ^ e 7.

This implies that a(s)sv — va(s)s and hence a(s)s is an element of the

center C of C(Q). Since s is invertible, we have a(s)seC*. We shall

define the spin group Spin(Q) as Spin(Q) = {seΓ+(Q)\a(s)s = 1}. It is

connected, simply connected and semisimple. Moreover if nΦ&, then

it is simple. It is well-known that the following exact sequence (5.27)

holds.

(5.27) 1 > {± 1} • Spin(Q) - £ * SO(Q, 7) • 1 (exact) .

Now we shall construct the half-spin representation of the spin group

Spίn(Q). Let Λ(V) = Σ*=oΛk(V) be the exterior algebra of 7. For each

xeV, let p(x) be an element of Endc(Λ(7)) defined by p(x)λ = (Lx +
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δx)λ(λ e Λ(V)) where Lxλ = x A λ and

k

Sx(v! A Λ vte) = Σι i — iy^Boix, vi)vί A Λ v<_i Λ vi+1 Λ Λ ^ .

One can easily check that pθ&)2 = Q(#) l, and hence the representation

of V on A(V) can be extended to that of the Clifford algebra C(Q) on

A(Y). Put / = A A Λ / m and M = Λ(F) Λ/. Then one can check

that M is a ^-invariant subspace of A(V).

Let £7 be the subspace of V generated by {e19 , βm}. Then the

map p : A(E) —> M defined by y>(/ι) = / ίΛ/ for ^ e yl(JS7), is clearly a linear

isomorphism. We identify Λ(E) with M by this map, and hence we

obtain the representation p of C(Q) on A(E). The subspaces yl+(£7) =

Σk: even Ak(E) sniά A~(E) = 2]fc: odd ̂ (£7) of ^(£7) are the irreducible repre-

sentation spaces with respect to the restriction of p to the spin group

Spin (Q). This representation of Spin (Q) on A+(E) (resp. Λ~{E)) is called

the even (resp. odd) half-spin representation.

These two half-spin representations are inequivalent, however, they

are transformed to each other by the outer automorphism of Spin(Q).

Therefore we shall consider only the even half-spin representation of

Spin (Q).

Now we shall calculate the infinitesimal representation dp of the

half-spin representation.

Let EtJ be the matrix unit of degree m (1 < i, j < m) and put E'iS
= Eυ — Eji. Then an element A of the Lie algebra g = o(2m, C) of the

spin group Spin (Q) can be written as follows (See § 1).

(5.28)

By the definition the product in C(Q) is given by eji + /^e^ = 1, e\ = /J

= 0, e ^ = —/^βί, ê ê  = — e ^ and Λ/^ = —fjft (j Φ i,i,j = 1, ,m).

We shall consider an element s = 1 + ίe^/j (teC, iφ f) of C(Q). Then

αr(s) = 1 + t/yβi and hence a(s)s = 1 i.e. s"1 = α(s). Since χ(s)efc = seks~ι

= (1 + teifj)ek(l + tfjβi), we have χ(s)ek = e* for any fc ^ j and χ ^ e ^

= βj + tet. Also we have χ(s)fk = /fc for any fc ^ i and χ(s)/i = ft — tfd.

This implies that s = 1 + ίe*/, e Spίn(Q) and
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χ(l + tejj) = exp t(E*> ° ) 6 SO(Q, V)
\ u —hj j^/

Similarly we have the following relations.

(E1) χ(l + tejj) = exp t(E" ° ) e SO(Q, V) (i Φ j).
\ 0 — bjjj

2) χ(l + tete}) = exp t(J Efy e SO(Q, V) (i < j).

3) χ(l + tftf,) = exp t(_J J) e SO(Q, V) (i < j).

1

4) χ(V t ejk

V

t

eSO(Q,V).

lJ

Since χ is an isomorphism in a neighborhood of the identity, we have

= lim
ί-*0

1(^(1 + p(l))λ = p{.edpif,)λ = etδfjλ

for iΦj,λe Λ+(E) .

Similarly we have

10 dp(E« °_ )λ =
\ υ —tίji/

20 (J

3 0

40

υ

and hence for an element A in (5.28) of §o(2m), we have the following

(5.29).
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(5.29) dp(A)λ = +iφj Σ

Next we shall consider the case when the dimension n of F is odd, i.e.,

n = 2m + 1. Let Q be a nondegenerate quadratic form on F , and let

B(x,y) be the associated bilinear form. Let F o denote the subspace of

V generated by el9 > ,em,f19 ,/TO satisfying B(ei9 e3) = B(fi9f3) = 0

and B(eίffj) — 3 i y . Then the subspace of V orthogonal to F o is of the

form CvQ for some v0 in F satisfying Q(vQ) Φ 0. We may assume t h a t

Q(v0) = 1. Now consider a vector space Vx of dimension w + 1 and re-

present it as V1 = F + C^χ. Let Qx be the quadratic form on Vx defined

by QX{V + λvx) = Q(v) - ^2 for v e V, λe C, and let Bλ(x, y) be the as-

sociated bilinear form of Q lβ Then, if we put β m + 1 ~ | (v 0 + vλ) and

/m+i = K^o - Vi)> we have B ^ ^ , eό) = B^f^fj) = 0 and B^e^fj) = δ ί y for

1 < i , i < m + 1. Let SpinCQi) be the spin group of ( F x , QJ, and let χx

be its vector representation. Then the spin group Spin(Q) is defined by

Spin(Q) = {seSpin(Q1)\χ1(s)vι = Vi}. By restricting the half-spin repre-
sentation of Spίn(Qx) to Spίn(Q), we obtain the spin representation of
Svίn(Q) (See [2], [3]).

In the following, we denote the spin group by Spίn(n) instead of
Spin(Q), and denote the element eix A Λ eik of Λ+(E) by eix eίjb.

(22) (SpinCI) x GL(d), spm rep. ® A, "̂ (8) ® F(d)) (1 < d < 4)

First of all, we shall calculate the half-spin representation dpγ of
o(8, CX=JD 4). The representation space F(8) is spanned by 1, e^jye^e^e^
(1 < i < j < 4). We may assume that an element A of o(8, C) is of the
form (5.28). Then by (5.29) we can calculate dpx. For example
dρι(A)eιe2 = Σ

— c1

(5.30)

Hence

ί A
&12

& 1 .

bu

0
— δ 3 4

ί>24

N ^ 2 3

we have

- 0 1 2

A2

^32

α42

&34

0

- ^ 4 1

^31

— 013

^23

A3

^43

~bu

a41

0

^21

" 0 ! 4

^24

^34

A4

&23

— α 3 1

^21

0

0

— 034

024

- 0 2 3

- A i

012

013

014

034

0
au

- ^ 1 3

- 6 l 2

— A 2

- α 2 3

- ^ 2 4

- 0 2 4

— α u

0

&12

- δ i s

^32

- A ,

^34

023

- ^ 1 2

0

— α 4 2

— ^43

/14
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where x = xλ + x2eλe2 + xzeλez + flj4e1e4 + x

A __ (Xx + a2 + az + α 4 Δ

115

+ x
7
e
2
e
4
 — x

8
e
2
e
zr

a
2
 — a

z
 —

aλ — a2 + az — _ &! — a2 — a3

Since dpλ(A) in (5.30) is the same form as in (5.28), dpλ(A) e 0(8, C) and

it leaves the quadratic form q(x) = xλxb + x2x6 + xzx7 + x4x8 invariant

(See Example 28 in § 1).

Put v, = '(0001000 - 1 ) e C8. Then the Lie algebra o(7, C) of Spίn(7)

is given by o(7, C) — {A e 0(8, C) | A ^ = 0} and hence an element A of

0(8, C) of the form (5.28) is in o(7, C) if and only if

Λ Λ* ___ t (ri _ ^ T\ n _ _ T\ fί _ _ 1Λ a o 1 /γ /> 1 /γ Λ 1 /γ n \̂ — Λ
Jrx. t/j — \ ^ Ί 4 ~~" ^ 1 4 ? ^ 2 4 ~~~^ ^ 2 4 ) ^ 3 4 ""^ ^ 3 4 > 4> 14 ~T~ ^ 4 1 ? ^ 2 4 ~T~ ^ 4 2 ) ^ 3 4 ~ι ^ 4 3 ) ^ 4 / "~~~ "

Thus the spin representation dpx of o(7,C) is given as follows.

(5.31)

6»
bn

bu

0

- & 3 4

&24

— &23

A^

^32

C 2 4

&34

0

Cl4

- c 1 3

^23

A$
C 34

— &24

- c 1 4

0

—^21

- c 1 4

δ24

bu

K
K

- ^ 3 1

0

0
^34

C 24

- C 2 3

-Aί
^12

CM

C34

0

bu
— «13

- & »

-AJ
— «23

- & 2 4

^24

- 6 u
0

^32

~&34

C 2 3

^13

^12

0

^24

^34

—A'

#4

^ R

where x = xt + x2eλe2 + ^3eie3 + ^4βie4 + x5

α2 + az
a2 — a3

t β 4 #/gβ 3 β 4 -f- ^7^264.

λ / __ d j — (X2 + Q/3
3 2

and

A4

I) The case of d = l.

Put Xo = 1 + e!β2e3e4 = '(10001000) e 7(8). We shall calculate the iso-

isotropy subalgebra QXQ of g = gl(l) Θ o(7, C) at Xo. Since

dPl(A)Xo = \d - α i + °£ + α 3 , 612 - c34, 613 + c24, bu - c23,

(X -|~ ^Γ y Cχ2 ^34> CχZ + O 2 4 > C 1 4 ^ 2 3 )

for (d, A) e g, the isotropy subalgebra gXo at Xo is given as follows.
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(5.32) ax

021

»31

^23

0

~&34

&24

- δ 2 3

012

0 2

032

6l3

&34

0

K
&13

013

023

0 3

- & 1 2

— &24

bu

0

— &12

bu

ί>24

&34

0

&23

- & 1 3

bn

0

0

^12

- & 1 3

~ & H

- 0 1

— 012

— 013

- & 1 4

bl2

0

- & 2 3

— ^24

021

-a2

— 023

— &24

&1S

&23

0

- & 3 4

031

— 032

- 0 3

- Z > 3 4

6l4

&24

^34

0

&23

- & 1 3

&12

0

+ o2 + α3 = 0

Since dim g ίo = 14 = dim GL(1) X Spin (7) - dim 7(8), it is a P.V.
Let S be the element of GL(8) denned by

(5.33)

Then we have

0

0

1

0

0

0

0

—h

-i
1

0

0

o

0

1

0

- 1

0

*

0

i

h
0

0

0

0

0

-h
0

- — - e G L ( 8 )

0

0

0

0

0

0

bu

bu

bM

— b2Z

bn

— bl2

- 2 & 2 3

0 1

021

031

0

&34

— 5 2 4

0

2 δ 1 3

012

a2

032

~&34

0

ί>14

- 2 δ 1 2

013

023

0 3

&24

-bu

0

2 δ 1 4

0

bl2

bιz

- 0 i

- 0 1 2

- 0 1 3

0

2 δ 2 4

-bu
0

&23

021

-a2

— 023

2 δ 3 4

- b 1 3

- & 2 3

0

— 031

032

- 0 3 1

(5.34)

with aι + a2 + α3 = 0 .

By (1.8) in Example 30 in § 1, this is an element of (g2) i.e. gXo ^ (g2),
and hence it is a regular P.V. by Proposition 25 in §4. The relative
invariant is the quadratic form q(x). J. Igusa completed the orbital
decomposition of this triplet (See [2]).

PROPOSITION 25. A triplet (GL(1) x Spin (7), • ®spin rep., 7(1)®
V(S)) is a regular P.V. and its generic isotropy subgroup is locally ίso-
morphic to (G2). The relative invariant is a quadratic form.

II) The case of d = 2.

We identify 7 = 7(8) <g> 7(2) with 8 x 2 matrices M(8,2).

/10000000\ v

100001000/e v'

P u t Xo

the isotropy subalgebra gXo of

https://doi.org/10.1017/S0027763000017633 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000017633


PREHOMOGENEOUS VECTOR SPACES

g = 0(7, C) Θ gl(2) at Xo. From (5.31), we have

&12 &•

117

dPl(A)X0 + XJD = 12 °Ί3 °Ί4

d12

d22 + a2 + α3

^ 3 4

ί e 7 ,

where A e o(7, C) and D = (d^ ) e g[(2). Hence the isotropy subalgebra

gXo is given by

(5.35)

2α/3 + Ao

0

0

0
0

—2α/3 - Ά o

0

0

0

θ
0 - ί

θ o(2) .

Since dim gXo = 9 = dim Spin (14) x GL(2) - dim 7(8) <g) 7(2), it is a

regular P. V. by Proposition 25 in § 4. Since Spin (7) =—> SO(8) by the

spin representation, there exists an irreducible relative invariant of

degree 4 by Proposition 23.

PROPOSITION 26. A triplet (Spin (7) x GL(2), spm rep. ® Λlf 7(8) ®

7(2)) is a regular P. 7. and iίs generic isotropy subgroup is locally ίso-

morphίc to SL(S) x 0(2). The relative invariant is of degree 4.

Ill) The case of d = 3.

We identify 7 = 7(8) (g) 7(3) with 8 x 3 matrices M(8,3), and put

710000000\
Z o = 00001000 e 7 . Then from (5.31), we have

\01000100/

dPι(A)X0 + XJD

7 A; +

(5.36) \ c34 - c12 + d31 A'2 +

l T" a22

δ 3 4 — 612 + ί

Hence the isotropy subalgebra g.

