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Abstract
This paper presents an algorithm for solving the inverse dynamics of a parallel manipulator (PM) with offset uni-
versal joints (RR–joints) via the Newton–Euler method. The PM with RR–joints increase the joint stiffness and
enlarge the workspace but introduces additional joint parameters and constraint torques, rendering the dynamics
more complex. Unlike existing studies on PMs with RR–joints, which emphasize the kinematics and joint perfor-
mance, this paper studies the dynamical model. First, an iterative algorithm is established through a rigid body
velocity transformation, which calculates the input parameters of the link velocity and acceleration. A linear sys-
tem of equations in matrix form is then established for the entire PM through the Newton–Euler method. By using
the generalized minimal residual method (GMRES) to solve the equation system, all the forces and torques on the
joints can be obtained, from which the required actuation force can be derived. This method is validated through
numerical simulations using the automatic dynamic analysis of multibody systems software. The proposed method
is suitable for establishing the dynamic model of complex PMs with redundant or hybrid structures.

1. Introduction
The first successfully applied parallel manipulator (PM) structure was originally developed by Gough
and later modified by Stewart [1, 2]. Over the past two decades, the research direction and application of
PMs has shifted toward control, coordination, and algorithms, rather than emphasizing the development
of new structures. This places additional demands on the study of the PM dynamics.

To achieve higher performance requirements, we propose a new 6-RR-RP-RR configuration, where P,
R, and RP denote prismatic, revolute joints, and an actuated ball screw assembly, respectively. Compared
with the Stewart platform, the dynamics of PMs with RR–joints are complicated by the additional
torques. Nevertheless, a study by Gloess and Lula [3] on the impact of the RR–joint on the stiffness
of a PM found that it provides twice the joint stiffness of a conventional universal joint. Additionally,
the axial rotation range was extended to ±90◦ in both joint shifts, thereby expanding the workspace of
the PM [4]. More importantly, in the application process, we have realized that the offset RR–joint, com-
pared to the conventional universal joint, can divide the joint into several parts, significantly reducing
the manufacturing complexity of the joint. Moreover, during the installation process, it provides more
installation space, making it more suitable for PM designed for mass production purposes. In conclusion,
it is meaningful to consider the dynamics of PMs with RR–joints.

In recent years, there has been a rapid increase in theoretical research on PMs with RR–joints, partic-
ularly the computation of their kinematics. Analysis of the workspace of a 3-RR-P-RR PM [5] showed
that it has a larger reachable workspace than similar structures using only one RR–joint or none at all.
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Figure 1. The CAD model of the 6-RR-RP-RR PM.

Algorithms based on joint constraints [6, 7] have attempted to establish the displacement kinematics of a
6-RR-C-RR PM with RR–joints (where C denotes a cylindrical joint whose translational degree of free-
dom (DOF) is actuated). Additionally, the displacement kinematics of a 6-P-RR-R-RR PM have been
studied using both the joint-constraint algorithm and the Denavit–Hartenberg (D–H) parameters [8, 9],
with numerical solutions obtained. The displacement kinematics of a 6-RR-RP-RR PM (see Fig. 1) was
analyzed by Yu et al. [10], while Zhang et al. [11] derived the velocity and acceleration solution of the
PM by introducing the differential form of the kinematic model using the Jacobian matrix. To date, all
research on PMs with RR–joints has focused on kinematics, rather than dynamics. The dynamic model
of the 6-RR-RP-RR PM will be derived in this paper.

Several approaches have been developed for studying the dynamics of PMs, such as the princi-
ple of virtual work [12–14], Kane’s method [15–17], Hamilton’s principle [18], and screw theory
[19–21]. Other common approaches include Lagrangian methods [22–24], Newton–Euler methods
[25, 26], and hybrid techniques [27–29]. The Lagrangian method describes a system’s motion from
the energy perspective [30]. Therefore, there is no need to consider the internal force or changes in the
reference frame system [31]. In contrast, the Newton–Euler method is more efficient but requires the
internal forces of links to be considered [32]. The motion of links in space has six degrees-of-freedom
(DOFs). The Newton equation and the Euler equation provide the constraint equations for translational
and rotational movements, respectively.

As an efficient and convenient approach, the Newton–Euler method has been widely used in recent
years. For instance, Chen and Wang [33] used this method to establish a dynamic model for a redun-
dantly actuated cable-driven PM, while Arian et al. [34] employed the Newton–Euler method to model
the dynamics of a 3-DOF Gantry–Tau manipulator. The legs of a PM can be considered as a series
mechanism, allowing for the development of an efficient iterative dynamic model through the iteration
of both outward motion and inward forces. Importantly, the effect of the mobile platform at the end of
the legs must be taken into consideration. In this way, He et al. [35] applied the Newton–Euler method
to obtain a dynamic model for a 7-DOF hybrid serial–parallel manipulator.

