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Nonlinear Finite- Volume Methods for
the Flow Equation in Porous Media

MOHAMMED AL KOBAISI AND WENJUAN ZHANG

Abstract

This chapter explains how one can formulate nonlinear finite-volume (NFV)
methods, as advanced discretization schemes, to solve the flow equation in porous
media. These schemes are of particular interest because apart from being consistent,
they are monotone by design. We explain the basic ideas of the NFV methods: how
to construct one-sided fluxes, interpolate using harmonic averaging points, and
obtain unique discrete fluxes through grid faces with convex combinations of one-
sided fluxes. We outline key functions in the accompanied nfvm module in the
MATLAB Reservoir Simulation Toolbox (MRST) and show some examples of
how the method is applied.

2.1 Introduction

Two-point flux approximation (TPFA) is the default discretization scheme in almost
all simulators, and this has been the case since the early days of reservoir simula-
tion. Its popularity stems from its simplicity and properties of being locally con-
servative and honoring the discrete maximum principle (solution must be between
the minimum and maximum boundary conditions [6]). In the context of reservoir
simulation, the pressure field (solution) must be positive and bounded between
the minimum and maximum boundary conditions (e.g., wells). For tensor per-
meability fields and non-K-orthogonal grids, TPFA fails to address the tensorial
flow behavior and the errors incurred in the flow field can be quite significant. An
excellent discussion on this can be found in Chapter 6 and subsection 10.4.2 in the
MATLAB Reservoir Simulation Toolbox (MRST) textbook [14]. Linear multipoint
flux approximation (MPFA) schemes [1, 2, 5, 7, 8, 18, 24, 25] can alleviate this
problem to a certain degree, but they are “conditionally monotone” depending on
the anisotropy contrast and severity of grid distortion [17]. Moreover, these linear
schemes tend to increase cell stencils. To improve the quality of the discrete flux
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approximations with respect to monotonicity and the discrete maximum principle,
nonlinear discretization schemes have been proposed recently [11, 13, 15, 16, 26].
These schemes aim to preserve monotonicity and positivity of the discrete solutions
using a number of methods, most notably positive coefficient interpolation strate-
gies, MPFA-like or flux continuity interpolation, and inverse-distance interpolation.

In the following sections, we succinctly describe the mathematical problem and
delve right into the discretization scheme. We also present several examples, which
can be readily replicated using the nfvm module implemented in MRST. The exam-
ples demonstrate the efficacy of nonlinear finite volume (NFV) methods against
spurious oscillations that can potentially arise in the solutions of other consistent
discretization schemes.

2.2 Model Equations

To illustrate the ideas of NFV methods, we consider the following diffusion equa-
tion on an open bounded polygonal domain Q € R%,d =2 or 3:

-V - (KX)VpXx) =¢q((x), xe,
p(x) =gp(x), x€Ip. 2.1
—KX)Vp(x) -0 =gn(x), xeln

Here, p is the unknown dependent variable, called fluid pressure; the absolute
permeability K of the porous medium is assumed to be symmetric and positive def-
inite; and ¢ is the source (if positive) or sink term (if negative). Dirichlet boundary
conditions gp and Neumann boundary conditions gy are applied on the boundaries
I'p and I'y, respectively. The boundary of the domain €2 is 2 = I'y U I'p. The
unit normal vector pointing outward to the boundary is denoted by n.

2.3 Nonlinear Finite-Volume Methods

Like many control volume—based discretization methods, the NFV methods begin
by partitioning the computational domain €2 into a conformal mesh consisting of
strongly connected nonoverlapping cells. The following notations are first defined
for the mesh:

€, : the set of all cells {Q;}7, in the mesh, where n, is the total number of cells;
Q2; : the ith cell in the mesh;

x; :the centroid of cell 2;;

JF : the set of all faces in the mesh;

o :ageneric face from F;

X, : auxiliary point associated with face o;

Fi : the subset of faces associated with cell €2;; i.e., 082 = Uyer,0, VQ; € ).
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Integrating (2.1) over cell €2; and applying the divergence theorem leads to

/ _v.(KVp)dx:f —KVp -ndS=)_ —KVp-ﬁdSZ/ q dx.
Q; Qi ceF; Y% &
(2.2)

This equation can be seen as a mass-balance equation for cell €2;. The key element
of finite-volume methods is to construct the discrete numerical flux v, through the
face o using pressure at the centroids of some cells:

/ —KVp - 0dS ~ v, = Y tipu. (2.3)

keps

Here, ¢, is the index set of cells used for the approximation of flux v,, the trans-
missibility term ¢, is associated with cell €, and py is the numerical approxima-
tion of pressure at the centroid of cell €2;. For linear finite-volume methods, the
transmissibility terms #; are constants for a given mesh and absolute permeability
distribution.

