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Abstract. Denote by �R; �� the multiplicative semigroup of an associative alge-
bra R over an in®nite ®eld, and let �R; �� represent R when viewed as a semigroup
via the circle operation x � y � x� y� xy. In this paper we characterize the exis-
tence of an identity in these semigroups in terms of the Lie structure of R. Namely,
we prove that the following conditions on R are equivalent: the semigroup �R; ��
satis®es an identity; the semigroup �R; �� satis®es a reduced identity; and, the asso-
ciated Lie algebra of R satis®es the Engel condition. When R is ®nitely generated
these conditions are each equivalent to R being upper Lie nilpotent.

1991 Mathematics Subject Classi®cation 16R40, 20M07, 20M25

1. Introduction and statement of results. A well-known result due to Levitzki [3]
states that every ®nitely generated bounded nil ring is nilpotent. Not long ago,
Zel'manov proved the Lie-theoretic analogue: every ®nitely generated Lie ring
satisfying the bounded Engel condition is nilpotent [19]. The corresponding problem
in the category of groups is the famous Burnside problem. The construction by
Adian and Novikov of in®nite ®nitely generated groups of ®nite exponent provided
a negative solution to this problem. See [1].

The Burnside problem has some natural generalizations. For example, the pro-
blem of whether or not every Engel group is locally nilpotent remains open [17].
Because every nilpotent group is known to satisfy a semigroup identity [5,8], a
weaker version of this problem has also been posed: does every Engel group satisfy a
semigroup identity [6, Problem 2.82]? Even the following question remains open: can
an Engel group contain a free (noncommutative) subsemigroup? See [10].

Recently, the present authors settled the ring-theoretic analogues of these pro-
blems.

Recall that a ring R satis®es the Engel identity of degree n if and only if

en :� �x; y; y; . . . ; y|������{z������}
n

�

is identically zero in R; whereas, R is said to be upper Lie nilpotent if the descending
central series of associative ideals f
 i�R�g in R de®ned by 
1�R� � R;

 i�1�R� � h�
 i�R�;R�i reaches zero in ®nitely many steps. In addition to the usual
multiplicative semigroup, �R; ��, R forms a semigroup, denoted by �R; ��, under the
circle operation x � y � x� y� xy. We proved in [14] that every ®nitely generated
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associative ring R satisfying the Engel condition is upper Lie nilpotent. From this
result we were able to infer that whenever R satis®es an Engel identity then both the
associated circle and multiplicative semigroups of R must satisfy a so-called Morse
identity.

De®ne sequences fn and gn by f1�x; y� � xy; g1�x; y� � yx, and

fn�1�x; y; x3; . . . ; xn�2� � fn�x; y; x3; . . . ; xn�1�xn�2gn�x; y; x3; . . . ; xn�1�;

gn�1�x; y; x3; . . . ; xn�2� � gn�x; y; x3; . . . ; xn�1�xn�2fn�x; y; x3; . . . ; xn�1�;

for all n � 1. The nth Mal'cev identity [5] is the semigroup identity

fn�x; y; x3; . . . ; xn�1� � gn�x; y; x3; . . . ; xn�1�;

while the nth Morse identity un�x; y� � vn�x; y� [7] is the nth Mal'cev identity with
x3 � � � � � xn�1 � 1.

Consequently, neither �R; �� nor �R; �� can contain a free subsemigroup if R
satis®es an Engel identity.

The problem of characterizing ®nitely generated groups satisfying an arbitrary
semigroup identity has been studied by several authors (see, for example, [4], [18]
and [16]). Because this class of groups contains the Burnside groups, this problem is
highly nontrivial, especially in the light of the recent construction by Ol'shanskii and
Storozhev of a 2-generated group satisfying a semigroup identity that is not a peri-
odic extension of a locally soluble group [9].