By applying the Newton–Euler approach, this article presents a dynamic algorithm for a 6-RR-RP-
RR PM. First, we develop an iterative algorithm for determining the relationship between joint motion
and link motion. Next, we establish a dynamic model using the Newton–Euler equations and a linear
equation system. We then analyze the actuated forces, before validating the accuracy of the mathematical
model through simulations.

The remainder of this paper is organized as follows. Section 2 describes the manipulator and the
definition of the joints’ reference frame. Section 3 describes the inverse kinematic model of the PM
joints and then proposes an iterative algorithm for computing the link motion in the base frame.
Section 4 establishes the dynamic model of the PM using the Newton–Euler method and solves the
equation system with a sparse coefficient matrix by generalized minimal residual method (GMRES).
Section 5 solves the dynamic model and compares it with the simulation model. Finally, Section 6
presents the conclusions to this study.
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Figure 2. Configuration, geometric parameters, and frame definition: (a) simplified form of the
RR–joint and the offset value; (b) frame definition for MP and BP; (c) y-axis and z-axis of the frames P
and B, and geometric parameters in the axial direction.

2. Manipulator description
The 6-RR-RP-RR PM studied in this paper consists of a mobile platform (MP), a base platform (BP),
and six actuated legs which consist of a RP–joint and two RR–joints, as shown in Fig. 1.

Fig. 2 shows the configuration, geometric parameters, and the frames of the PM. Fig. 2a shows the
used RR–joints and their simplified form. Up and Ub are the offset values of the RR–joints on the MP
and BP sides, respectively. Fig. 2b defines the frames of the MP and BP, where the reference frame
OP − XPYPZP (the P frame) is centered on point OP in the MP and the base frame OB − XBYBZB (the B
frame) is centered on OB in the BP. The points at which the legs connect with the MP and BP are defined
as OPj(j = 1 ∼ 6) and OBj(j = 1 ∼ 6), respectively. Additionally, the frames of the connecting points are
defined as Pj and Bj and are transformed from the frames P and B through a specified transformation
[11]. Fig. 2c shows another view of the frames P and B, as well as the geometric parameters along the
z-axis.

A single leg can be considered as a serial kinematic chain, and its reference frames can be determined
using the D–H parameter method. As depicted in Fig. 3, the following frames and parameters can be
defined: Oij − XijYijZij (denoted as frame Fij, where i = 1 ∼ 6 and j = 1 ∼ 6) represents the reference
frame of the ith joint of the jth leg. Note that F6j is equivalent to Pj. The generalized motion parameters
of the joints are denoted by:

qij =
[
θ1j θ2j θ3j d4j θ5j θ6j

]T
,

θij represent the rotational angle, and dij represents the distance of movement, which lie along the z-axis
of their respective joint reference frames, with the subscript ij referring to the ith joint of the jth leg:

Ti = Rot (X, αi) · Tran (X, ai) · Rot (Z, θi) · Tran (Z, di) (1)

where Ti is a homogeneous transformation matrix. Rot (X, αi) and Rot (Z, θi) represent rotation about
the x-axis and z-axis, respectively. Tran (X, ai) and Tran (Z, di) represent translation along the x-axis
and z-axis by a specified distance.

https://doi.org/10.1017/S0263574724000365 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000365


1552 Huze Huang et al.

Figure 3. Schematic of a single leg motion and distribution of joint frames. (The black frame in the top
right corner represents the directional legend of the joint frames.).

3. Kinematics
The inverse kinematic problem aims to uncover the connection between the position of the MP and the
motion of each joint. Further, to establish the differential motion, including velocity and acceleration,
the relationship between the MP and each leg is precisely defined through the Jacobian equations.

3.1. Inverse kinematic model

1. Displacement model: Due to the introduction of offset universal joints, a single leg is now
regarded as a serial kinematic chain, resulting in the existence of multiple solutions for its
inverse kinematic problem. Consequently, obtaining an explicit solution for the leg length is not
straightforward through the geometric methods typically employed to solve the inverse kinematic
problem of the Gough–Stewart Platform. Therefore, this paper solves the inverse displacement-
kinematic problem of the PM using a numerical method [8]. Specifically, by obtaining a set
of nonlinear equations with six unknowns through two equivalent homogeneous transformation
matrices and solving the equations using the Newton–Raphson method, we obtain

[
qij

]
(k+1)

= [
qij

]
(k)

−
[
∂�

∂qij

]−1

(k)

· [qij

]
(k)

(2)

with k represents the number of iterations. The nonlinear system consisting of six equations
selected from the equivalent transformation is represented by �. And [qij](0) is the joint param-
eters of the current leg at the initial position. Detailed information on the above equation can be
found in Appendix.