The discrete flux expression given by (2.3) can be approximated linearly using
the pressures of two adjacent grid blocks sharing an interface or by using additional
pressures from neighboring grid blocks. The former leads to the standard TPFA
method, whereas the latter leads to the so-called MPFA formalism. Variants of
MPFA primarily depend on the location of the continuity points and the number
of neighboring cells involved in the flux approximation. For additional details on
flux linearization schemes in MPFA formulations, we refer the reader to [1].

Substituting (2.3) into (2.2) and assembling the resulting equation for all cells
in the mesh leads to a system of linear equations that can be solved for pressure at
cell centroids. For NFV methods, however, the transmissibility terms # depend on
the primary unknowns, leading to a system of nonlinear equations. To derive the
discrete numerical flux v, using NFV methods, two one-sided fluxes will first be
constructed, and then a unique flux is obtained by taking a convex combination of
the two one-sided fluxes. The details follow in the next subsections.

2.3.1 Construction of One-Sided Fluxes

Consider an internal face o shared by two cells €2; and 2; for a 2D grid as depicted
in Figure 2.1. Flux through the face seen from cell €2; (called one-sided flux) can
be approximated as

/ —K;Vp -ndS ~v. = —(Vp); - Kin;j, (2.4)
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Figure 2.1 Decomposition of conormal vector K;n;; and K;nj; using face
interpolating points as auxiliary points.

where (Vp); denotes the average constant pressure gradient inside €2;, K; is the
piecewise constant permeability tensor of cell €;, and n;; is the area-weighted
normal vector to the face o pointing from cell £2; to cell €2;.

The conormal vector K;n;; is then decomposed as

Kin;; = aja (XA — X;) + o8 (X — X;), (2.5)

where x5 and xg are the position vectors of two auxiliary points, each associated
with one face of cell €2;. Determining the exact locations of the auxiliary points will
be explained in the next subsection. The terms ;5 and «;p are the corresponding
decomposing coefficients and they are required to be nonnegative. Substituting
(2.5) into (2.4) and assuming linearly varying pressure inside €2; leads to the fol-
lowing expression:

v = aia (pi — pa) + s (Pi — PB), (2.6)

where pa and pp are pressures at X5 and Xg, respectively. To obtain a pure cell-
centered scheme, ps and pg are further interpolated using the primary unknowns,
which are pressures at some cell centroids:

DA = Z WAk Pk PB = Z WBk Pk, 2.7)
keSa keSp

where Sp and Sp are the index sets of control volumes that are involved in the
interpolation of p4 and pp, respectively. The term wa; is the weighting coefficient
of pressure at the centroid of cell €2, in the interpolation of p4 and wg has similar
meanings. Here, the weighting coefficients are again required to be nonnegative
and need to sum up to unity for each auxiliary point. Finally, substituting (2.7) into
(2.6) leads to

vf; =oia | Pi — Z warPr | HaiB | Pi — Z WBk Pk | - (2.8)
keSa keSp
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Collecting similar terms gives the final form of the one-sided flux:

vl =tipi—tip;— Y tipe=tipi—tip;—r (2.9)
keS;
where 7/, tj., and #; are coefficients of p;, p;, and py, respectively, and S; = Sa U
Sg\{i, j}. Similarly, the one-sided flux flowing from ; to ; seen from €2; can be
expressed as (with S; = Sc U Sp\{i, j})

vl=tlpi—tipi =Y tlpe=tlpj—tlpi—r; (2.10)
kESj

One-sided fluxes for 3D grids can be derived analogously. Using the nfvm module
in MRST, the one-sided transmissibilities are computed as:

T = findOStrans (G, rock, hap, 'bc', bc);

Here, G, rock, and bc are data structures for grid, rock properties, and boundary
conditions, respectively. Note that the boundary condition structure bc is slightly
different from that used in the core of MRST. Instead of providing a scalar value for
each boundary face in bc.value, we specify a function handle for each boundary
face to accommodate the boundary data gp and gy in (2.1). The input argument
hap stores information of the auxiliary points used in (2.5)—(2.7), which we will
discuss in the next subsection.