Algebras over ®elds of characteristic zero which satisfy a circle semigroup law,
and a more general semigroup condition called collapsibility, were studied previously
by the ®rst author in [12]. In sharp contrast to the combinatorial methods employed
in this paper, the techniques used in [12] rely heavily on deep structure theorems
from both group and ring theory. In this article we study associative algebras that
satisfy an arbitrary semigroup identity. In fact, we obtain a partial converse to our
result in [14].

Throughout the remainder of this paper, K will denote an in®nite commutative
domain and R an associative K-algebra on which the action of K is torsion-free; (this
occurs, for example, when K is an in®nite ®eld). All identical relations in algebraic
objects will be assumed to be nontrivial unless otherwise stated. A semigroup S
satis®es an identity if and only if there are distinct words u; v in the free semigroup on

X � fx � x1; y � x2; x3; x4; . . .g

so that u � v in S. The semigroup identity is left reduced if the ®rst letters of u and v
are di�erent, right reduced if the last letters of u and v are di�erent and simply
reduced if it is both left and right reduced. In other words, u � v is reduced if and
only if uvÿ1 and vÿ1u are reduced words in the free group on X. If �R; �� (respectively
�R; ��) satis®es an identity we often say that R satis®es a semigroup identity (respec-
tively, a circle semigroup identity). Clearly each of these corresponds to a polynomial
identity in R. A generalization of a multiplicative semigroup identity in R is a bino-
mial identity, a polynomial identity of the form �1u1 � �2u2 � 0, where u1; u2 are
monomials and �1; �2 2 K. The various types of reduced binomial identities are
de®ned in the obvious way.
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TasicÂ and the ®rst author proved in [13] that R is Lie nilpotent of class at most n
if and only if �R; �� satis®es the nth Mal'cev identity. The main result in the present
article further demonstrates the close relationship between the Lie structure of R
and semigroup properties of R.

Theorem 1.1. Let R be a K-algebra. Then the following statements are equivalent.

(i) R satis®es a circle semigroup identity;
(ii) R satis®es a reduced semigroup identity;
(iii) R satis®es a reduced binomial identity;
(iv) R satis®es an identity of the form

Pn
i�0 �iy

ixynÿi � 0, �i 2 K; �0 6� 0; �n 6� 0;
(v) R satis®es an Engel identity;
(vi) �R; �� satis®es a Morse identity.

Furthermore, for any two conditions A, B from (i)±(vi), our proof gives (some-
times theoretical) bounds for the degree of the identity in B in terms of the degree of
the identity in A. In particular, these bounds do not depend on R, K or the char-
acteristic of K. Notice, too, that since every ®nite semigroup (in particular �R; ��,
where R is a ®nite ring) satis®es an identity, some hypothesis on the coe�cient ring
K is required. The following example demonstrates that the distinction between
reduced and arbitrary multiplicative semigroup identities is also necessary.

Example 1.2. Let R be the subalgebra of the matrix algebra M2�K� spanned by
the matrix units e11 and e12. Then �R;R� � Ke12, and so R satis®es the semigroup
identity �x; y�z � xyzÿ yxz � 0. R does not satisfy any Engel identity, since
�e11; e12� � e12. Thus, by Theorem 1.1, R does not satisfy any reduced semigroup
identity, nor any circle semigroup identity.

Theorem 1.3. Let R be a K-algebra, where K � p > 0. Then the following state-
ments are equivalent.

(i) R satis®es a semigroup identity;
(ii) R satis®es a binomial identity;
(iii) R satis®es an identity of the form

Pn
i�0 �iy

ixynÿi � 0, �i 2 K;

(iv) R satis®es an identity of the form ymemy
m � 0.

We remark that the characteristic zero analogue of Theorem 1.3. is stated in [2];
however, their result corresponding to our implication (iv) ) (i) is not proved and
does not seem obvious to the present authors.

The fact that R is non-unital is essential to Example 1.2, as indicated by the
following proposition.

Proposition 1.4. Let R be a unital K-algebra. If R satis®es a semigroup identity
then R satis®es the corresponding reduced semigroup identity.

