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Active Particles Methods in Economics 1

1 Aims and Plan of the Element
Interactions between mathematics and economics have led to a number of suc-
cessful scientific achievements, up to and including Nobel Prizes. For example,
we refer to Nash (1951, 1996), for the 1994 award shared by Harsanyi, Nash,
and Selten for their analysis of equilibria in the theory of non-cooperative
games; and to Black and Scholes (1972, 1973), for the 1997 awards shared by
Merton and Scholes for their Black–Merton–Scholes option pricing formula.
In some cases, interdisciplinary interactions have led to advances in both

fields. For example, the celebrated theory of games and equilibria was devel-
oped by Nash, while the pricing model has led to interesting studies in the
qualitative analysis of partial differential equations. On the other hand, the
challenging goal of developing a mathematical theory of economics (at least
for certain branches of economics) has not yet resulted in a well-defined and
robust theory, although it has attracted intense attention from scientists working
in both fields.
Recently, some progress has been made using methods inspired by meth-

ods from statistical physics, which initially attracted mathematicians to the
modelling of immune competition, see Bellouquid and Delitala (2006), and
on biological systems in general, see Aristov (2019). We refer to the book of
Bellomo, Bellouquid, Gibelli, and Outada (2017), updated in the review of
Bellomo et al. (2021), for the kinetic theory of active particles, KTAP for short,
while various surveys, for example see Ajmone Marsan, Bellomo, and Gibelli
(2016) and Dolfin, Leonida, and Outada (2017), report on specific applications
to the modelling of a variety of living systems.
Somewhat technically different approaches have been developed in parallel

to the KTAP. For example, see Pareschi and Toscani (2013), which presents
mathematical tools partially inspired by methods of statistical physics, in par-
ticular the Boltzmann and Fokker–Plank equations, as well as the survey
by Furioli, Pulvirenti, Terraneo, and Toscani (2017) devoted tomodelling social
systems and economics.
TheKTAP approach has inspired various approaches that use analogous con-

cepts but employ different mathematical structures. Indeed, this is the case with
the theory of behavioural swarms, TBS for short, which is based on mathem-
atical structures inspired by pseudo-Newtonian dynamics, namely systems of
ordinary differential equations. This theory was proposed in Bellomo, Ha, and
Outada (2020) and has already been applied to modelling and simulation of
systems in economics. In particular, it has already been specialized for the mod-
elling of price dynamics in Bellomo, De Nigris, Knopoff, Morini, and Terna
(2020) and Knopoff, Secchini, and Terna (2020).
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2 Complexity and Agent-Based Economics

It is not surprising that mathematicians, motivated by problems in econom-
ics, look to the methods of statistical physics. Studies in economics are well
aware of this tendency – for instance, see Jovanovic and Le Gall (2021) – as
well as of the useful contributions that can be made by the mathematical the-
ory of dynamical systems already applied within deterministic frameworks;
see Bonacich and Lu (2012).
The purpose of our Element is to understand how far mathematical theories

based on active particles methods have been applied to describe the dynam-
ics of complex systems in economics, and to look forward to further research
perspectives in the interaction between mathematics and economics. Indeed,
we live in a complex behavioural, and evolutionary environment, as observed
in the collection of essays edited in Ball (2012), which reports on a variety of
applications.
We are aware that this research program cannot be developed on the basis

of mathematical approaches generally applied to inert matter. Therefore, the
search for new methods should go far beyond the current state of the art. In
fact, it requires the invention of new mathematical tools, even a new math-
ematical theory, capable of capturing, as far as possible, the main features of
living systems. There exists a critical literature on the conceptual difficulties
concerning the interaction between mathematics and living systems in general;
see May (2004) and Reed (2004). This difficulty is caused by the lack of back-
ground field theories that are otherwise available in the case of living systems.
Furthermore, living systems are evolutionary; seeMayr (1981). A reference for
the philosophical and mathematical rationale for overcoming these difficulties
can be found in Burini, Chouhad, and Bellomo (2023).
In our Element, we take into account this specific indication and address the

study to a large system of several interacting living entities. We refer mainly to
the TBS approach. However, we also consider the conceptual genesis of TBS
from the KTAP approach. The presentation is mainly conceptual, but biblio-
graphical references are given to support the interest of readers in mathematical
topics. The content of our Element is presented in the following sections and
an appendix devoted to scientific programming.

Section 2 presents a general strategy for modelling systems of living interact-
ing entities. The strategy leads to the derivation of a mathematical structure
suitable for capturing the key complexity features of living systems. Reference
to the existing literature indicates that the concept of living systems should
also be extended to behavioural sciences such as economics and political sci-
ence. Therefore, this section provides an introduction to the contents of the
following sections devoted to the search for mathematical tools in economics.
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Active Particles Methods in Economics 3

Section 3 is devoted to the presentation of mathematical tools. First, we pro-
vide a brief overview of the approach of the kinetic theory of active particles,
then we move on to the so-called behavioural swarms theory, see Bellomo,
Ha, and Outada (2020). The conceptual difference between these twomethods
is that the state of each individual entity in swarms is defined by a determinis-
tic variable, which, however, is statistically distributed among the interacting
individuals, while in the case of the kinetic theory methods it is approximated
by a probability distribution over the variable that defines the state of the
micro-scale of the entities that make up the whole system.
Section 4 shows how the tools reviewed in Section 3 can be applied to the
modelling and simulation of evolutionary and behavioural systems. The focus
is on the dynamics of prices in a heterogeneous society, which is selected
as an example. First, the derivation of the model is presented, and then the
predictive ability of the model is examined by means of various simulations.
This application is critically analysed in the following section with an eye
towards further conceivable developments of the modelling approach.
Section 5 develops a critical analysis of the two methods and provides some
hints for further technical and research developments. In particular, we con-
sider the problem of modelling individual and collective learning dynamics,
as this dynamics play a key role in several (possibly all) real-world applica-
tions involving living entities. Further topics considered in this section are
modelling multi-model dynamics, exogenous networks and the use of the two
previously mentionedmethods in synergy. The development of new structures
proposed in this section are motivated by specific applications which will be
mentioned in the section itself.
Section 6 looks ahead to research perspectives along the quest to study the
complex interactions between the hard sciences and life. This section also
discusses how economics can be viewed as a behavioural science, taking into
account some aspects typical of living systems. The final discussion focuses
on the key objective of developing a mathematical theory of behavioural
economics.
Section 7 provides the computational code for the simulations as a technical
appendix. The scientific programs refer to the dynamical system presented in
Section 4. The use of the codes is explained in detail so that the interested
reader can use the codes for further computational studies. The codes can be
technically extended to study different models. In particular, those derived
within the formal framework of the kinetic theory of active particles with
discrete states proposed in Section 5.
Section 8 proposes a conclusion to this Element with some considerations that
start from the specifics of the soft and hard sciences and suggest a new vision
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4 Complexity and Agent-Based Economics

that goes beyond this division and focuses on the search for a mathematical
theory of economics. It is hoped that the reader will find in this final section
some pointers to perspectives.

2 On a Quest towards a Mathematical Theory
of Living Systems

The content of this section is divided into three parts. First, we present some
basic concepts about the derivation of mathematical (generally differential)
models. Then, we propose some conceptual steps in the search for a math-
ematical theory of living systems. In particular, we show how these steps lead
to a mathematical theory. Finally, we present a technical approach for deriv-
ing and validating specific models. These topics are covered in the following
three subsections. Only concepts are given, as the subsequent mathematical
formalization is provided in Section 3.
The content of the subsections aims at answering the following three key

questions:

KQ1: What is a mathematical model?
KQ2: What is the rationale for deriving mathematical models?
KQ3: How can models be validated?

2.1 On the Derivation of Mathematical Models
Our goal is to build a bridge between mathematics and economics. Therefore,
for the purposes of the tutorial, we provide some technical definitions that are
useful for a general methodological approach to modelling dynamical systems.
Indeed, it is important to follow a general rationale instead of applying heuristic
methods that may be valid in certain case studies, but cannot be easily applied
to other case studies.
We refer specifically to a large system of interacting, behavioural entities

that constitute a system in economics. We consider systems with a constant
number of entities. Therefore, the overall state of the system can be provided
according to the specific scale chosen for representing and/or modelling the
system. In particular, one can consider the following scales and related classes
of equations that provide the mathematical structure for deriving models.

Microscopic when the overall state is defined by the state of each individ-
ual entity, it can be called active particle, or a-particle for short. The state of
the a-particles is called activity. Microscopic models are usually described by
systems of ordinary differential equations.
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Active Particles Methods in Economics 5

Mesoscopic when the overall state is defined by a probability distribution over
the state of the microscale entities that make up the system, called active par-
ticles. Mesoscopic scale models are generally described by systems of transport
equations with the structure of integro-differential equations.

Macroscopic when the overall state is defined by the local mean and higher-
order moments of the activity. Microscopic models are usually described by
systems of partial differential equations.

This brief introduction naturally leads to an understanding of the general
concept of the mathematical model. We focus on the lower scales, while the
macroscale quantities are obtained by local averaging of themicroscale activity.
The following definitions are proposed for this purpose.

Independent and Dependent Variables: Independent variables are time and
space, which are also defined independently of the system object of the mod-
elling approach. Dependent variables are the quantities that depend on the
time and space selected in the mathematical model to describe the overall
state of the system. These variables are sometimes referred to as state vari-
ables. The state variable at the micro scale is defined by the set of all activities
expressed by the a-particles, since the activity is heterogeneously distributed
among the a-particles. At the mesoscale, the system is defined by a probability
distribution over the microstate.
Definition of a Mathematical Model: Amathematical model is an equation or
computer description suitable for describing the dynamics of a system. Mod-
els are generally referred to as mathematical structures, which are related to
the scale chosen to represent and model the system.
Functional Subsystems and Endogenous Networks: A-particles can express
different types of activities. Therefore, the whole system can be divided into
different aggregations called functional subsystems, or FS for short. Endogen-
ous networks correspond to a system of nodes, where each FS is localized in
a node. The communication between the nodes, namely in the network, can
take place through different communication devices, while spatial dynamics
is not taken into account.
Exogenous Networks: Space collocation is considered in exogenous net-
works, where nodes correspond to a physical collocation. Each node consists
of an endogenous network. Therefore, the two networks are subject to a
complex dynamics of interactions.

All the preceding definitions naturally lead to the definition of mathematical
models.
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6 Complexity and Agent-Based Economics

Amathematical model is a system of equations whose solution, given initial
and boundary conditions, defines the dynamics of the system’s state variable
over the independent variable.

Remark 2.1 As mentioned, we are considering systems with a constant num-
ber of a-particles. However, these can move through both types of lattices.
The spatial dynamics does not appear, since it corresponds to the nodes of the
exogenous lattice. In the following, we consider models derived in the frame-
work of differential equations. In principle, the same simulation goal can be
achieved by computer architecture.