2.3.2 Harmonic Averaging Point

Construction of one-sided fluxes requires introducing auxiliary points (2.6) and
interpolating pressure at these points by pressures at some cell centroids (2.7). The
grid vertices are an obvious choice for auxiliary points, and various interpolation
methods have been proposed in the literature to interpolate pressure at grid vertices
using pressure at cell centroids, such as linear interpolation and inverse distance
weighting (IDW) and others; see, e.g., [15, 19, 23]. Different interpolations can
have a big impact on the performance of the NFV methods, and it is difficult
to design an interpolation method that is both robust and accurate. As noted in
[22], it can be more challenging to construct a second-order positivity-preserving
interpolating algorithm than the construction of the NFV method itself. Another
disadvantage of choosing grid vertices as auxiliary points is that the number of
cells involved in the interpolation of pressure at a grid vertex can be quite large.
Usually, all of the cells that share the vertex will be involved.

A more attractive option is the so-called harmonic averaging point that was
first proposed in [4]. There is one harmonic-averaging point X, associated with
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Figure 2.2 Harmonic-averaging point X, lies between the two points x4 and Xp.

each face o in the mesh. Interpolation of pressure at the harmonic-averaging point
involves only the two neighboring cells that share the face and the interpolating
coefficients are always nonnegative. Still, consider face o shared by two cells €2;
and 2; shown in Figure 2.2. First, we find the point x4 that lies on the plane
containing face o such that the vector x5 — x; is parallel to K;n;;. Similarly, we
can find the point xg such that vector xg — X; is parallel to K;n;;. Assume that
the pressure unknown p is piecewise affine, then flux out of cell 2; and 2; can be
expressed individually as

v, =—(Vp)i - Kin;; = w; (p; — pa),
g A 2.11)

vl =—(Vp);-K;nj;i =w; (p; — ps).
where w; = ||Kl-nl-j H / IIXa — X;|| and w; = Hanj,- H / ||XB —X; H Furthermore,
assume that pressure and the tangential part of the pressure gradient g, are contin-
uous on the plane containing face . Now, if we take an arbitrary point X on the
plane containing face o, the pressure at points X5 and Xg can be written in terms of
g, and the pressure at x as

pPA=pX)+8 (XA —X), pp=pX +8 - (Xg—X). (2.12)
Substituting (2.12) into (2.11) and imposing flux continuity condition v’ + v/ = 0,
we can solve for pressure p(x) as
Wipi +w;p; — 8o - [wi (Xa —X) + w; (xg — X)]

w; + w; ’

p(x) = (2.13)
This shows that pressure at any point on the plane containing face o is a linear
convex combination of pressures at centroids of two neighboring cells plus a term
accounting for pressure variation along the tangent direction. If we choose a certain
point, such that the last term in the numerator vanishes regardless of the tangent
gradient g,, pressure at this point will depend on pressure at the centroids of two
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Figure 2.3 Left: Harmonic-averaging points (blue dots are harmonic-averaging
points lying inside the face and red dots are points lying outside the face). The
elongated ellipses in each cell represent the cell-wise constant permeability tensor.
The semi-axes of the ellipses are scaled by the square root of the maximum and
minimum principal permeability, respectively. Right: Zooming in on the circled
part of the left plot. The red arrows represent the normal vector to the rightmost
face and its associated conormal vector. The blue arrows start at the centroid of
the cell and end at the harmonic averaging points associated with the faces of the
cell. The triangle in magenta represent the convex hull of the involved harmonic
averaging points. (After Zhang and Al Kobaisi [26])

neighboring cells only. By equating w; (Xo — X)+w; (Xg — X) to zero, we can solve
for this particular point x denoted as X, :
w;Xa + w;Xp

Xy = —m,

2.14
w; +w]' ( )

which is the location of the harmonic-averaging point associated with face o. Pres-
sure at this point can then be interpolated by

w;pi +w;p;

2.15
o w (2.15)

p (XJ) =

Unfortunately, the harmonic-averaging point is not without its drawback. For
heterogeneous and anisotropic permeability tensors on nonorthogonal grids, some
harmonic-averaging points may lie far outside their associated grid faces. As a
result, decomposition of conormal vectors with nonnegative coefficients can easily
run into difficulty. Figure 2.3 shows an example taken from [26]. The left plot
of the figure shows a distorted quadrilateral mesh populated by a heterogeneous
rotating permeability tensor field. The permeability tensor of each cell in the mesh
is represented by an ellipse, whose semi-axes are scaled by the square root of
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the maximum and minimum principal permeability, respectively. The permeability
anisotropy ratio is a constant of 200. Because of the strong anisotropy, the ellipses
look very elongated in the plot. We can see that whereas most harmonic-averaging
points lie inside the associated faces (indicated by the blue dots), a small fraction of
the harmonic-averaging points (indicated by the red dots in the figure) lie far away
from their respective associated faces.

