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EXTENDED FRAMES AND SEPARATIONS OF LOGICAL PRINCIPLES

MAKOTO FUJIWARA , HAJIME ISHIHARA, TAKAKO NEMOTO, NOBU-YUKI SUZUKI, AND

KEITA YOKOYAMA

Abstract. We aim at developing a systematic method of separating omniscience principles
by constructing Kripke models for intuitionistic predicate logic IQC and first-order arithmetic
HA from a Kripke model for intuitionistic propositional logic IPC. To this end, we introduce
the notion of an extended frame, and show that each IPC-Kripke model generates an extended
frame. By using the extended frame generated by an IPC-Kripke model, we give a separation
theorem of a schema from a set of schemata in IQC and a separation theorem of a sentence
from a set of schemata in HA. We see several examples which give us separations among
omniscience principles.

§1. Introduction. Omniscience principles have been playing an important
role in neutral (Bishop’s) constructive mathematics [3–5, 7]. Those are prin-
ciples which are derivable in classical logic but underivable in intuitionistic
logic, and are used to construct a weak counterexample which shows that a
statement is constructively underivable by proving that the statement implies
an omniscience principle, in contrast with a counterexample which shows
that a statement is false. Also omniscience principles have been a driving
force of constructive reverse mathematics [18] where we are interested in which
(omniscience) principle is necessary and sufficient to prove a (constructively
underivable) theorem (see also [30, 34] for classical reverse mathematics).

Then, necessarily, separations among omniscience principles have become
crucial. Akama et al. [1] showed some separations in intuitionistic first-
order arithmetic HA using, case by case, an extension of HA, the
Kleene realizability, the monotone modified realizability, and the Lifschitz
realizability (see also [24]). Would there be any uniform technique for
separating omniscience principles? In this paper, we present a possible
direction of finding such a uniform technique.
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Figure 1. Kripke model refuting DNE.

The omniscience principle, called Markov’s principle (MP), is of the form:

∀x(A ∨ ¬A) → (¬¬∃xA→∃xA),

and it has a special case (MPPR):

¬¬∃xA→∃xA (A primitive recursive)

(see [33, Chapter 4, Section 5]). Note that MPPR is a substitution instance
of double negation elimination (DNE):

¬¬p→ p

in intuitionistic propositional logic IPC by a Σ1-formula ∃xA, and DNE
is refuted in the IPC-Kripke model given by Figure 1. The weak limited
principle of omniscience (WLPO) is an omniscience principle of the form:

∀x(A ∨ ¬A) → (¬∃xA ∨ ¬¬∃xA),

and its special case (WLPOPR) is the following:

¬∃xA ∨ ¬¬∃xA (A primitive recursive).

Note that WLPOPR is a substitution instance of the weak principle of the
excluded middle (WPEM):

¬p ∨ ¬¬p

in IPC by a Σ1-formula ∃xA, and WPEM is valid in the above IPC-Kripke
model (even valid on the frame). Therefore the IPC-Kripke model may be
used to separate MPPR from WLPOPR.

The special cases of many omniscience principles, such as the limited
principle of omniscience (LPO), the lesser limited principle of omniscience
(LLPO), the disjunctive Markov principle (MP∨), and Δ1-PEM, are substitu-
tion instances of propositional formulae, such as the principle of the excluded
middle (PEM): p ∨ ¬p, De Morgan’s law (DML): ¬(p ∧ q) →¬p ∨ ¬q,
weak De Morgan’s law (WDML): ¬(¬p ∧ ¬q) →¬¬p ∨ ¬¬q, and the
restricted principle of the excluded middle (RPEM): (p↔¬q) → p ∨ ¬p,
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Figure 2. Derivabilities between omniscience principles.

respectively, by Σ1-formulae. Figure 2 shows implications among those
special cases. For LPO and LLPO, see [33, Chapter 4, Section 3.4] where
those are called ∃-PEM and SEP, respectively; for MP∨, see [17, 28] where
it is called LLPE; for Δ1-PEM, see [9] where it is called IIIa , and [25] where
it is called Δ0

1-LEM.
Of course, there are exceptions (see [16, 17, 23]). However, since IPC-

Kripke models are simple and easy to handle, a method of separation
based on an IPC-Kripke model would give us a good uniform technique
for separating many omniscience principles.