2.2 On a Quest towards Model of Living Systems
Behavioural systems in economics can be considered as a special class of
systems belonging to the broader class of living systems. Therefore, a mathem-
atical approach has been developed that takes this special feature into account,
as first reported in Bellomo (2008) and later in Bellomo et al. (2017). These
books refer to the kinetic theory for active particles.
Subsequently, a pseudo-Newtonian approach was proposed in Bellomo, Ha,

and Outada (2020) to pursue the same goal. This approach has been called the
mathematical theory of behavioural swarms.
The next section presents an overview and critical analysis of the two afore-

mentioned methods, while here we simply report on the philosophy that gave
rise to these methods. Actually, we refer to the reasoning given in Bellomo et al.
(2017) for the first method and show how it provides the pseudo-Newtonian
methods as well. The key point is that the search for a mathematical theory of
living systems requires a strategy suitable to replace the background theories,
consisting of conservation and/or equilibrium equations, which refer to systems
of inert matter and which may include source/sink terms related to competition
and dissipation/decay somehow related to entropy functions.
In fact, living systems are different. This was noted by Immanuel Kant

(1724–1804), who defined living systems as special structures organized and
with the ability to pursue a purpose (Kant, 2000).
It may be noted that Lee Hartwell (born 1939), Nobel Laureate, expressed

an analogous concept: ‘Although living systems obey the laws of physics and
chemistry, the concept of function or purpose distinguishes biology from other
sciences. In fact, cells are not molecules, but have living dynamics induced by
the lower level of genes and are organized into organs’ (Hartwell, Hopfield,
Leibler, and Murray, 1999, p. 647).
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Active Particles Methods in Economics 7

This statement concerns the organizing capacity of cells to organize them-
selves into biological structures, which opens up the search for the complex
connections between genes and cells, where the dynamics at the level of genes
induce the dynamics at the level of cells. This multiscale vision applies not only
to biology, but to all living systems in general, including the economy.
Furthermore, Herbert A. Simon (1916–2001) teaches us how behavioural

features should be considered by economic systems, since several aspects
of the dynamics of systems in economics are influenced by individual strat-
egies generated by learning and the ability to express specific strategies up to
decision making. These features, which are evolutionary in time, are hetero-
geneously distributed in the individual or aggregate active particles that play
interactions (games) in economics; see Simon (1978, 2019). Simon, similar to
Hartwell, states that formally structured theories are possible for economics
and gives hints on how to pursue this goal. Such a theory should be developed
within a multiscale vision in which the dynamics at all scales are constantly
interacting.
It is not surprising that most of the search for a mathematical theory of living

systems has been related to biology, as evidenced by some pioneering work;
see Bellomo and Forni (1994), Bellouquid and Delitala (2006), and Jager and
Segel (1992). These are examples where the preceding concepts have been
used in different mathematical settings, but without the framework of a glo-
bal strategy. More recently, however, research has focused on social systems
and behavioural and evolutionary economics; see Ajmone Marsan et al. (2016)
and Bellomo, Dosi, Knopoff, and Virgillito (2020).
Given the preceding brief introduction, we can now present the modelling

strategy, which consists of two steps. First, we consider the derivation of a
mathematical structure suitable to capture the complexity features of living sys-
tems. Then, the second step consists in deriving models by inserting into such a
structure models of interactions for the specific system object of the modelling
approach.
Step 1 is performed through the following sequence of blocks shown

in Fig. 1:

• Block 1 Phenomenological interpretation of living systems to extract the
specific features of complexity, as well as the phenomenology of the
dynamics of interactions at the micro-scale.

• Block 2 Identification, from the study in Step 1, of the activity expressed
by the active particles, and subdivision of the overall systems into groups
of the same interest, already defined functional subsystems.
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8 Complexity and Agent-Based Economics

Figure 1 Strategy towards mathematical structures to model living systems.

Figure 2 From mathematical structures to models and applications.

• Block 3 Design of mathematical structures suitable for describing m-m
and m-M interactions, where these abbreviations correspond, respectively,
to interactions between microscopic entities and between microscopic and
macroscopic entities.

• Block 4 Design of mathematical structures suitable for describing the
external actions acting on active particles and on the system as a whole.

• Block 5 The derivation of a general mathematical structure capable of
capturing the complexity features defined in Step 1, consistent with the
chosen representation and modelling scale. This structure should transfer
micro-scale interactions to the description of collective behaviour.

The approach is performed through the following sequence of blocks, shown
in Fig. 2:
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Active Particles Methods in Economics 9

• Step 1 Derivation of mathematical models (Block 8) by inserting into
the mathematical structure (Block 5) the interactions between a-particles
(Block 6) and the external actions acting on active particles and on the
system as a whole (Block 7).

• Step 2 Validation of models (Block 11) requires simulations (Block 9) and
qualitative analytical studies (Block 10).

• Step 3 Validated models can be applied to specific case studies using
simulations and analytical results (Block 12).

Remark 2.2 Interactions may be nonlinearly additive and nonlocal in space.
An important feature is that the sensitivity of a-particles to other a-particles
may not be symmetric. Models of interactions can be based on a phenomeno-
logical study of each specific system object of the modelling approach.

Remark 2.3 Models present a nonlinear structure that requires the develop-
ment of computational codes that must be related to such specific structures.
For example, behavioural swarms require the treatment of large systems of
ordinary differential equations, while kinetic theory for active particles can
be treated by Monte Carlo methods for the simulation of large systems of
interacting particles.

Remark 2.4 The application of models to real-world problems can gener-
ate challenging analytical problems in addition to computational ones. A key
problem is the study of the asymptotic trend time of the dynamical response,
searching for the existence and stability of equilibrium configurations, when it
is possible to prove their existence. Another challenging problem is the deriv-
ation of macroscopicmodels from the underlying description at themicroscopic
scale.

A selection of the most important complexity features is necessary, since we
cannot naively claim that all of them are effectively considered. Our proposal is
based on the authors’ bias in some way consistent with Bellomo et al. (2017).
Accordingly, the following five common features and sources of complexity
are selected.

• Ability to express a strategy is modeled by the activity variable, say behav-
ioural “soft” variable, then all components can have a mutual influence. If
the strategy contains both behavioural and mechanical variables, then the
latter are influenced by the former.

• Heterogeneity can be modeled by a distribution function over the activity
to account for the heterogeneous behaviour of a-particles, which can be
viewed as probability distributions.
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10 Complexity and Agent-Based Economics

• Nonlinearity of Interactions: Modelling interactions generally leads to
nonlinear additive outputs, which may also depend on the distribution func-
tions. For example, models of opinion formation include the sensitivity of
a-particles not only to individual a-particles, but also to individuals as a
whole.

• Learning Ability:A-particles learn from past experience, as shown inBurini
and De Lillo (2019) and Burini, De Lillo, and Gibelli (2016). As a con-
sequence, the dynamics of the interaction are modified by the level of
learning that is heterogeneously acquired by each individual. A key issue
to be considered in modelling learning are the physics of the human mind,
in Schoeller, Perlovsky, and Arseniev (2018), and the complexity of the
cognitive process, in Perlovsky and Schoeller (2019).

• Darwinian Mutation and Selection: All living systems are evolutionary, as
birth processes can produce entities that are either less or more adapted
to the environment. The less adapted may even die out, while the more
adapted may produce new entities that are better adapted to the external
environment.

These complexity features, and additional possible ones, imply that the mod-
elling approach always needs multiscale methods, where the dynamics at the
large scale should be properly related to the dynamics at lower scales. For
example, the behaviour of individual entities depends on their individual ability
to develop strategies based on the amount of information stored in their minds
due to past experience.
Collective behaviours are observed at the macroscopic scale, with the under-

standing that the dynamics of a few entities do not directly lead to the collective
dynamics as already observed in Anderson (1972). In addition, the role of the
external environment can have an important influence on the dynamics. There-
fore, appropriate models and parameters are needed to account for this type of
action. The interaction with the external environment can generate mutations
and selections, which can lead to the strengthening or weakening of FSs.

2.3 On the Validation of Mathematical Models
Let us now consider the validation ofmodels by examining their ability to quan-
titatively reproduce empirical data, if available. Furthermore, models are also
required to represent, on a qualitative level, the observed emergent collect-
ive behaviour. This is not an easy task, as several technical difficulties have
to be taken into account. These are related to the multiscale structure of the
systems under consideration and to their properties as living systems. The val-
idation process should take into account that different types of models can be
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Active Particles Methods in Economics 11

derived according to the different types of predictive description they can offer.
In particular, two main typologies of models can be identified:

• Predictive models, which aim to predict, qualitatively and quantitatively,
the behaviour of systems in time, given appropriate initial conditions
and, if necessary, constraints on the solutions. In addition, models should
also reproduce qualitatively emerging behaviours that are often qualita-
tively repeated within appropriate variations of the parameters of any
mathematical problem.

• Exploratory models, which aim at exploring the behaviour in time of sys-
tems under programmed variation of parameters and external actions. In
fact, in the case of open systems, the role of external actions must be stud-
ied to verify whether or not these actions have the ability to address the
system towards specific behaviours.

The validation of models generally encounters technical difficulties. For
example:

1. Models are often derived at a scale different from that used to observe
and collect empirical data. For example, interaction models refer to the
microscopic scale, but collective behaviour is observed at the macroscopic
scale.

2. Collective dynamics are subject to large deviations depending on the param-
eters that model the interactions as well as the initial conditions.

3. The amount of empirical data needed to develop a detailed validation
process generally corresponds to steady uniform states, in some cases
equilibrium, while models should describe dynamics far from such states.

Remark 2.5 The key difficulty is then quantitative empirical data are gener-
ally available, but only for very special case; for example, small perturbations
of steady states. Therefore, even when available these data may not be useful.
On the other hand, we focus on collective behaviours which can be observed
in several cases. Studying the ability of models to reproduce qualitatively
observed collective behaviours is already a key contribution to validation.
Indeed, validation can take advantage of the fact that qualitative forms of col-
lective behaviours are preserved in most cases. One can call them “emerging
behaviours.”

Models could hopefully demonstrate a very special case of emerging behaviour,
which is the occurrence of unpredictable events with the characteristics of the
so-called black swan, defined as follows according to Taleb (2007): “A Black
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12 Complexity and Agent-Based Economics

Swan is a highly improbable event with three principal characteristics: It is
unpredictable; it carries a massive impact; and, after the fact, we concoct an
explanation that makes it appear less random, and more predictable, than it
was.”

3 A Handbook of Mathematical Tools
This section shows how the rationale proposed in Section 2 can be translated
into an analytic formalization, with the aim of providing a concise handbook
of mathematical tools to be applied to modelling and simulation of systems in
behavioural economics. We refer to the mathematical theory of active particles,
which includes both the kinetic theory approach and the theory of behavioural
swarms.
The common feature of these two methods is that the collective motion

depends on the interactions at the microscopic scale. On the other hand, an
important difference characterizes them. In fact, the KTAP approach refers to
the conceptual lines of statistical physics, while the TBS refers to a pseudo-
Newtonian framework. In fact, the information provided by KTAP is richer
than that given by TBS, but the KTAP approach requires a sufficiently large
number of a-particles to justify the statistical description, while this constraint
is not necessary for the application of TBS methods.
Although the application reviewed and critically analyzed in the next section

refers specifically to the TBS approach, both methods will be reviewed in this
section, while a critical analysis will point out pros and cons of the twomethods
and will work out some developments towards a possible unification of the two
methods.
We consider the dynamics of a finite number of a-particles. In the first subsec-

tion we review the kinetic theoretical approach, while in the second subsection
the mathematical theory of behavioural swarms is reviewed. A critical study,
focusing mainly on conceivable developments of the two methods, is reviewed
in the third subsection.
Before giving additional details of these two theories, it would be useful

to make precise the terminology about interactions, collisions, scattering, and
games. The specific theories are somewhat inspired by themethods of the statis-
tical physics of classical particles, where the term interaction is systematically
used to denote the mutual action of two particles. This definition refers to a pair
of particles that are scattered due to the interaction, but preserving mass, linear
momentum, and energy. The scattering is related to the fact that the centers of
the two particles do not coincide along their respective trajectories. The term
collision is also used, although it is valid for billiard balls, but not always for
particles that do not collide thanks to repulsive forces.
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Active Particles Methods in Economics 13

When we move to active particles, the term collision cannot be accepted and
it is often replaced by interaction, although it seems generic because it does
not express the strategy that modifies the rules of interaction. Often theoretical
tools of game theory are used to model the outcome of the interaction. Then a-
particles become players and interactions correspond to a game. Nevertheless,
we often use the term interactions because game theory is not the only way to
account for strategies and related outcomes.

