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SERIES EXPANSIONS FOR DUAL 
LAGUERRE TEMPERATURES 

DEBORAH T E P P E R HAIMO 

1. Introduction. In a recent paper [2], the author, with F. M. Cholewinski, 
derived criteria for the series expansions of solutions u(x, t) of the Laguerre 
differential heat equation xuxx + (a + 1 — x)ux = ut in terms of the Laguerre 
heat polynomials and of their temperature transforms. Our present goal is the 
characterization of those solutions which are representable in a Maclaurin 
double series in xe~l and in 1 — e~K Some of the results are analogous to those 
derived by D. V. Widder in [4] for the classical heat equation and by the author 
in [1] for the generalized heat equation. 

2. Definitions. The Laguerre differential heat equation is given by 

(2,1) Vxu(x,t) = (d/dt)u(x,t) 

where 

Vxf(x) = xf"(x) + (a + 1 - x)f'(x). 

We denote by H the class of all C2 solutions of (2.1) and refer to a member 
of H as a dual Laguerre temperature. 

The fundamental solution of (2.1) is the function 

(2.2) g(x;t) = 

whose associate function is 

(2.3) g(x,y;t) = 

where 

a + l 
-x/iet-l) ,t > o, 

e% - 1 

a+l 
-(ar+y)/(e«-D J 

2(xyely 
el - 1 / > 0, 

J (z) = 2 « r ( a + l)z-«/a(s), 

Ia(z) being the ordinary Bessel function of imaginary argument. 
The dual Laguerre temperature transform uT(x, t) of a function 

u(x, t) Ç H is given by 

(2.4) uT(x, t) = g(x\ t)u(x/(el - 1), ln(l - e~1)), t > 0. 
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1146 DEBORAH TEPPER HAIMO 

A subclass H* of H basic to our needs consists of those dual Laguerre 
temperatures for which 

J»oo 

g{x,y;t-t')u(y,t')d A (y), 
o 

^ A ( , ) = ~ ^ + ~ ï ï e - Y ^ 

for every /, t', a < t' < t < b1 with the integral converging absolutely. A 
member of H* is said to have the Huygens property. 

In addition, we need the class (p, r) which includes those entire functions 
f (x) = X^=o cinx

n for which 

(2.6) k ^ k r ^ r . 

The Laguerre heat polynomials pn,a(x, t) are given by 

They are the Cauchy solutions (x, 0 of (2.1) satisfying the initial condition 
u(x, 0) = xn. Their dual Laguerre temperature transforms wn%a(x, t) may be 
given in the form 

(2.8) wn,a(*, 0 = (e* - l)-2ng(x\ t)pn,a(x, -t), t > 0. 

From the basic generating relationship 

(2.9) g(x,y;t + n = i Z^T^JTri £»•«(*• <)w..«(y, ?) 
B=o rail (« -+- a + 1) 

derived in [3], we have, by a direct computation, 

(2.10) g(x,y;t + t') = 

S ^IX^+"^+"Î) S " T " r ( " + D«w*-(y.' )• 
3. Region of convergence. We establish the region of convergence of the 

double Maclaurin series involved in our development. 

LEMMA 3.1. If, for 7 

All 0, 

(3.1) lim e\an\
1,n _ 

n 

then the series 

(3.2) 
oo 

m=0 m\ 
(xe-y 

T(m + a Tï) 
oo 

E 
&=0 

*\* , (i - e-'y 
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DUAL LAGUERRE TEMPERATURES 1147 

converges for t £ 2iïy, where 

(3.3) 9y = V l l n ^ f — < t < oo ifO ^ y ^ 1 
I 1 + 7 

and 

In -r-^— < t < In —-- ify>l 
1 + 7 7 - 1 i 

Proof. For any 0, 0 < 6 < 1, we have, as a consequence of (3.1), 

'°"'<*(f)" 
for some constant K and w sufficiently large. Hence 

(xe~T ^ , , |1 - 6-"" 

aZ 
(xe~')m ^ 

KE 
[1 - e" 

ft! 

fc=0 

W7 

7(w + k) m+k i -I — 11 fc 

ft! 

(xe-'Y 

Now, if ^ > 0, 
(w - k)!T(m - k+a+1) 

oo / \ ra -j 

and an appeal to (4.8) of [3] yields the dominating series 

«£&)' 1 „*«+* 
L e 

(1 - e-') UmxKé-DV 
m\Y{m + a + 1) 

which converges for 

7 ( 1 - * - ' ) / * < 1, 
or, on taking 6 arbitrarily close to 1, for 

7 ( 1 - e~l) < 1. 

Hence, if 0 ^ y ^ 1, the series (3.2) converges for all t > 0, whereas if 
7 ^ 1 , the series converges for 0 < t < In (7/(7 — 1)). 