In this paper, we aim at developing a systematic method of separating
omniscience principles by constructing Kripke models for intuitionistic
predicate logic IQC and HA from an IPC-Kripke model. A similar
approach was adopted by de Jongh and Smoryński to show underivability of
substitution instances of propositional formulae in HA (see [32, Chapter V,
Section 3], and also [35]). Here we are interested in not only underivability,
but also separation between substitution instances of propositional formulae
in IQC and HA. In Section 2, we introduce the notion of an extended frame
which will play a crucial role in the following sections. We show that each
IPC-Kripke model generates an extended frame and show a separation
theorem (Theorem 2.7). We give several examples of the extended frame
generated by an IPC-Kripke model. In Section 3, we introduce the notion
of a schema, and, by using the extended frame generated by an IPC-Kripke
model, give a separation theorem (Theorem 3.15) of a schema from a set of
schemata in IQC. We then apply the separation theorem to the examples in
the previous section. In Section 4, we apply the results in the previous section

https://doi.org/10.1017/bsl.2023.29 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.29


314 MAKOTO FUJIWARA ET AL.

to HA, and show a separation theorem (Theorem 4.17) of a sentence from a
set of schemata. We then see the examples which give us separations among
omniscience principles. We conclude the paper with discussing a possible
relativization of the results and lifting Theorem 4.17 up to Σn-level.

To quickly grasp the story of the paper, follow Definition 2.1, Remark
2.2, Definition 2.3, Example 2.4, Remark 2.6, Theorem 2.7, and Examples
2.10–2.14 in Section 2; Definition 3.7, Definition 3.8, Definition 3.11,
Theorem 3.15, and Example 3.16 in Section 3; Definition 4.15, Theo-
rem 4.17, Example 4.18, Theorem 4.23, and Example 4.24 in Section 4.

We use classical logic and set theory at the meta-level.

§2. Extended frames. In this section, we introduce the notion of an
extended frame which will play a crucial role in the following sections. We
show that each IPC-Kripke model generates an extended frame and show
a separation theorem (Theorem 2.7). We give several examples (Examples
2.10–2.14) of the extended frame generated by an IPC-Kripke model.

We use the standard language L(IPC) of intuitionistic propositional logic
IPC containing the (countable) setV of propositional variables, and∧,∨,→,
and ⊥ as primitive logical operators. Prime formulae are atomic formulae
(propositional variables) or ⊥, and we introduce the abbreviations ¬ϕ ≡
ϕ→⊥ andϕ↔ � ≡ (ϕ→ �) ∧ (�→ ϕ). The set Vars(ϕ) of propositional
variables in a formula ϕ is defined as usual: Vars(⊥) = ∅; Vars(p) = {p};
Vars(ϕ ◦ �) = Vars(ϕ) ∪ Vars(�) for ◦ ∈ {∧,∨,→}. We sometimes write
ϕ[p1, ... , pn] for a formula ϕ with Vars(ϕ) = {p1, ... , pn}. For a formula
ϕ, a sequence �p ≡ p1, ... , pn of distinct variables and a sequence �� ≡
�1, ... , �n of formulae, the (simultaneous) substitution ϕ[ �p/ ��] is defined
as usual: ⊥[ �p/ ��] ≡ ⊥; q[ �p/ ��] ≡ �m if q ≡ pm for some m ∈ {1, ... , n},
q otherwise; (ϕ ◦ �)[ �p/ ��] ≡ ϕ[ �p/ ��] ◦ �[ �p/ ��] for ◦ ∈ {∧,∨,→}. For a
formula ϕ[p1, ... , pn], we write ϕ[�1, ... , �n] for ϕ[ �p/ ��]. In the following,
we use �IPC for deducibility in IPC, and sometimes write IPC for the set of
theorems of IPC.