2. Velocity and acceleration models: The mapping matrix can be used to describe the velocity
mapping relation between the MP and the joints [11]:

q̇ij = J−1
j · q̇MP, Jj ∈R

6×6 (3)

and Jj can be decomposed into two parts:

Jj = q̇t J−1
q̇MP

· q̇h J−1
q̇t

· q̇h Jq̇ij = q̇h J−1
q̇MP

· q̇h Jq̇ij (4)
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where
q̇h Jq̇MP = q̇h Jq̇t ·q̇t Jq̇MP

relates to the motion of the MP. q̇h Jq̇t is obtained by treating MP as a rigid body and analyzing
the velocity transformation on the rigid body. q̇t Jq̇MP is obtained by transforming Euler angular
velocity to Cartesian angular velocity. And q̇h Jq̇ij is the geometric Jacobian matrix which relates to

the motion of the joints. The term q̇ij =
[
θ̇1j θ̇2j θ̇3j ḋ4j θ̇5j θ̇6j

]T
is the differential motion of joints,

q̇MP =
[
ṗx ṗy ṗz ϕ̇ θ̇ ψ̇

]T
represents the first derivative of MP motion with respect to Euler angles

by the sequence of RPY (Roll-Pitch-Yaw), q̇t =
[
ṗx ṗy ṗz ωx ωy ωz

]T
refers to the differential

motion of the MP with respect to B, and q̇h represents the differential motion of the point OPj

in B. Taking the time derivative of both sides of Eq. (3), the generalized acceleration of the leg
joints is

q̈ij = J̇−1
j · q̇MP + J−1

j · q̈MP (5)

with q̈MP is the generalized acceleration of the MP concerning the Euler angle and q̈ij is the joint
acceleration.

3.2. Motion parameters of the MP
The MP can be considered as a parallel link, and the input velocity of OP can be used to determine the
motion parameters of the platform. Eq. (4) establishes the mapping relation between the generalized
velocity of the MP ṗt in the frame B and its velocity ṗMP concerning the Euler angle. Thus, we obtain
the generalized velocity of the MP as:

q̇t = q̇t Jq̇MP · q̇MP =
[
ṗx ṗy ṗz ωx ωy ωz

]T
(6)

Taking the time derivative of both sides of Eq. (6), the generalized acceleration of the MP is
derived as:

q̈t = q̇t J̇q̇MP · q̇MP + q̇t Jq̇MP · q̈MP =
[
p̈x p̈y p̈z ω̇x ω̇y ω̇z

]T
(7)

with the angular velocity of the MP is ωMP =
[
ωx ωy ωz

]T
, the angular acceleration is ω̇MP =

[
ω̇x ω̇y ω̇z

]T
,

and the acceleration is p̈MP =
[
p̈x p̈y p̈z

]T
.

In summary, the acceleration of the mass center of the MP under the frame B is given by:

p̈CMP = p̈MP + ω̇MP × rOP,CMP + ωMP × (
ωMP × rOP,CMP

)
(8)

with rOP,CMP is the vector from OP to the mass center of the MP under the frame B.

3.3. Iterative algorithm for velocity and acceleration of links
The motion parameters of the joints can be obtained from the inverse kinematic model. However, these
parameters are all related to the z-axis of the joint frame Fij. To use the velocity and acceleration param-
eters as inputs for the dynamic model, they need to be transformed into the motion of the joint and
link coordinate systems with respect to the base frame. To address this issue, an iterative algorithm is
proposed for converting the joint motion.

The connection of adjacent joints is defined as a link, and the dynamic model requires the motion
of these links as its input. Thus, an iterative algorithm (different from the previous Newton–Raphson
iterative algorithm for the displacement kinematics) is adopted to obtain the motion parameters of each
link under the frame B.
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Figure 4. Characterization of link Lij for the Newton–Euler formulation.

Any link Lij can be represented as follows:
From Fig. 4, the parameters characterizing the motion of the link can be defined (see Table I).
The relationship between the motion of link Lij and its joints is established through the following

velocity transformation relation of the rigid body:

ωij =
{

ω(i−1)j (P-joint)

ω(i−1)j + θ̇ijZij (R-joint)
(9)

and

ṗij =
{

ṗ(i−1)j + ḋijZij + ω(i−1)j × r(i−1,i)j (P-joint)

ṗ(i−1)j + ω(i−1)j × r(i−1,i)j (R-joint)
(10)

By differentiating Eqs. (9) and (10), we obtain

ω̇ij =
{

ω̇(i−1)j (P-joint)

ω̇(i−1)j + θ̈ijZij + θ̇ij

(
ωij × Zij

)
(R-joint)