Theorem 1.5. There exists a function f, depending only on natural numbers d and
n, such that if a K-algebra R satis®es a circle semigroup identity of degree n and R is
generated over K by d elements then R is upper Lie nilpotent of index at most f�d; n�.
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2. Semigroup identities. Our hypotheses on K were chosen to imply, by the
usual Vandermonde determinant argument, that every homogeneous component of
a polynomial identity for R is also a polynomial identity for R (see [11, 6.4.14]). We
shall use this key fact freely, without explicit mention.

By a partial linear identity we shall mean an identity of the form

Xn
i�0

�iy
ixynÿi � 0;

with �i 2 K. Such an identity will be called left reduced if �0 6� 0, right reduced if
�n 6� 0 and reduced if it is both left and right reduced.

Proposition 2.1. Let R be a K-algebra.

(i) If a semigroup S satis®es an identity in x; y; x3; . . . that is left reduced, right
reduced or reduced, then S satis®es an identity, of the same type, in x and y only.

(ii) If R satis®es a binomial identity then R is bounded nil or R satis®es a semi-
group identity.

(iii) If R satis®es a binomial identity that is left reduced, right reduced or reduced,
then R satis®es a partial linear identity of the same type.

(iv) If R satis®es the identity yn � 0, then R satis®es e2nÿ1 � 0.

Proof. Suppose without loss of generality that our left reduced identity has the
form

xxi1 � � � xim � yxj1 � � � xjn :

Recall that we identify x � x1 and y � x2. Substituting xi � xyi; �i � 3�, we obtain a
left reduced identity in x and y only. If the original identity were right reduced as
well, then xim 6� xjn . Thus, by an appropriate permutation of the variables, we obtain
an equivalent identity of the form

xk1 � � � xkmx � xl1 � � � xlny:

Substituting xi � xyi; �i � 3�, into this identity and then concatenating on the right
with the 2-variable left reduced identity yields the 2-variable reduced identity:

xxi1 � � � ximxk1 � � � xkmx � yxj1 � � � xjnxl1 � � � xlny:

This and symmetry prove (i).
Next, given a binomial identity �1u1 � �2u2 � 0 holding in R, set all variables

equal, to y say. If the identity is not homogeneous, then separating components
shows that R is bounded nil. On the other hand, if it is homogeneous then
��1 � �2�yn � 0, for some n, so that either R is bounded nil or �1 � ÿ�2, in which
case u1 ÿ u2 � 0 holds in R. This proves (ii).

In order to prove (iii), suppose that R satis®es a given binomial identity.
Observe from (ii) that either R is bounded nil, in which case R satis®es a partial
linear identity by (1) in the proof of (iv) below, or R satis®es a semigroup identity,
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which by (i) can be taken to be of the form u�x; y� ÿ v�x; y� � 0. Thus we may
assume that R is not bounded nil, and hence that the semigroup identity is homo-
geneous. We assert that the homogeneous component of degree 1 in x of the identity
u�x� y; y� ÿ v�x� y; y� � 0 is a partial linear identity. To see why it is nontrivial,
write u � au0; v � av0, where a has length m and u0 � v0 is a left reduced equation. If
(as we may assume without loss of generality) u0 starts with x and v0 with y, then in
the expansion of u�x� y; y� there is precisely one monomial starting with ymx,
whereas no monomial in the expansion of v�x� y; y� begins with ymx. This, and
symmetry, yields (iii).

To prove the well-known fact (iv), let l; r denote respectively the K-linear
operators of left and right multiplication by y. Then, since l and r commute, we
obtain

em � �rÿ l�m�x� �
Xm
i�0
�ÿ1�i m

i

� �
lirmÿi�x� �

Xm
i�0
�ÿ1�i m

i

� �
yixymÿi: �1�

Thus if m � 2nÿ 1 and R satis®es yn � 0, then every term in the sum on the right is
zero.

Proposition 1.4. is a consequence of the following result.

Proposition 2.2. Let R be a K-algebra.