Let (K,≤) be a partially ordered set. Then a subset S of K is upward
closed if k ∈ S and k ≤ k′ imply k′ ∈ S for all k, k′ ∈ K , and we write ΩK
for the class of upward closed subsets of K. For each k ∈ K , we write ↑k for
the upward closed subset {k′ ∈ K | k ≤ k′}, and for each subset S of K, we
write ↑S for the upward closed subset

⋃
k∈S ↑k.

Definition 2.1. A frame is a nonempty partially ordered set (K,≤). A
valuation � on a frame (K,≤) is a binary relation between K and V such
that

k � p and k ≤ k′ ⇒ k′ � p
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for all k, k′ ∈ K andp ∈ V , that is, {k ∈ K | k � p} ∈ ΩK for allp ∈ V . The
valuation � is then extended to logically compound formulae of L(IPC) by
the following clauses.

1. k �� ⊥.
2. k � ϕ ∧ �⇔ k � ϕ and k � �.
3. k � ϕ ∨ �⇔ k � ϕ or k � �.
4. k � ϕ→ �⇔ k′ � ϕ implies k′ � � for all k′ ≥ k.

Note that {k ∈ K | k � ϕ} ∈ ΩK for all formula ϕ. An IPC-Kripke model
is a triple K = (K,≤,�), where (K,≤) is a frame, and � is a valuation on it.
A formula ϕ is valid in K if k � ϕ for all k ∈ K , and we then write K � ϕ
(see [33, 2.5.2–2.5.4]). A formula ϕ is valid on the frame (K,≤) if K � ϕ for
all IPC-Kripke model K = (K,≤,�), that is, for all valuation � on (K,≤),
and we then write (K,≤) |= ϕ.

Remark 2.2. The set

L(K,≤) = {ϕ | (K,≤) |= ϕ}
of formulae forms an intermediate propositional logic (or simply, a logic)
in the following sense: IPC ⊆ L(K,≤) ⊆ CPC, where CPC is (the set of
theorems of) classical propositional logic; if ϕ→ �,ϕ ∈ L(K,≤), then
� ∈ L(K,≤); if ϕ ∈ L(K,≤), then ϕ[ �p/ ��] ∈ L(K,≤) for all sequence �p
of distinct propositional variables and sequence �� of formulae.

Definition 2.3. An extended frame E = ((K,≤), f, (I,≤I )) is a triple of
frames (K,≤) and (I,≤I ), and a monotone mapping f between them,
that is, k ≤ k′ implies f(k) ≤I f(k′) for all k, k′ ∈ K . Each IPC-Kripke
model I = (I,≤I ,�) induces an IPC-Kripke model KE ,I = (K,≤,�E ,I) by
defining

k �E ,I p⇔ f(k) � p
for each k ∈ K and p ∈ V . A formula ϕ is valid on E if KE ,I �E ,I ϕ for all
IPC-Kripke model I = (I,≤I ,�), that is, for all valuation � on (I,≤I ); we
then write E |= ϕ.

A trivial example of an extended frame is ((K,≤), idK, (K,≤)) for a frame
(K,≤), and a simple, but non-trivial example is given in Figure 3.

Example 2.4. Let K = (K,≤,�) be an IPC-Kripke model, and define a
set ΦK of upward closed subsets of K by

ΦK = {{k ∈ K | k � p} | p ∈ V}.
Define binary relations �K and ∼K on K by

k �K k
′ ⇔∀U ∈ ΦK(k ∈ U ⇒ k′ ∈ U ),

k ∼K k
′ ⇔ k �K k

′ ∧ k′ �K k.
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Figure 3. An example of extended frame.