3.1 On the Kinetic Theory of Active Particles
Let us consider the dynamics of a large system of a-particles, which can be
divided into m FSs, denoted by the subscript i. The number N of a-particles is
assumed to be constant in time, since we do not consider birth and death dynam-
ics. However, a-particles can move across FSs. This overview of mathematical
tools refers to Bellomo et al. (2017), reviewed also in Bellomo, Esfahanian,
Secchini, and Terna (2022).
The state of the system is one whose state is defined by the distribution

functions:

fi = fi(t,u) : [0,T] × Du −→ R+, i = 1, . . . ,m, (3.1)

where Du is the domain of activity u and T is the maximal observation time.

Remark 3.1 The strategy expressed by individuals, namely a-particles, is
heterogeneously distributed over the microstates of a-particles considered as
players. These are modeled as stochastic variables associated with a dis-
tribution function over the microstates. The payoff is also heterogeneously
distributed over the players and can be motivated by ‘rational’ but also
‘irrational’ strategies.

If fi is known and integrable, the low ordermoments provide themacroscopic
state of the system. Specifically, the fraction of a-particles in each FS, with
respect to N, is given by

ni = ni(t) =
∫
Du

fi(t,u) du, (3.2)

where
m∑
i=1

ni(t) = 1, (3.3)

since we have assumed that N is constant.
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14 Complexity and Agent-Based Economics

Similar calculations lead to the mean:

Ei = Ei(t) =
∫
Du

u fi(t,u) du, (3.4)

and variance

Vi = Ei(t) =
∫
Du

(u − Ei)2 fi(t,u) du. (3.5)

Of course, analogous calculations can be applied to the whole system.

Remark 3.2 The activity is different in each FS, but the notation is simplified by
writing u instead of ui, since the subscript denotes both the FS and the activity.
In general, dimensionless variables are used by referring the activity to the
minimum and maximum values, say um and uM, so that Du = [0,1] or Du =

[−1,1] when it is useful to consider positive and negative values of the activity.

The KTAP approach considers the following types of statistically identified
a-particle:

• Test particle, which is supposed to be representative of the whole system,
of the ith functional subsystem with microscopic state, at time t, supplied
by the variable u, whose distribution function is fi = fi(t,u).

• Field particle of the kth functional subsystem with microscopic state, at
time t, defined by the variable u∗, whose distribution function is fk =
fk(t,u∗). By field particles we mean the complete set of particles.

• Candidate particles, of the hth functional subsystem, with microscopic
state, at time t, defined by the variable u∗, whose distribution function is
fh = fh(t,u∗). Candidate particles are the field particles that end up in the
test particle state after interaction.

Interactionsmodify the activity of a-particles, which can also move across FS.
Each a-particle has a sensitivity rangeΩ ⊆ Du and is therefore only sensitive to
activity withinΩ. Interactions may be non-symmetric. In this case the notation
Ωu is used to denote an activity dependent sensitivity. There are two kinds of
interactions:

• Micro-micro interactions, in short m-m, by which each a-particle interacts
with other a-particles of all FSs whose state falls in Ω.

• Micro-macro interactions, in short m-M, through which each a-particle
interacts with all FSs identified by the mean value E whose state falls
within Ωu.

The modelling of the interactions can be supplied by the following quantities:
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Active Particles Methods in Economics 15

• m-m interaction rate ηik[ fi, fk](u∗,u∗), which models the frequency of
micro-micro interactions between a candidate i-particle with state u∗ and
a field k-particle with state u∗.

• m-M interaction rate µik[ fi, fk](u∗,Ek), which models the frequency of
micro-micro interactions between a candidate i particle with state u∗ and
the FSk with macroscopic state given by the mean value of the activity Ek.

• Transition probability density due to m-m interactions, which models
the probability density that a candidate i-particle with state u∗, after a
micro-micro interaction with a field k particle of state u∗, is denoted by
Aik[ fh, fk](u∗ → u|u∗,u∗) .

• Transition probability density due to m-m interactions, which models the
probability density that a candidate i-particle with state u∗ ends up in the
state of the test particle of the ith FS after a micro-macro interaction with
the k-FS, is denoted by Bik[ fh, fk](u∗ → u|u∗,Ek).

• Loss terms due to m-m interactions, which models the loss of the number
of particles corresponding to micro-micro interactions described by Aik, is
denoted by Li[ fi, fk](u,u∗).

• Loss terms due to m-M interactions, which models the loss of number of
particles corresponding to micro-micro and micro-macro interactions due
to conservative interactions described byBik, is denoted byKik[ fi, fk](u,Ek).

The derivation of the mathematical structures that provide the conceptual
framework for the modelling is obtained by the number balance of a-particles
within an elementary volume of the space of microscopic states of the active
particles. More specifically, the rate of change of the number of active par-
ticles is equal to the input flux minus the output flux for both micro-micro and
micro-macro interactions.
Balance within the space of microscopic states can be described as follows:

Variation rate of the number of active particles

= Inlet flux rate caused by conservative interactions

− Outlet flux rate caused by conservative interactions

+ Inlet flux rate caused by proliferative interactions

− Outlet flux rate caused by destructive interactions, (3.6)

where all the proceeding fluxes include both micro-micro and micro-macro
interactions, as well as the dynamics of mutations.
If only conservative interactions are taken into account, the preceding

relation corresponds to the following structure:
∂

∂t
fi(t,u) =

(
Gi − Li +Hi −Ki

)
[ fh, fk](t,u), (3.7)

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009548755
Downloaded from https://www.cambridge.org/core. IP address: 3.137.183.111, on 26 Nov 2024 at 23:20:54, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009548755
https://www.cambridge.org/core


16 Complexity and Agent-Based Economics

where

Gi =

n∑
k=1

∫
Ωu×Ωu

ηik[ fi, fk](u∗,u∗)Aik[ fi, fk] (u∗ → u|u∗,u∗)

× fi(t,u∗) fk(t,u∗) du∗du∗, (3.8)

Li = fi(t,u)
n∑

k=1

∫
Ωu

ηik[ fi, fk](u,u∗) fk(t,u∗) du∗, (3.9)

Hi =

n∑
k=1

∫
Ωu

µhk[ fi, fk](u∗,Ek(t))Bik[ fi, fk] (u∗ → u|u∗,u∗)

× fi(t,u∗)Ek(t) du∗, (3.10)

and

Ki = fi(t,u)
n∑

k=1
µik[ fi, fk](u,Ek(t)). (3.11)

Let us now consider the modelling of interactions, where different models
of interactions are reported in the following examples:

Competitive (Dissenting): One of the interacting a-particles increases its sta-
tus by taking advantage of the other, which is forced to decrease its status.
Competition brings advantage to only one of them.
Cooperative (Consensus): The interacting a-particles exchange their states,
namely the a-particles with higher states decrease their states, while the oth-
ers with lower states increase their states. All a-particles show a tendency to
share their microstate.
Learning: One of the two a-particles changes its microstate independently of
the other. It learns by reducing the distance between the activities of the inter-
action particles. The distance inmeasured by an appropriatemetric technically
related to the specific dynamics under consideration.
Hiding: One of the two tries to increase the total distance from the other, which
in turn tries to decrease it.
Mixed competitive-cooperative: A-particles do not share the same strategy,
but some of them act competitively while others act cooperatively.

Remark 3.3 The payoff that leads to the decision depends on the actions of
the players as well as the frequency of interactions. Both may depend on the
overall probability state of the system.

Remark 3.4 A technical generalization of the structures is the use of vector
activity variables, which requires modelling a hierarchy of the components of
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Active Particles Methods in Economics 17

the activity variable so that the transition probabilities can be factorized. This
problem is tackled by the kinetic approach, where the modelling of interactions
is described by theoretical tools of stochastic game theory. This approach deals
with entire populations of players, where strategies with higher payoff could
spread over each population through learning related to individual-based and
collective interactions, where the concept of learning has been defined earlier.

Remark 3.5 Themathematical structures reported in this subsection have been
derived under the assumption that interactions, although behavioural, follow
rules that are constant in time. A recent study is inspired by Herbert Simon’s
theory of the virtual world; see Simon (2019). In detail, the mathematical
framework proposed in Bellomo and Egidi (2024) models a dynamics whose
interactions evolve in time. The driver of this action is the Utility Function
which evolves in time consistently with the overall dynamics of the system.

The preceding mathematical tools have been reported for a dynamics with con-
stant number of particles. This assumption is consistent with the specificmodels
of economics studied according the KTAP approach. On the other hand, the
theory is more general and includes a variable number of individuals due to
proliferative and/or destructive events. Therefore, the preceding structures need
further developments that are reported in the following with the aim of provid-
ing a more general framework consistent with Eq. (3.6). The assumption that
the previously mentioned event occur in the state of i-particles leads to the
following balance of particles:

∂tfi(t,u) =
(
Ci − Li +MM

i − LM
i + Pi −Di + PM

i −DM
i
)
[ fi, fk](t,u). (3.12)

If we only consider proliferative and destructive terms that are generated by
interactions at the micro-scale, the following additional terms are considered:

Pi =

n∑
k=1

∫
Ω×Ω

ηhk[ fi, fk](u∗,u∗)Pik[ fi, fk](u,u∗)

× fi(t,u)fk(t,u∗) du∗, (3.13)

and

Di = fi(t,u)
n∑

k=1

∫
Ω

ηik[ fi, fk](u,u∗)Dik(u, fk) fk(t,u∗) du∗, (3.14)

with the meaning of the terms Pik andDik analogous to that of the conservative
terms.

• Transition probability density due to m-m interactions, which models
the probability density that a candidate i-particle with state u∗, after a
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18 Complexity and Agent-Based Economics

micro-micro interaction with a field k particle of state u∗, is denoted by
Aik[ fh, fk](u∗ → u|u∗,u∗).

• Transition probability density due to m-m interactions, which models
the probability density that a candidate i-particle with state u∗, after a
micro-micro interaction with a field k particle of state u∗, is denoted by
Aik[ fh, fk](u∗ → u|u∗,u∗).

The formal expressions of PM
i and DM

i is not reported here, as they can be
obtained by analogous calculations.
The preceding mathematical structures do not consider transitions from

one functional subsystem to the other. However, some specific models might
require themodelling of this specific feature. Examples can be found in political
dynamics, where individual entities might move from one political orientation
to another. This topic is postponed to Section 5, where it is revisited consid-
ering both methods, that is, KTAP and behavioural swarms, including their
synergetic applications in specific case studies.