(i) If �R; �� satis®es a semigroup identity, then �R; �� satis®es the same identity.
(ii) If �R; �� satis®es a semigroup identity then �R; �� satis®es the corresponding

reduced identity.
(iii) If R is unital, then �R; �� � �R; ��.

Proof. Let S be the unital hull of R; that is, S � R if R is unital and S � K1� R
if R is nonunital. The map �: r 7!1� r is an injective semigroup map from �R; �� into
�S; �� that is onto if (and only if) R � S. This proves (iii). The image under � of an
identity in �R; �� is an identity in �1� R; �� � �S; ��. Only the bottom degree homo-
geneous component of this identity involves 1 and the other homogeneous compo-
nents yield identities in �R; ��. The highest degree component is precisely the original
identity, yielding (i).

Assume that u�x; y� � v�x; y� is an identity for �R; �� of degree n. Write
u � au0b; v � av0b, where u0 � v0 is a reduced equation. We show that u0 � v0 also
holds in �R; ��. It su�ces, by symmetry and by induction on the maximum length of
a and b, to prove this in the case when a � x and b is empty. The identity
xu0�x; y� � xv0�x; y� in �R; �� is equivalent to the polynomial identity

�1� x�u0�1� x; 1� y� ÿ �1� x�v0�1� x; 1� y� � 0

in R. Let m be an even integer with m � n� 1. Then multiplying the last identity on
the left by 1ÿ x� x2 ÿ � � � � xm yields the polynomial identity

�1� xm�1�u0�1� x; 1� y� ÿ �1� xm�1�v0�1� x; 1� y� � 0:
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Separating homogeneous components and using the fact that xm�1 has higher x-
degree than u0 and v0, we obtain the polynomial identity

u0�1� x; 1� y� ÿ v0�1� x; 1� y� � 0

in R, which is equivalent to u0 � v0 holding in �R; ��. This proves (ii). &

The following lemma is crucial to our main theorems and is best possible in
view of Example 1.2. A simpler argument, as in [2], is available in characteristic
zero. That argument fails in positive characteristic, where the situation is more
delicate.

Lemma 2.3. Suppose that R satis®es ym�yk � 0, where � �Pn
i�0 �iy

ixynÿi.

(i) If � is right reduced, then R satis®es ym�nenyk � 0.
(ii) If � is left reduced, then R satis®es ymeny

n�k � 0.
(iii) If � is reduced, then R satis®es yme3nÿ1yk � 0.

Proof. By symmetry, the proof of (ii) is entirely analogous to that of (i). If the
conclusions of (i) and (ii) hold, then the conclusion of (iii) follows from equation (1):

yme3nÿ1yk � ym
X2nÿ1
i�0
�ÿ1�i 2nÿ 1

i

� �
yieny

2nÿ1ÿiyk � 0:

Thus it su�ces to prove the conclusion of (i).
First assume that m � k � 0. Make the substitution y 7!y�y� 1�. ExpandingPn

i�0 �iy
i�y� 1�ixynÿi�y� 1�nÿi � 0 by the binomial theorem and separating homo-

geneous components yields identities v0 � 0; . . . ; vn � 0 for R, where vr is homo-
geneous of degree n� r in y. We claim that

Xn
r�0
�ÿ1�rvrynÿr � �nynen: �2�

To establish equation (2), it su�ces to show that the coe�cients of yaxy2nÿa on each
side are equal, whenever 0 � a � 2n.

First note that by equation (1), the coe�cient of yaxy2nÿa in ynen is �ÿ1�aÿn
ÿ n

aÿn
�

if a � n and 0 otherwise. With the usual convention on binomial coe�cients, the

expression �ÿ1�aÿnÿ n

aÿn
�
is valid for all a. Using the same convention we may sum

over all values of any index occurring.