(11)

and

p̈ij =

⎧⎪⎪⎨
⎪⎪⎩

p̈(i−1)j + d̈ijZij + 2ḋij

(
ω(i−1)j × Zij

)
+ω̇(i−1)j × r(i−1,i)j + ω(i−1)j ×

(
ω(i−1)j × r(i−1,i)j

)
(P-joint)

p̈(i−1)j + ω̇(i−1)j × r(i−1,i)j + ω(i−1)j ×
(
ω(i−1)j × r(i−1,i)j

)
(R-joint)

(12)

According to Eqs. (9), (11), and (12), and the geometry of the links, the acceleration of the mass
center of link Lij under the frame B can be determined as:

p̈Cij = p̈ij + ω̇ij × r(i,Ci)j + ωij ×
(
ωij × r(i,Ci)j

)
(13)

As shown in Fig. 5, applying Eqs. (9), (11), and (13), the motion parameters for the links of the legs
can be expressed in the frame B. Here, ωBj, ω̇Bj, and p̈Bj are the initial iterative parameters, determined
by the motion of the BP. When the BP is stationary, these parameters are typically set to zeros.

4. Dynamics
With the use of RR–joints, both ends of the leg are affected by torques, the direction, and magnitude of
which are unknown. Thus, the dynamic equation of the leg cannot be obtained explicitly. However, all
forces and torques in the Newton–Euler method are linear and can be solved by establishing a system of
linear equations.
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Table I. Variables of link Lij.

Variable Value
mij Mass of the Lij

ωij, ω̇ij Angular velocity and acceleration of Lij

ṗij, p̈ij Linear velocity and acceleration of Oij

p̈Ci Linear acceleration of the mass center Cij

fij Force exerted by L(i−1)j on Lij, fij =
[
fijx fijy fijz

]T

f(i+1)j Force exerted by Lij on L(i+1)j, f(i+1)j =
[
f(i+1)jx f(i+1)jy f(i+1)jz

]T

τ ij Moment exerted by L(i−1)j on Lij with respect to Oij,
τ ij = τijx · Xij + τijy · Yij

τ (i+1)j Moment exerted by Lij on L(i+1)j with respect to O(i+1)j,
τ (i+1)j = τ(i+1)jx · X(i+1)j + τ(i+1)jy · Y(i+1)j

Xij, Yij, Zij The unit vectors directed along the x, y, z axis of Fij represented in the frame B
r(i,i+1)j Vector from Oij to O(i+1)j

r(i,Ci)j Vector from Oij to center of mass Cij

rB,ij The vector from OB to Oij

rB,(i+1)j The vector from OB to O(i+1)j

rB,Cij The vector from OB to the mass center Cij

Figure 5. Computational structure of the iterative algorithm.

Before establishing the Newton–Euler equation for the jth leg, it is crucial to determine the forces
and torques acting on this leg. These are shown in Fig. 6.

Fig. 6 shows that each link is subjected to two force vectors in unknown directions (each force vector
can be decomposed into three unknown forces along the frame axes of the frame B), And four torques,
two under frame Oij and others under frame O(i+1)j (in specific directions along their x and y axes). Links
L2j and L3j are combined into a single link, which is defined as Lsj. Joints 1, 2, 5, and 6 are all R–joints.
These R–joints have only one DOF, but five constraints. Hence, in the absence of consideration for
reactive forces, an R-joint is subject to forces in three directions and torques in two directions. Joint
4 is an RP–joint, and its rotational and feed motions are coupled. The output torque of the motor can
be converted from the supporting force in the direction of the feed. Thus, the supporting force in the
direction of the feed f4jz (along the z-axis of F4j) can be regarded as the actuated force. Therefore, joint
4 is subject to binding forces in two directions (x-axis and y-axis of F4j), the actuated force along the
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Figure 6. Forces and torques on the links of the jth leg.

feed direction, and constrained torques in two directions. In summary, each link is subjected to three
unknown forces and two unknown torques, with a total of five unknown variables.

For each link, three Newton equations of constrained motion and three Euler equations of constrained
rotation in space can be independently established, giving a total of six equations. Generally, each leg
can be divided into four individual links, resulting in a total of 25 unknown variables related through 24
equivalent relationships.

Each leg has 25 unknown variables and 24 equations, giving 150 unknown variables and 144 equa-
tions for all six legs. For the MP, six expressions are obtained by the Newton–Euler equation. Therefore,
we can establish a linear system with 150 equations for the whole PM.

4.1. Newton–Euler equations for a single leg
The jth leg (j = 1 ∼ 6) can be divided into four links, denoted by Lij (i = 1, s, 4, 5). The five joint ori-
gins are denoted by Oij (i = 1, 2, 4, 5, 6). Each joint has five constraints, three unknown forces, and two
unknown torques.