3.2 Mathematical Tools of Behavioural Swarms
The so-called theory of behavioural swarms, or TBS for short, was introduced
in Bellomo, Ha, and Outada (2020) and subsequently applied to modelling
and simulation of problems in economics, which will be reviewed in what
follows. As in the case of the kinetic theory of active particles, the TBS
approach refers to a mechanical system. Specifically, this theory is based on the
Cucker–Smale model; see Cucker and Smale (2007), which describes the
dynamics of a fixed number of self-propelled particles. This model is therefore
a pioneering description of the dynamics of animal swarms.
It is useful to write the model because it helped to clarify the conceptual

developments that lead to a new class of models that can be of interest in eco-
nomics as well as in other fields of science related to the study of living systems.
Let us consider an ensemble of mechanical Cucker–Smale particles whose
states are represented by position and velocity variables. More precisely, let
xi and vi be the position and velocity of the ith C-S particle, respectively, in the
free Euclidean space Rd. Then the time evolution of the mechanical variables
(xi,vi) is governed by the Newton-like system:


dxi
dt
= vi, t > 0, 1 ≤ i ≤ N,

dvi
dt
=
κ

N

N∑
j=1

ϕ(∥xj − xi∥)
(
vj − vi

)
,

(3.15)
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Active Particles Methods in Economics 19

where ∥ · ∥ denotes the standard ℓ2-norm in Rd, κ represents the strength of
coupling, and the communicationweight ϕ : [0,∞) → R+ is bounded, Lipschitz
continuous, and monotonically decreasing.
Let us now review themathematical tools necessary to apply the theory. First,

we define the interacting entities, their aggregation, and the rules of interaction
that lead to the mathematical framework of TBS theory.

General System: We consider a system N of interacting living entities, all
with the structure of an a-particle whose state is activity. We consider sys-
tems where space and speed variables do not modify the dynamics which is
homogeneous in space. Themathematical structures underlying the derivation
of the models can be derived within a pseudo-Newtonian framework, where
for each a-particle, the action of the other a-particles produces an acceleration
for the activity variable.
Active Particles and Functional Subsystems The individual entities, i.e., a-
particles, are carriers of a behavioural state, called activity, which defines
their microstate. Active particles can be grouped into m functional subsys-
tems, often referred to by the acronym j-FS, with j = 1, . . . ,m. Each individual
a-particle, that is, ij-particle, is labeled by the subscripts i, where i = 1, . . . ,nj,
and j, identifying each i-particle and each j-FS, respectively.
Microstate of a-Particles The state of each a-particle is a scalar denoted by
the variable u ∈ Du, which corresponds to the activity of the ij particles. In
general, the range isDu = [−1,1]. More generally, the activity can be a vector.

Interactions, as in the case of the KTAP approach, can be both micro-micro
andmicro-macro. In general, interactions are nonlocal and nonlinearly additive.
A key property of ij particles is the sensitivity domainΩij ⊆ Du within the space
of the activity variable. The ij particle perceives the presence of all hk particles
whose microstate lies within Ωij. The functions that model the interactions are
the following:

• ηhkij = ηhkij
(
uij,uhk |uhk ∈ Ωij

)
models the interaction rate of micro-scale

interactions between the ij-particle with all hk-particles in Ωij.
• µkij models themicro-macro interaction of the individual-based interactions
between the ij-particle and the k-FS as awhole, which can be themean value
of the activity Ek. Then, µkij = µ

k
ij(uij,Ek).

• φhkij = φ
hk
ij
(
uij,uhk |uhk ∈ Ωij

)
models themicro-scale action occurring at the

rate ηhkij , applied by all hk particles in Ωij to the activity variable of the ij
particle.

• ψk
ij = ψ

k
ij(uij,Ek)models the micro-scale action that occurs at rate µkij on the

activity variable over the ij particle by each j FS.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009548755
Downloaded from https://www.cambridge.org/core. IP address: 3.137.183.111, on 26 Nov 2024 at 23:20:54, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009548755
https://www.cambridge.org/core


20 Complexity and Agent-Based Economics

These definitions lead to themathematical structures by connecting cause and
effect, namely actions on the a-particles, with pseudo-accelerations. In detail,
uij is the activity of the ij particle and vij is its velocity, defined as the time
derivative of uij. Then the mathematical structure modelling the dynamics of
these dependent variables is a second-order system consistent with a pseudo-
Newtonian framework:

d2uij
dt2
=

n∑
h=1

m∑
k=1

ηhkij
(
uij,uhk |uhk ∈ Ωij

)
φij(uij,uhk)

+

m∑
k=1

µkij
(
uij,Ek

)
ψk
ij
(
uij,Ek

)
. (3.16)

Remark 3.6 The sensitivity domain is assumed to coincide with the entire
domain of the activity variable, for example Du = [−1,1]. Interactions can
be non-symmetric, for instance,Ω = [−a,b] for positive defined constants such
that a ≤ 1 and b ≤ 1. If a < 1 and/or b < 1, the information does not sufficiently
support the decisional process.

The mathematical tools reviewed in this subsection refer to a pseudo-
Newtonian framework. The system is nonlinear as interactions are, as men-
tioned, nonlinearly additive. The book by Wei-Bin Zhang presents a review
and critical analysis, specifically focused on economics, based on Newton-type
methods that go far beyond application of Lotka–Volterra methods economics;
see Zhang (2023). This book shows also how a qualitative and computational
study of systems in economics can provide useful information on the predictive
ability of models.

3.3 Critical Analysis towards Unified Theories
The two mathematical methods discussed in this section have been derived
according to the same principles, but presenting substantial differences. In add-
ition to those we have already presented, we will propose some considerations
that can lead to new structures closer to each other in the spirit of the unifica-
tion of physical-mathematical theories proposed in the Hilbert’s sixth problem;
see Hilbert (1902). The considerations in this subsection are presented on a
qualitative level, since their formalization in amathematical framework should,
in our opinion, be treated for each specific case study.
The approach of the kinetic theory requires that the specific systems under

consideration consist of a sufficiently large number of active particles, while
the theory of behavioural swarms requires a sufficiently small number, not only
to avoid excessive computation, but also to have the possibility of identifying
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each particle individually. Actually, this is not important when the state of all
particles is the same, but it may become necessary when it is heterogeneously
distributed. However, these considerations are too vague to be used as a quan-
titative criterion. In particular, if you say large and small in reference to the
number of a-particles, these adjectives are not quantitatively defined.
Of course, computational approximation methods can deal with this

difficulty. For example, agent methods or differential systems with random
initial conditions can be used. However, it is worth exploring further devel-
opment of the kinetic theory approach to make it somewhat consistent with the
behavioural properties of each specific system under consideration.
One method worth considering is the use of discrete values to represent

the probability distribution. In fact, this approach is not simply an approxi-
mation device, but can be viewed as an interpretation of the model based on
the assumption that particles whose state is confined to a small domain behave
according to the same rules. This approach was used in Bellomo, Dosi, et al.
(2020), resulting in a mathematical tool that preserves the descriptive power of
kinetic theory, for example the ability to describe transitions across FSs, and
captures the specificity of the mathematical theory of behavioural swarms.
All topics mentioned in this subsection, as mentioned earlier, will be con-

sidered and revisited in Section 5. In fact, applications demand a unified vision
of the two approaches. Therefore some further developments are necessary in
both methods also, as their contextual use is, in some specific case-studies, use-
ful. In this framework, it is important that modelling of interactions follow the
same rules. The following list indicates the most important features that should
be shared in both approaches. Theoretical tools of game theory can contribute
to model them.

• Stochastic game theory deals with entire population of players, where
strategies with higher payoff might spread over the population.

• The strategy expressed by individuals, namely, active particles, is hetero-
geneously distributed over players.

• Players are modeled as random variables linked to a distribution function
over the activity variable.

• The pay-off is heterogeneously distributed over players and it can be
motivated by “rational” or even “irrational” strategies.

• The payoff depends on the actions of the coplayers as well as on the fre-
quencies of interactions. Both quantities depend on the overall state of the
system.

• In the virtual world the payoff is substituted by the so-calld Utility
Function.
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These interactions generate nonlinearities in the structure used formodelling.
Let us consider the mathematical structures of the KTAP approach presented
in Subsection 3.1. These are nonlinear due to the product of the dependent
variables fi. This is a quadratic nonlinearity analogous to that of the non-
linear Boltzmann-type models. If the terms modelling interactions, namely
η, µ,C,M,P,D, . . ., do not depend on [ fh, fk], but only on the activity variable,
interactions are defined as linear. On the other hand, when these terms depend
on [ fh, fk], the interactions are defined as nonlinear. In this case, the mathemat-
ical structure presents a double type of nonlinearities and occasionally the term
multiple nonlinearity is used.
The same considerations can be addressed to the dynamics of swarms, but

in this case the micro-state variables are the dependent variables. Therefore,
nonlinearity is referred directly to these variables.
If interactions within the domain Ω are considered, it is useful to understand

more about symmetries of interactions. Then, if a-particles are sensitive with
respect to u, uniformly inΩ, interactions are symmetric, and otherwise are non-
symmetric. This considerations can be referred to both types of mathematical
structures.

4 On Price Dynamics in Heterogeneous Societies
This section shows how the mathematical tools reviewed in Section 3 can be
applied to modelling behavioural economics; see Bellomo, Dosi, et al. (2020),
where individual behaviours are heterogeneously distributed in a population
that can be divided into functional subsystems. The application discussed in
this section is related to the conceptual framework of the mathematical theory
of behavioural swarms. However, before dealing with this specific applica-
tion, it is useful to have a brief look at the various applications to modelling
and simulation in economics, based on the methods reviewed in our Element.
This overview is presented in the next subsection, while the remaining two
subsections deal with modelling and simulating the dynamics of prices in a
heterogeneous population.
In fact, the idea of developing methods from the hard sciences for behav-

ioural economics can be found in the visionary book by Herbert Simon (2019).
The first edition of this book was published in 1996. This edition did not
immediately attract the attention of mathematicians, but today it is an import-
ant reference in the quest towards the development of mathematical tools to
describe the dynamics of systems of behavioural economics. Other important
readings are cited here, also with tutorial purposes, Schumpeter (1947); Stiglitz
(2010).
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4.1 A Brief Review of Applications of Active Particles Methods
The kinetic theory of active particles, as reported in the recent survey Burini
et al. (2023) and book Bellomo et al. (2017), was first developed to model
the competition between cancer cells and the immune system, then further
developments focused on modelling social dynamics such as opinion forma-
tion; see Bertotti and Delitala (2004, 2010). These papers were soon followed
by studies on the dynamics of economic interactions with social and political
dynamics: Bertotti (2010), Bertotti and Modanese (2011), Dolfin, Knopoff,
Leonida, and Patti (2017), Dolfin and Lachowicz (2014, 2015), and Dolfin,
Leonida, and Outada (2017).
The idea of linking social dynamics and economics is somewhat consist-

ent with the guiding philosophy of behavioural economics; see Thaler (2016)
and Thaler and Sunstein (2009). Then the applications moved to evolutionary
economics, Dolfin, Knopoff, et al. (2017); see Dosi (1984), Dosi, Fanti, and
Virgillito (2020), Dosi, Pereira, and Virgillito (2017), and Dosi and Virgillito
(2021). This literature has also been reviewed in Bellomo et al. (2022), which
is a useful reference for this Element. The recently published book provides an
excellent overview of the foundation of evolving economics; see Dosi (2023).
Turning now to the kinetic theory of active particles, we note that this quest

for a mathematical theory of living systems has a long history. Indeed, the
idea of developing kinetic theory models in which the microstate includes an
internal behavioural state was first developed in seminal papers in which this
concept was introduced. We refer specifically to Jager and Segel (1992), which
focused on modelling the social dynamics of certain populations of insects,
where interactions led to the splitting of the populations into dominant and
dominated; and to the modelling of evolutionary immune competition between
tumor and immune cells from Bellomo and Forni (1994) to Bellouquid and
Delitala (2006).
The scientific literature on swarms has been arguably initiated by physicists,

while the interest of mathematicians was stimulated by the visionary, so-called
Cucker–Smale model, see Cucker and Smale (2007). Specific models can be
derived for particles carrying a social variable, such as a social or political opin-
ion; an analogous structure has been used to study and control the dynamics of
the collective behaviour of one or more populations; see Furioli et al. (2017).
A key feature of the dynamics is to understand how internal variables, which
we have called activity, evolve over time due to interactions and modify the
collective behaviour of the system; see Bellomo, Ha, and Outada (2020).
The idea of modifying the Cucker–Smale model to describe the dynamics

of financial markets has been proposed in Bellomo, De Nigris, et al. (2020),
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while a first step in applying the theory of behavioural swarms to econom-
ics is in Bellomo, De Nigris, et al. (2020), where activity is modeled to
reproduce a perfectly competitive market with decentralized prices and elem-
entary processes of price adaptation through swarm dynamics. However, the
mathematical theory of behavioural swarms is quite recent and needs further
development.
Therefore, further applications are expected once dynamics such as mutation

and selection are introduced into the theory. These are necessary ingredients
to derive models of evolutionary biological systems. However, evolutionary
systems present common features and we argue that applications of the theory
in economics will also consider this specific feature.