The right plot of Figure 2.3 shows the zoomed-in area delineated by the green
circle on the left plot of the figure. The four blue arrows denote the vectors starting
at the centroid of the cell and ending at the four harmonic-averaging points asso-
ciated with the four faces of the quadrilateral cell. Conormal vector Kn associated
with the rightmost face is denoted by the red arrow. It can be readily seen that
decomposing Kn with positive coefficients using harmonic-averaging points only
is impossible, because the centroid lies outside of the convex hull (represented
by the triangle in magenta) of the four harmonic averaging points associated to
this cell.

To circumvent this difficulty in decomposing the conormal vectors, a robust
and efficient correction algorithm is given in [26] to modify the location of those
“ill-placed” harmonic averaging points so that the conormal vectors can be success-
fully decomposed with nonnegative coefficients. The main idea of the correction
algorithm is to “pull back” the ill-placed harmonic averaging points toward the
face centroids, while minimizing the errors incurred in the process. Specifically,
for any cell whose centroid lies outside the convex hull of the harmonic averag-
ing points associated with its faces, the harmonic averaging point that deviates
the most from the face centroid is identified and a different interpolating point is
chosen to replace the original harmonic-averaging point. The location of the new
interpolating point is restricted to lie within a prescribed distance from the face
centroid. Interpolation of pressure at this point is still given by (2.15). Because for
any X # X, lying on the hyperplane containing face o pressure at point X is given
by (2.13), the new location is chosen such that the term w; (X — X) + w;(Xg — X)
is minimized.

Without digression from the main framework of NFV methods, in what follows
we shall assume that the ill-placed harmonic averaging points have been corrected
and interested readers are referred to [26] for details on the correction algorithm.
Figures 2.4 and 2.5 show two pictorial examples in which correctHAP (G, hap),
found in the nfvm module, has been used to correct the harmonic averaging points
for a triangular cell in 2D and a tetrahedral cell in 3D, respectively. The code for
constructing and correcting the harmonic averaging points is

hap=findHAP (G, rock, 'bc', bc); % compute hap's for all faces
hap=correctHAP (G, hap); % apply correction algorithm to the hap's
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Figure 2.4 Harmonic-averaging points for a triangular cell before and after
correction. (After Zhang and Al Kobaisi [26])

N
S

Figure 2.5 Harmonic-averaging points for a tetrahedral cell before and after
correction. (After Zhang and Al Kobaisi [26])

The hap structure stores the coordinates (hap . coords) of each harmonic averag-
ing point, the index of cells (hap.cells) involved in the interpolation, and the
corresponding weighting coefficients (hap . weights). The correctHAP function
will then modify hap . coords whenever necessary.

2.3.3 Nonlinear TPFA

Using the harmonic-averaging points just introduced as auxiliary points, we can
construct two one-sided fluxes v’ , v/ for each internal face o as detailed in Sub-
section 2.3.1. The unique flux v, through face o flowing from cell €2; to £2; is then
obtained as a convex combination of the two one-sided fluxes:

Vo = vl 4+ pj(—vl), (2.16)
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where p;, u; are the two nonnegative coefficients for the convex combination that
satisfy

wi +p;=1. 2.17)
Substituting the two one-sided fluxes (2.9) and (2.10) into (2.16) leads to

Uy = (mt,-" + th;/) pi — </thf + uit}) Pj— MWili + Wwjr;. (2.18)

To obtain a nonlinear TPFA scheme, the last two terms of (2.18) are forced to be
Zero:

— Uit +,ble"j =0. (219)