First, for link L1j, the Newton–Euler equations are⎧⎪⎨
⎪⎩

f1j − f2j + m1jg = m1jp̈C1j

τ1j − τ 2j + r̃B,1j · f1j − r̃B,2j · f2j + m1jr̃B,C1jg − m1jr̃B,C1jp̈C1j = d

dt

(
I1jω1j

) (14)

r̃B,1j is the skew-symmetric matrix of rB,1j:

rB,1j =
[
r1jx r1jy r1jz

]
,

and

r̃B,1j =

⎡
⎢⎢⎣

0 −r1jz r1jy

r1jz 0 −r1jx

−r1jy r1jx 0

⎤
⎥⎥⎦ .

All vector expressions with a tilde in the following text are similar.
I1j is the inertia tensor of L1j under the frame B. According to the coordinate transformation rules for

the inertia tensor,

I1j = ROC1j ·OC1j I1j · RT
OC1j
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where O1j I1j is the inertia tensor of L1j concerning the reference frame of the center of mass of link 1j,
which is a constant matrix. ROC1j is the transformation matrix from the mass center reference frame to
the frame B.

Similarly, the Newton–Euler equations of L4j and L5j are⎧⎪⎨
⎪⎩

f4j − f5j + m4jg = m4jp̈C4j

τ 4j − τ 5j + r̃B,4j · f4j − r̃B,5j · f5j + m4jr̃B,C4jg − m4jr̃B,C4jp̈C4j = d

dt

(
I4jω4j

) (15)

and ⎧⎪⎨
⎪⎩

f5j − f6j + m5jg = m5jp̈C5j

τ 5j − τ 6j + r̃B,5j · f5j − r̃B,6j · f6j + m5jr̃B,C5jg − m5jr̃B,C5jp̈C5j = d

dt

(
I5jω5j

) (16)

For Lsj, we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f2j − f4j + ∑3
i=2 mijg = ∑3

i=2 mijp̈Cij

τ 2j − τ 4j + r̃B,2j · f2j − r̃B,4j · f4j

+ ∑3
i=2 (mijr̃B,Cijg − mijr̃B,Cijp̈Cij) = ∑3

i=2
d
dt

(
Iijωij

) (17)

Rearranging Eqs. (14), (15), (16), and (17) gives⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1j − f2j = m1j

(
p̈C1j − g

)
f2j − f4j = ∑3

i=2 mij

(
p̈Cij − g

)
f4j − f5j = m4j

(
p̈C4j − g

)
f5j − f6j = m5j

(
p̈C5j − g

)
r̃B,1j · f1j − r̃B,2j · f2j + τ1j − τ 2j = d

dt

(
I1jω1j

) + m1jr̃B,C1j

(
p̈C1j − g

)
r̃B,2j · f2j − r̃B,4j · f4j + τ2j − τ 4j = ∑3

i=2

[
d
dt

(
Iijωij

) + mijr̃B,Cij

(
p̈Cij − g

)]
r̃B,4j · f4j − r̃B,5j · f5j + τ4j − τ 5j = d

dt

(
I4jω4j

) + m4jr̃B,C4j

(
p̈C4j − g

)
r̃B,5j · f5j − r̃B,6j · f6j + τ5j − τ 6j = d

dt

(
I5jω5j

) + m5jr̃B,C5j

(
p̈C5j − g

)

(18)

In Eq. (18), we arrange all unknown variables on the left and all known parts on the right.

4.2. Newton–Euler equations for the MP
The MP is a link connecting the ends of the six legs. Any external loads acting on the MP are simplified
as a force Fe and a torque Me under the frame B. Moreover, the MP is constrained by six R–joints at the
leg–MP connections OPj, each containing three forces and two torques. Thus, the dynamic equations are
written as: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∑6
j=1 f6j − Fe + mMPg = mMPp̈CMP∑6
j=1

(
r̃B,6j · f6j + τ 6j

) − r̃B,P · Fe − Me

+mMPr̃B,CMPg − mMPr̃B,CMPp̈CMP = d
dt
(IMPωMP)

(19)

where

IMP = RCOP ·COP IMP · RT
COP
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is the inertia tensor of the MP under the frame B; the terms RCOP and COPIMP are similar to those in
previous equations.