4.2 Buyers and Sellers and Price Dynamics
An application, consistent with the guidelines of our Element, focused on the
modelling of price dynamics is proposed in Knopoff et al. (2020) by a further
development and enrichment of the so-called cherry picking dynamics. In this
approach, the price quality is an important factor in the collective dynamics. In
particular, this paper develops an earlier approach to this problem in Bellomo,
De Nigris, et al. (2020).
We borrow the general description of the model from the open access

paper Knopoff et al. (2020). This allows us to provide a description of the
assumptions that lead to the derivation of the model without repeating all
the analytical details that lead to the differential systems in Eqs. (7) and (9)
in Knopoff et al. (2020), which define the mathematical models.
In detail, consider a market in which N sellers and M buyers trade a given

good, where both numbers are fixed. Sellers and buyers can be considered as
functional subsystems.Within each FS, particles (i.e., sellers or buyers) express
a heterogeneous activity. The activity variables for sellers and buyers are as
follows:

• us, s = 1, . . . ,N corresponds to the first functional subsystem (sellers),
where each s-firm expresses the price us of the product (good) offered for
sale. The activity variable is the price assigned by each seller.

• wb, b = 1, . . . ,M corresponds the second functional subsystem (buyers),
where each b-buyer expresses the price wb that he/she accepts to pay. The
activity variable is the price that each buyer accepts to pay for the good.

• vs, s = 1, . . . ,N and zs, s = 1, . . . ,M denote the speed of the variables u
and w.
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Remark 4.1 Both prices and related speeds are normalized with respect to
their highest value at initial time t = 0; we can assume that u0,v0 ∈ [0,1]N
and w0, z0 ∈ [0,1]M. The dynamics can, however, generate values which do not
belong to these intervals for larger times.

The knowledge of micro-scale variables leads to macro-scale quantities such
as the m-order moments within each FS:

Ems =
1
N

N∑
s=1

ums and Emb =
1
M

M∑
b=1

umb . (4.1)

The assumptions underlying the derivation of the model are as follows:

• Micro-micro interactions take place only between FSs, not within the same
FS. In these interactions, firms and customers adjust prices through direct
contact. Macro-micro interactions take place within the same FS, but not
between different FSs. Through these interactions, each seller adjusts its
price according to the average flow of sellers, while customers adjust the
price according to the average flow of buyers.

• At each interaction, each buyer interacts with the seller having the lowest
us among those offering at least the reservation quality of the buyer. The
chosen seller has the lowest us among those offering at least the reservation
quality of the buyer. The exchange takes place if wb ≥ us at the price of us.
If so, the buyer’s reservation price wb tends to decrease while the seller’s
price us tends to increase.

• The opposite happens when the exchange does not take place (when the
buyer does not accept the seller’s offered price because wb < us). The term
“tends to” is used to account for the change after the interaction does not
act directly on the price, but on its velocity, because the model is based on
a second-order system through swarm dynamics.

• In micro-micro interactions (described earlier), each agent adjusts its
price by learning from past experience if its price (or reservation price)
is too high or too low to sell or buy in the market, and changes it
accordingly.

• At each macro interaction, each seller interacts with the other sellers as a
whole, comparing its price with the first-order moment of its FS’s prices (the
average seller’s price) and trying to move it closer to it. Again, through the
information extrapolated by the micro-macro interactions, the seller learns
and adapts its a-variable.
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The general structure which provides the conceptual framework towards the
derivation of models is as follows:

dus
dt
= vs,

dwb
dt
= zb,

dvs
dt
=

1
M

M∑
q=1

η
q
s (us,wq) φqs (us,wq,vs, zq)

+µs(us,Es)ψs(us,Es),
dzb
dt
=

1
N

N∑
q=1

η
q
b(wb,uq) φqb(wb,uq, zb,vq)

+µb(wb,Eb)ψb(ub,Eb),

(4.2)

for s = 1, . . .N and b = 1, . . . ,M.
Models are obtained by inserting into Eq. (4.2) a detailed modelling of the

interactions, which are described by the following quantities:

– ηbs (us,wb) models the rate at which a seller s interacts with a buyer b;
– ηsb(wb,us) models the rate at which a buyer b interacts with a seller s;
– µs(us,Es) models the micro-macro interaction rate between a seller s and
her/his own FS;

– µb(wb,Eb) models the micro-macro interaction rate between a buyer b and
her/his own FS;

– φbs (us,wb,vs, zb) denotes the micro-micro action, which occurs with rate ηbs ,
of a buyer b over a seller s;

– φsb(wb,us, zb,vs) denotes the micro-micro action, which occurs with rate ηsb,
of a seller s over a buyer b;

– ψs(us,Es) denotes the micro-macro action, which occurs with rate µs of the
FS of sellers over a seller s;

– ψb(wb,Eb) denotes the micro-macro action, which occurs with rate µb of
the FS of buyers over a buyer b.

As mentioned earlier, further details can be found in Knopoff et al. (2020). Here
we conclude the presentation of the models with a few remarks that can guide
the development of simulations.

Remark 4.2 The system presents asymmetries, since the sellers’ prices are
public (e.g., advertised price tags), while the buyers’ prices are unknown to
the sellers. This feature is taken into account to properly model the interaction
terms.
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Remark 4.3 The system has a pseudo-inertia and it defines the time dynam-
ics of the following quantities: the seller’s price us, namely the price set by
the seller for his product, and the buyer’s reservation price wb, namely the
maximum price the buyer is willing to pay.

Remark 4.4 The elementary processes of price adjustment are based on the
so-called Hayekian idea of a decentralized market. Hayek’s idea is that the
dynamics at the micro level are the cause of the dynamics at the macro level.
This is also why the theory of the decentralized market has been used as a
theoretical framework to construct models of price dynamics in agent-based
models, such as in Mazzoli, Morini, and Terna (2019).

4.3 Some Key Simulations
The model includes several parameters, among which the most important are
the quality of the seller’s product and the quality of the buyer’s reservation,
which is the minimum quality the buyer is willing to accept for the offered
product. Also to be explained is thePareto market efficiency: this quantity gives
us a measure of the buyer’s ‘gain’. More specifically, it measures the differ-
ence between the maximum price the buyer was willing to spend and what he
actually spent during the exchange with the seller.
The simulations developed in Knopoff et al. (2020) have shown the follow-

ing characteristics of the dynamic description of the system:

1. When we reduce the interaction among sellers (we reduce the adjustment
of sellers’ prices based on other sellers’ prices), buyers’ prices begin to
coordinate and divide into functional subsystems. The reduced interaction
among sellers is necessary for buyers to express collective behaviour. Buy-
ers divide themselves based on their reservation quality (buyers with the
same reservation quality end up in the same clusters).

2. The coordination of buyers can occur in different numbers of clusters (from
one to five), depending on the random initial conditions. This means that
the formation of clusters is an endogenous effect. From an economic point
of view, if allowed to do so, buyers manage to coordinate and create their
preferred markets or the ones that are most convenient for them.

3. In the classical framework, goods with quality differences generate multiple
markets. From this perspective, it is impossible to analyze buyers’ behaviour
in the face of quality differences. By considering micro-transactions with
prices disclosed by the sellers (so-called adhesion contracts), we can instead
study the effects of consumer control over quality on the market.
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4. This buyer control of the market can also be seen in the study of Pareto mar-
ket efficiency. When buyers manage to coordinate and be part of their most
convenient market, we can observe a higher market efficiency compared
to the case in which the collective behaviour is not achieved. This means
that when sellers create some kind of “agreement” about their prices (in the
model, when they have a high interaction among them), buyers suffer from
a disadvantage.

The following simulations have been developed using the same parameters as
the ones in the figures showing collective behaviour in Knopoff et al. (2020).
Specifically, in these simulations, the parameter determining the seller-sellers
interaction is lowered by one order with respect to the case in which the clus-
tering does not appear. We can observe the evolution of buyers’ prices and
their division into functional subsystems depending on their reservation qual-
ity, identified by different colors, right before and during coordination, in the
short and long run.
In detail, we observe the emergent capability of the agents to act in a coord-

inate way, showing the same reaction to price changes and so creating close
groups (clusters). In Fig. 3 we can see the prices before they are fully divided
and coordinated. In Fig. 4 we have a general and long-term view of the prices
and we can see clusters divided by quality. A closer look at the prices once they
are coordinated can be seen in Figs. 5 and 6 (in the latter we can observe a rare
five-cluster coordination, in a closer look).

Figure 3 Buyers’ prices: before coordination, view on the short run.
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Figure 4 Buyers’ prices: coordination and emergence of four clusters.
Whole view of the long run.

Figure 5 Buyers’ prices: coordination and emergence of four clusters.
Closer look on the long run.

5 Further Developments of Mathematical Theory
Two mathematical approaches have been presented in the previous sections.
These methods correspond to two different scales and representations. Specifi-
cally, the kinetic theory model corresponds to the mesoscopic scale, while the
swarm mode corresponds to the microscopic, individual-based scale. At each
scale, two mathematical structures have been derived that lead to models that
can be used either alternatively or synergistically.
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Figure 6 Buyers’ prices: coordination and emergence of five clusters.
Closer look on the long run.

This section develops an additional study of these two approaches to under-
stand how each can be used in modelling real-world case studies. We also
consider that economic systems generally cannot be observed and interpreted
as stand-alone systems. For example, the dynamic in the economy is somewhat
influenced by politics, which affects the management of the system, and could
also be influenced by the population.
More generally, one should consider the action of politics, we mean govern-

ments, on systems in areas different from that of the system under considera-
tion, but which can have an influence on the said system. Three examples can
be given to materialize the preceding concepts.

Welfare policies that can generate support or opposition to governments. The
study developed in Bellomo, Herrero, and Tosin (2013) shows how the collect-
ive tendency of citizens moves against a government that imposes an unfair
wealth distribution. This opposition involves not only the poor classes that
are harmed by unfair management, but also the wealthy classes that may be
attracted by the average level of opposition, in addition to their own ethical
sentiments.

The study of the interaction between lawbreakers and detectiveswas devel-
oped in the paper by Bellomo, Colasuonno, Knopoff, and Soler (2015), which
shows that inequalities in the distribution of wealth increase the transfer of citi-
zens to crime. This paper also shows that the effectiveness of detectives’ actions
improves more by acting on their training than by increasing their number.
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These considerations provide evidence that collective learning is present in all
the dynamics that appear in this case study.

The study of the interactions between economics and epidemics has been
motivated by the recent pandemics of SARS-CoV-2. It is a challenging topic,
as the recent literature has developed new multiscale methods to model the dif-
fusion of epidemics by the approach of the kinetic theory of active particles.
An interesting contribution has been made by Aguiar, Dosi, Knopoff, and Vir-
gillito (2021), who also consider the role of communicating networks. Learning
dynamics appear both in the communication between individuals in a popula-
tion and in the immune competition at the scale of cells; see Burini and Knopoff
(2024, in press).