On the other hand, if t < 0, 

1 «£&)' (-îr/wt-*,/), w!T(m + « + 1) 

and an appeal to (4.6) of [3] yields the dominating series 

* - 1 1 y l 
• m 

a+l 2 («-« - 1 ) 
m\T{m + a + 1) 

which converges, since 0 may be taken arbitrarily close to 1, for 

y(e-1 - 1) < 1; 

that is, for 7 H , for In (7/(1 + 7)) < t < 0. The proof is thus complete. 
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Note t h a t if the series (3.2) were to converge a t some point (x0j t0), t0 £ &yy 

then, in part icular , the simple series 

mus t also converge, and it would follow t h a t 

I l/A; 
lim 
Jc-^oo 

= lim 
k-ïœ 

ake 

contradict ing hypothesis (3.1). 

4. Series e x p a n s i o n . We now establish our principal result. 

T H E O R E M 4.1 . A necessary and sufficient condition that a solution u(x, t) of 
the Laguerre differential heat equation (2.1) have the double Maclaurin expansion 

(4.1) u(x,t) = 2 ^ ~~T^7 1 i"7T 2-. am+k 77 
v ^ 0 m ! r ( m + a + 1) fco *! 

(4.2) a , = r(fe + a + l)[(d/dx)k u(x, 0)]x=0 

for t G &7 is that u(x, t) G H* for t G Qf^ 

Proof. T o prove sufficiency, assume t h a t u(x, t) G H* for / G &y. T h e n , 
for t, t' with In ( 7 / ( 7 + 1)) < t' < t < In ( 7 / ( 7 - 1)) < 00 f w e have 

(4.3) t(x,t)= \ g(x,y;t + t')u(y,-t')dA (y) 
•Jo 

with the integral converging absolutely. W e choose t' > 0. On subs t i tu t ing 
(2.10) in (4.3) and on interchanging integrat ion with summat ion , we have 

(4.4) u(x,t) = Z (xe-y (i - e~y 
kl '0 m\Y(m + a + 1) jfcS 

J»co 

u(y, -t')wm+k(y,t')d A (y). 
0 

T h a t termwise integration is justified is a consequence of the fact t h a t an 
appeal to (4.14) of [3] yields, for ô > 0, 

=i w!r(w + « + i) ès X kl 

J»co 

|«Cy, -OIK+*(:M')|d A (y) 
0 

s^E (xe"7 (i - e-'y ( m + k V 
W ï+5 - 1 ) / 

2 y 
o mlT(m + a + 1) fo kl \e(e'+d - I)/ 

X C<?l"-im*-n\u(y, -t')\d A (y). 
t / 0 
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The rightmost integral converges by Lemma 7.4 of [3], and the series clearly 
converges by an argument similar to that used in the proof of Lemma 3.1. 

Now, setting 

(4.5) ak = T(a + 1) | u(y, -t')wk{y, t')d A (y) 
Jo 

and noting, by Corollary 7.2 of [3], that the integral of (4.5) is independent 
of t, we have, on substituting (4.5) in (4.4), u(x, t) given by the double series 
as required. Further, since 

oo tn. 

U(X,0) = J2 an 

Q"m+k ' T | 

- e ) ^ am(ye ) 

the determination of the coefficients ak by (4.2) is immediate. 
Conversely, to prove the necessity of the condition, assume that u has the 

series expansion (4.1) for / £ i^7. Now, for t, tf, with 

In (7/(7 + 1)) < *' < In (7/(7 ~ 1)) Û °°, 
we have 

/»oo 

J g(x,y;t-t')u{y,t')d A (y) 

g(x,y;t- t')d A (y) £ J ^ } • u E ~ ^ — - 1 

0 ^ 0 m\T(m + a + 1) fbo 

J»00 OO 

0 g ( x ' y : ' - nd A Cy) S kl é i (m - *)!r(« - A + « + 1) 
= X" «(», y ; * - t')d A (y) ± - ^ - ^ pm,a(y, O 

^r0 m!r(w + a + 1) 

where we have used the fact that pn>a(x, t) £ H* for all /, and where termwise 
integration can be justified by appeals to (4.4) and (4.8) of [3]. Hence, using 
the définition of pn,a(x, t) we have 

f g(x,y,t-t')u(y,t')dA (y) 
«/o 

_ v °^- - V (m\ r(m+<* + 1) tm_k _ t * 
" £ 0 m!r(m + a + 1) fcS \* / L(m - £ + a + 1) ^ ; U ' 

= v (1 ~ O* v fl^ (*Ow 

h kl £à m! T(m+a + l) 
= u(x, i) 

so that u(x, t) G iï* as required, and the proof is complete. 
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Theorem 8.1 of [3] provides the following restatement of the theorem. 

COROLLARY 4.2. For t G i^7, 

(4.6) u(x, t) = £ mlT{m + a + T) £ *-** *i 
if and only if 

œ a 
(4.7) u(x,t) = X) ~fw„ • * i l T ^ f e O -

n=o w!r(w + a + 1) 
An example illustrating the theorem is given by 

(4.8) u(x, t) = g«(i—-f> , / (2(xae-t)^), 

a function belonging to H* for all /. We have, in this case, 

u(x,t) = T(a + l)Y, ^ — Z ,w r } , n 

which is (4.1) with 
a* = T ( a + I K 

as predicted by (4.2). 