Rearranging Eq. (19), we obtain the following:
⎧⎨
⎩

∑6
j=1 f6j = mMP (p̈CMP − g)+ Fe∑6
j=1

(
r̃B,6j · f6j + τ 6j

) = d
dt
(IMPωMP)+ r̃B,P · Fe + Me + mMPr̃B,CMP (p̈CMP − g)

(20)

4.3. Solution for the actuated force
Combining Eqs. (18) and (20) yields the Newton–Euler equations of the whole PM:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1 − F2

F2 − F4

F4 − F5

F5 − F6∑6
j=1 f6j

r̃B,1 · F1 − r̃B,2 · F2 + μ1 − μ2

r̃B,2 · F2 − r̃B,4 · F4 + μ2 − μ4

r̃B,4 · F4 − r̃B,5 · F5 + μ4 − μ5

r̃B,5 · F5 − r̃B,6 · F6 + μ5 − μ6∑6
j=1

(
r̃B,6j · f6j + τ 6j

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G1

G2 + G3

G4

G5

GMP + Fe

N1 + μC1

N2 + N3 + μC2 + μC3

N4 + μC4

N5 + μC5

NMP + μCMP + r̃B,P · Fe + Me

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

The elements of Eq. (21) are as follows:
On the left-hand side:

Fi =
[
fT

i1 fT
i2 fT

i3 fT
i4 fT

i5 fT
i6

]T

18×1

μi =
[
τ T

i1 τ T
i2 τ T

i3 τ T
i4 τ T

i5 τ T
i6

]T

18×1

r̃B,i =
[
r̃T

B,i1 r̃T
B,i2 r̃T

B,i3 r̃T
B,i4 r̃T

B,i5 r̃T
B,i6

]T

18×3

On the right-hand side, Gi is the inertia forces vector composed of the inertia forces of links Lij (j =
1 ∼ 6) and GMP is the inertia force of the MP:

Gi =

⎡
⎢⎢⎢⎢⎢⎢⎣

mi1 (p̈Ci1 − g)

mi2 (p̈Ci2 − g)

...

mi6 (p̈Ci6 − g)

⎤
⎥⎥⎥⎥⎥⎥⎦

18×1

GMP = [mMP (p̈CMP − g) ]3×1
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Then, μCi represents the moment vector due to gravity of links Lij (j = 1 ∼ 6). μCMP is similar.

μCi =

⎡
⎢⎢⎢⎢⎢⎢⎣

mi1r̃B,Ci1 (p̈Ci1 − g)

mi2r̃B,Ci2 (p̈Ci2 − g)

...

mi6r̃B,Ci6 (p̈Ci6 − g)

⎤
⎥⎥⎥⎥⎥⎥⎦

18×1

μCMP = [mMPr̃B,CMP (p̈CMP − g) ]3×1

Under the theorem of the moment of momentum, Ni represents the differential angular momentum
vector of links Lij (j = 1 ∼ 6) and NMP is the differential angular momentum of the MP:

Ni =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d

dt
(Ii1ωi1)

d

dt
(Ii2ωi2)

...

d

dt
(Ii6ωi6)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

18×1

NMP =
[

d

dt
(IMPωMP)

]
3×1

Rearranging Eq. (21) and rewriting it in matrix form, we obtain the following:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I18 −I18

I18 −I18

I18 −I18

I18 −I18

I3,18

r̃B,1 −r̃B,2 e1 −e2

r̃B,2 −r̃B,4 e2 −e4

r̃B,4 −r̃B,5 e4 −e5

r̃B,5 −r̃B,6 e5 −e6

SrB,6 Se6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

150×150

(22)

where I18 denotes the identity matrix of order 18 and

I3,18 =
[

I3 · · · I3

]
3×18

The orientations of the torques on the links are

ei =

⎡
⎢⎢⎢⎢⎢⎣

Xi1 Yi1

Xi2 Yi2

. . .
. . .

Xi6 Yi6

⎤
⎥⎥⎥⎥⎥⎦

18×12
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and

SrB,6 = [
r̃B,61 r̃B,62 . . . r̃B,65 r̃B,66

]
3×18

Se6 =
[
X61 Y61 . . . X66 Y66

]
3×12

Here,

x =
[
FT

1 FT
2 FT

4 FT
5 FT

6 τ T
1 τ T

2 τ T
4 τ T

5 τ T
6

]T

150×1
(23)

where τ i =
[
τi1x τi1y τi2x τi2y · · · τi6x τi6y

]T

12×1
. The vector x contains 150 elements, where elements 37–54

contain the required actuated forces.
All terms of b are known values on the right side of Eq. (21). Therefore, Eq. (21) can be

rewritten as:

A · x = b (24)

As long as the PM is not in a singular configuration or has actuated redundancy, matrix A is a full-
rank matrix, |A| �= 0, and the system of equations has a unique solution. Furthermore, approximately
95.68% of the elements in the matrix are zeros, indicating that it is a sparse matrix. To improve solving
speed, it can be converted into a sparse matrix during computations, and the GMRES [36] can be used.