^ 3 3 - ^ - 2 C14

|e7 .

= {(A,D) \ dp1(A)X0 + Xo

ιD = 0} of
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g = o(7, C) Θ βl(3) at Xo is given as follows.

(5.37) / aι

<hi

0

0

- c 1 2

I °

a!

0

a3

0

0

0

0

0

0
— &12

0

0

0

— α 2

0

- o ,

0

0

— &12

0

0

®
α3

0
2 c 1 2

0

-a3

2b12

^12

0

^ 31(2) Θ o(3) . with ax + α2 = α3

Since dim gXo == 6 = dim Spin (7) x GL(3) - dim 7(8) (x) 7(3), it is a regular

P.V. by Proposition 25 in § 4. Since Spin (7) <=—> SO(8) by the spin

representation, there exists an irreducible relative invariant polynomial

of degree 6 by Proposition 23.

PROPOSITION 27. A triplet (Spin (7) x GL(3), spin rep. ® Alf 7(8) (g)

7(3)) is a regular P.V. and its generic isotropy subgroup is locally iso-

morphic to SL(2) x 0(3). The relative invariant is of degree 6.

IV) The case of d = 4.

Assume that this triplet is a P.V. and let if be a generic isotropy

subgroup. Then we have dim H = dim Spin (7) x GL(4) — dim 7(8) (x)

7(4) = 5. Since Spin (7) c=—> S0(8) by the spin representation, we may

consider that this P.V. is contained in a regular P.V. (S0(8) x GL(4),

Ax ® Aιy 7(8) (x) 7(4)) and hence by Proposition 23 we have H = Spin (7)

X GL(4) Π S0(4) x S0(4) x {±1} 3 S0(4) (See (20) in§ 5). This implies

that dimίf ;> dimSΌ(4) = 6, i.e., a contradiction, and hence we obtain

the following proposition.

PROPOSITION 28.

7(4)) is not a P.V.

A triplet (Spin (7) X GL(4), spin rep. (g) Alf 7(8) <g)

(23) (Spin (7) x GL(2), spin rep. ® a4,, 7(8) ® 7(3)) .

Assume that this triplet is a P.V., and let H be its generic isotropy

subgroup. Then we have dim H = dim Spin (7) x GL(2) — dim 7(8) (g)

7(3) = 1. Since (SL(2), 2Al9 7(3)) ^ (SO(3), Λ, 7(3)), we may consider

that this triplet is contained in (Spin (7) x GL(3), spin rep. (g) A19 7(8) (g)

7(3)) and hence by Proposition 27, HQ = SL(2) X 0(3) Π Spin (7) x SO(3)
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D SO(3) where H° denotes the connected component of H. This implies

that d imi ϊ >̂ dimS0(3) = 3 i.e. a contradiction, and hence we obtain the

following proposition.

PROPOSITION 29. A triplet (Spin (7) x GL(2), spin rep. (g) 2Λί9 7(8)

(8)7(3)) is no£ α P. 7.

(24) (GL(1) x Spin (7) x Sp (2), Π <8> spin rep. <8> Λ, 7(1) <8> 7(8) (g) 7(4))

We may consider that this triplet is contained in a triplet (Spin (7)

X GL(4), spin rep. ® Λx, 7(8) ® 7(4)) which is not a P.V. by Proposition

28, and hence it is not a P.V.

PROPOSITION 30. A triplet (GL(1) x Spin (7) x Sp (2), • (x) spm rep.

(x) 4 , 7(1) (8) 7(8) (x) 7(4)) is noί a P.V.

(25) (Spin (10) x GL(d), half-spin rep. ® Λ19 7(16) <8> 7(d)) (1 < d < 3)

First of all, we shall calculate the half-spin representation dpx of

o(10, C) by (5.29). The representation space 7(16) is spanned by 1,

eieύ (1 < i < j < 5), eφfi^ (1 < i < j < k < ί < 5). We may assume

that an element A in o(10,0 is of the form (5.28). Then by (5.29) we

have

1) dPι{A)Λ = _ ^i + ̂  + α3 + α4 + α5 + Σ b

2 i<j

2) dPl(A)ekei = Σ oufiifi ~ Σ W^ + aic + a£ee Σ

+ Σ bije^je^ - cke (k

Σ o ufiifi* ~ Σ W^ + ekee Σ
iΦk iΦC 2 sφJc,£ 2

ό) CtpiyA-je^e^e^n = &skβs&e@m&n ^se^s^k^m^n "Γ ^sm

~r — ^k^e^m^n ^kί^"m^"n i

Li

— cimeken + cineteem — cmneke£ where 1 < k < £ <m < n < 5 and

{s, k, £, m, n} = {1, , 5} .

Hence we have

dpι(A)x =

where αx, ,αr4 are given as follows.
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a* =

(5.38)

a, =

OLL =

A2

&12

&13

bu

blδ

b2Z

bu

&25

- 0 3 4

— 014

013

- 0 2 4

023

bu
δ35

&45

A9

054

- 0 5 3

δl2

6i.

&25

— 012

A2

032

042

052

— 031

- 0 4 1

- 0 5 1

- 0 3 5

- 0 1 5

013

025

023

634

b3δ

δ45

045

A10

043

6l2

- & 1 4

— b 2 i

— 013

023

A3

043

053

021

- 0 4 5

- 0 1 5

014

025

024

— 041

- 0 5 1

~&24

- b 2 5

- 0 3 5

034

An

612

613

^23

— 014

024

034

A4

054

021

- 0 3 4

024

- 0 2 3

- 0 1 4

013

031

— 051

^23

- & 2 5

- 0 1 2

A12

054

— 053

052

— 051

- 0 1 5

025

035

045

A5

021

- 0 3 5

025

- 0 2 3

- 0 1 5

013

031

041

^23

&24

012

045

A13

043

- 0 4 2

041

023

— 013

012

A6

043

053

- 0 4 5

025

024

- 0 1 5

014

— 042

— 052

bu

K

&45

012

035

034

A14

032

— 031

024

- 0 1 4

012

034

A7

054

- 0 4 5

035

- 0 3 4

032

— 052

- δ i s

- b 3 5

015

014

- 0 1 3

025

— 024

023

A15

021

025

- 0 1 5

012

035

045

A8

- 0 4 5

035

- 0 3 4

032

042

— 6 1 3

-bu

bu

- 0 2 5

024

023

015

014

— 013

012

A16

where

O A (H (Ί (Ί (Ί (Ί

tujn.-^ — u>ι u/2 u/3 tt/4 u/5

2A 3 = aλ — a2 + a3 — α 4 — aδ ,

2A 5 = ax — a2 — a3 — α 4 + ab ,
LiJ\.f == —(X>ι ~j~ QJ2 — QJ3 ~~\~ tt4 — Ctδ

ώiΓXg — U/ι U>2 ~Γ ^ 3 ~Γ ^ 4 " ' δ

a6 ,

a5 ,

2A 2 = a, + a2 - α3 - a,

2A 4 = aλ — a2 — az + a4

2 A 6 = — α L + a2 + α 3 — α 4 —

2 A 8 = — αx + α 2 - α 3 - α 4 +

2A 1 0 = —dj — α 2 + α 3 — α 4 +
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2A Π = — ax — a2 — a3 + a4 + a5 , 2A1 2 = aλ + a2 + a3 + a4 — aδ ,

2A1 3 = ax + a2 + a3 — a4 + a5 , 2A 1 4 = ax + a2 — a3 + a4 + aδ ,

2A1 5 = aλ — a2 + a3 + a4 + a5 , 2A1 6 = —ax + a2 + a3 + a4 + a5 ,

a n d

I " ^ 1 4 ^ 1 ^ I I

We identify F(16) with C16 by an isomorphisms , # lβ) e C16.

I) The case of d = 1.

P u t Z o = 1 + βi02e3β4 = '(10 • 010000) e 7(16). We shall calculate

the isotropy subalgebra gXo of g = g[(l) Θ o(10, C) a t Xo. F r o m (5.38),

we have aX0 + dpι(A)X() = ι(a + A19 612 - c34, 613 + c24, bu - c23, 61B, &23 - c14,

δ2 4 + <?i3> δ2 5, δ3 4 — c12, δ35, δ45, α + A12, α54, — α63, α52, — α61) e 7(16) where (α, A)

e gϊ(l) Θ o(10). Hence the isotropy subalgebra gXo = {(a, A) | aX0 + dpι{A)XQ

= 0} is given as follows.

(5.39)
- ί(α) θ

aγ al2

α 2 1 α 2

a3l a32

a4l α 4 2

0 0

0 ft
-ft o

ft -oc3

- f t <*2

^ 1 5 ^ 2 5

^13

^23

a3

0^43

0

-ft
<*3

0
— «!

- ^ 3 5

14 15

Cl'24 "^25

α-34 a35

a4 a4δ

0 2α

ft c l β

— α 2 c 2 5

Oil C3δ

0 c 4 5

- c 4 5 0

0
-OCi

—oc2

— OL3

0

-<h
— α 1 2

— α 1 3

— α 1 6

0

— ft
— ft

0

— α 2

^23

— ^24

- ^ 2 5

oc2

ft
0

-ft
0

^32

- α 3

— ^34

- α 3 5

^ 3

^ 2

ft
0
0

— α 4 1

— α 4 2

- α 4 3

- α 4

- α 4 5

0
0

0
0
0

0
0
0
0

- 2 α

I a, + a2 + α3 + α4 = 0}

Since dim gXo = 30 = dim (GL(1) x Spin (10)) - dim 7(16), this triplet

is a P.V. Since gXo ςzί §1(7), there is no relative invariant by Proposition

20 in §4. From (5.39) we have gXo ^ (gt(l) θ o(7)) 0 7(8) where 7(8) is

the Lie algebra of the vector group of dimension eight. This space was

investigated by J. Igusa (See [2]).

PROPOSITION 31. A triplet (GL(ΐ) x Spin (10), Π ® half-spin rep.,

7(1) (x) 7(16)) is a P.V. and its generic isotropy subgroup is locally iso-

morphic to (GL(ΐ) x Spin(7)) (Ga)
8. There is no relative invariant and
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hence it is not regular.

II) The case of d = 2.

We identify V = 7(16) <g> V(2) with 16 x 2 matrices M(16,2). Then

the action dp of g = o(10) Θ gί(2) is given by dp(A,D)X = dp1(A)X + XιD

for XeV, (A,D)βQ. Put

Xo =

Then from (5.38), we have

eAe^ = ί
10 010000\
000010 01/

dP(A,D)X0 =
7*1 + Λ

β\2 C 15

&12 — (

^ 2 5

6lS

^ 3 5

I ^ 1 2

& u - 4l

^ 2 2

^ 4 5

^ 2 3

11 I " 1 2 ^ 5 4

L — α1 R boo Λ- α 1 4 δ 2 4 — α 1 3 6 ; ^ 2 2

and hence the isotropy subalgebra qXo = {(A, D)\ dρ(A, D)X0 = 0} is given

as follows.

(5.40)

0
<hι

<hi

α41

0

^12

«13

α14

— d12

Viz

a2

^32

^42

0

— ^12

0
— α 4 1

^31

0

^13

α3

^43

0

- α 1 3

α41

0

— ^21

0

«14

^34

α4

0

H 1 4

- « 3 1

«21

0
0

d12

0
0
0

2du

dn

0
0
0
0

0

tt31

tt41

d21

0

— ^12

- α 1 3

- α 1 4

~d12

0
α14

— «Ί3

0

^21

- α 2

- ^ 2 3

— ^24

0

α3i

-au

0

«12

0

—a3

- ^ 3 4

0

α41

tt12

0
0

— α 4 1

— α 4 2

- ^ 4 3

- α 4

0

~d2l

0
0
0
0

— d2l

0
0
0

with α2 + α3 + a4 = 0 .Θ

Since dim qZo = 17 = dim Spiw (10) x GL(2) - dim F(16) ® 7(2), it is a

P.V. Let A be the 10 x 10 matrix in (5.40) and put S in GL(10) as

follows.
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(5.41) S"1 =
- 1

h

1

i
1

u

1

1

1

1

1 i

—

Is]

where 73 is the identity matrix of size three. Then by simple calculation,

we have

(5.42)

S-'AS =

2dn 0 2d2i

an — d2λ 0

0

0

0

— ^21

— ^31

— α 4 1

- α 1 2

- α 1 3

^ 1 4

- 2 α 1 2

α 2

^ 3 2

α 4 2

0

- 2 α 1 3

α 2 3

α 3

»43

α 4 1

0

- α 2 1

- 2 α 1 4

^ 3 4

α 4

^ 2 1

0

- 2 α 2 1

0

au

— ^13

— α 2

— ^23

— ^24

- 2 α 3 1

— α 1 4

0

^32

— ^34

- 2 α 4 1

~ t t 1 2

0

^ 4 2

^ 4 3

~ α 4

with a2 + α3 + α4 = 0.

Therefore we have gXo ^ (g2)Θ^I(2) (See (1.8) in §1), and hence this

triplet is regular by Proposition 25 in §4. Put

X'
o
 = (l +

 ei
e
2
e
3
e
49
 e

λ
e

2
 + e

2
β

3
β

4
β

5
) -

Then from (5.38), we have

dPl(A)X'o + X'JD = i^1 + dn

T"

^ 2 3 ^ 1 4

12 + α n

+

^13 "Γ C 2 4

α 3 2

^25

e 7 .