In addition to the preceding examples, we can observe that the dynamics of
the prices considered in Section 4, involves two groups of interest (we have
called them functional subsystems). The numerical size of the two groups is
very different, since the number of sellers is, in most cases, of a lower order
with respect to the number of buyers. Therefore, we could consider using the
theory of behavioural swarms for the sellers and the kinetic theory of active
particles for the buyers.
These examples can help us to identify some key problems that deserve

attention:

(i) Developing new mathematical tools from the current state of the art;
(ii) Understanding the physics of collective learning and the role of this

specific dynamics in economics;
(iii) Deriving models for dynamics on networks and for multi-model systems.

These topics are covered in the next three subsections. We do not claim that
the preceding list is complete. On the other hand, we hope that the contents
of the following subsections can also contribute to the last section, where a
critical analysis is proposed to understand how far we are from the derivation
of mathematical economic theory.
The presentation focuses mainly on concepts rather than mathematical tools.

In fact, this section looks ahead to perspectives where the concepts here should
be transferred to appropriate connections between economics andmathematics.

5.1 Extensions of the Mathematical Theories
An important objective of the research activity in this field consists in exploring
the common features of the two approaches and in designing newmathematical
structures suitable to make technically possible the passage from one type of
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mathematical method to the other. In this specific case, the transition is from
the microscopic to the mesoscopic scale.
We start from the consideration that the assumption of a continuous distri-

bution function requires that the number of a-particles is sufficiently large to
justify the continuity assumption of the distribution function. This difficulty
can be overcome by mathematical structures with discrete states.
The first approach to this goal is to consider a structure for number-

conserving interactions:

fij = fij(t; uj); i = 1, . . . n; j = 1, . . .m, f = { fij}, (5.1)

where the a-particle belonging to the ith functional subsystem with state uj
is denoted as ij-particle whose state is denoted by fij, while the state of the
a-particle is given by f = { fij}
A general mathematical structure suitable for dealing with systems that

undergo only conservative interactions was proposed by Bertotti and Delitala
(2004) and applied to modeling the distribution of wealth within a population
of individuals who compete to increase their wealth but are also forced, through
tax systems, to transfer some wealth from high to low levels of wealth. Their
mathematical structure considered only binary interaction. The structure is as
follows:

d
dt

fij =
n∑

h=1

m∑
q,k=1

ηhkiq Ahk
iq (q → j) fiq fhk − fij

n∑
h=1

m∑
k=1

ηhkij fhk, (5.2)

where:

ηhkiq models the interaction rate for encounters between an iq-particle and a
hk-particle.
Ahk

iq (q → j) models the probability of transition of the iq-particle to the state
of the ij-particle due to encounters with hk-particle.

Technical calculation can lead to a more general structure, where a-particles
can move across functional subsystems. In addition the encounter rate and the
transition probability can depend on f . This structure is as follows:

d
dt

fij =
n∑

p,h=1

m∑
q,k=1

ηhkpq[ f ]Ahk
pq(p → i,q → j) fpq fhk

− fij
n∑

h=1

m∑
k=1

ηhkij [ f ] fhk, (5.3)
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where:

ηhkpq models the interaction rate for encounters between an pq-particle and an
hk-particle.
Ahk

oq(p → i,q → j) models the probability of transition of the pq-particle to
the state of the ij-particle due to encounters with hk-particles.

Remark 5.1 The mathematical frameworks in Eqs. (5.2) and (5.3) can be fur-
ther developed to include nonconservative interaction and the effect of each
functional subsystem as a whole. However, this generalization is only a mat-
ter of technical calculations which can be made following the guidelines of
the derivation presented in Section 3. Therefore, these calculations will not be
repeated here.

Remark 5.2 The mathematical structures corresponding to behavioural
swarms have not been studied exhaustively. Nevertheless, further developments
seem technically possible to bring the theory to a descriptive capability as
rich as that of the kinetic theory of active particles approach. In this case, the
contextual use of the two methods will be effectively at hand.

5.2 Dynamics of the Collective Learning
Asmentioned earlier, learning dynamics is almost always present in the various
dynamics that can be studied by the mathematical tools presented in this Elem-
ent. In fact, the strategy developed by a-particles starts from an interpretation
of the dynamics of the system through a collective learning process that sup-
ports decisionmaking, which depends on the amount and quality of information
acquired by the a-particles.
It is a collective learning that involves people who correspond to the a-

particles of a functional subsystem or, in some cases, leaders who are carriers of
a high level of knowledge that they transfer to the people. In this case we have
two functional subsystems. An example that becomes more and more frequent
in our society is that of interaction of influencers and followers. Therefore, it
is useful in this Element first to define the main characteristics of this specific
dynamic and, subsequently, how recent studies have approached this topic con-
sistent with the conceptual framework of this Element. We refer to Bandura
(1989) and Salomon and Perkins (1998) for the following definitions:

• Collective learning is generally defined as a social process of cumula-
tive knowledge, based on a set of shared rules and procedures that allow
individuals to coordinate their actions in search for problem solutions.
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• It is a cumulative dynamical process: as it accumulates over time. In the
learning dynamic both a term of growth and a term of loss come into play,
but the former is greater than the latter.

• Interactive, as the knowledge is transferred between agents through an
interactive process.

• Individual/cognitive,which occurs in the mind of the individual as a social
and participatory process.

• Social learning, which occurs when the individual learns new behaviours
and concepts from others. Social learning is often combined with other
dynamics.

Collective learning dynamics are qualitatively different in each specific case
study. However, it is important to develop a general modelling methodology
that can be specialized for each case study. This type of study has been devel-
oped by Burini et al. (2016), with further specialization by Burini, Gibelli, and
Outada (2017) for the study of modeling teaching in high school classrooms.
The study by the approach of the kinetic theory of active particles. The

sequential steps of the approach are as follows:

1. Perception: Each individual possesses a perception domain within which
the presence of other individuals is perceived with different intensities that
depend, for instance, on the ‘distance’.

2. Interactions andLearning: Interactions induce a learning process in which
individuals modify (increase) their level of knowledge.

3. Micro-Macro Interactions: Each individual also learns from the collectiv-
ity viewed as a whole.

Remark 5.3 Collective learning is the precursor of many, if not all, dynam-
ics in social dynamics and economics. The open problem is to specialize the
general approach to specific case studies in economics. As an example, we
consider again the previously mentioned learning of detectives of the localiza-
tion of lawbreakers and of the latter of the hunting by detectives. The induced
strategy, which is in opposition for each functional subsystem, starts from the
learning dynamics mentioned earlier.

5.3 Multi-model Systems and Networks
As we have seen earlier, different types of dynamics generally interact in the
systems under consideration. In particular, learning dynamics interact with
security problems, wealth distributions, and others. Therefore, it is import-
ant that the methods reported in this Element are addressed to modeling the
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dialogue between functional subsystems with the aim of transferring the infor-
mation appropriate for the specific dynamics object of the modeling approach.
Then the dialog involves influencers and followers. As a perspective, the
modelling of price dynamics proposed in Section 4 could be reconsidered in
accordance with the preceding considerations.
Some of the previously mentioned considerations can be applied to exogen-

ous networks with specific focus on the interaction among nodes. Social
dynamics in exogenous networks have been treated byKnopoff (2014); see also
Aguiar et al. (2021). A development of these studies is that the output of inter-
actions should also include the previously mentioned division into influencers
and followers by a specialization of the nodes into dominant and dominated.
The literature reviewed in this section shows that the methods presented in

our Element refer to an interdisciplinary environment, where economics inter-
act with other scientific areas. The reader interested in these interactions can
find out about them in the following website:
www.modelingnature.org/training

A program of seven open access lectures for PhD students and young
researchers

Title: Collective Dynamics in Science and Society;
Lecturers: Nicola Bellomo, Diletta Burini, Giovanni Dosi, Livio Gibelli,
Damian A. Knopoff, Pietro Terna, Nisrine Outada, Maria E. Virgillito.

6 On a Forward Look to Research Challenges
The goal of this Element has been to build a bridge between mathematics and
economics, with a special focus on behavioral economics. We have presented
twomathematical methods, both somewhat inspired by statistical physics, and a
mathematics for living systems. The previous sections have shown that and how
the bridge has been built and that it has already led to some encouraging results.
We can look forward to methodological perspectives and new applications to
be pursued in an interdisciplinary framework.
We first proposed a philosophy and then showed how the theoretical concepts

could be transferred into a mathematical framework. Of course, the philosophy
retains the authors’ point of view and reasoning, but in the context of the theory
of the artificial world and bounded rationality. Now we will take the liberty of
giving a limited space to our bias. Accordingly, three specific arguments will
be selected from among several possible ones and brought to the attention of
the reader. Then, the final remark refers to the reasoning of the authors from
the perspective of a mathematical theory of economics.
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This section proposes a critical analysis followed by a philosophical study
of the content of this Element in view of the research activity that can be devel-
oped in the field. Specifically, towards a mathematical theory of behavioural
economics. The quest is in three sequential steps.

1. Reflections on the interactions between the hard sciences and the social and
economic sciences.

2. A historical overview of the development of the mathematical tools of
statistical physics toward a mathematics of living systems.

3. Key points for a mathematical theory of behavioural economics.

These issues are addressed in the following subsections. We do not claim to
have dealt exhaustively with the challenging objectives just mentioned, but we
humbly assert that this Element can contribute with perspective ideas and hints
at the difficult quest we are working on.

6.1 Hard Sciences and Social-Economical Sciences
As we have seen in Sections 1 and 2, we first proposed a philosophy to build
the previously mentioned bridge and then showed how the theoretical concepts
could be transferred into a mathematical framework. Of course, the philosophy
retains the authors’ point of view and reasoning, but in the context of the theory
of the artificial world and bounded rationality. Now we will take the liberty of
giving a limited space to our bias. Accordingly, three specific arguments will
be selected from among several possible ones and brought to the attention of
the reader. Then, the final remark refers to the reasoning of the authors from
the perspective of a mathematical theory of economics.

1. The main difference between classical and active kinetic theory: Classical
kinetic theory and active particles methods share some common features, but
they have significant differences. The main difference is that the interactions
in the Boltzmann equation are binary, local, and reversible, whereas in the
case of active particles, the interactions are nonreversible and local. In add-
ition, the interactions can also be non-symmetric and generally involvemore
particles as we will see in the next subsection.

2. What about the theory of behavioural swarms? The properties of active
particles also apply to behavioural swarms. Therefore, although the formal
aspects of the structure are analogous, the interactions are completely dif-
ferent, and it is necessary to use new concepts such as pseudo-velocity and
pseudo-acceleration. Again, the action on a particle is neither binary nor
local.
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3. On the connection between microscopic and macroscopic description:
This issue has already been raised in Section 2 with respect to model
validation. In fact, the two methods discussed in this Element provide a
description at the microscopic scale, either through the statistical descrip-
tion of kinetic theory or through the individual-based picture provided by
behavioural swarm methods. On the other hand, empirical data are gener-
ally observed at the macroscopic level. Then, the derivation of macroscopic
models from the underlying description at the microscopic scale in the spirit
of Hilbert’s sixth problem, see Hilbert (1902), is motivated by the need of
interpretation of empirical data toward validation of models. Some recent
results have been proposed in the case of multicellular systems; see Burini
and Chouhad (2022, 2023). An interesting perspective consists in extending
these results to the case of behavioural agents.