Thus, we choose x0 ∈R
150×1 as an initial vector and set

r0 = b − Ax0, v1 = r0

‖r0‖ , β = ||r0||
And then, use the Arnoldi process, for n = 1, 2, · · · , k, · · · , we do

hm,n = (Avn)Tvm, m = 1, 2, · · · , n

v̂n+1= Avn −
n∑

m=1

hm,nvm

hn+1,n= ||v̂n+1||
vn+1= v̂n+1/hn+1,n

until hn+1,n < ε. ε is the upper limit of the error based on the specific situation.
And we can get the orthonormal basis Vk = [v1, . . . , vk]150×k and the matrix elements hm,n form the

matrix Hk∈R
(k+1)×k.

Solve the linear least squares as:

min||βe − Hkyk|| , (25)

and e = [1, 0, · · · , 0](k+1)×1. Note the result as yk.
Finally, the numerical solution

x = x0 + Vkyk . (26)

The set of actuated forces is denoted as F4jz:

F4jz = [
f41z . . . f46z

]T
, (27)

where

f4jz =
[
x (34 + 3j) x (35 + 3j) x (36 + 3j)

]
· Z4j
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Table II. Structure parameters of PM for numerical simulations.

Variable Hp H Hb rp rb Up Ub

(m) 0.026 0.295 0.027 0.125 0.160 0.010 0.010

θp θb

(deg) 24 96

Table III. Dynamic parameters of PM for numerical simulations.

L1j L2j L3j

Mass (kg) 0.155 2 0.43

Center of mass (m)

⎡
⎢⎢⎣

0.005

0

0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0

−0.067

0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0

0

0.133

⎤
⎥⎥⎦

Inertia tensor (kg · m2,

⎡
⎢⎢⎣

Ixx

Iyy

Izz

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2.5 × 10−5

2.6 × 10−5

2.6 × 10−5

⎤
⎥⎥⎦

⎡
⎢⎢⎣

3.2 × 10−3

2.1 × 10−3

3.2 × 10−3

⎤
⎥⎥⎦

⎡
⎢⎢⎣

8.8 × 10−4

8.8 × 10−4

3 × 10−5

⎤
⎥⎥⎦

L4j L5j MP

0.8 0.155 3.5⎡
⎢⎢⎣

0

0

−0.066

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0.005

0

0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0

0

−0.011

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.4 × 10−3

1.4 × 10−3

3.2 × 10−3

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2.5 × 10−5

2.6 × 10−5

2.6 × 10−5

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2.5 × 10−2

2.5 × 10−2

4.8 × 10−2

⎤
⎥⎥⎦

5. Simulations
To validate the correctness of the dynamics of the 6-RR-RP-RR PM, we compare the results of the
mathematical dynamic model with those of a simulation model. The model described in this paper con-
sists of both inverse kinematics and inverse dynamics. The simulation model, which is established using
the automatic dynamic analysis of multibody systems software, provides both kinematic and dynamic
solutions through various probes.

First, the structure parameters of the PM must be defined. From Fig. 2, these parameters are as listed
in Table II. And their dynamic parameters are as listed in Table III.

To verify the accuracy of the algorithm and facilitate computation, the specific parameters of the
actual PM are simplified to ideal parameters in the simulation.

[
Ixy, Ixz, Iyz

]T = [0, 0, 0]T

The MP has 6-DOFs in space and consists of translation and rotation motions along the three direc-
tions of the frame B. Let the MP move along the spiral line, with arbitrary angle changes in the motion
process. The parametric equations of the trajectory under the frame B are
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Figure 7. Kinematic comparison (MM – mathematical model, SM – simulation model).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

px = 0.005 sin (t) (m)

py = 0.005 cos (t) (m)

pz = 0.002 t (m)

ϕ = π

180
sin (t) (rad)

θ = 2π
180

sin (t) (rad)

ψ = 5π
180

sin (t) (rad)

(28)

The displacement trajectory comparison is illustrated in Fig. 7. From the figure, it is evident that the
mathematical results closely align with the simulations.

From such a complex trajectory, we can learn how the algorithm performs in a real-world condition
rather than in a well-designed environment. Furthermore, we conducted simulations under three different
operating conditions to validate the correctness of the algorithm, and these conditions are presented in
Table IV.

The spiral trajectory equation has illustrated as Eq. (28), and the acceleration of gravity is as follows:

g = [0, 0, −9.8]T (m/s2).

And the external action contains a force vector FP
e and a torque vector MP

e , which executed on the
frame P , as:

FP
e = [10 sin (t), 10 cos (t), −10 sin (t)]T (N), MP

e = [ sin (t), 2 cos (t), 3 sin (t)]T (N · m),

Fe = TP · FP
e , Me = TP · MP

e .