61.

( X 2 2

and hence the isotropy subalgebra gX/ at ZQ is given as follows.

https://doi.org/10.1017/S0027763000017633 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000017633


124 MIKIO SATO AND TATSUO KIMURA

(5.43)

(III -J- #22

<hi

C35

- C 3 4

0

^12

C13

0
UUJ22

0
0
0

^12

0
0
0
0

0
α23

α3

»43

0

^ 1 3

0
0

- C 3 4

- C 3 5

0
^24

^34

α4

0

0

C34

0

- c 4 5

2 c 1 2

^25

^35

α45

2dπ

0

c3δ

C45

0

0
- 2 c 3 4

0
0
0

$11 $22

0
0
0

- 2 c 1 2

2 c 3 4

0

^13

0

2 d 2 2

~ ^ 2 3

— ^24

- ^ 2 5

0

0

^12

0

C45

0
— a 2

- ^ 3 4

^35

0
^13

^12

0
0

- C 3 5

0

- « 4 5

0
0
0
0
0

Cu

0
0
0

-2dn

Θ with α3 + α4 = d22 — dn

Since dim g — dim gxό = 49 — 18 = 31, the orbit of X'o is of codimen-
sion one. For (A,D) eQX'o, the trace trF(A,D) in V is 16(dn + d22) and
the trace tradgx,A of the adjoint representation is by simple calculation
— 14(dπ + d22) and hence

d e g f =

d22) -

16(dn
χ

by Proposition 15 in §4. The explicit form of this irreducible relative
invariant f(x) of degree 4 is given by Kawahara (See [13]).

PROPOSITION 32. A triplet (Spin (10) x GL(2), half-spin rep. ®Λλ,
7(16) (x) 7(2)) is α regular P.V. and its generic isotropy subgroup is
locally isomorphίc to (G2) x SL(2). The relative invariant is a quartic
form.

Ill) The case of d = 3.
We identify 7 = 7(16) ® 7(3) with 16 x 3 matrices M(16,3). Then the

action dp of g = o(10)Θgί(3) is given by ^(A,D)Z = dPι(A)X + XιD for
(A,D)eg, ZeM(16,3).

Put

JΛL.Q — \^x —p" e^e2e^e^y e-^e^ ~\~ e ̂ e^e^e^j e^e2 ~\~ e-^e^e^e^)

γio oioooo\
= 000010 01 e M(16,3) .

loio 010/

We shall calculate the isotropy subalgebra gXo at Xo. By (5.38) we have
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dp(A,D)Xo = dPl(A)Xo-
t/Aι + dn

^ 2 3 C 1 4

>12 — C34 + <

^ 2 5 "I ^ 2 3

, * J - 2 "*ΐ~ ^ 3 3

b2i + c1 8

^ 3 2 ^ 4 ^42 +

&15 + ^12

A 5 + d22

- ^ • 1

Cl4

+ α

£2:

•"•16 I ^ 2 2 I

^32 + ^21/

and hence the isotropy subalgebra QXQ = {(A,J9)|d|θ(A,ί>)Z0 = 0} is given

as follows.

(5.44)
^ 3 4

-cl2

- S c 1 2

2 c 3 4

α 3

^ 4 3

- c 3 4

α 3 4

~ α 3

c34

- 2 c 1 2 - 3 c 3 4

— α 3

^ 3 4 α3

- 2 d n

— dr 2c 1 2

_ l/α 3 + d n / 2 α3 4 \
"~ IV α4 3 - α 3 - dEn/2/

α n 2c 1 2

_c12 - c 3 4 0 .
= §1(2) Θ o(3) .

Since dimgX o = 6 = dimSpm(lO) x GL(3) - dim 7(16) <g) 7(3), it is a P.V.

and by Proposition 25 in § 4, it is regular. Put

Λ.Q = (.-I. -f- 6iβ2^3^4> ^1^5 1 ^2^3^4^5> ^1^2 i ^3^5 ~Γ ^1^2^4^5/

γio oioooo\
= 000010 01 eikf(16,3) .

\010 01000100/

By (5.38), we have
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dP(A,D)X'Q = dPl(A)X'o + X'fD

#23 I ^14 #51

and hence the isotropy subalgebra gx6 = {(A,D)\dp(A,D)XΌ = 0} is given
as follows.

(5.45)

0

A + A
<χ3

0

0
0

-2a3

—oc2

0

0
2d
0
0
0

0
0
0

2a3

0

OΓi — Λ 2

0
0

A
2α3

0
0

- A - A
0

— α 2

A
A ~ A
- 2 d

0

α2

- 2 a %

A + A
0
0

0
— <*3

0
0
2d

0
0
0
0
0

0

-A
<*3

0

0
0

a3

0

A
0

— «2

2α3

0

~βi — A
- 2 d

α2 - «i

- i 8 s
α3

— α 3

α 2

0
0

A
— «3

0
0

A ~ A
0

0
- 2 α 3

0
0
0

0
0
0
2d
0

0

-A
0
0

— «ι
0

-A
0

-2d

d
0
0

ax

-d
-a.

A"
a3

— d

Since dim Spin(10) x GL(3) - dimgZ6 = 54 - 7 = 47, the orbit of X£ is of
codimension one, and the trace trF(A,D) on V is 16(d — d — d) = —16d
and the trace adgx6(A,D) of the adjoint representation is 12d. By
Proposition 15 in § 4, the degree of the irreducible relative invariant
polynomial f(x) is given by deg/ = ((—16d + 12d)/-16d) x 48 = 12. The
orbital decomposition of this space is completed by Kawahara (See [13]).

PROPOSITION 33. A triplet (SpίnQO) x GL(3), half-spin rep.®Λί9

y(16) (8) F(3)) is a regular P.V. and:its generic isotropy subgroup is locally
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isomorphic to SL(2) x 0(3). The relative invariant is of degree 12.

(26) GSpm(lO) x GL(2), half-spin rep. <g> 2ΛU 7(16) ® 7(3)) .

Assume that this triplet is a P.V. and let if be its generic isotropy sub-
group. Then we have dim H = dim Spin(10) x GL(2) - dim 7(16) ® 7(3)
= 1. Since we may consider that this triplet is contained in (Spin (10) x
GL(3), half-spin rep. (x) 4 , 7(16) <g) 7(3)), we have if 3 Spin(10) x GL(2)
Π SL(2) X SO(3) 3 SL(2) by (5.44) and hence dim if ^ dimSL(2) = 3, i.e.,
a contradiction. Thus we obtain the following proposition.

PROPOSITION 34. A triplet (Spin(10) x GL(2), half-spin rep. (g) 2Λl9

7(16) (x) 7(3)) is not a P.V.

(27) (Spin®) x GL(d), spm rep. <g> Λx, 7(16) (g) V(d)) (l<d<2)

Put ^ = eδ - /5 = '(000010000-1). Then o(9, C) = {Ae o(10, C) | Avx - 0}.
We may assume that an element A of o(10, C) is of the form (5.28).
Then A is in o(9, C) if and only if Avλ = *(α15 + b15, a2b + 625, α35 + fe35,

^45 ~Γ ^45> ^ 5 ) ^15 ^51> ^25 ^52? ^35 ^53) ^45 ^54? ^ 5 / = = " l G ^ i 5 = = ^z5>

α = c tt=0(l<i<4)

I) ΓAe case 0/ d = 1.
Put Zo = 1 + e^Ae, = (10 010000) e 7(16). Then by (5.38) we

have aX0 + dpί(A)X0 = *(α — (αx + α2 + α3 + α4)/2, 612 — c34, 613 + c24, 614 —

^23> ^15> ^23 ^14) ^24 ~t~ ^13> ^25? ^34 ^12> >̂35> ^45> & + V^! + O-2 ~Γ ^ 3 "T &i) / ^9

5̂4, -α 5 3> 5̂2, — α6i) with α5 = 0, aib = ~bib, au = c i 5 (1 < i < 4) and (α, A)

e gΓ(l) Θ o(9). Hence the isotropy subalgebra QXO = {(a, A) | αZ0 + dpι(A)XQ

= 0} is given as follows.

(5.46)

- {(0) Θ

(hi

(h\
a4ί

0

0
- & 3 4

&24

^23

0

α2

0

&34

0

- δ M

&»
0

«23

α3

«43

0

-bu

bu

0
- δ J 2

0

au

a>u
au

« 4

0

&23

- δ ι ,

0
0

0
0
0
0
0

0
0
0
0
0

0
-bn

-bn

-bu
0

-a,

—(hz

^13

- α 1 4

0

&12

0
— &23

-K
0

< χ 2 1

- α 2

^23

^24

0

6«
b23

0
— b23

0

- α n

*32

- O s

- « 3 4

0

6M

&24

&34

0
0

— α «
— α 4 2

- « 4 3

0

0
0
0
0
0

0
0
0
0
0

with aλ + a2 + a3 + a4 = 0} ^ o(7, C) .
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Since dim gXo = 21 = dim GL(1) x Spin(9) - dim 7(1) (g) 7(16), it is a

P.V. and by Proposition 25 in § 4, it is regular. This space was investi-

gated by J. Igusa (See [2]).

The relative invariant is a quadratic form q(x), and the explicit form

which is due to J. Igusa, is given as follows.

(5.47) q(x) = xoyo + PffiXtj) + Σ
i

where

x = xo + Σ Xijeiβj + 2/0e1e2e3e4 + (Σ *& + Σ

and

etef = e^e^e^ (1 < i < 4) .

PROPOSITION 35. A triplet (GL(1) x Spm(9), π ® spin rep., 7(1)®

7(16)) is α regular P.V. and its generic isotropy subgroup is locally iso-

morphic to Spίn(7). The relative invariant is a quadratic form.

II) The case of d = 2.

Assume that this triplet is a P.V. and let i ϊ be its generic isotropy

subgroup. Then we have dim H = dim Spin(9) x GL(2) - dim 7(16) (x) 7(2)

= 8. This implies that for a suitable xQ in 7(10), the isotropy subalgebra

QXQ = {AGQC: o(10) I A#o = 0} of g ^ (g2) Θ §1(2) which consists of 10 x 10

matrices A in (5.40), is of dimension eight. Therefore there exists a 9-

dimensional orbit of g' which consists of 10 x 10 matrices in (5.42),

since dim g; — 8 = 9. However, it is impossible since there exist algebrai-

cally independent two quadratic forms fx(x) and f2(x) where f^x) = fλ{xλ,

x29 xz) is absolutely invariant under the action of 3ί(2) and f2(x) = /2(̂ 4>

• , x1Q) is absolutely invariant under the action of (g2) (See Proposition

25 or (32)). Hence it is not a P.V.

PROPOSITION 36. A triplet (Spin(9) x GL(2), spin rep. (g) A19 7(16)®

7(2)) is not a P.V.

(28) (Spin(12) X GL(d), half-spin rep. (x) Aιt 7(32) ® V(d)) (l<d<2)

I) The case of d = 1.

The representation space 7 = 7(1) <g) 7(32) is spanned by 1, eteS9

eke£emen9 e^e^e^ ( l < i < / < 6 , l<k<£<m<n<6). Put XQ = 1
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+ e^e^e^Q. We shall calculate the isotropy subalgebra gXo of g — gί(l)

® o(12) at Xo. We may assume that an element A of o(12) is of the form

(5.28)..

Then by (5.29), we have dPι{A)Λ = -\{aλ + . + α6) + Σi<j ^ifi^s
^v%.Ά JS f A\ l / ι ι \ i ^Γ~i <> <>
^Λ j l I J #jf f\ I /I 1 ^} ^} ^} ^} ^} ^} i ii _J.| f Ajί I # # # I m fΛ 1 ^? ^? ^? ^P ^^ ^P I ^ M* f\ »̂ J ^^ ^^ ^} £^ ^} ^}

and hence aX0 + d^CA)^ = (β - i(<h + + ^)) + HKJ ^i3eιe3 + Σii<j ca
δfiδfje1e2ezeieδe6 + (a + \{aλ + + a^e^e^e^ for (α, A) e gl (1)0 o
(12). Hence the isotropy subalgebra gXo = {(a, A)\aX0 + dp1(A)X0 = 0} is
given by

g Z o ^ i ( O ) Θ

Since dim gXo = 35 = dim GL(1) x Spin(12) - dim 7(1) <g) F(32), it is a P. V.

and by Proposition 25 in § 4, it is regular. This space was investigated

by J. Igusa and the explicit form of the relative invariant quartic

form f(x) is given as follows (See [2]).

/(a?) = XoPffdVij)) + VoPffiiXij)) + ΣPff(Xij)Pff(Yij)
(5.48)

for x = χQ + Yλi<ύxiύeieύ + ΣiiKjVijefj + V^λe2eze,ebeQ in which, e.g., {xiό)

is the alternating matrix determined by xtj and Xί3 the alternating

matrix obtained from (xi3) by crossing out its i-th and j-th lines and

columns, and e% = (—l)i+s''1e1 ^_iβ i + 1 βJ _1eJ+1 eβ.

PROPOSITION 37. A triplet (GL(1) x SpinQ.2), π® half-spin rep.,

7(1) (8) 7(32)) is a regular P.V. and its generic isotropy subgroup is locally

isomorphic to SL(6). The relative invariant is a quartic form.

II) The case of d = 2.