Then �K is a preorder and ∼K is an equivalence relation on K. Let

IK = K/ ∼K, [k]K ≤K [k′]K ⇔ k �K k
′, fK(k) = [k]K,

where [k]K is the equivalence class of k with respect to ∼K. Then

EK = ((K,≤), fK, (IK,≤K))

is an extended frame, and we call it the extended frame generated by the
IPC-Kripke model K.

Example 2.5. Let K = (K,≤,�) be an IPC-Kripke model, and define a
valuation �K on the frame (IK,≤K), introduced in Example 2.4, by

[k]K �K p⇔ k � p

for each [k]K ∈ IK and p ∈ V . Then IK = (IK,≤K,�K) is an IPC-Kripke
model, and induces an IPC-Kripke model KEK,IK = (K,≤,�EK,IK). Since

k � p⇔ [k]K �K p⇔ k �EK,IK p

for all k ∈ K and p ∈ V , we have

k � ϕ⇔ k �EK,IK ϕ

for all k ∈ K and formula ϕ of L(IPC).

Remark 2.6. Let E = ((K,≤), f, (I,≤I )) be an extended frame. Then
the set

T (E) = {ϕ | E |= ϕ}

does not form a logic in general, but forms a theory in the following sense:
IPC ⊆ T (E); if ϕ→ �,ϕ ∈ T (E), then � ∈ T (E).
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In fact, consider the extended frame E = ((K,≤), f, (I,≤I )) given in
Figure 3. Then (p→ q) ∨ (q→ p) ∈ T (E). However,

0 ��E ,I (p→¬r) ∨ (¬r→ p)

for the IPC-Kripke model I = (I,≤I ,�) with a �� p, a �� r, b � p, and
b � r. Therefore, ((p→ q) ∨ (q→ p))[q/¬r] �∈ T (E). See Example 5.2 for
the details.

Theorem 2.7. Let K = (K,≤,�) be an IPC-Kripke model, and let ϕ be a
formula of L(IPC). If K �� ϕ, then

T (EK) ��IPC ϕ.

Proof. LetKEK,IK = (K,≤,�EK,IK) be the IPC-Kripke model induced by
the IPC-Kripke modelIK = (IK,≤K,�K) in Example 2.5. ThenKEK,IK �� ϕ,
whenever K �� ϕ.On the other hand, we have KEK,IK � � for all � ∈ T (EK).
By the soundness theorem [33, Chapter 2, Section 5.10], we haveT (EK) ��IPC
ϕ. �

Remark 2.8. Let K = (K,≤,�) be an IPC-Kripke model, and let ϕ be
a formula of L(IPC). If K �� ϕ, then k0 �� ϕ for some k0 ∈ K , and, by
considering the truncated model K′ = (K ′,≤′,�′), where K ′ = ↑k0, ≤′ =
≤ ∩ (K ′ ×K ′) and �′ = � ∩ (K ′ × V), we may assume that K is an IPC-
Kripke model with a root (see [33, Chapter 2, Section 5.4]). Furthermore,
if K′ = (K ′,≤′,�′) is an IPC-Kripke model with root k0 ∈ K ′ and k0 �� ϕ,
then there exists a finite model K′′ = (K ′′,≤′′,�′′) such thatK ′′ ⊆ K ′,≤′′ =
≤′ ∩ (K ′′ ×K ′′) and k �′′ �⇔ k �′ � for all k ∈ K ′′ and subformula � of
ϕ (see [33, Chapter 2, Section 6.11]). Therefore we may assume that K is a
finite IPC-Kripke model with a root.

Note that if K is a finite IPC-Kripke model with a root, then (IK,≤K) is
a finite partially ordered set with a root.

Definition 2.9. An extended frame E = ((K,≤), f, (I,≤I )) is locally
directed if f–1(↑ i) ∩ ↑k is directed for all i ∈ I and k ∈ K , that is, for each
i ∈ I and k ∈ K , if l, l ′ ∈ f–1(↑ i) ∩ ↑k, then there exists l ′′ ∈ f–1(↑ i) ∩ ↑k
such that l ′′ ≤ l and l ′′ ≤ l ′.