Combining (2.17), (2.19) and solving for u;, ;u; gives
r _ ri
Mj - ri + }"j il

Wi = (2.20)

ri + }"j ’
when r; +r; # 0.If r; +r; = 0, then u; and u; are taken as 0.5. The final
expression for v, is then given by the following:

vy = (Mil,-i + Mjf,-j> pi — (/Ljf} + Mifj-) pi=Tpi—T;pj (2.21)

where T; = ,uitii + ,ujtl.j and T} = /thjj + /L,»t;.. Note that because r; and r; are
dependent on pressure values at some cell centroids, 7; and 7 are also depen-
dent on the primary unknowns. Therefore, the flux v, is nonlinear. In the case of
K-orthogonal grids, the harmonic averaging point for a face coincides with the face
centroid. Decomposition of conormal vectors becomes trivial because the conormal
vector is parallel to the vector starting from the cell centroid and ending at the face
centroid. The terms r; and r; will be identically zero and the two parameters u;
and u; become constants. As a result, (2.21) simplifies to the regular linear TPFA
method with the transmissibility between two cells approximated by the harmonic
average of the cell transmissibilities; i.e., v, = Ty, ( pi—0p j).

2.3.4 Nonlinear MPFA

Though the nonlinear TPFA (NTPFA) method is monotone and preserves the
nonnegativity of the pressure solution, it does not respect the discrete maximum/
minimum principle. To obtain an NFV method that is also extremum preserv-
ing, a different convex combination of the one-sided fluxes can be used; see
[10, 16, 20, 21]. Following the ideas presented in those works, we can write the
one-sided flux expression (2.8) as
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vl = aiA[(Z wAk)pi - Z wAkPk]-l-OliB[(Z wAk)Pi - Z kaPk]

keSa keSa keSa keSp
=ain Y oac(pi — P+ Y ope(pi— pi).- (2.22)
keSa keSp

Noting that ) _, s, @ak = land > res, @Bt = 1 and collecting similar terms gives
the final form of the one-sided flux as

vi =t (pi— pi) + Yt (pi — p) =1, (pi — pj) + R, (2.23)
keS;

where t;. and t,i are coefficients of ( pi—0p j) and (p; — px), respectively, and
S = SaUSg\{i, j}. Note that the coefficients t;, t,i here are different from those in
(2.9). Similarly, we have

vl =1/ (pj—p)+ Dt (py—p) =1/ (pj— pi) + R, (2.24)
kGSj

where S; = Sc U Sp\{7, j}. A unique flux v, is then obtained by taking a convex
combination of the two one-sides fluxes:

Vo = i fy +mj(—v)) = (Mit]i' + l/«jf,?j> (pi = pj) + wiRi — iR (2.25)

Unlike NTPFA, in the nonlinear MPFA (NMPFA) method we choose the two
convex combination parameters as

|R;| IR;|

, = 2.26
TR+ R (2-26)

TR+ IR

when |R;| + |R j| # 0and u; = pj = 0.5 otherwise. With this choice of convex
combination parameters, it can be verified that when R; R; < 0, two algebraically
equivalent fluxes are obtained:

Vy = (,uitj- + //thij) (pi — pj) +2u Zt;c (Pi — pr)
kGS,'

—v, = (Mit} +th,'j) (py = i) +2m; 3 (ps = pi)-
keS;

(2.27)

Equation (2.27) can be seen as an MPFA-like formulation because of the one-
sided flux expressions given by (2.23) and (2.24); hence the name NMPFA. When
R;R; > 0, the last two terms of (2.25) cancel out and the flux expression becomes
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vo = (with + it ) (pi = p)). (2.28)

Again, as in NTPFA, the NMPFA formulation reduces to the linear TPFA in the
case of K-orthogonal grids.

2.3.5 Nonlinear Solver

The system of nonlinear equations resulting from the NTPFA and NMPFA methods
can be solved by any nonlinear solver such as the widely used Newton—Raphson
method. However, to guarantee the positivity of the pressure solutions during non-
linear iterations, the Picard nonlinear solver is often the method of choice and it is
implemented in this module.

Choose a small number €,,, > 0 and initial solution vector p©® > 0
Repeat fork = 1,2, ...,

solve A(p*~")p® =b(p*~")
until [A(p©@)p® —bP®) | < €non|| AP —b(P©)|.

In the following numerical examples, we take €., to be 10~7. We also set the
maximum number of Picard iterations to be 300 and exit if k exceeds 300.