We identify 7 = 7(32) (x) 7(2) with 7(32) 0 7(32). Assume that this

triplet is a P.V. and let Xo = (x'o, x") is a generic point. Then the

isotropy subgroup H at Xo is of dimension 6 ( = dimSpin(12) x GL(2) —

dim 7(32) ® 7(2)). From ths case of d = 1, we may assume that #ί = 1

+ βiβ2e3β4β5e6. As a representation space of the isotropy subgroup SL(6)

at < 7(32) decomposes into 7(32) = 7X(1) θ 72(1) θ 73(15) @ 74(15) i.e.

l θ l θ ^ Θ Λ since the weights J ( ± α i ± a2 * ±αe) of §1(6) where αx +

. . . + a6 = 0 and the number of the signature + is even, decomposes to

{0} U {0} U {a, + a,j 11 < i < j < 6} U {-α, - α ; 11 < i < j < 6}. Note that Λ4
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is the contragredient representation of A2. We may assume that x0 e 7j(l)

and x'o = x'2 + x'z + x[ with x'2 e 72(1), x'3 e 73(15), x[ e 74(15). Then together

with scalar multiplications, SL(2) acts on 73(15) prehomogeneously and

we may assume that x'z is its generic point. Then the isotropy subgroup

at xi is Sp(S) by Proposition 4. As a representation space of Sp(S),

74(15) decomposes to 74(15) = 7 5 (l)φ7 6 (14) i.e. 1 0 4 since {—αt — α , | l

< ί < j < 6} with aA = —a19 a5 = — α2, α6 = — a3 decomposes t o {0} U {0,0,

±di± aj9 i < y = 1,2,3}. An element of F6(14) is generically transferred

to the form λ^ Λ u4 + λ2u2 A nδ + λ3u3 Λ u6 with λx + λ2 + λ3 = 0, under the

action of £p(3), and the isotropy subgroup at this point contains SL(2) x

SL(2) x SL(2). This implies that the generic isotropy subgroup H at Xo

= ( » ί , O contains SL(2) x SL(2) X SL(2) and hence 6 = dim if ^ dimSL(2)

X SL(2) x SL(2) = 9, i.e., a contradiction. Therefore it is not a P.V.

PROPOSITION 38. A triplet (SpίnQS) x GL(2), half-spin rep. (x) Λ,

7(32)® 7(2)) is noί α P. 7.

(29) (GL(1) X Sp<n(ll), D ® spm rep., 7(1) <g> 7(32)) .

Put vι = e9-A = '(00000100000 - 1) e 7(12). Then we have o(ll, C)

— {A e o(12, C)\Avλ = 0} and hence an element A of the form (5.28) is in

o(ll, C) if and only if α6 = 0, aί6 = 6 i6 and α6ί = —cu for 1 < ΐ < 5. There-

fore the isotropy subalgebra gXo of g = gl(l) Θ o(ll) at Xo = 1 + 6̂ 2636465̂ 6

is given by

Π
A1

A ' e 31(5) ^

by Proposition 37. Since dim gXo = 24 = dim GL(1) x Spin(ll) — dim 7(1)

(x) 7(32), this triplet is a P.V. and it is regular by Proposition 25 in § 4.

The relative invariant is the quartic form in (5.48). This space was in-

vestigated by J. Igusa (See [2]).

PROPOSITION 39. A triplet (GL(1) x Spin(ll), u® spin rep., 7(1) ®

7(32)) is a regular P.V. and its generic isotropy subgroup is locally iso-

morphic to SL(5). The relative invariant is the same quartic form as in

Proposition 37.

(30) {GUI) x Spin(U), D ® half-spin rep., 7(1) <g> 7(64))

The representation space 7 = 7(1) (x) 7(64) is spanned by 1, e^j (1 <
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i<j< 7), e^e^ (l<i<j<k<£<7) and

< A <m <n<7). Put Xo — 1 + exe2ezeΊ + eAe5e6e7 + e^e^e^e^ We shall

calculate the isotropy subalgebra QZQ of g = gl(l) Θ o(14) at Xo. We may

assume that an element A of o(14, C) is of the form (5.28). Let dpλ be

the half-spin representation of o(14, C). Then by (5.29) we have

dpx(A)Λ = —j(aλ

6

dpί(A)e1e2e2e7 = Σane:
6 6

+ Σ
* A

t ^ l """"" ^^1 ?̂ * ^ 9 ' I »^1 0 ί^Q / * ^ 7 ί

+

and

dp1(A)eίe2 eβ = Σ ( -

χ + + α β - ot'7)β1β2 eβ

By changing indices from (1, ,7) to (4,5,6,1,2,3,7), we obtain dpλ{A)

β4e5β6β7 from cZ/o1(A)e1e2e3β7. Hence the isotropy subalgebra o>Xo = {(α, A) e

gr(l)Θo(14)|αZ0 + dPι(A)X0 = 0} is given by

= (0)θ e g r ( l ) θ o(14) I A1?A2,A3 are of the form (5.49)

^ {(A4)Θ(A5)|A4,A5 are of the form (5.49)} ^ (g2) θ (&)

(See (1.8) in § 1).

I
z

0

.uvw

0

Y

λ μ v

a
b
c

~d
e
f
0.

with X,Ye f t(3) .
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(5.49)

A2 =

A3 =

0
— w

V

. a

0

c

-b

w
0

— 11

0

b

— c

0
a

0

— v

— V

It

0

c

b

— a

0

— w

0

— d

0

- /

e

• λ

0

0

λ

p

0

/

0

-d

μ

μ
-λ

0

- /

p

d
0

V

—a
- 6

d
e
f

0 J
u
V

w

-λ

-μ
— v

0 J

0

α
b
c

V

. to

' 0

d
e

f
λ

μ

V

2u

0

c

-b

2λ

0
/

2v

X

— c

0
a

2μ

Y

-f
0

d

2w

b

—a

0

2v

e
-d

0

2a

0
— w

V

2d

0
— v

μ

2b

w
0

—u

-ιX

2e

V

0
-λ

-ιY

2c

— V

u
0

2/Ί

-μ
λ

0

Since dim gXo = 28 = dim GL(1) x Spin((U) - dim 7(1) (x) 7(64), this tr iplet

is a P.V. and it i s regular by Proposition 25 in §4. The prehomogeneity

of this space was proved by T. Shintani (1970) and the orbital decom-

position was completed by I. Ozeki and the second author (1973) (See [12]).

P u t XQ = 1 + 0ie2e3e7 + e&e^ + e2e4e6e7 + e^e^^e^ Then by the similar

calculation, the isotropy subalgebra g z, at X'o is given by

A'19 A'2, A'z a re given in (5.50)
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A[ =

(5.50)

Aί =

a2

0

— ^35

0
0
0

^23

α3

&43

^24

α14

- 2 c 4 7

au

au

0

α4

0
0
0

«15

^25

^35

^45

a5

— Cbl2

027

^26

α36

0^46

— ^21

a6

~2c17

035

036

— 015

056

013

023

a7

w i t h

α 7 = — α3)

0
0
0

0

037

c 4 7

0
2c23

0
0

^ 1 3

0

0
c 1 7

α2

α 3 = α 4 + α 6

α 3 = α 4 + α 5

α 4 3 = α 2 5 (x1

C37

0
-cl7

-cm

0

C47

2 c 1 3

- c 2 7

C l r

0
0
0
0
0

Cβ7

0
0

- c 1 7

c27

2 c 1 5

- C 4 7

0
0
c17

0
0
0

0
0

^23

0
0

015

C 27

c13

c23

0
0
C 35

- c 3 6

- C 3 7

0
0
0
0

^23

013

- 0 4 7

015

0

035

023

0

056

- 0 5 7

0
015

036

- 0 1 3

056

0

- 0 6 7

0
0
0

c 1 7

027

0,7

0

^023

^ 0 1 3

0

- 2 c 1 5

0

0

0

Since dim gx, = 29, the orbit of X'Q is of codimension one. Since the

trace t r r A of an element A of gX6 on V is 64 x (α,7/2) = 32α7 and the

adjoint representation on gx6 is — 28α7, the degree of the irreducible

relative invariant polynomial fix) is given by deg/ = (32α7 — 28α7)/32α7

X 64 = 8.

PROPOSITION 40. A triplet (GL(1) x SpinOA), π® half-spin rep.,

(x) F(64)) is a regular P. V. and its generic ίsotropy subgroup is locally

isomorphic to (G2) X (G2) The relative invariant is of degree 8.

(31) (CrL(l) X SpinQS), U® spin rep., 7(1) ® 7(64)) .

This space was investigated by T. Shintani (1971). We shall prove

the non-prehomogeneity of this triplet after T. Shintani.

Assume that this triplet is a P.V. Let ϊj be the generic isotropy

subalgebra of the regular P.V. in Proposition 40. Then there exists a

14-dimensional vector x0 such that Eι Π (gϊ(l) Θ {A e 0 (14) | Ax0 = 0}) =

{A e Ij| Ax0 = 0} is of dimension 15 ( = dim GL(1) x SpinQS) - dim 7(1) (x)

7(64)). By Proposition 40, ϊ) ̂  (g2) Θ (g2) and ζ is contained in o(14) as
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the direct sum of 7-dimensional representations, this implies that the
(non-irreducible) triplet (GL(1) x (G2) x (G2), D ® (Λ® 1 + 1®Λ2), V(l)
® GΊ(7) Θ 72(7)) is a P.V. By Proposition 25, there exists a quadratic
invariant qt(x) on 7(1)® 7*(7) (i = 1,2) and the quotient q(x) = qι(x)lq2(x)
is a non-constant absolute invariant of this triplet. By Proposition 3 in
§2, it is not a P.V. and hence our triplet is not a P.V.

PROPOSITION 41. A triplet (GL(1) x Spίn(13), π ® spin rep., 7(1)®
7(64)) is not a P.V.

(32) ((G2) x GL(d), Λ2 ® Alf 7(7) ® V(d)) (1 < d < 3)

I) T&e case o/ d = 1.

Let g be the Lie algebra of GL(1) x (G2). Then by Example 30 in
§ 1, we have

(5.51)

A =

ξ

a
b
c

d
e

1 /

2d

ξ + Λ
hi

0
c

-b

2e

hi

ξ + h
^2

— c
0
a

2/

^13

^23

ξ + h
b

—a
0

2α

0
- /

e

ξ - Λ
^12

— ^13

2&

f
0

- d

^23

2c ^

— e
d
0

^32

= 0

Put Z o = «(1,0,0,0,0,0,0). Then AX, = *(f, α, &, c, d, e, / ) . Therefore the
isotropy subalgebra gXo at Z o is given by

g2o - {A e g| AX0 = 0} - {A e g|f - α = & = c - d = e - / = 0}

Since dim gXo = 8 = dim g — dim 7 and gXo is reductive, it is a regular
P.V. by Proposition 25 in §4. By Proposition 25 (in §5), there exists
a relative invariant quadratic form, i.e., (G2) c SO(7).

We shall determine the relative invariant f(x) — Σι<i<Lj<7 Cij%i%j Let
A be a diagonal matrix in (5.51). Then

(Ax, = Σ Σ (f

+ Σ (f -
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and hence f(x) = cnx\ + c2bx2xδ + c36x3x6 + cA7xAx7. Let A1 (resp. A2) be the

matrix with a = 1 (resp. & = 1), all remaining entries zero in (5.51).
Then (AxXy grad f(x)} = (4cu + c25)#i#5 + (c47 — c36)#3x4 = 0 and hence f(x) =

Cn(#i — 4#2#5) + c36(^3^6 + x±x7). Since ζA2x, g r a d / ( # ) ) = cn(4ίc1^6 — 4#2#4)

+ Λ f/y» /V _ _ 'T1 'ϊ* ^ — 0 ΛXTΛ Vl Q Λ7ίi ~f {svΛ —— ί* (Ύ^ Λ.'Ύ* Ύ Λ.^V Ύ — Λ.'Ύ* Ύ1 I
^3βv 1 6 ~~~ 2 4/ ~~" ^> WCJ lίCXi V C ^ v*^/ ^/ll\'^/'l ^•" '̂2 5 ^r«Λ/3«Λ/g ^ttλj^tλj jj»

PROPOSITION 42. A triplet (GL(1) x (G2), π ® Λ, VX1) ® V"(7)) is α

regular P.V. and its generic isotropy subgroup is locally isomorphίc to
SL(S). The relative invariant is a quadratic form.

II) The case of d = 2.
If we identify 7 ( 7 ) ® 7(2) with 7 x 2 matrices M(7,2), the action

dp of the Lie algebra g = (g2) 0 gl(2) of (G2) x GL(2) is given by dp(A)X

= BX + XιC where X e M(7,2), A = (B, C) e g = (g2) Θ βί(2). P u t

χ = V0100000\
0 vooooioo/ '

Then

(5.52)

dP(A)X0 =

!)

=

ί o
a

b

c

d

e

_ / —

Id

+

β
c

-b

2a

λ1

hi

hi

0

C

b

a

r 2e

h
Λ 3 2

— c

0

a

—1

2/

^ 2 3

h
b

—a

0

2α

r
-f

e

li + S

2a

0

- /
e

.

25

/
0

Λ21

- ^ 2

Λ 2 3

2c

— e

<ί

0

^ 3 2

~h

1

1

+

1

1

\j8 SJ

Hence the isotropy subalgebra gXo at Xo is by definition QXO = {A e

= 0} and hence we have
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(5.53)

it
0
0

0
0

0

0
^23

0
0

0

0

0 0
- λ 2 - λ z 2

^ 2 3 ^ 3

Θ
V 0 V

Λ + λ2 + λz = 0

Since dimgXo — 4 = dimg — dim 7, it is a regular P.V. by Proposition
25 in § 4. Since (G2) x GL(2) c SO(7) x GL(2), there exists an irreducible
relative invariant polynomial of degree 4 (See (20)).