In the following, we shall give several examples of extended frame
generated by an IPC-Kripke model (see [8] for more examples). Before that,
we quickly review the relation between some intermediate propositional
logics and frames.

For a logic L, let L+ ϕ0 + ··· + ϕn–1 denote the logic obtained from L by
adding axiom schemata ϕ0, ... , ϕn–1, and let

Llin = L+ (ϕ→ �) ∨ (�→ ϕ).

For n ≥ 1, the sliceSn consists of logics L such thatLlin = L(Jn,≤n), and the
slice S� consists of logics L such thatLlin =

⋂
n<� L(Jn,≤n),where (Jn,≤n)
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is the linear frame with n elements. Then S1 = {CPC} and IPC ∈ S�, and
any logic belongs to exactly one Sn (n ≤ �) (see [14, Part I, 4.1] and [15]).

Let �1, �2, ... and �1, �2, ... be sequences of axiom schemata defined by

�1 ≡ ((ϕ1 → ϕ0) → ϕ1) → ϕ1,

�n+1 ≡ ((ϕn+1 → �n) → ϕn+1) → ϕn+1,

�n ≡
∨

0≤i<j≤n
(ϕi ↔ ϕj)

(see [14] where �n and �n are written by Pn and Xn, respectively). For each
k ≥ 1, let Tk = IPC + �2 + �k , and let Mk = T2k+1 and M� = IPC + �2.
Then {M1,M2, ... ,Mn, ...M�} is the decreasing enumeration of the second
slice S2 (see [15, Theorem 1.6]).

Note that the axiom schema �n says that the height1 of a frame is at most n.
For a rooted frame, the axiom schema �n says that the number of upward
closed subsets of the frame is at most n; hence, for a rooted frame with the
height 2, the axiom schema �2k+1 says that the number of maximal elements
of the frame is at most k (see [12, 29] for other axiomatizations).

In contrast with S2, we know little about the internal structure of Sn
(n ≥ 3).

Let PEM, DNE, WPEM, DML, WDML, and RPEM be the following
formulae:

PEM[p] ≡ p ∨ ¬p.
DNE[p] ≡ ¬¬p→ p.

WPEM[p] ≡ ¬p ∨ ¬¬p.
DML[p, q] ≡ ¬(p ∧ q) →¬p ∨ ¬q.

WDML[p, q] ≡ ¬(¬p ∧ ¬q) →¬¬p ∨ ¬¬q.
RPEM[p, q] ≡ (p↔¬q) → p ∨ ¬p.

Then we have the following examples of Theorem 2.7.

Example 2.10. Let EK1 = ((K1,≤1), fK1 , (IK1 ,≤K1)) be the extended
frame generated by the IPC-Kripke model K1 = (K1,≤1,�1) given in
Figure 4. Then K1 ��1 DNE[p], and hence

T (EK1) ��IPC DNE[p].

The theoryT (EK1) is the logicL(K1,≤1) axiomatized by the axiom schemata
�2 and �3.

1The height of a frame (K,≤) is the maximal length n of finite ascending chains in (K,≤),
if it exists; �, otherwise (see [29]).
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K1

0

1

(IK1 ,≤K1)

[0]K1

[1]K1

fK1

��

fK1
		p

Figure 4. The Kripke model and the extended frame in Example 2.10.
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����������
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fK2

��

fK2

��

p

Figure 5. The Kripke model and the extended frame in Example 2.11.

Furthermore, T (EK1) contains WPEM[p] for all propositional variable p.
To see this, consider an IPC-Kripke model I = (IK1 ,≤K1 ,�′). If [1]K1 �′ p,
then 0 �EK1 ,I ¬¬p; or else if [1]K1 ��′ p, then 0 �EK1 ,I ¬p.

Note that EK1 is locally directed.