2.4 Numerical Examples

In this section, we present a few examples to show how one can use the aforemen-
tioned NFV formalism, as implemented in the nfvm module of MRST, to solve
the flow equation in porous media. We note here that the examples are not, by
any means, exhaustive but rather are intended to shed some light on the potential
for NFV methods to handle highly unstructured grids with strong anisotropy ratios
and heterogeneity contrasts. Furthermore, in the following we only show the 2D
examples for ease of displaying the results pictorially. 3D cases can be run with the
exact same calls of the nfvm module in MRST with the arguments being in 3D.
Applications in 3D with additional flow physics can be found in [26, 27].

2.4.1 Example 1: Homogeneous Permeability

In this first example, we solve the diffusion equation on a unit square with a hole
in the middle, = (0,1)?\[4/9,5/9]%. The boundary of the computational domain
is composed of two disjoint sets: an outer boundary 'y and an inner boundary I';.
Pressure on Iy is set to 0 and pressure on I'; is 1. Source term ¢ is zero through-
out the domain. The domain is meshed using perturbed quadrilateral grids and
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Figure 2.6 Grids used for monotonicity test on a perturbed quadrilateral mesh
(left) and an unstructured triangular mesh (right).

TPFA

Figure 2.7 Pressure solutions using TPFA, MPFA-O, NTPFA, and NMPFA on a
perturbed quadrilateral mesh. Cells with negative pressure values are colored in
cyan and cells with pressure values greater than 1 are colored in magenta.

unstructured triangular grids shown in Figure 2.6. Permeability is homogeneous
but anisotropic and takes the following form (where 6 is 30°):

cos —sinb 1000 O cosf sind

K= sinf cos6 0 1 —sinf cosf

The discrete maximum principle (DMP) states that the discrete pressure solu-
tion should be bounded within the interval [0, 1]. Figure 2.7 depicts pressure
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Table 2.1 Computational results of Example 1.

Quadrilateral grid Triangular grid
Method Pmin Pmax Niter Pmin Pmax Niter
TPFA 0.0001 0.9686 - 0 0.9877 -
MPFA-O —0.1443 1.1586 - —0.9852 1.0253 -
NTPFA 0 0.9851 73 0 0.9864 82
NMPFA 0 0.9775 153 0 0.9830 300

TPFA

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0

Figure 2.8 Paressure solutions using TPFA, MPFA-O, NTPFA, and NMPFA on
an unstructured triangular mesh. Cells with negative pressure values are colored
in cyan and cells with pressure values greater than 1 are colored in magenta.

solutions computed using linear TPFA, linear MPFA-O, NTPFA, and NMPFA
on the quadrilateral mesh, and the corresponding results on the triangular mesh
are shown in Figure 2.8. Table 2.1 lists the minimum and maximum pressure
values pPmin, Pmax for each method and the number of Picard iterations, nje,
for the two nonlinear methods. As expected, the results show that only the two
NFV methods respect the discrete minimum and maximum principle and perform
consistently on the two different meshes. The MPFA-O method suffers from
strong spurious oscillations, especially on the triangular mesh. Note here that the
default MPFA-O(n = 0) method is used. Monotonicity of linear MPFA methods
on triangular grids is discussed in [12] and it is shown that the MPFA-O(0) method
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Figure 2.9 Convergence history of the Picard nonlinear solver for the two
nonlinear methods on a quadrilateral mesh (left) and a triangular mesh (right).

suffers from strong unphysical oscillations when the triangular grid is not uniform,
but its performance can be improved by using the alternative MPFA—O(n = %)
method [9]. The pressure solution of TPFA is also bounded between [0,1] but the
method is obviously inconsistent on the two meshes.

Figure 2.9 reports the convergence history of the Picard nonlinear solver for
NTPFA and NMPFA on the two meshes. Whereas NTPFA converges quickly on
both meshes, NMPFA converges at a slower rate on the quadrilateral mesh and
suffers from convergence issues on the triangular mesh. This may be caused by the
strong anisotropy of the permeability tensor. If we take a mild anisotropy ratio of 5
and solve the diffusion equation on the same meshes again, we now see that both
methods converge, albeit slower for NMPFA. The pressure solutions using NTPFA
and NMPFA for this case are shown in Figure 2.10 and the convergence histories of
the Picard nonlinear solver are shown in Figure 2.11. Depending on the particular
case, NMPFA can run into local stiff nonlinear issues impeding its convergence.
For more details on convergence analyses, see [26].