4. What about parallel approaches and possible developments? The two
methods discussed in this Element are not exhaustive of the mathematical
tools that have been developed recently. Indeed, agent methods should also
be considered; see Mazzoli et al. (2019) in economics, and Galam (2012) in
the study of social systems. For an excellent excursus on the development of
methods from statistical physics toward applications to the study of social
systems, seeHelbing (2010). Closer to the kinetic theory of active particles is
the Boltzmann–Fokker–Plank approach developed in Pareschi and Toscani
(2013). Rather than comparing all methods, we propose, as a challenging
perspective, their development into a unified mathematical theory.

5. Artifacts towards a new vision of mathematical economics: We have
learned from Herbert Simon the theory of artifacts and the virtual world.
Applying this theory to the mathematical tools discussed in this Element
means providing a mathematical description of interactions with rules that
evolve over time and are modified by the interacting entities; see Bellomo
and Egidi (2024). This means going far beyond deterministic population
dynamics toward a unified mathematical theory.

These considerations indicate that for both mathematical approaches, kinetic
theory and swarmmethods, the first step is the modelling of interactions, where
the modelling should be guided by the interpretation of what living systems are.
This is not an easy task, as we can learn from Celand (2019), since we should
understand the physical essence of what living systems are. A possible inter-
pretation is given in Section 2 concerning the search for the main complexity
features that characterize them. The last point of the preceding list indicates that
interaction rules evolve in time following the evolution of the artificial world
in which the specific system is localized.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009548755
Downloaded from https://www.cambridge.org/core. IP address: 3.137.183.111, on 26 Nov 2024 at 23:20:54, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009548755
https://www.cambridge.org/core


38 Complexity and Agent-Based Economics

The modelling approaches are similar, but we have shown in the previous
sections that the two methods transfer low-scale dynamics to collective motion
in different ways. At present, we can say that the kinetic theory method is
complete with respect to the swarm approach, since it takes into account the
specific features of interactions mentioned in the first point. Interactions also
take into account post-Darwinian mutations and selections related to competi-
tion through proliferative and destructive encounters. The mathematical theory
of behavioural swarms can account for heterogeneity of interacting entities,
multiple interactions, and various types of nonlinearities. However, further
studies are needed to complete this theory.

6.2 On the Development of Mathematical Tools
The previous subsection has indicated that the mathematical tools of general-
ized kinetic theory are currently the most convincing approach to a complete
mathematical theory of behavioural systems in general. Therefore, it may
be interesting to present a brief historical reconstruction of how the method
developed from some pioneering papers to very recent results.

1. Ilia Prigogine, Nobel Laureate, proposed a mathematical theory of vehicular
traffic on highways based on the development of Boltzmann-like methods;
see Prigogine and Herman (1971). The state of the system is described by
a one-particle distribution function over the individual states of the driver-
vehicle subsystem.
Paveri-Fontana (1975) shows how interactions should be modeled by het-
erogeneous rules and introduces a probability description of the desired
velocity distributed over the system. The modelling of interactions takes
this specific distribution into account.

2. Jager and Segel (1992) propose a generalized Fokker–Plank model to
describe the social behaviour of certain populations. The dynamics is that
interactions divide the population into dominant and dominated.

3. Bellomo and Forni (1994) developed a kinetic theory approach that includes
progression and competition between tumor and immune cells. The ideas
proposed in this paper have been developed by various authors. The book
by Bellouquid and Delitala (2006) presents a unified vision of the in-host
competition. The competition ends either with the prevalence of tumor cells
or with the successful defense of the immune system.

4. Some mathematicians rapidly understood that an analogy of biological
dynamics with some behaviours of living systems could lead to the develop-
ment of a mathematical theory of living systems. Then, several interesting
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scientific papers appeared in the literature, see Bertotti and Delitala (2004,
2010) and Bertotti and Modanese (2011), as examples of a rich literature
developed in this century.

5. The validity of kinetic theory for the modelling of the behavioural dynamics
in different real-world systems has suggested to provide a formal presen-
tation of the mathematical tools. This activity is documented in Bellomo
(2008) for a modelling approach of Boltzmann-like models, and in Pareschi
and Toscani (2013), mainly focused on specific features of Boltzmann–
Fokker–Plank models.

While themathematical theories based on binary interactions appeared, some
applications in different fields, such as vehicular traffic, see Coscia, Delitala,
and Frasca (2007), showed the need to model interactions, where the output is
described by nonlinear maps with multiple interactions, where the utility func-
tions could even depend on the distribution functions, that is, on the dependent
variable of the models. Other applications have shown how the mathematical
approach could model post-Darwinian mutations and selections; see Bellomo
and Carbonaro (2011). Both dynamics should be considered in various fields
of economics as documented in Dosi (2023).
Accordingly, applications in economics have been developed; see, for

example, the study of the blockage between economic development and pol-
itical competition, Dolfin, Knopoff, et al. (2017), and the study of the role of
nonlinear interactions in altruism and selfishness in welfare dynamics, Dolfin
and Lachowicz (2014). A comprehensive review of the literature in this area
is provided by the review papers Ajmone Marsan et al. (2016) and Dolfin,
Leonida, and Outada (2017). The role of networks is also considered; see
Dolfin and Lachowicz (2014) and Knopoff (2014). This research motivated
the mathematical theory formalized in Bellomo et al. (2017).
The final step on this path is the mathematical interpretation of the dynamics

within the artificial world of Herbert A. Simon. The recent contribution in Bel-
lomo and Egidi (2024) takes into account Simon’s philosophy, which teaches
that not only do interactions exhibit nonlinearities, but that the rules of inter-
action evolve over time due to the dynamics of the artificial world in which the
interactions take place. Some seminal considerations can already be found in
Kant (2000). The translation of Simons’ theory into a mathematical framework
has opened up a new and challenging line of research that is definitely worth
developing. The main contribution in Bellomo and Egidi (2024) is a mathem-
atical theory that describes how the interaction rules follow the utility function
that evolves over time in the artificial world.
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6.3 Towards a Mathematical Theory of Behavioural Economics
Let us now return to the remark made at the very beginning of this Elem-
ent about the idea of moving beyond mathematical models to a mathematical
theory. The first difficulty is that systems in economics are in several cases
behavioural. Then, they are carriers of most of the complexity features of living
systems. The difficulty of mathematical approaches to describing the dynamics
of living systems has been demonstrated by eminent scientists. For example,
Robert May notes that the study of living systems cannot rely on background
theories such as those that produced the physical-mathematical theories of
inert matter; see May (2004) and Reed (2004). Moreover, living systems are
evolutionary, as we learn from Mayr (1981).
However, this Element has shown that the current state of the art has led

to mathematical structures that can capture the key features of living systems.
These structures provide a framework that merits the definition of a mathem-
atical theory. It would then be useful to understand how this theory can be
specialized into a mathematical theory in economics, similar to the methods
that have been brought to the different branches of mathematical physics. We
do not have an exhaustive answer to this challenging problem. Therefore, we
simply offer the reader some preliminary considerations.

1. Selection of a specific branch of economics specialized by specific features
that support the theory. For instance, behavioural, evolutionary, and so on.

2. Emphasis on modelling interactions, taking into account nonlinear additiv-
ity, evolution of interaction rules, micro-micro and micro-macro features of
interaction rules.

3. Implementation of models of interactions into the general mathematical
structures and then proceeding to the validation of models.

This process can be interpreted as a rational approach to derive mathem-
atical models that goes beyond the heuristic derivation of phenomenological
approaches. In fact, it refers to the rationale reported in Fig. 2. The new concept
is that the derivation is based on well-defined mathematical structures.

A deeper development of the second step of the preceding sequence might
shift from a phenomenological approach to a mathematical theory.

We do believe that this challenging perspective is worth being pursued
according to the idea that new mathematical tools have to be invented in eco-
nomics rather than using tools that are valid for inert matter. Indeed, the second
step is the key passage to the derivation of the mathematical theory. We have
seen that both mathematical approaches are based on the idea of a mathematical
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transfer of the dynamics at the microscopic scale to the collective dynamics of
the whole system. Then, we can argue that the mathematical tools of the kin-
etic theory of active particles and those of behavioural swarms can effectively
provide to the said tool. Therefore, the key problem is the modelling of the
interactions.
New inventions are needed to provide significant progress in this topic. For

instance, by understanding that the dynamics of interaction follow rules that are
modified by the individuals playing the game and by the the external actions
that have a strategy to modify them. As mentioned earlier, these rules evolve
over time.
As we have seen, we have different tools suitable to transfer the dynamics at

the micro-scale into collective dynamics. Hence, the key problem is the mod-
elling of interactions. Bearing all the preceding in mind, let us define some
important features of interactions whose rules evolve in time.

• Interactions can be modelled by theoretical tools of game theory, which
should consider entire populations of players, where strategies with higher
payoff might spread over the population.

• The strategy expressed by individuals, namely active particles, in the inter-
actions is heterogeneously distributed over the players of the population.

• Players are modeled as random variables linked to a distribution function
over the activity variable.

• The Utility Function guides the output of interactions. It is heteroge-
neously distributed over players and can be motivated by “rational” or
even “irrational” strategies. In some cases, interactions are asymmetric;
see Lachowicz, Matusik, and Topolski (2024).

• In the virtual world the Utility Function depends also on the actions of
the coplayers as well as on the frequencies of interactions. Both quantities
depend on the overall state of the system.

The overview proposed in our Element, has shown that the path to a mathem-
atical theory in economics has been traced. It is a challenging path; however,
it is worth trying also as some achievements by the kinetic theory approach
have been effectively obtained. But what about using swarm theories? Some
studies have been recently developed by using mathematical tools borrowed
by the physical-mathematical theory of swarms; see Ha, Kim, Park, and Zhang
(2019), Bae, Cho, Lee, Yoo, and Yun (2019), and Bae, Cho, Kim, and Yun
(2019).
What about developments? Let us start from the books by Zhang (1991,

2023), who developed a mathematical theory of economics within the frame-
work of the mathematical theory of ordinary differential equations and of the
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interpretation of the dynamics of real systems by causality principles. These
models provide an immediate description of the dynamics and, at least in some
cases, allow a qualitative analysis focused on asymptotic behaviours, stabil-
ity, and bifurcation. An analogous approach is developed in Bonacich and Lu
(2012), where a variety of specific applications are considered.
On the other hand, these methods fail in describing some specific features

of real systems from the individual heterogeneity to all behavioural attitudes
put in evidence in this Element. Indeed Bonacich and Lu (2012) indicate some
open problems that have been tackled by the kinetic theory of active particles
and that can be viewed as research perspectives for the mathematical theory of
behavioural swarms. In particular, it is mentioned thatmodels should go beyond
the consensus dynamics and include heterogeneity of individual behaviors.
The recent literature, as shown in the preceding sections, has tackled these

problems within the framework of mathematical tools motivated by statistical
physics. The review by Ajmone Marsan et al. (2016) has reported about them.
The mathematical theory of behavioural swarms has also taken into account
these hints that go beyond the deterministic description. Further steps are
discussed in the last chapter of this Element.