Example 2.11. Let EK2 = ((K2,≤2), fK2 , (IK2 ,≤K2)) be the extended
frame generated by the IPC-Kripke model K2 = (K2,≤2,�2) given in
Figure 5. Then K2 ��2 WPEM[p], and hence

T (EK2) ��IPC WPEM[p].

The theory T (EK2) contains the logic L(K2,≤2) axiomatized by the axiom
schemata �2 and �5.

Furthermore, T (EK2) contains DML[q, r] and DNE[q] for all q and r.
To see this, consider an IPC-Kripke model I = (IK2 ,≤K2 ,�′). If 0 �EK2 ,I
¬(q ∧ r), then [0]K2 �′ q implies 0 �EK2 ,I ¬r, [0]K2 �′ r implies 0 �EK2 ,I ¬q,
and [0]K2 ��′ q and [0]K2 ��′ r imply 0 �EK2 ,I ¬q ∨ ¬r, since [1]K2 ��′ q ∧ r.
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K3
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Figure 6. The Kripke model and the extended frame in Example 2.12.

If 0 �EK2 ,I ¬¬q, then 2 �EK2 ,I q, that is, [2]K2 = [0]K2 �′ q, and hence
0 �EK2 ,I q.

Note that EK2 is locally directed.

Example 2.12. Let EK3 = ((K3,≤3), fK3 , (IK3 ,≤K3)) be the extended
frame generated by the IPC-Kripke model K3 = (K3,≤3,�3) given in
Figure 6. Then K3 ��3 DML[p, q], and hence

T (EK3) ��IPC DML[p, q].

The theory T (EK3) contains the logic L(K3,≤3) axiomatized by the axiom
schemata �2 and �9.

Furthermore, T (EK3) contains DNE[r] for all r. To see this, consider an
IPC-Kripke model I = (IK3 ,≤K3 ,�′). If 0 �EK3 ,I ¬¬r, then 3 �EK3 ,I r, that
is, [3]K3 = [0]K3 �′ r, and hence 0 �EK3 ,I r.

Note that EK3 is locally directed.

Example 2.13. Let EK4 = ((K4,≤4), fK4 , (IK4 ,≤K4)) be the extended
frame generated by the IPC-Kripke model K4 = (K4,≤4,�4) given in
Figure 7. Then K4 ��4 WDML[p, q], and hence

T (EK4) ��IPC WDML[p, q].

The theory T (EK4) contains the logic L(K4,≤4).
Furthermore T (EK4) contains RPEM[r, s] for all r and s. To see this,

consider an IPC-Kripke model I = (IK4 ,≤K4 ,�′). Suppose that i �EK4 ,I
r↔¬s . We show that i �EK4 ,I r ∨ ¬r. Suppose otherwise. Then i is
not maximal. Without loss of generality, we may assume that i ≤4 1.
If 3 �EK4 ,I r, then 3 �EK4 ,I ¬s , and hence 1 �EK4 ,I ¬s , and hence 1 �EK4 ,I r,
which implies 0 �EK4 ,I r by the structure of EK4 . This is a contradiction. Thus
3 ��EK4 ,I r. Then 1 �EK4 ,I ¬r, and hence i = 0. Then we also have 4 ��EK4 ,I r
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Figure 7. The Kripke model and the extended frame in Example 2.13.
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Figure 8. The Kripke model and the extended frame in Example 2.14.

as above. Then 0 �EK4 ,I ¬r follows. This is a contradiction. Thus we have
shown i �EK4 ,I r ∨ ¬r.

Note that EK4 is locally directed.

Example 2.14. Let EK5 = ((K2,≤2), fK5 , (IK5 ,≤K5)) be the extended
frame generated by the IPC-Kripke model K5 = (K2,≤2,�5) given in
Figure 8. Then K5 ��5 RPEM[p, q], and hence

T (EK5) ��IPC RPEM[p, q].