PROPOSITION 43. A triplet ((G2) x GL(2), Λ2®Λl9 7(7)® 7(2)) is a
regular P.V. and its generic isotropy subgroup is locally isomorphic to
GL(2). The relative invariant is a quartic form.

Ill) The case of d = 3.
Identify 7(7)® 7(3) with 7 x 3 matrices M(7,3). Since (G2) x GL(3)

c £0(7) X GL(3), there exists an irreducible relative invariant polynomial
f^x) of degree 6 (See (20)). On the other hand, (G2) is the isotropy sub-
group at Xo = u2 A u2 A u4 + uh A uQ A uΊ + uλ A (u2 A uh + u2 A uQ + u^ A uΊ)
(See (8)), and hence the group (G2) X SL(3) leaves the following polynomial
f2(x) invariant.

(5.54)

/2(Z) = det x
\

+ det lx4 y4 z

\X7 V? Zj

where X = \yx y7 e 7(7)® 7(3) .

Since the quotient fι(x)lf2(x)2 is a non-constant absolute invariant, it is
not a P.V. by Proposition 3 in §2 (or Proposition 12 in §4).

PROPOSITION 44. A triplet ((G2) x GL(3), Λ2®A19 7(7)® 7(3)) is not
a P.V. There exist two irreducible relative invariant of degree 3 and
degree 6.

(33) (F4 x GL(d), A, ® Λl9 7(26) ® V(d))

https://doi.org/10.1017/S0027763000017633 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000017633


PREHOMOGENEOUS VECTOR SPACES 137

I) The case of d = 1.

By Proposition 39 in § 1, f^X) = T r I o I and /2(X) ^ T r Z o I o I

(x e /0) is a "relative invariant of GLil) x F4, and hence /(#) = /2(a02 /i(α0~3

is an absolute invariant. Since

= 0 and

-i/ '

is not constant, and hence it is not a P.V. by Proposition 3 in § 2.

PROPOSITION 45. A triplet (GL(1) x F4, D®Λ4, 7(1) (8) 7(26)) is

α P.F. There exist Uvo irreducible relative invariants of degree 2 and

degree 3.

II) Tfce case of d = 2.

Identify 7(26)® 7(2) with / o θ / o and put Λ(X) = T r Z o I , /2(X)

^ T r X o X o X for Z e / 0 , For X = (Xί,X2) e / o θ / 0 , the polynomial

f1(ιuX1 + vX2) is a binary quadratic form which is invariant under the

action of F4. Therefore, its discriminant g^X) is a relative invariant of

FA x GL(2) (See (3)). Similarly the discriminant g2(X) of the binary cubic

form f2(uX1 + vX2) is also a relative invariant of F4 x GL(2) (See (6)).

As deg#i = 4 and deg#2 = 12, /(#) = g2(x)gi(%)~3 for a e / o θ A is an

absolute invariant of F 4 x GL(2). Since

= 0 and /

/(a?) is not constant, and hence it is not a P.V. by Proposition 3 in § 2.

PROPOSITION 46. A triplet (F4 x GL(2), Λ,® Au 7(26) ® 7(2)) ΐs

a P.V.

(34) (£7β x GL(d), Λί ® Λ, 7(27) ® 7(d)) (1 < d < 3)

I) The case of d = 1.

Identify 7(1) ® 7(27) with the exceptional simple Jordan algebra β.

The Lie algebra g of ί76 x GL(1) is g = {A = D + Rγ + a\D e 2, Ye/Q,

aeC} (See Example 39 in §1). Hence an element A = D + Rγ + a of

g is contained in the isotropy subalgebra gXo at Xo = ( 1 -̂ j e f if and
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only if AXQ = Y + (a a ) = 0. Since Tr Y = 0, this implies that y =

0 and α? = 0. Therefore the isotropy subalgebra qZo is the exceptional
simple algebra Si ^ F4. Since dim £76 x GL(1) - dim F 4 = 27 = dim </,
it is a regular P.V. by Proposition 25 in §4. The relative invariant is
the determinant N(X) = detZ ( I e / ) (See Example 39 in §1).

PROPOSITION 47. A triplet (GL(1) x #β, π ® Λ, 7(1) (x) 7(27)) is a
regular P.V. and its generic isotropy subgroup is locally isomorphic to
F4. The relative invariant is the determinant of the exceptional simple
Jordan algebra / ( ^ 7(1) ® 7(27)).

II) The case of d = 2.

Identify 7(27) (8) 7(2) with / © / . Let gXo be the isotropy sub-

algebra of J57β©8t(2) at Zo = (Y1 1 A ( 1 0 _ i ) ) T h e n ^ i s o b v i o u s

that ^o^9χo ( S e e Definition 34 in §1). We shall show that ^ 0 Ώ. §XQ

Let 2; = Z + ία , j be an element of qZo, where Z = D + (a)[ + (β)'2 +

(rX + RY (D e ^ 0 ? Tr y == 0, See Definition 36 in § 1). Then

/ /a + δ \ A
0

a-b
= 0

implies that Γ + (a + b a a _ A = 0. Since Tr Y = 0, we obtain

= (& ° _&) a n d a = ° S i n c e ^ ί 1 ° - i ) = ° f o r ^ € ^ o , wethat y

obtain that

Ic + d
X 0

- 1 /

δ + c -

4

_ !
2

c-d/

d - X - 1
4 2

c - —
4

— if. 6 + c - r f
4

- o .

Together with y = ί 0 , j and a = 0, we have ^ = fle^ Therefore
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we obtain that QXO = @0 = 0(8, C) (See Proposition 35 in § 1). Since

dim gXo = 28 = dim E6 x GL(1) — dim f ® f, it is a regular P. V. by

Proposition 25 in § 4. For X = (X19 X2) e f 0 / , the discriminant f{X)

of the binary cubic form N(uXλ + vX2) is a relative invariant of degree

12. This is irreducible since the restriction of f(X) to {(Xu X2) e / 0

), *XX = Z 1 ? 'X2 = X2} is irreducible (See (10)).

PROPOSITION 48. A triplet (E9 x GL(2), A <g> A, 7(27) ® 7(2)) is α

regular P.V. and its generic isotropy subgroup is locally isomorphic to

the orthogonal group 0(8, C). The relative invariant is of degree 12.

Remark 49. The following four P.V.'s correspond to R, C, H,&

respectively.

1) (SL(3) X GL(2), 2 4 (x) 4 , 7(6) <g> 7(2))

2) (SL(3) X SL(3) X GL(2), Λ ® ̂  ® ̂ , 7(3) <g> 7(3) ® 7(2))

3) (SL(6) x GL(2), Λ2 ® A19 7(15) ® 7(2))

4) (£76 x GL(2), A, ® A19 7(27) Θ 7(2)).

Their representation spaces can be regarded as the pair of 3 x 3

hermitian matrices over some algebra A, where A = C(== R ®R C), C® C

(= C®RC), M2(C) (=H®RC) and © respectively. The rank m of A is

m = 2k (k = 0,1,2,3), and the dimension of a generic isotropy group is

given by (k + 1) (m — 1) (fc = 0,1,2,3). The degree of the irreducible

relative invariant is 12.

Ill) The case of d = 3.

We may identify 7 = 7(27) <g) 7(3) with / © / 0 / where / is the

exceptional simple Jordan algebra.

Let N(Xτ) be the determinant of Xx in / (See Example 39 in § 1).

For each X = (Xu X2, X3) e 7, we can define the ternary cubic form φ(X)

= N(uXλ + #X2 + wXz) which is invariant under the action of E6. This

φ is an equivariant map from / ® / φ / to the space of ternary cubic

forms. Since a triplet (£76 X GL(3), 1 ® 3^!, 7(10)) ^ (GL(3), SA19 7(10))

is clearly not a P.V., if p is generically surjective, a triplet (E6 x GL(3),

Λ ® Λ , 7(27) (x) 7(3)) is not a P.V. by Lemma 5 in §2. For ί e C , put

Then φ(X(t)) = uv{u + v — w) - γw* where γ = 2ί3 - ί2. For A =
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e βΓ(3), AψiXit)) = a12u
3 + a2lv

z — 3γa33τv3 + (2άu + 2α12 + a22 — au)u2v + (α32

— al2)u2w + (2a2l + 2a22 + an — a23)v2u + (α31 — a2l)v2w — (α32 + 3γal3)w2u —

(an + Sa23)w2v + (2α31 + 2α32 — an — a22 — a33)uvw and hence the isotropy

subalgebra at Xo is {A e gl(3) | Ap(Z(ί)) = 0} = 0 if r Φ 0. This implies

that if γ Φ 0, the GL(3)-orbit of p(JSΓ(ί)) is of dimension 9. On the other

hand, <p(X(t)) = 0 is an elliptic curve for γ Φ 0, —£j, and its modular

invariant is given by J = ——^—ί—^—. Since / is invariant under the
f + 2Ίf

action of (?L(3), the dimension of the union of GL(3)-orbits of <p(X(t))

is 10. This implies that <p is generically surjective, and hence a triplet

(E9 X GL(3), Λ ® Λ, 7(27) <g> 7(3)) is not a P.V.

PROPOSITION 50. A triplet (E6 x GL(3), Λ ® Λ1? 7(27) ® 7(3)) is not

a P.V.

(35) (£76 x GL(2), ilx ® 2^x, 7(27) <g> 7(3)) .

Since (E6 x GL(2), ^j ® 2A1) c (ί76 x GL(3), ^ x ® Λ), it is clearly not

a P.V. by Proposition 50.

PROPOSITION 51. A triplet (£76 x GL(3), A, (x) 2A19 7(27) ® 7(3)) is

not a P.V.

(36) (E7 x GL(d), ^ί6 (x) Al9 7(56) (x) 7(rf)) (1 < d < 2) .

I) The case of d = 1.

We may identify 7(56) ® 7(1) with 3K = C Θ C Θ / Θ / (See Exam-

ple 40 in §1). Let qZo be the isotropy subalgebra of 2£ 7θgl(l) at XQ =

(1,1,0, 0) in 2R. For A = a 0 δ 0 2mRj ®L®keEΊ® gΓ(l) where α, 6

e / , m,keC, and L e S 6 , by (1.14) we have [α,Z0] = (0,0,α,0), [δ,Z0]

= (0,0, 0, -&), [2mβ J ? Zo] = (3m, -3m, 0, 0), [fc, Zo] = (fc, fc, 0, 0) and [L, Zo]

= (0,0,0,0), and hence [A,X0] = (3m + fc, - 3 m + k,a, -b). Therefore

we have gJΓo = {AeE7® gί(l)| [A,Zo] = 0} = {Le £;6} ^ ί76. Since dim gXo

= 78 = dim£77 x GL(1) ( = 134) - dim 7 ( = 56), it is a regular P.V. by

Proposition 25 in §4. The relative invariant is a quartic form q(X) in

(1.16).

The orbital decomposition is completed by S. J. Harris (See [7]).

PROPOSITION 52. A triplet (GL(1) x E79 π® A6, 7(1) (x) 7(56)) is a

regular P.V. and its generic isotropy subgroup is locally isomorphic to

E6. The relative invariant is a quartic form q(X) given in (1.16).
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II) The case of d = 2.

We may identify 7 = 7(56) <g> 7(2) with m Θ 2TC. Put Λ(Z) - {Z1? Z2}

= f 1% - f2?i + Γ(»i2/2) ~ ZXaWi) for Z = (Zx, Z2) = ((ft, ft, â , yj, (ft, %, a2,

I/a)) e 7. Then this is a relative invariant of £77 x GL(2) i.e. # 7 c Sp(28)

(See Example 40 in § 1). Let q(X) be the invariant quartic form of E7,

i.e., q(X) = T(x\ j/ ) - ?2V(aO - ?tf(y) - i(T(α,y) - f?)2 for Z = (f, 9 , x, y)

e 2R, where α* = α2 - Tr (a)-a + J{(Tr α)2 - Tr (α2)} l (See Example 40

in §1). For each Z = (Z1? Z2) e 2K Θ 3W, we have a binary quartic

form ^(Z) = q(uXλ + uX"2) I n general for a binary quartic form x =

Σί β o XiU^~ivi, one can easily check that the polynomial /&(#) = ^ — 3^!^

+ 12a;0̂ 4 is relatively invariant under the action of GL(2). Since φ is an

equivariant map, the polynomial / 2(Z) = h(φ(X)) is a relative invariant of

E7 x GL(2). Since deg/^Z) = 2 and deg/ 2(Z) = 8, the quotient /(Z) =

ΛfflVjff l" 1 is an absolute invariant. For Z == ((1,0, 0,0), (0,1,0,0))

e ίSR Θ SK, Λ(Z) = 1 and g((w, v, 0,0)) = - i ^ 2 ^ 2 , i.e., / 2(Z) = ^ , and hence

/(Z) ^ 0. On the other hand, for

X= 0,0, 1 | , 0 | , | 0 , 0 , 0 , | - 1

we have fλ(X) = 0,

\ I* \\\ I
= T\

i.e. / 2(Z) = 1, and hence /(Z) = 0. This implies that /(Z) is a non-

constant absolute invariant, and hence this triplet is not a P.V. by

Proposition 3 in §2.