Now we calculate the coe�cient of yaxy2nÿa in vry
nÿr or, what is the same, the

coe�cient of yaxyn�rÿa in vr. The binomial theorem expansion above shows that the

coe�cient of ysxyt is precisely
P

i�j�n �i
ÿ i

sÿi
�ÿ j

tÿj
�
. Putting s � a and t � r� nÿ a, we

obtain the desired coe�cient as
P

i �i
ÿ i

aÿi
�ÿ nÿi

rÿ�aÿi�
�
.

It follows that
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X
r

�ÿ1�r
X
i

�i
i

aÿ i

� �
nÿ i

rÿ �aÿ i�
� �

�
X
i

�i
i

aÿ i

� �X
r

�ÿ1�r nÿ i

rÿ �aÿ i�
� �

�
X
i

�i
i

aÿ i

� �
�ÿ1�aÿi

X
s

�ÿ1�s nÿ i

s

� �
� �ÿ1�aÿn n

aÿ n

� �
�n;

since the inner sum has the value zero, unless nÿ i � 0, and 1 otherwise. This proves
(i) in the case m � k � 0.

In the general case, where m and k are not necessarily zero, the substitution
y 7!y�y� 1� into the original identity yields an identity

X
r�s�t�m�n�k

crsty
s�ymvryk�yt � 0; �3�

for some coe�cients crst 2 K. For 0 � a � n, consider the homogeneous component
of (3) of degree m� n� k� a in y. The only vr occurring have r � a and the only
term involving va is precisely ymvay

k. By induction on a, ymvry
k � 0 is an identity in

R for all r < a, and hence so is ymvay
k � 0. We may now proceed exactly as in the

special case above and the conclusion follows. &

2.1. Unital algebras. In case R is unital, more information can be obtained.
Note that en�x; y� � x�ady�n � x�ad�y� 1��n � en�x; y� 1�. Thus by substituting
y 7!y� 1 into the result of (i) or (ii) in Lemma 2.3. and separating out the compo-
nent of degree n in y we obtain en � 0 in R.

In the rest of this subsection (which is not essential to the main results of the
paper) we give a characterization (for unital K-algebras) of the Engel identities.

For each m � 0, let Wm be the K-submodule of Khx; yi with basis all monomials
yixyj such that i� j � m, and let Vn �

Pn
m�0 Wm and V �Pn�0 Vn. Note that W0 is

spanned by the monomial x, and that, for n � 1, en is a reduced element of Wn.
De®ne the di�erence operator � on V by ���x; y� � ��x; y� 1� ÿ ��x; y�. Note

that �:Vn! Vnÿ1, and that the homogeneous component of degree nÿ 1 in y of
�� is simply the Hausdor� derivative @�=@y with respect to y (that is, the unique K-
derivation of Khx; yi sending y to 1 and x to 0).

Proposition 2.4. Let R be a unital K-algebra, and � 2Wn.

(i) �� � 0 if and only if � is a scalar multiple of en.
(ii) If charK � 0, then @�=@y � 0 if and only if � is a scalar multiple of en.

Proof. Given ��x; y� �Pn
i�0 �iy

ixynÿi, expand ��x; y� 1� by the binomial theo-
rem. The coe�cient of ysxyt in ��x; y� 1� is given by
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ysxyt
� � � P

i �i
ÿi
s

�ÿnÿi
t

� �s� t < n�;
0 �s� t � n�:

�
�4�

Now �� � 0 if and only if the coe�cients of all monomials yixyj, for i� j � nÿ 1,
are zero. This gives a system of linear equations in the n� 1 unknowns �0; . . . ; �n.
We claim that the coe�cient matrix M has rank exactly n. Indeed, by equation (4),
the submatrix of rows corresponding to the components of xym; 0 � m � nÿ 1, has
the form

� 1 0 0 � � � 0
� � 1 0 � � � 0
..
. ..

. ..
. . .

. ..
.