5. Simple series expansions. We establish the fact that if the double 
series (4.1) is summed by columns, a dual Laguerre temperature with the 
Huygens property may be represented by a simple Maclaurin series in x. 

THEOREM 5.1. If u(x, t) Ç H* for t £ &yj and if g(t) = u(0, t), then, for 

t e 2^ 

m=o m\Y{m + a + 1) 

Proof. By Theorem 4.1, we have 

(5.2) «(*, *) - ^ n[r(n + a+1)2^Q an+m ml 

so that 

(5.3) g(f)=u(0,t) 

t\m 
= 1 v C1 ~ e~ ) 

r ( a + l ) £ o ° " m! 

Hence, successive differentiation yields 

(5.4) Zm^=Y^tj^il-e-T(e-y. 

Substituting (5.4) in (5.2), we obtain (5.1) as required. 

W7e note that the example of (4.8) illustrates the theorem since, in this case, 

g(t) = e«a-*-<) 
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so t h a t 

g<k)(t) = ( a r ' ) V ( 1 - r { ) . 

We then have 

~ o m\Y{m + a + 1) 

as expected. 

COROLLARY 5.2. There exists a solution u(x, t) of the Laguerre difference heat 
equation which is equal to its Maclaurin double series expansion in xe~l and 
1 — e~l for t G &y and u(0> t) = g(t) if and only if g(t) is equal to its Maclaurin 
expansion in (1 — e~l) for t G <^7. 

Proof. T h e necessity of the condition is a consequence of the theorem. T o 
establish sufficiency, set 

n=o 1 (a + \)n\ 

and form the series 

(5-5) Ê ^tî--rT^{m\t)x-. 
m=o m\Y(m +a + 1) " 

Since the series defining g{t) is assumed to converge for t G ^ 7 , it follows t ha t 

I 1 / 7 1 

lim ^ 7. 

But by Lemma 3.1 this inequality is sufficient for the convergence of the series 
(5.2) for t G Siïy and for its being equal to the series (5.5) for t G <S?7. 

An al ternat ive simple series expansion may be derived if the double series 
(4.1) is summed by rows as indicated in the following result. 

T H E O R E M 5.3. Let u(x, t) G H* for t G Siïy and letf(x) = u(x, 0) . Then 

(5.6) u(x,t) = £ (e' * 1)kAM™'') 

where 

(5.7) Axf(x) = xf"(x) + {a + l ) / ' ( x ) 

and f belongs to class (1, 7 ) . 

Proof. By the principal theorem, we have, for t G 2iïy, since u(x, t) G H* 
there, t h a t 

(M) ,„. (). t z^ft t ~^f?~. 
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Hence 

(5.9) f(x) = u(x,0) 

n <rm 

~ j ~ 0 m\F(m+a + 1) ' 

Now, successive applications of the operator Ax to f(xe~l) yield 

(5.10) A«f{xe-<) = £ S w l l V 1 n 
^To m\Y(m + a + 1) 

so that on substituting (5.10) in (5.8), we obtain (5.6) as required. Further, 
since f(x) is given by the series (5.9) which converges for / 6 £&y, the con­
ditions t h a t / belong to class (1, 7) are satisfied and the proof is complete. 

COROLLARY 5.4. There exists a dual Laguerre temperature u(x, t) which is 
equal to its Maclaurin double series for t £ S'y and which reduces to fix) at 
t = 0 if and only if f belongs to class (1, 7). 

Proof. The necessity of the condition follows from the theorem. To establish 
sufficiency, we assume t h a t / belongs to class (1, 7) and is given by the series 

nX) h n\T(n+a+l)' 
Then 

00 / — t\m 

Now consider the series 

(5.11) Ê (e' 7 1)k Ax
kf(xe~'). 

£=0 K\ 

Since/ belongs to class (1, 7), we have that 
1 l/n 

lim - \CLn e , , i / n 1 ' I \L/n ^ 

= l i m - \an\ ^ 7 _n\Y(n + a + 1)J n^n 
so that the series (5.11) converges for t £ <^7 and represents there the dual 
Laguerre temperature u(x, i) sought. Clearly u(x, 0) = f(x). 

As an example illustrating the corollary, consider, for tQ > In 2, the function 

f(x) = g(x;t0). 

It clearly belongs to class (1, l/(eto — 1)), and as predicted by the corollary, 
there is a dual Laguerre temperature 

u(x, t) = g(x; t + to) 
- (_iy*+*(é,'Q)«+1

r(m + k + a + i ) " 
/ t0 -J \m+Jc+a+l 

(1 - e-'Y v 

k=0 K\ w = 0 

x (e-'xy 
m\Y(m + a + 1) 

for / G ^I / (« 'O-D such that u{x, 0) = / (x ) . 
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