PROPOSITION 53. A triplet (E7 x GL(2), Λβ ® Λ19 7(56) ® 7(2)) is not

a P.V.

THEOREM 54. Let (G,p,V) be a reduced P.V. and let g be the Lie

algebra of p(G). Assume that the center of g is one-dimensional. Then

it is equivalent to one of the following P.V.'s.

I) A regular P.V.

( 1 ) (G X GL(m), p ® Λu Vim) ® Vim)) where p:G-> GL(V(m)) is

an m-dimensional irreducible representation of a semi-simple algebraic
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group G.

( 2 ) (GL(n), 2Λlt V{\n{n + 1)) (n ^ 2)

( 3 ) (GL(2m), Au V{m{2m - 1))) (TO ^ 3)

( 4 ) (GL(2), 3Λ1; 7(4))

( 5 ) (GL(6), Λ3, 7(20))

( 6 ) (GL(7), Alt 7(35))

( 7 ) (GL(8), Λ3, V(56))

( 8) (SL(3) x GL(2), 2 4 ® Λ, V(6) ® 7(2))

( 9 ) (SL(6) x GL&), Λ2 ® Au 7(15) ® 7(2))

(10) GSL(5) x GL(3), Λ2 ® J 1 ; 7(10) ® 7(3))

(11) (SL(5) x GL(4), ^ 2 ® ^ , 7(10) ® 7(4))

(12) (SL(3) x SL(3) x GL(2), Λ ® Λ ® Alt 7(3) ® 7(3) ® 7(2))

(13) (Sp(n) x GL(2m), Λλ ® J,, 7(2%) ® 7(2m)) (n ^ 2m ^ 2)

(14) (GL(1) x Sp(3), D ® Λ3, 7(1) ® 7(14))

(15) (SO(n) x GL(TO), AX ® i4lf 7(») ® Vim)) (n ^ 3, »/2 ^ TO ^ 1)

(16) (GL(1) x Spin (7), D® spin rep., 7(1) ® 7(8))

(17) (Spin (7) X GL(2), spire rep. ® id,, 7(8) ® 7(2))

(18) (Spin (7) X GL(3), spin rep. ® Au 7(8) ® 7(3))

(19) (GL(1) X Spin (9), Π ® spin rep., 7(1) ® 7(16))

(20) (Spin (10) x GL(2), half-spin rep. ® Λu 7(16) ® 7(2))

(21) (Spin (10) x GL(3), half-spin rep. ® Au 7(16) ® 7(3))

(22) {GUI) x Spin (11), Π ® s p m r e p . , 7(1) ® 7(32))

(23) {GUI) x Spin (12), U® half-spin rep., 7(1) ® 7(32))

(24) (GL(1) x Spin (14), • ® half-spin rep., 7(1) ® 7(64))

(25) (GL(l)χ(G 2 ) , Π®Λ2, 7(1) ® 7(7))

(26) ((G2) x GL{2), A2 ® Alt 7(7) ® 7(2))

(27) (GL(1) χEt, D ® A, 7(1) ® 7(27))

(28) (Et X GL(2), Ax ® Alt 7(27) ® 7(2))

(29) (GL(1) χE7, • ® A,, 7(1) ® 7(56))

II) A non-regular P.V. with relative invariants.

{Sp{n) x GL(2), Λ ® 2A» V{2n) ® 7(3))

S (GL(1) x Sj>(») X SO(8), D ® Λ Θ Λ, V"(l) ® 7(2n) ® 7(3))

III) A non-regular P.V. without relative invariants.

(1) (G x GL{m), p ® Alf V{n) ® F(m)) where P:G-> GL(V{n)) is an

n-dimensional irreducible representation of a semi-simple algebraic group

G(Φ SL{ri)) with TO > n ^ 3.
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(2) (SL(ri) x GL(m), Aλ <g> Aίf Vin) <g> V(m)) (m/2 ^n^l)

(3) (GL(2m + 1), A2, 7(m(2m + 1))) (m ^ 2)

(4) (SL(2m + 1) x GL(2), Λ2 <g) Λ1? 7(m(2m + 1)) <g> 7(2)) (m ^ 2)

(5) (Sp(rc) X GL(2m + 1), 4 <g> A19 V(2ri) (x) 7(2m + 1))

(n > 2m + 1 ^ 1)

(6) (GL(1) x Spin (10), • <g> half-spin rep., • <g> 7(16))

Proof. By Theorem 24 in § 3 and Proposition 1 — Proposition 53,

we obtain our assertion. Q.E.D.

§6. Semi-simple case

Let (G, p, V) be an irreducible P.V. Then the Lie algebra g of p(G)

is reductive with center at most one-dimensional by Theorem 1 in § 1.

In the previous sections, we have considered the case when the center

of g is of one dimension. In this section, we shall consider the case

when the center of g is of zero dimension. Then β is semi-simple and

hence g c §l(V). Therefore, there is no relative invariant by Proposition

20 in § 4. Then a triplet (GL(1) x G, • (x) p, 7(1) ® 7) is a P. V. without

relative invariant and hence by Theorem 54 in § 5, it belongs to the same

castling class as one of the following reduced P.V.'s.

(1) (G x GL(m), p (x) Λlf V(ri) ® V(m)) where p is any n-dimensional

irreducible representation of a connected semi-simple algebraic group G

(Φ SL(n)) with m > n > 3.

(2) (SL(ri) x GL(m), A, (g) A19 V(ri) (g) V(m)) with m/2 > n > 1.

(3) (GL(2m + 1), Λ2, 7(m(2m + 1))).

(4) (SL(2m + 1) x GL(2), A2 <g> A19 7(m(2m + 1)) ® 7(2)).

(5) Sp(n) x GL(2m + 1), Λx ® A19 V(2n) (g) 7(2m + 1)) with n>2m

+ 1 > 1 .
(6) (GL(1) x Spin (10), Π® half-spin rep., 7(1)0 7(16)).

As we have seen in §5, the generic isotropy subalgebras ζ of these

P.V.'s are not contained in 3t(V), and hence these are P.V. even if

without the action of scalar multiplications. Therefore, we obtain the

following proposition.

PROPOSITION 1. Let (G,p,V) be a reduced P.V. where G is a

connected semi-simple algebraic group. Then it is equivalent to one of

the following reduced P.V.'s.

(1) (G x SL(m), p (x) A19 V(n) (x) Vim)) where p is any n-dimensional
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irreducible representation of a connected semi-simple algebraic group G

(Φ SL(n)) with m > n >̂ 3.

(2) (SL{ri) x SL(m), A, (x) A19 V(n) (x) V(m)) with m/2 > n > 1.

(3) (SL(2m + 1), A29 V(m(2m + 1))).

(4) (SL(2m + 1) x SL(2), A2 <g) 4 , 7(m(2m + 1)) <g) 7(2)).

(5) {Sp(n) x SL(2m + 1), Λx <g) Λ1? 7(2n) (8) F(2m + 1)) witft, n>2m

(6) (Spin (10), half-spin rep., 7(16)).

§7. Table of irreducible reduced prehomogeneous vector spaces

In general, we denote by H a generic isotropy subgroup of a reduced

P.V. If two groups Hι and H2 are isomorphic (resp. locally isomorphic)

to each other, we denote this relation by Hι ~ H2 (resp. Hγ ~ H2). The

degree of the irreducible relative invariant polynomial f(x) will be

denoted by deg / . Then from § 1 — § 6, we obtain the following table.

I) A Regular Prehomogeneous Vector Space.

( 1 ) (G x GL(m), p (x) A19 V(m) (x) V(m)) where p: G -• GL(V(m)) is an

m-dimensional irreducible representation of a connected semi-

simple algebraic group G (or G = {1} and m = 1).

(i) # - G, (ii) deg / = m, (iii) /(a?) = det x tor x e M(m) ~ 7(m)

®V(m) (see Proposition 1 in §5).

(2 ) (GL(τ0, 2Λl9 V(Mn + 1))) (n > 2).

(i) ί ί - O(ri), (ii) deg / = n9 (iii) /(^) = det xίor xe{xe M(n) \ cx

= #} 2̂  7( |n(n + 1)) (see Proposition 3 in §5).

( 3 ) (GL(2m), Λ2, 7(m(2m - 1)) (m > 3).

(i) H - Sp(m), (ii) deg/ = m, (iii) f(x) = P//(α?) for a; e {# e

M(2m)| ί^ = — x) ~ V(m(2m — 1)) (see Proposition 4 in §5).

( 4 ) (GL(2), M19 7(4)).

(i) H ~ {1}, #ίf = 18, (ii) d e g / = 4, (iii) /(α?) = â scj + lSx1x2xixi

— 4a?!ίcS — 4cφ 4 — 27a?ϊα?4 for α; = a?^3 + a?2̂

2^ + X*UV<1 + χiv\ i e > the

discriminant of a binary cubic form x (see Proposition 6 in §5).

( 5 ) (GL(6), Λ3, 7(20)).

(i) H ~ (SL(3) X SL(3)).{±1}, (ii) deg/ = 4, (iii) /(a?) = (a?0y0 -

t r XY)2 + Ax0 det Y + 4y0 det X - 4 Σ ί > y det (Xtj) - det (Y^) (see after

Proposition 7 in §5).

( 6 ) (GL(7), A3, 7(35)).
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(i) H ~ (G2) x {ωl71 ω3 = 1}, (ii) deg / = 7 (see Proposition 8 in § 5).

(7) (GL(8), Λ3, 7(56)).
(i) H ~ SL(S), (ii) deg / = 16 (see Proposition 10 in § 5).

(8) (SL(3) x GL(2), 2Λι ® Λx, 7(6) ® 7(2)).
(i) H ~ {1}, #ff = 144, (ii) deg/ = 12, (iii) /(a) is given by the
discriminant of a binary cubic form det (uX + vY) for x = (X, Y)
e {(X, Y)\X,Ye M(3), ιX = X, Ύ = Γ} ~ 7(6) ® 7(2) (see Propo-
sition 11 in §5).

(9) (SL(6) x GL(2), Λ2 ® Λ1; 7(15) ® 7(2)).
(i) # ~ 5L(2) X SL(2) X SL(2), (ii) deg/ = 12, (iii) f(x) is given
by the discriminant of a binary cubic form Pff(uX + vY) for
x = (X, Y) e {(X, Y)\X,YeM(6), JX = -X, Ύ = -Y} ~ 7(15) ®
7(2) (see Proposition 12 in §5).

(10) (SL(5) X GL(3), Λ ® Λ, 7(10) ® 7(3)).
(i) H ~ SL(2), (ii) deg/ = 15 (see Proposition 14 in §5).

(11) (SL(5) X GL(4), Λ ® Λ, 7(10) ® 7(4)).
(i) iϊ ~ {1}, (ii) deg / = 40, (iii) f{x) is given by the proof of
Proposition 16 in §4 (see Proposition 15 in §5).

(12) (SL(3) X SL(S) x GL(2), Λ ® Λ ® Λu 7(3) ® 7(3) ® 7(2)).
(i) H ~ GL(1) x GL(1), (ii) deg / = 12, (iii) /(a;) is given by the
discriminant of a binary cubic form det (uX + vY) for x = (X, Y)
6 M(3) Θ M(3) ~ 7(3) ® 7(3) ® 7(2).

(13) (.Spin) X GL(2m), Ax ® Λ1; 7(2») ® 7(2m) (w > 2m > 2).
(i) H ~ Sp(m) x Sp(n - m), (ii) deg / = 2m, (iii) /(x) = Pffi'XJX)
for XeM(2n,2m) (see Proposition 17 in §5).

(14) (GL(1) x Sp(S), D ® Λ, ^(1) ® ̂ (14)).
(i) jff ~ SL(3), (ii) deg / = 4, (iii) /(x) is given by the restriction
of the relative invariant of (GL(6), Λ3, 7(20)) (see Proposition 22
in §5).

(15) (SO(ri) x GL(m), Λx ® Λu V(ή) ® V(m)) (n > 3, TO/2 > m > 1).
(i) H ~ (S0(m) X SO(n - m)) {±1}, (ii) deg / = 2m, (iii) f(X) =
det ιXKX for X e M(n, m) ~ V(n) ® Vim) (see Proposition 23 in § 5).

(16) (GL(1) X Spin (7), D® spin rep., 7(1) ® 7(8)).
(i) H ~ (G2), (ii) deg / = 2, (iii) By the spin representation, we
have Spin (7) =—> SO(8) and hence a relative invariant is that of
(GL(1) x SO(8), • ® Λu 7(1) ® 7(8)) (see (15), or Proposition 25
in §5).
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(17) (Spin (7) X GL(2), spin rep. ® Al9 7(8X8)7(2)).

(i) H ~ SL(3) x 0(2), (ii) d e g / = 4, (iii) By the spin represen-

tation,- we have Spin (7) <=—> £0(8) and hence a relative invariant

is that of (S0(8) X GL(2), Λ ® Λ, ^(8) <g> 7(2)) (see (15), or Propo-

sition 26 in § 5).

(18) (Spin (7) X GL(3), spin rep. ® Λ , 7(8) (x) 7(3)).

(i) H ~ SL(2) x 0(3), (ii) deg/ = 6, (iii) By the spin represen-

tation, we have Spin (7) <=—> £0(8) and hence a relative invariant

is that of (S0(8) X GL(3), 4 0 4 , 7(8) (x) 7(3)) (see (15), or Propo-

sition 27 in §5).