0
� � � � � � 1 0
� � � � � � � 1

266664
377775;

which shows that the rank is at least n. However the rank is not n� 1 since, as
observed above, the coe�cient vector �i � �ÿ1�i

ÿn
i

�
of en is in the kernel of M. This

proves (i).
To prove (ii), it su�ces to show that in characteristic zero, the submatrix of M

consisting of all rows corresponding to monomials ysxyt, with s� t � nÿ 1, has
rank n. By equation (4), this submatrix has the form

n 1 0 0 � � � 0
0 nÿ 1 2 0 � � � 0
0 0 nÿ 2 3 . . . 0
..
. ..

. ..
. . .

. . .
.

0
0 0 0 . . . 1 n

266664
377775:

Since char K � 0 the submatrix consisting of the ®rst n columns is nonsingular and
(ii) follows.

3. Proofs of theorems. We ®rst prove Theorem 1.1. The implication (ii)) (iii)
is obvious. Also (i) ) (ii) and (iii) ) (iv) follow from Proposition 2.2. and
Proposition 2.1, respectively. By Lemma 2.3 with m � k � 0, (iv) and (v) are
equivalent. Suppose then that R satis®es en � 0. Let x; y 2 R. By [14], the subalgebra
T of R generated by x and y is Lie nilpotent of class m depending on n only. An easy
induction on m shows that T, and hence R, satis®es the Morse identity, in the circle
sense, of degree m. Indeed,

um ÿ vm � �u1; v1; v2; . . . ; vmÿ1�:

This proves (v)) (vi). The last implication (vi))(i) is obvious.
We now prove Theorem 1.3. The implication (i) ) (ii) is obvious; (ii) ) (iii)

follows from Proposition 2.1, and (iii) ) (iv) can be deduced from Lemma 2.3. If
K � p > 0 then (iv) ) (i), since by increasing m if necessary we may assume that
m � pt, so that
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yp
t

xy2p
t ÿ y2p

t

xyp
t � yp

t

epty
pt � 0:

Finally, Theorem 1.5 follows from the quantitative form of Theorem 1.1 and
[14, Theorem].

4. Comments. In an earlier version of this paper, we asked the following ques-
tions about an arbitrary ring R. These questions arose naturally from the work
above, and the converses had been shown to hold in [14].

� If a ring R satis®es a reduced semigroup identity, does R necessarily satisfy an
Engel identity?
� If a ring R satis®es a reduced circle semigroup identity, does R necessarily

satisfy an Engel identity?

We are indebted to Ol'ga Paison for showing us that the answer to both is no.
We now present her example.

Let p be a prime, let F be a ®eld of order p2 and let R be the subring of M2�F�
consisting of all elements of the form ae11 � ape22 � be12, for a; b 2 F. Then R does
not satisfy any Engel identity. To see this, choose a 2 F with ap 6� a. Let
x � ae11 � ape22 and y � e12. Then, for su�ciently large even integers s, we have
�xps ; y� � �aÿ ap�e12 6� 0. On the other hand, the only idempotents of R are 0 and 1,
and so R satis®es a reduced (circle) semigroup identity in view of the following
result.

Proposition 4.1. Let R be a ®nite ring. Then

(i) �R; �� and �R; �� satisfy an identity of the form xt � x2t.
(ii) If all idempotents of R are central, then R satis®es a reduced semigroup identity.

Proof. The conclusion of part (i) is true for every ®nite semigroup S. First, every
element of S is periodic. Furthermore, every periodic element in a semigroup has
some power which is an idempotent. To see this, note that for a ®xed x 2 S,
xm � xm�a, for some m; a > 0. This implies that, for all n � 1 and all s � m,
xs � xs�na. Choose tx such that tx � m and a divides tx. Then �xtx�2 � xtx . The
desired global identity follows directly from this equation, since S satis®es xt � x2t

with t � Qx2S tx.
Now by (i), there is some t for which xt is an idempotent, for each x 2 R. Thus if

all idempotents of R are central, R satis®es the identity xty � yxt, yielding (ii).

In [2] it was shown (using arguments special to characteristic zero) that the K-
algebra R satis®es a partial linear identity if and only if the algebra of 2� 2 upper
triangular matrices over K is not in the variety generated by R. Perhaps this is true in
all characteristics.
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