You can find details of the code in the script nfvmExample 1.m. Some key steps
are given here. After the grid and rock properties are created in the standard MRST
construct format (G, rock), the boundary condition is then specified:

bf = boundaryFaces(G) ;

xf = G.faces.centroids(bf,1); yf = G.faces.centroids(bf,2) ;
d = min([abs(xf) abs(yf) abs(xf-Lx) abs(yf-Ly)l, [1,2);
index=d<le-3;

be.face = bf;

bc.type = repmat({'pressure'}, [numel (bc.face),1]);
bc.value = cell (length(bf),1);

bc.value(index) = repmat({@(x)0}, [sum(index) 1]);
bc.value(~index) = repmat({@(x)1}, [sum(~index),1]);
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Figure 2.10 Pressure solutions using NTPFA and NMPFA on a quadrilateral mesh
(left) and a triangular mesh (right) when the permeability anisotropy ratio is mild.
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Figure 2.11 Convergence history of the Picard nonlinear solver for the two
nonlinear methods on a quadrilateral mesh (left) and a triangular mesh (right)
when the permeability anisotropy ratio is mild.

We then compute the one-sided transmissibility arrays and store the results in a
cell array T:

T = transNFVM(G, rock, 'bc', bc);

which is nothing but a simple function that groups the three functions £indHAP,
correctHAP, and £indOStrans together. The system of nonlinear equations is
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Figure 2.12 Principal directions of the K tensor are rotated by different angles
in each quadrant (left). Middle/left: Quadrilateral/triangular grid used to mesh the
domain.

then solved using the Picard solver. Parameters needed by the Picard solver are
collected in a structure called picard:

picard.u0 = ones(G.cells.num, 1);
picard.tol = le-7;
picard.maxIter = 300;

Finally the pressure solution is obtained using any of the nonlinear methods:

sntp
snmp

incompNTPFA (G, T, picard, 'bc', bc);
incompNMPFA (G, T, picard, 'bc', bc);

The current implementation of the nonlinear flow solvers does not consider the
fluid properties because we are mainly concerned with solving (2.1) numerically.
Therefore, no £1uid object is passed to the nonlinear solvers. To solve the same
problem using the linear TPFA and MPFA methods implemented in MRST, we can
simply set the fluid viscosity to unity.

2.4.2 Example 2: Discontinuous Permeability

The next example considers a domain with significant jumps in the permeabili-
ties. The computational domain is = (0, 1)? and is composed of four quadrants.
The permeability tensor is homogeneous in each quadrant but jumps across mesh
edges between different quadrants. The principal directions of the permeability
tensors are rotated by different angles 6 with respect to the coordinate system as
indicated in the left plot of Figure 2.12. The maximum and minimum principal
permeabilities are k; = 1000 and k, = 1 for all quadrants. Distorted quadrilateral
and triangular grids that honor the internal permeability discontinuity are used

https://doi.org/10.1017/9781009019781.006 Published online by Cambridge University Press


https://doi.org/10.1017/9781009019781.006

Nonlinear Finite-Volume Methods for the Flow Equation in Porous Media 63

TPFA MPFA-O
0.03 0.06
0.025 0.05
0.02 0.04
0.015 0.03
0.01 10.02
0.005 0.01
0
0.04 0.04
0.03 0.03
0.02 0.02
0.01 0.01

Figure 2.13 Pressure solutions using TPFA, MPFA-O, NTPFA, and NMPFA for
Example 2 with a perturbed quadrilateral mesh.

to mesh the domain (see middle and right plots of Figure 2.12). Homogeneous
Dirichlet boundary conditions are applied to the boundaries and the source term is
given by

1000, (x,y) € [7/18,11/18]2,

(x,y) = .
7 0, otherwise.

Using similar code as in the previous example, we now simulate the problem using
TPFA, MPFA-O, NTPFA, and NMPFA. Figure 2.13 shows the pressure solutions
computed with these four schemes on quadrilateral meshes, and Figure 2.14 gives
the pressure solutions on triangular meshes. Figure 2.15 shows the convergence
history of the two nonlinear methods, and we can see that NMPFA again suffers
from convergence issues, although the final solution looks physically correct.