(19) {GL{1) x Spin (9), • (g) spin rep., 7(1) <g> 7(16)).

(i) H ~ Spin (7), (ii) deg / - 2, (iii) f(x) = xoyo + Pff(xis) + Σι *iVt

for a; = x0 + Σi<j& Xi&ej + V^e^e, + (2]< a?€β€ + Σi ViΦ^ where

efβί = exe2ezeAeb for 1 < i < 4 (see Proposition 35 in §5).

(20) (Spin (10) x GL(2), half-spin rep. ® Λί9 7(16) ® 7(2)).

(i) H - (G2) x SL(2), (ii) deg/ = 4 (see Proposition 32).

(21) (Spin (10) X GL(3), half-spin rep. (x) ̂ , 7(16) ® 7(3)).

(i) if - SL(2) x 0(3), (ii) deg/ = 12 (see Proposition 33 in §5).

(22) (GL(1) X Spin (11), p<8> spin rep., 7(1) ® 7(32)).

(i) H - SL(5), (ii) deg/ - 4, (iii) /(a) = x,Pff{{yi3)) + y0PfAM

+ Σi<j PffiXij)' PffiYij) - i t o - ΣKJ XijVij)2 for α - x0 +

Σz<; ^ ^ ί β i + ΣKJ Vifitj + V^e2eze,ebeQ where e% = ( - l ) ^ ^ 1 ^ - .

β<-iβ<+i *# * ej-ιej+ι ''' e6 (see Proposition 39 in § 5).

(23) (GL(1) X Spin (12), U® half-spin rep., 7 ( 1 ) 0 7(32)).

(i) H - SL(6), (ii) deg/ = 4, (iii) /(a) is the same as (22) (see

Proposition 37 in §5).

(24) (GL(1) X Spin (14), Π ® half'-spin rep., 7(1) (8) 7(64)).

(i) H - (G2) X (G2), (ii) deg/ = 8 (see Proposition 40 in §5).

(25) ((GL(1) X (G2), Π ® Λ2, 7(1) (x) 7(7)).

(i) H - SL(3), (ii) deg / = 2, (iii) By Λ2, we have (G2) ̂ ^ > SO(7)

and hence a relative invariant is that of (GL(1) x SO(7), D ® Λ>

7(1) (x) 7(7)) (see Proposition 42 in §5).

(26) ((G2) x GL(2), Λ2 ® Λ, ^(7) ® 7(2)).

(i) H - GL(2), (ii) deg / = 4, (iii) By A2, we have (G2) - - > SO(7)

and hence a relative invariant is that of (SO(7) X GL(2), Λx ® ^ ,

7(7)® 7(2)) (see (15), or Proposition 43 in §5).
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(27) (GL(1) x E» Π® A19 7(1) <g> 7(27)).

(i) H ~ F 4, (ii) deg / = 3, (iii) fix) = det α = f^2f3 + tr ^ x ^ -

fl

~ 7(1)® 7(27)

(see Proposition 47 in § 5).

(28) (Et x GL(2), Λ ® Λu F(27) ® 7(2)).

(i) H ~ 0(8), (ii) d e g / = 12, (iii) /(x) is given by the discrimi-

nant of a binary cubic form det (uX + vY) for x = (X, Y) e / 0 /"

=s 7(27) ® F(2) (see Proposition 48 in § 5).

(29) (GL(1) x EΊ, Π® A,, 7(1) ® 7(56)).

(i) ί ί ~ Eβ, (ii) deg / = 4, (iii) f(X) = T(x\ / ) - ξN(x) - vN(y)

- i(Γ(x, y) - ξηf (see (1.16), or Proposition 52 in § 5).

II) A Non-regular Prehomogeneous Vector Space, with relative invari-

ants.

{GUI) X Sp(n) X S0(3), D ® / ! , ® Λi, 7(1) <8> V(2n) ® 7(3)).

(i) if ~ (Sp(« - 2) x S0(2)) ϋ(2n - 3), (ii) deg / = 4, (iii) /(Z)

= tr {'XJXKf for Z e M(2n, 3) ~ 7(1) ® 7(2%) ® 7(3) (see Propo-

sition 19 in §5).

III) A Non-regular Prehomogeneous Vector Space, without relative in-

variant.

( 1 ) (G x GL(m), p ® Alt V(ri)

(I ' ) (G x SL(m), p ® Λu V(n)

where p: G —> GL(7(«)) is an -w-dimensional irreducible represen-

tation of a semi-simple algebraic group G (Φ SL(ri)) with m > n

( 2 ) (SL(«) x GL(m), A, ® Λ, V(n) ® 7(m)) (m/2 > n > 1).

(2') (SL(w) x SL(m), A, ® /ί1( V(n) ® 7(m)).

( 3 ) (GL(2m + 1), At, V(m(2m + 1)) (m > 2).

(30 (SL(2m + 1), A2, 7(m(2m + 1))).

( 4 ) (SL(2m + 1) x GL(2), At ® Λ» 7(m(2m + 1)) ® 7(2)) (m > 2).

(40 (SL(2m + 1) x SL(2), J

( 5 ) (Sp(») X GL(2m + 1), A

(n > 2m + 1 > 1).

Ax,

A,,

Λ»

7(m(2m
7(m(2m

7(2*0 ®

+ 1))G
+ D)β

7(2m-

<> 7(2))
5 7(2)).

H))
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(50 (Sp(n) x SL(2m + 1), A1 ® A19 V(2ri) <g) V(2m + 1)).

( 6) (GL(1) X Spin (10), • ® half-spin rep., 7(1) <g> 7(16)).

(60 (Spin (10), half-spin rep., 7(16)).

§8. Prehomogeneous vector spaces with finitely many orbits

In this section, we shall study some necessary conditions that a

number of orbits of a given irreducible triplet (G, p, V) is finite. Clearly,

such a triplet must be a P.V. from the dimension reasons. By Theorem

1 in § 1, the Lie algebra g of p(G) is reductive with at most one-dimen-

sional center. First we shall consider the case when the center of g is

of one dimension. Then as we have seen in § 3, we may assume that

G = GL(1) x G, x . . x Gk, p = D ®^(x) .. ®pk, V = 7(1)® V(dλ)<g>. .

® V(dk) with dx> d2> > dk > 2, where each Gt is a connected almost

simple algebraic group, pt is an irreducible representation of Gt on the

dΓdimensional vector space V(dτ) (1 < i < k), and Π is the standard

representation of GL(1) on the one-dimensional vector space 7(1).

PROPOSITION 1. Let p: Gf —> GL(V) be an irreducible representation

of a semi-simple algebraic group Gr on V'. Assume that a number of

orbits of a triplet (Gf x GL(n), p (g) A19 V ® V(n)) is finite. Then for

any k < n, a number of orbits of a triplet (G' x GL(k), p (x) Au V (x) V(k))

is also finite.

Proof. Identify 7 = 7 ' (g) V(ri) with F φ . φ F (^-copies) and for

any point v = (vλ, , vn) of 7, let φ(v) be a subspace of V; generated

by vx, - , vn. Then φ is a surjective map from 7 to a set T =

Grass^ (70 U U Grass0 (70 where £ = min (dim 7 ; , n) and Grass r (70

denotes the Grassmann variety consisting of r-dimensional subspaces of

V. Since GL(n) acts homogeneously on each fibre of ψ, there is a one-

to-one correspondence between the orbits of a triplet (G/ x GL(n), p (g)

A19 Yf ® V(n)) and the orbits of Gf on Γ. Therefore, by assumption, a

number of G-orbits on Grass r (70 (0 < r < ί) is finite. In particular,

for ίf = min (dim V, k), a number of G-orbits on T = Grass r (70 U

U Grass0(70 is finite, and hence we obtain our assertion. Q.E.D.

PROPOSITION 2. Let (G,p,V) be an irreducible P.V. with finitely

many orbits. Then we have 0 < k < 3.

Proof. Assume that k > 4. Then a triplet (SL(dλ) x SL(d2) x SL(d3)
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X GL(dA dk), Λλ®Λ1®Λι® Λu V{d,) ® V(d2) ® V(d3) ® V(dt dk) has
finitely many orbits. Therefore by Proposition 1, a triplet {SL{d^ X
SL(d2) x SL(d3) x GL(2), Λx ® Λ ® 4 ® Λ, F(d,) ® 7(d2) ® F(d3) ® 7(2)) has
also finitely many orbits. By repeating this procedure, a triplet (SL(2)
X SL(2) x SL(2) x GL(2), A, ® A ® A ® Λ, 7(2) ® 7(2) ® 7(2) ® 7(2)) has
finitely many orbits. This is a contradiction since dimSL(2) x SL(2) x
SL(2) x GL(2) = 13 < dim 7(2) ® 7(2) ® 7(2) ® 7(2) = 16. Q.E.D.

Assume that a number of orbits of a triplet (G, p, 7) is finite. If
k < 1, then it is a reduced P.V. and hence by Theorem 54 in § 5, we
obtain the following assertion.

PROPOSITION 3. If k < 1, it is equivalent to one of the following
P.V.'s.

I) A Regular P.V.

(1) (GL(1), Ώ, 7(1)) (k = 0).
(2) (GL(n), 2ΛX, V{\n{n + 1))) (n > 2).
(3) (GL(2m), Λ2, V(m(2m - 1))) (m > 3).
(4) (GL(2), SAιt 7(4)).
(5) (GL(6), Λ3, 7(20)).
(6) (GL(7), Λ3, 7(35)).
(7) (GL(8), Λ, 7(56)).
(8) (GL(1) x Sp(3), D ® Λίf 7(1) ® 7(14)).
(9) (GL(1) x SO(n), D ® Λ, 7(1) ® 7(n)) (TO > 3).
(10) {GL{1) x Spin (7), • ® spin rep., 7(1) ® 7(8)).
(11) (GL(1) x Spin (9), D ® spin rep., 7(1) ® 7(16)).
(12) (GL(1) x Spin (11), D ® spin rep., 7(1) ® 7(32)).
(13) (GLQ) x Spin (12), • ® half-spin rep., 7(1) ® 7(32)).
(14) (GL(1) x Spin (14), • ® half-spin rep., 7(1) ® 7(64)).

(15) (GL(1) x (G2), D®Λ, 7(1)® 7(7)).
(16) (GL(1) χEe, D® Au 7(1) ® 7(27)).
(17) (GL(1) x E7, ΠΘ A, 7(1) ® 7(56)).

II) A Non-regular P.V. without Relative Invariants.
(1) (GL(n), A, V(n)) (n > 2).
(2) (GL(2m + 1), At, 7(m(2m + 1))) (m > 2).
(3 ) (GL(1) x Spin), D ® A» 7(1) ® V(2n)) (n > 2).
(4) (GL(1) x Spin (10), Π® half-spin rep., 7(1) ® 7(16)).
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Now we shall consider the case of k = 2. Then it is reduced or is
a castling transform of a reduced P.V. with k < 2. First we shall
consider a castling transform of a P.V. with k = 1.

PROPOSITION 4. The
many

I) A

( 1 )

( 2 )

( 3 )
( 4 )
( 5 )
( 6 )
( 7 )
( 8 )

( 9 )
(10)

(11)
(12)
(13)
(14)
(15)

or bits.

Regular P.V.
(SL(n) x GL{\n(n +

- D) in > 3).
(SL(2m) x GL(m(2m

1) - D) (m > 3).
(SL(2) x GL(3), 3Λ,
(SL(6) X GL(19), Λ3

(SL(7) x GL(34), Λ3

(SL(8) X GL(55), Λ3

S2J(3) X GL(13), A% (>

(Spin (7) X GUI), s;

(Spin (9) x GUIS),
(Spin (11) x GL(31),
(Spin (12) x GL(31),
(Spin (14) x GL(63),
((G2) x GL(6), A2 ® .

(# β X GL(26), ^! ® i
(E7 x GL(55), A6 ® ̂

following

D-D, 2

- 1) - 1),

® Λ 1 ; V"(4)

<g)Λj, 7(20

®Λ> ^(35
®yl1, 7(56
l>Alf 7(14)
pin rep. ®
spin rep. (
S2?i» rep.

half-spin
half-spin

A,, 7(7)®
ll9 7(27)®
i,, 7(56)®

non-reduced P.V.'s have infinitely

\AX ® Λi, 7(|n(w + 1)) ® 7(|%(w + 1)

Λ2 ® Λ1; V(m(2m — 1)) ® 7(m(2m —

® 7(3)).
) ® 7(19)).
) ® 7(34)).
) ® 7(55)).
® 7(13)).
)Alt 7(8)® 7(7)).
2>ΛU 7(16) ® 7(15)).
ΘAU 7(32) ® 7(31)).
rep. ®Λ1 ; 7(32) ® 7(31)).
rep. (g)Λ,, 7(64) ® 7(63)).
V(6)).

' V(26)).

) 7(55)).

II) A Non-regular P.V. without Relative Invariants.
(1) (SL(2m + 1) x GL(m(2m + 1) - 1), Λ2 <g> 4 , 7(m(2m + 1))

<g> 7(m(2m + 1) - 1)) (m > 2).
(2) (Spin (10) x GL(15), half-spin rep. ® Λl9 7(16) ® 7(15)).