In Condition 1, we consider the influence of inertia forces resulting from motion on the actuated
force, while disregarding gravity and external actions. As shown in Fig. 8, the graph simultaneously
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Table IV. Three different operating conditions.

Condition 1 Condition 2 Condition 3
Total time (s) t = 3
Step length (s) �t = 0.1
Spiral trajectory

√ √ √
Gravity × √ √
External action × × √

Figure 8. Condition 1, a comparison of the models considering only inertia forces.

includes the actuated force curves of both the mathematical model (MM) and the simulation model (SM).
The right-hand coordinate system in the graph represents the average relative error between the two
models. This means obtaining the relative error between the two models for each individual leg and then
averaging these relative errors across the six legs. The error exhibits a random zigzag pattern, unrelated
to inertia forces and motion conditions, with magnitudes at the order of 10−4. The spike observed at 0.8s
is considered arising as the actuated force approaches zero. Therefore, the algorithm remains reliable
when considering only inertia forces.

In Condition 2, both inertia forces and gravity are considered simultaneously. As shown in Fig. 9,
the actuated forces noticeably increase. And since gravity acceleration is a constant value unaffected by
simulation software computation errors, the error between the simulation results and the mathematical
model significantly decreases. Furthermore, both models remain consistent, indicating that the algorithm
remains reliable.

Finally, in Condition 3, as shown in Fig. 10, inertia forces, gravity, and external actions are taken into
account. As a result, actuated forces increase further, but the magnitude of the error has not changed
significantly. Hence, the primary factor contributing to the error is presumably the acceleration error of
the simulation.

In summary, we can conclude that the algorithm can be considered reliable, and the error is unrelated
to motion.
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Figure 9. Condition 2, a comparison of the models considering both inertia forces and gravity.

Figure 10. Condition 3, a comparison of the models considering inertia forces, gravity, and external
actions.

6. Conclusion
This paper has described the inverse dynamic analysis of a 6-RR-RP-RR PM with offset universal joints.
The introduction of RR–joints means that the dynamic model must be represented as an implicit system
of equations. Based on the existing inverse kinematic model, this study established an iterative algorithm
using rigid body velocity transformations, resulting in the velocity and acceleration input parameters of
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all links in the base frame. The Newton–Euler method was then used to analyze the inverse dynamics of
the PM, and dynamic equations for all links were established in the form of a equation system containing
150 unknowns and 150 equations. By solving the equation system, a vector X containing all joint forces
and torques, including the desired actuated force F4jz, was obtained. The correctness of the mathematical
model was verified through numerical simulations using the automatic dynamic analysis of multibody
systems software. The algorithm closely aligns with the simulation and is deemed reliable. The derived
equations can be used to determine the forces acting on all joints of the PM. They are not only useful for
calculating the actuated force and force control, but also for structural optimization of PMs. In future
research, the effect of friction will be studied by introducing dissipative forces into each Euler dynamic
equation, and the PM will be validated through experiments.
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Appendix
Details of the inverse kinematic
The reference frame transformation relation for the jth leg is as follows:

Tleg = T1 · T2 · T3 · T4 · T5 · T6 (29)

Because the frames Pj and Bj are known in frames P and B, when the position of the MP is determined,
the equivalent reference frame transformation relation for the jth leg is also obtained. The homogeneous
transformation matrix of its frame system T′

leg is given by:

T′
leg = T

−1

Bj
· TP ·P TPj (30)

where TBj represents the transformation matrix of Bj concerning the frame B, TP represents the trans-
formation matrix of the frame P concerning the frame B, and PTPj represents the transformation matrix
of the frames Pj concerning the frame P .

As demonstrated by the equivalence relation, Eq. (29) is equivalent to Eq. (30):

Tleg − T′
leg = Q = 0 (31)

At this point, we have the equivalent relation matrix for one leg. Equation (31) contains all six
unknowns of qij. Each element can be considered as a separate equation, so the six matrix elements
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can be selected to form the following nonlinear system of equations:

�j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

(
qT

ij

) = Q (1, 2)= 0

2

(
qT

ij

) = Q (1, 3)= 0

3

(
qT

ij

) = Q (1, 4)= 0

4

(
qT

ij

) = Q (2, 1)= 0

5

(
qT

ij

) = Q (2, 2)= 0

6

(
qT

ij

) = Q (3, 1)= 0

(32)

Each of these equations is nonlinear and contains several variables. Thus, the solution can only be
obtained indirectly. Therefore, the Newton–Raphson iteration method is applied to solve this nonlinear
system for the jth leg:

[
qij

]
(k+1)

= [
qij

]
(k)

−
[
∂�j

∂qij

]−1

(k)

· [qij

]
(k)

(33)
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