If we rerun the simulation with a permeability anisotropy ratio of 10, while keep-
ing all other parameters the same, the four schemes produce results that are virtually
indistinguishable. The convergence histories of the Picard nonlinear solver depicted
in Figure 2.16 also confirm that NMPFA converges to the specified tolerance with
no problem when the permeability anisotropy ratio is not too large, as we also
observed in the previous example. Table 2.2 lists the computational results of the
monotonicity test for this example. Note that the MPFA-O method performs accept-
ably on the quadrilateral mesh but performs very poorly on the triangular mesh.
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Figure 2.14 Pressure solutions using TPFA, MPFA-O, NTPFA, and NMPFA for
Example 2 with a triangular mesh.
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Figure 2.15 Convergence history of the Picard nonlinear solver for the two
nonlinear methods on a quadrilateral mesh (left) and a triangular mesh (right)
for Example 2.

The two nonlinear methods, on the other hand, resolve the principal directions
of the discontinuous permeability tensors quite nicely and the pressure solutions
stay nonnegative. Details of the code for this example can be found in the script
nfvmExample 2.m.
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Table 2.2 Computational results of Example 2.

Quadrilateral grid Triangular grid
Method Pmin Pmax Niter Pmin Pmax Hiter
TPFA 0 0.0338 - 0 0.0690 -
MPFA-O —0.0013 0.0662 - —27.1878 29.3887 -
NTPFA 0 0.0443 90 0 0.0469 116
NMPFA 0 0.0437 300 0 0.0387 300
10° 10°
——NTPFA
—— NMPFA
1072 1072}
% 107* % 107
1078 1078
1078 1078
0 20 40 60 80 100 0 20 40 60 80 100 120
Number of Picard Iterations Number of Picard Iterations

Figure 2.16 Convergence history of the Picard nonlinear solver for the two
nonlinear methods on a quadrilateral mesh (left) and a triangular mesh (right)
for Example 2: mild anisotropy.

2.4.3 Example 3: No-Flow Boundary Conditions

In this last example, a test problem taken from [3] is used here to further illustrate
the monotonicity properties of the NFV methods. The computational domain is the
unit square domain (0, 1)? and it is meshed by an 11x 11 Cartesian grid. Permeabil-
ity is given by the following formula:

K — |: cosf —sinf :| |: 1000 0 ] |: cos@ sinf :|
sinf  cos6 0 1 —sinf cosf |’
where 8 = 67.5°. No-flow boundary conditions are applied on the exterior
boundaries. Pressure of cell (4, 6) is fixed at O and pressure in cell (8, 6) is 1,
giving rise to Dirichlet boundary conditions for faces bordering the two cells.
The pressure solutions using TPFA, MPFA-O, NTPFA, and NMPFA are shown in
Figure 2.17 and the convergence history of the two nonlinear methods is shown in

Figure 2.18. Astute observers will reach to the following remarks: The MPFA-O
result is neither monotone nor DMP adherent; the NTPFA result is monotone but
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Figure 2.17 Pressure profiles using TPFA, MPFA-O, NTPFA, and NMPFA. The
semi-transparent red and black planes mark the physical upper and lower bounds
of the pressure solution, respectively.
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Figure 2.18 Convergence history of the Picard nonlinear solver for the two
nonlinear methods on a quadrilateral mesh (left) and a triangular mesh (right)
for Example 3.

violates the DMP; the NMPFA result, on the other hand, is both monotone and
adheres to the DMP. Moreover, for this particular example, the NMPFA method
converges faster than NTPFA. Details of the code for this example can be found in
nfvmExample 3.m.
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2.5 Concluding Remarks

This chapter introduced you to a particular class of advanced discretizations,
namely, NFV methods. Unlike their linear finite-volume counterparts, these
methods enjoy full monotonicity and/or extremum preservation by design. These
traits become of particular interest when dealing with highly unstructured grids
and strong anisotropy ratios and heterogeneity contrasts. Because of the inherent
nonlinear nature of the schemes, they do require efficient nonlinear solvers that
preserve positivity of the discrete solution. Moreover, the size of the resultant
discrete system remains equivalent to that of linear finite-volume approaches
whenever the comparison is made on a one-to-one basis. However, computational
gains are quickly realized when one compares the monotone nonlinear TPFA to
a linear MPFA scheme for 3D problems. In the former, the stencil is essentially
that of a linear TPFA in 3D, whereas for the latter we would be looking at a
27-point stencil for MPFA-O. Variants of the NFV formulations described herein
are certainly possible, but a judicious interpolation method ensuring nonnegative
flux decomposition is quite difficult to attain on challenging non-K-orthogonal
grids with heterogeneous permeability fields and high anisotropy ratios. In our
experience, however, the harmonic averaging point scheme combined with the
correction algorithm seems to be the most robust of all.
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