Proof. Assume that (1) has finitely many orbits. Then by Propo-
sition 1, a triplet (SL(n) x GL(3), 2Aι ® Alf V(£n(n + 1)) ® 7(3)) has also
finitely many orbits. Since dim SL(ri) x GL(3) < dim V(±n(n + 1)) ® 7(3),
it is not a P.V. and hence it has infinitely many orbits, i.e., a contra-
diction. Similarly, we can prove that other P.V.'s in Proposition 4 have
infinitely many orbits. Q.E.D.

Next we shall consider a trivial P.V. (G x GL(m), p ® Λί9 V(n) ®
Vim)) with k = 2, m > n. If a number of orbits of this P.V. is finite,
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then by Proposition 1, a triplet (GL(1) χ ( ί , • (x) p9 7(1) (x) 7(w)) and a

triplet (G x GL(w — 1), p ® 4> 7(n) (x) 7(w — 1)) have also finitely many

orbits. Therefore, by Proposition 3 and Proposition 4, we have G =

SL(ri), SO(n), or Sp(n') (n = 2w/ is even). Now we shall consider a

castling transform of a reduced P.V. with k — 2.

PROPOSITION 5. Tfce following non-reduced P.V.'s have infinitely

many orbits.

I) A Regular P.V.

( 1 ) 0SL(3) x GL(4), 2 4 <g> A19 7(6) <g) 7(4)).

( 2 ) (SL(6) X GL(13), Λ2 <g> 4 , 7(15) <g) 7(13)).

( 3 ) (Spin (7) x GL(6), spin rep. ® A19 7(8) <g) 7(6)).

( 4 ) (Spin (7) x GL(5), spin rep. ® Λ , 7(8) (x) 7(5)).

( 5 ) (Spin (10) x GL(14), half-spin rep. ® Λu 7(16) ® 7(14)).

( 6 ) (Spin (10) x GL(13), half-spin rep. ® Au 7(16) ® 7(13)).

( 7 ) ((G2) x GL(5), Λ2 (8) Alf 7(7) ® 7(5)).

( 8 ) (E, X GL(25), 4 (x) 4 , 7(27) (x) 7(25)).

II) A Non-regular P.V.

(9 ) (SL(2m + 1) X GL(m(2m + 1) - 2), Λ2 <g> 4 , 7(m(2m + 1))

(x) 7(m(2m + 1) - 2)).

Proof. If (3) or (4) has finitely many orbits, then a triplet (Spin (7)

X GL(4), spin rep. (x) Alf 7(8) ® 7(4)) has also finitely many orbits by

Proposition 1. However, this triplet is not a P.V. by Proposition 28 in

§5, i.e., a contradiction and hence (3) and (4) has infinitely many orbits.

If (5) or (6) has finitely many orbits, a triplet (Spin (10) x GL(4), half-

spin rep. (x) A19 7(16) (x) 7(4)) has also finitely many orbits. Since

dim Spin (10) x GL(4) = 6 1 < 64 = dim 7(16) ® 7(4), this triplet is not a

P.V., i.e., a contradiction. Similarly, we can prove our assertion for

(1), (2), (7), (8). Q.E.D.

PROPOSITION 6. Let (G, p, 7) be a triplet with finitely many orbits

and k = 2. Then it is equivalent to one of the following triplets. (Note

that we have assumed that the center of p(G) is one-dimensional.)

I) A Regular P.V.

( 1 ) (SL(n) x GLin), Aι <g> A19 V(n) <g> V(n)) in > 2).

( 2 ) (SO(n) x GL(m), Λλ (x) A19 V(n) (x) Vim)) (n>m> 2).
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( 3 ) (Spin) X GL(2m), A, ® Λu V(2n) ® V(2m)) (n > m > 1).

( 4 ) (SL(3) x GL(2), 2 4 ® Alf 7(6) ® 7(2)).

( 5 ) (5L(6) X GL(2), A2 <g> Λ1( 7(15) ® 7(2)).

( 6 ) (5L(5) x GL(3), Λ2 ® Λu 7(10) ® 7(3)).

( 7 ) (SL(5) x GL(4), A2 ® Λ,, V(10) ® 7(4)).

(8 ) CSpiM (7) x GL(2), spm rep. ® Λx, 7(8) ® 7(2)).

( 9 ) (Spin (7) x GL(3), spin rep. ® Alt 7(8) ® 7(3)).

(10) (Spin (10) x GL(2), half-spin rep. ® Λ:, 7(16) ® 7(2)).

(11) (Spin (10) x GL(3), half-spin rep. ® Λ,, 7(16) ® 7(3)).

(12) ((G2) x GL(2), A2 ® Λ,, 7(7) ® 7(2)).

(13) (#, X GL{2), A, ® 4 , ^(27) ® 7(2)).

II) A Non-regular P.V. with Relative Invariants.

(GL(1) x Spin) X 50(3), D ® Ax ® Λ, 7(1) ® ^(2») ® 7(3)).

Ill) A Non-regular P.V. without Relative Invariants.

(1) (SL(n) x GL(m), Λ ® Au V(n) ® F(m)) (w < m).

(2) (SO(n) x GL(m), ^, ® Ax, V(n) ® 7(m)) (w < m),

(3) (Sp(n) x GL(2m), Λ, ® Λ, 7(2%) ® 7(2w)) (w < w).

(4) (Spin) X GL(2m + 1), Λλ ® J^ 7(2w) ® 7(2w + 1)).

(5) (SL(2m + 1) x GL(2)f Λ ® Alt V(m(2m + 1)) ® 7(2)) (m > 2).

Proof. From Theorem 54 in §5, Propositions 4 and 5, we obtain

our assertion. Q.E.D.

Finally, we shall consider the case of k = 3. Assume that a triplet

(GL(1) xG.xG.xG,, • ® ft ® ft ® Pz, 7(1) ® V(dd ® 7(ώ2) ® 7(d3)) has

finitely many orbits. Then clearly a triplet (SL(d^) x SL(d2) x GL(ds),

Ax ® 4 ® Jj, 7(dt) ® 7(d2) ® 7(d3)) has also finitely many orbits and hence

by Proposition 1, (SL(d2) x SL(d2) x GL(2), ^ ® Ax ® Λ. 7(d2) ® 7(d2) ®

7(2)) has also finitely many orbits. By Proposition 16 in § 5, it is not

a P.V. if d2 > 4, and hence we have 3 > d2 > 2. If d2 = 2, then our

triplet is equivalent to a triplet (GL(1) χ ^ x 50(4), • ® pι ® Alt 7(1)

® V(ά\) ® 7(4)). If Gi ^ 5L(^), then this is a reduced P.V., i.e., a con-

tradiction in view of Theorem 54 in § 5. Therefore, G! = SL(di). As-

sume that d2 = 3. If dt = 3, then a triplet (SL(3) x 5L(3) x GL(3),

A, ® yt, ® J u 7(3) ® 7(3) ® 7(3)) has also finitely many orbits. This is

a contradiction since dim SL(3) x SL(3) x GL(3) = 25 < 27 = dim 7(3) ®

7(3) ® 7(3), and hence we have d% = 2, G3 = SL(2), p3 = A,. Since d2 = 3,
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we have G2 = SL(2), p2 = 2Λλ or G2 — SL(3), p2 = Λγ. Assume t h a t G2 =

SL(2). Then this triplet is equivalent to (Gι x SO(3) x GL(2), Pl ® A, ®
4 , 7 ^ ) ® 7(3) ® 7(2)) (d, > 3). If Gi Φ SLidJ, then it is a reduced
P.V., i.e., a contradiction in view of Theorem 54 in §5 and we have
(SL(dd x SO(3) X GL(2), 4 ® Λ ® Λ1; 7(^0 ® 7(3) ® 7(2)). Since (d\ - 1)
+ 3 + 4 > 6cZ1( we have ^ > 5. Note that it is regular if 6 > ^ > 5
and not regular if ĉ  > 7. Assume that G2 = SL(B). Then a triplet
(Gi x GL(S), pλ ® J 1 ; 7(dj) ® 7(3)) has finitely many orbits by Proposition 1.
Therefore, by Proposition 6, Gι = SL{dι), SOW, Spid'd (d, = 2d[: even),
SL(5) (^ = 10), Spin (7) (d, = 8) or Spin (10) (^ = 16). However, if G,
Φ SUdJ, then (Gx x SL(3) x GL(2), ft ® Λx ® ̂ l f 7(^0 ® 7(3) ® 7(2)) is
a reduced P.V., i.e., a contradiction in view of Theorem 54 in §4.
Hence we have (5L(dx) x SL(3) x GL(2), A, ® Λ ® yί1( 7(^) ® 7(3) ® 7(2)).

PROPOSITION 7. If k = 3, ί/ιe» ίί is equivalent to one of the follow-
ing triplets.
(1) (SLid,) x SL(2) x GL(2), ̂  ® Λ, ® Λ, ^(^i) ® ^(2) ® 7(2)) ~ (SO(4)

X GLidJ, A, ® J:, 7(4) ® VidJ) (d, > 2).
(2) (SLWO x SO(3) x GL(2), Λ ® A, ® Λ, ^(d.) ® 7(3) ® 7(2))

id, > 5).
(3) (SL{dd x SL(3) x GL(2), A1 ® Λ ® Λ, ^Wi) ® V(3) ® 7(2))

(d, > 3).

Now consider the case when G is semi-simple. Then (GL(1) x G,
D ® p, 7(1) ® 7(d)) is a non-regular P.V. with finitely many orbits and
hence by Propositions 3, 6, and 7, it is equivalent to one of the following
P.V.'s.
(1) (SL(n), Alt V(n)) (n>2).
(2) (SL(2m + 1), Ait 7(m(2m + 1))) (m > 2).
(3) (Sp(n), Alt V(2n)) (n>2).
(4) (Spin(10), half-spin rep., 7(16)).
(5) (SL(ri) x SL(m), A, ® Au V(n) ® 7(m)) (« < m).
(6) (SO(ri) x GL(m), J t ® Alf V(n) ® 7(m)) (w < m).
(7) (Spin) x SL(2m), A, ® Λ,, 7(2«) ® 7(2w)) (w < m).
(8) (Sp(n) x SL(2m + 1), A1 ® Λ, 7(2?ι) ® 7(2ra + 1)).
(9) (SL(2m + 1) X SL(2), A2 ® Ax, 7(m(2m + 1)) ® 7(2)).

(10) (SLidJ x S0(3) x SL(2), Λ ® A, ® ̂ ,, 7(^) ® 7(3) ® 7(2))

(4ι > 7).
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(11) (SL(dd x SL(3) x SL(2), A1®A1® Alt V{dd ® 7(3) ® 7(2))
(dt > 7 or dt = 5).

Therefore we obtain the following theorem.

THEOREM 8. (i) A trivial P. 7. with finitely many orbits is equivalent
to one of the following P.V.'s.
(1) iSL(n) x GL(m), A, ® Alt V(ri) ® Vim)) (1 < n < m).
(2) (SO(n) x GL(τn), Ax ® 4 , 7(w) ® F(m)) (3 < n < m).
(3) (Sp(«) X GL(m), A, ® Λ,, 7(2%) ® V(m)) (2M < m).
(4) (SO(3) X SL(2) x GL(d), Λ ® Λ, ® J1 ? 7(3) ® 7(2) ® V(d))

(d > 6).
(5) (SL(3) X SL(2) x GL(d), Λ ® A, ® J 1 ( 7(3) ® 7(2) ® V(d))

(d > 6).
(I') (SL(n) x SL(m), A, ® J 1 ( V(n) ® 7(m)) (1 < n < m).
(20 (SO(ri) x SL(m), yt, ® Au V(ri) ® 7(m)) (3 < n < m).
(30 (Sρ(n) x SL(m), vίt ® Λιt 7(2%) ® 7(m)) (2n < m).
(40 (SO(3) X SL(2) x SL(d), A, ® Λ ® J 1 ; 7(3) ® 7(2)

(d > 7).
(50 GSL(3) X SL(2) x SL(d), Λλ ® Λ ® ̂ l f 7(3) ® 7(2)

(d > 7).

(ii) A non-trivial non-reduced P.V. with finitely many orbits is equivalent
to one of the following P.V.'s.
(1) (SO(ri) x GL(m), A, ® Au V(n) ® V(m)) (n>m> n/2).
(2) (Sp(») X GL(m), A, ® Λ, V(2w) ® V(m)) (2n>m> n).
(3) (SO(3) x SL(2) x GL(5), Λ ® Λ ® Alt 7(3) ® 7(2) ® 7(5)).
(4) 0SL(4) x SL(3) x (?L(2), Λ ® A, ® Λ, 7(4) ® 7(3) ® 7(2)).
(5) (SL(5) x SL(S) x GL(2), ^ ® Λ ® Au 7(5) ® 7(3) ® 7(2)).
(10 (Sρ(n) x SL(2m + 1), ^! ® Ax, 7(2%) ® 7(2m + 1))

i2n > 2m + 1 > %).
( 20 GSL(5) X SL(3) X SL(2), Λ ® Λ ® Aιt 7(5) ® 7(3) ® 7(2)).

Remark 9. Theorem 8 says that a P.V. with finitely many orbits
is reduced with few exceptions. However, the orbital decomposition is
necessary to prove that such a P.V. has actually finitely many orbits.
The orbital decomposition of reduced P.V.'s is in almost all cases com-
pleted by the second author (see [12]), J. Igusa (see [2]), I. Ozeki (see
[20]), Kawahara (see [13]) and S. J. Harris (see [7]). These orbital struc-
tures have very close relations with the ^-functions and Fourier trans-
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forms of the relative invariants.
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