7 The Computational Code
This section presents the computational tools, in particular the Python code,
that can be used to simulate the price application worthwhile. The reader can
find the complete code in a git-like repository.1

7.1 Parameters
The parameters shaping the dynamics are the following:

#Number of agents in the model
N = 10 #numbers of sellers
M = 50 #numbers of buyers
ratio = M/N #ratio sellers/buyers
#Parameters for the model
#micro-micro interaction
eta_0 = 1 #intensity of rate of micro-micro interaction
alpha = 1 #intensity of micro-micro interaction for sellers
rho = 2 #intensity of exponential argument in the rate of

micro-micro interaction for seller
beta = 0.1 #intensity of micro-micro interaction for buyers

1 https://github.com/Valer7a/Cherry-Picking-in-a-Decentralized-Hayekian-Market-with-
Quality-described-through-Swam-Theory/blob/main/Second_Model.ipynb
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#macro-micro interaction
gamma_s = 0.01 #intensity of macro-micro interaction for sellers
mu_0 = 1 #intensity of rate of macro-micro interaction for sellers
#Number of cycles
n = 50000

7.2 The Quantities in the Dynamical System
Here we initialize the arrays containing the quantities (variables in the differ-
ential system) defining the dynamics and define their initial conditions, which
are necessary for the computational solution of the initial value problem.

#PRICES
b = np.full([n,M], 0.0) #buyers prices during time-steps
s = np.full([n,N], 0.0) #sellers prices during time-steps
#VELOCITIES of prices
x = np.full([n,M], 0.0) #buyers prices velocities during time-steps
y = np.full([n,N], 0.0) #sellers prices velocities during time-steps
#MEAN prices
MeanPrice_B = np.full([n,1], 0.0) #buyers mean prices during time-steps
MeanPrice_S = np.full([n,1], 0.0) #sellers mean prices during time-steps
#VARIANCE of prices
VariancePrice_S = np.full([n,1], 0.0) #buyers variance of prices during

time-steps
VariancePrice_B = np.full([n,1], 0.0) #sellers variance of prices during

time-steps
#PARETO MARKET EFFICIENCY
efficiency_S = np.full([n,1], 0.0) #total buyers efficiency during

time-steps
efficiency_B = np.full([n,1], 0.0) #total sellers efficiency during

time-steps
efficiency_Tot = np.full([n,1], 0.0) #total market efficiency during

time-steps
#INITIAL CONDITIONS renewed at every time-step (only for the modelling)
z_b0 = [0,0] #initial conditions of every time-step for buyers
z_s0 = [0,0] #initial conditions of every time-step for sellers
#QUALITIES
quality_s = np.full(N, 0.0) #sellers' offered quality
quality_b = np.full(M, 0.0) #buyers' reservation qualities
#SELLERS
#Sellers Initial Cost
s_cost = np.full(N, 0.0)
#BUYERS
#Buyers Chosen Seller at every time step
chosen_seller = np.full([n,M], 0)
#Buyer Chosen Price and Seller renewed at each timestep (only for
modelling)
b_choices = [0,0]
#SETTING INITIAL CONDITIONS FOR ALL QUANTITIES
#Buyers initial Prices, and Reservation Qualities
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for i in range(0,M):
#Price
b[0,i] = random.random()*5 + 1000
#Quality
quality_b[i] = random.randint(999,1004)
print('buyer '+ str(i) + ' quality ' + str(quality_b[i]) )

#to make sure the lowest quality offering seller will have a buyer
quality_b[1] = 999
#Sellers initial Prices, Costs, Qualities
for j in range(0,N):

#Price
s[0,j] = random.random()*5 + 1000
#Cost
s_cost[j] = (s[0,j])*0.1
#Quality
quality_s[j] = random.randint(1000,1005)
print('seller '+ str(j) + ' quality ' + str(quality_s[j]) )

#to make sure every buyers chooses a seller
quality_s[N-1] = 1005
#Calculation of initial Mean Prices
MeanPrice_S[0] = st.mean(s[0]) #buyers initial mean prices
MeanPrice_B[0] = st.mean(b[0]) #sellers initial mean price
#Calculation of initial Variances of Prices
VariancePrice_S[0] = st.variance(s[0]) #buyers initial variance of prices
VariancePrice_B[0] = st.variance(b[0]) #sellers initial variance of prices

In addition, we consider the following functions:

Functions: The functions of the dynamics both for buyers and for sellers. We
will have two types of interactions for both agents:

• micro-micro interaction: between the single buyer and the single seller;
• macro-micro interaction: between the single agent and all the FS to which it
belongs.

Note that, even if present in the general formulation of the dynamics, we will
not consider the interaction among buyers.

Buyers: Functions defining buyers’ prices adaptation (through interaction).

#BUYERS FUNCTIONS
#Micro-Micro
#Function defining rate of micro-micro interaction
def eta_b(bb,ss,ratio,eta_0):

if -0.01 < bb < 0.01:
argument = (np.abs((ss-bb)/0.01))

else:
argument = (np.abs((ss-bb)/bb))

xx = -(ratio)*(argument)
etab = eta_0 * (np.exp(xx))
return etab
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#Function defining micro-micro interaction
def fi_b(bb,ss,beta):

fib = beta * (ss-bb)
return fib

#Function defining the seller with which the buyer will interact
def choice(s,quality_b,quality_s):

acc_s = [] #stands for acceptable sellers, the sellers with quality
high enough for the buyer

l = 0 #to count which are acceptable sellers
for m in range(0,N):

if quality_s[m] >= quality_b:
acc_s.append(m) #registering all sellers with the right

quality
l = l + 1

chosen_price = s[acc_s[0]]
b_choice = acc_s[0]
for j in range(0,l-1): #choosing the seller with the lowest price

among the acceptable ones
if (chosen_price > s[acc_s[j+1]]):

chosen_price = s[acc_s[j+1]]
b_choice = acc_s[j+1]

elif (chosen_price == s[acc_s[j+1]]):
chosen_price = s[acc_s[j]]
b_choice = random.choice([s[acc_s[j]], s[acc_s[j+1]]])

#returns price of the chosen seller and the chosen seller in this
order return chosen_price,b_choice

#Whole Dynamics
#Function defining the whole dynamics of buyers' acceleration in ODE
def model_b(z_b,_,min_price,ratio,beta,N,eta_0):

b = z_b[0]
x = z_b[1]
sumx = (eta_b(b,min_price,ratio,eta_0)) * fi_b(b,min_price,beta)
dbdt = x
dxdt = (1/N) * sumx
return [dbdt,dxdt]

Sellers: Functions defining sellers’ prices adaptation (through interaction).

#SELLERS FUNCTIONS
#Micro-Micro
#Function defining rate of micro-micro interaction
def eta_s(s,ratio,eta_0,rho):

xx = -(rho/ratio)*np.abs(s)
etas = eta_0 * (np.exp(xx))
return etas

#Function defining micro-micro interaction
def fi_s(b,s,alpha,chosen_s,s_counter):

if (chosen_s == s_counter): #here seller knows if it is the chosen
seller for buyer i

if (b<s):
sig = -1

else:
sig = 1
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else:
sig = -1

fis = alpha*np.abs(s)*sig
return fis

#Macro-Micro
#Function defining macro-micro interaction
def psi_s(s,E1,gamma_s):

psis = gamma_s*(E1 - s)
return psis

#Whole Dynamics
#Function defining the whole dynamics of sellers' acceleration in ODE
def model_s(z_s,_,b,E1,mu_0,eta_0,alpha,M,gamma_s,chosen_s,s_counter,rho):

s = z_s[0]
y = z_s[1]
sumy = 0.0 #sum on buyers (interaction of the seller j with all

buyers)
for i in range(0,M):

sumy = sumy + (eta_s(s,ratio,eta_0,rho)*fi_s(b[i],s,alpha,
chosen_s[i],s_counter))

dsdt = y
dydt = (1/M)*(sumy) + mu_0 * psi_s(s,E1,gamma_s)
return [dsdt,dydt]

7.3 Some Technical Considerations
As mentioned earlier, we have reported the Python code to obtain the simu-
lation associated with the class of models proposed in Section 4. This type of
programming is quite standard, but it considers the possibility of a sensitivity
analysis of the parameters, so that the user can develop a study of the whole
variety of predictions that can be delivered by the model; in particular, the dif-
ferent types of aggregations that the system seller-buyer exhibits. Indeed, the
simulations in Section 4 have shown this specific feature of the dynamics.
Referring to the contents of Section 5, we can deduce that the same dynam-

ics can be described by the kinetic theory of active particles with discrete
states. Furthermore, one can develop models where behavioural swarms are
used for sellers, while kinetic theory is used for buyers. The derivation of new
codes to consider this evolution of models follows techniques close to those
we have presented in this section. The interested reader should develop them
autonomously thanks to the hints given in this section.

8 Closure: On the Role of Hard Sciences in Economic Theories
This Element has shown how mathematical sciences can contribute to formal-
ize behavioural economic theories in a rigorous mathematical framework. In
particular, two different theories have been examined and related to specific
applications. The Element has also proposed further developments of the
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previously mentioned theories according to the motivations generated by
specific applications.
This conclusive section provides some free considerations about the so-

called soft and hard sciences. Actually, this classification of hard sciences
and soft sciences was proposed by August Compte (2012, 1839) also as an
answer to a dispute in which physics and chemistry were considered sciences,
while the others were not sciences. In this framework physics and chemistry
are supported by theories, while the others could only rely on experiments.
We do not agree with this drastic interpretation; rather we think that all sci-

ences should develop a quest toward a theory. Indeed, we agree with Diamond
(1987) that

Soft sciences are harder than hard sciences.

Before proceedingwith these speculations, we shouldmention that experiments
are, however, important to validate theories. Otherwise, if not related to a the-
ory, the validity is limited to hic et nunc. In the case of behavioral economics
the experiment should also consider that living matter evolves over time. In the
case of behavioural economics, the interaction of economics is with what has
been called science of living systems; see Bellomo et al. (2017). This Elem-
ent contributes to the understanding of how this complex interaction can be
developed.

• Q1. Why is behavioural economics a very difficult guest for mathem-
atics?
The difficulties have been well explained in the previous sections. In fact,
behaviours are those of living systems. Mathematics must then operate
within the general framework of the science of living systems. In this frame-
work, individual interactions can be transferred to describe the collective
dynamics by the kinetic theory of active particles. However, the rules of
interaction evolve over time within the artificial world.
The preceding characteristics require advanced studies, which have only
recently produced satisfactory results. An additional problem is the pres-
ence of ideological components that are always present in economics. It is
a stone guest that creates additional difficulties.

• Q2. What is the role of mathematics in its interaction with economics?
Mathematics is supposed to translate the conceptual framework of eco-
nomic theories into differential systems with the ability to provide a wide
variety of predictions, as shown in the application presented in Section 4.
The present Element suggests that modelling should not be approached by
each case study through a stand-alone approach.
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On the other hand, the Element proposes to derive a general theory that is
valid for a wide variety of applications, so that specific case studies can be
dealt with by specializing such a theory.

• Q3. What is the advantage that mathematics can bring to economics?
Mathematics’ support for economics, as important as it is, is not only tech-
nical, as the answers to the first two questions show. In fact, mathematics
can explore global aspects of the description of the dynamics of economic
systems and can address challenging objectives such as events that are
difficult to predict, such as the so-called black swan. Accordingly, we can
say that mathematics can refine and even improve economic theories, to the
point of becoming part of them.

• Q4. What is the benefit that economics can bring to mathematics?
Given a theory and specific problems in economics, the contribution of
mathematics cannot be delivered by a straightforward transfer of known
tools. In most cases, such a contribution requires the invention of new tools
and even new theories.
When this happens, it is a sunny day for mathematicians.

• Q5. How far are we from a mathematical theory of economics?
We are pleased to note that some advances have already characterized the
field of research under consideration. Some of them have been reported and
critically analyzed in this Element. What comes next?
Economic theories evolve over time to follow the changes in our society.
Mathematics can then follow this evolution and develop new mathematical
theories. This is also what happens in other sciences within a global vision,
where progress requires an interdisciplinary vision. Then all the sciences
involved in the preceding discussion are continuously progressing, and this
story has not ended.
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