The theory T (EK5) is the logic L(K2,≤2).
Note that EK5 is locally directed.

https://doi.org/10.1017/bsl.2023.29 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.29


322 MAKOTO FUJIWARA ET AL.

§3. Separations by extended frames in IQC. In this section, we introduce
the notion of a schema, and by using the extended frame generated by an
IPC-Kripke model, give a separation theorem (Theorem 3.15) of a schema
from a set of schemata in IQC. We then apply the separation theorem to the
examples in the previous section (Example 3.16).

We use the standard language L(IQC) of intuitionistic first-order
predicate logic IQC containing the propositional connectives and ∀, ∃ as
primitive logical operators. The sets FV(t) and FV(A) of free variables
in a term t and a formula A, respectively, of L(IQC) are defined as
usual: FV(x) = {x}; FV(c) = ∅; FV(f(t1, ... , tn)) = FV(t1) ∪ ··· ∪ FV(tn);
FV(⊥) = ∅; FV(R(t1, ... , tn)) = FV(t1) ∪ ··· ∪ FV(tn); FV(B ◦ C ) =
FV(B) ∪ FV(C ) for ◦ ∈ {∧,∨,→}; FV(∀xB) = FV(∃xB) = FV(B) \ {x};
we set FV(A1, ... , An) = FV(A1) ∪ ··· ∪ FV(An) for a sequence A1, ... , An
of formulae. In the following, we use �IQC for deducibility in IQC.

Definition 3.1. An IQC-Kripke model is a tuple I = (I,≤I ,M, �,�),
where (I,≤I ) is a frame, M = {Mi}i∈I is a family of nonempty sets, �
is a family {�ii ′ ∈Mi →Mi ′ | i ≤I i ′} of restrictions such that:

• �ii is the identity onMi ,
• �i ′i ′′ ◦ �ii ′ = �ii ′′ for i ≤I i ′ ≤I i ′′,

and � is a relation, called a valuation, from I to the set of atomic formulae
of the language extended by adding a constant symbols a for each element
a ∈

⋃
{Mi | i ∈ I } such that:

• i � R(a1, ... , an) ⇒ am ∈Mi for m ∈ {1, ... , n},
• i � R(a1, ... , an) and i ≤ i ′ ⇒ i ′ � R(�ii ′(a1), ... , �ii ′(an))

for all i, i ′ ∈ I . An n-ary function f is interpreted in I by a familyf = {fi ∈
Mni →Mi | i ∈ I } commuting with the restrictions for i ′ ≥I i

�ii ′(fi(a1, ... , an)) = fi ′(�ii ′(a1), ... , �ii ′(an)).

The valuation� is then extended to logically compound formulae ofL(IQC)
by the clauses in the previous section for the propositional connectives and
the following clauses:

1. i � ∀xA⇔ i ′ � A[x/a] for all i ′ ≥ i and a ∈Mi ′ .
2. i � ∃xA⇔ i � A[x/a] for some a ∈Mi.

Note that {i ∈ I | i � A} ∈ ΩI for all sentence A of L(IQC). A formula A
with FV(A) ⊆ { �x} is valid in I if i � A[ �x/�a] for all i ∈ I and �a ∈Mi , and
we then write I � A (see [33, Chapter 2, Section 5.12]).

Remark 3.2. Let I = (I,≤I ,M, �,�) be an IQC-Kripke model with a
family of interpretations f = {fi ∈Mni →Mi | i ∈ I } for all n-ary func-
tion f. For each i ∈ I , define a (first-order) structure Mi = (Mi, �Ri, �fi) by
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Ri = {(a1, ... , am) | i � R(a1, ... , am)}, fi = fi .

Then {Mi | i ∈ I } is a family of structures satisfying

(a1, ... , am) ∈ Ri ⇒ (�ii ′(a1), ... , �ii ′(am)) ∈ Ri ′
�ii ′(fi(a1, ... , an)) = fi ′(�ii ′(a1), ... , �ii ′(an))

(see [6, Chapter 2, Section 2.2–2.4]). Conversely, a family {Mi | i ∈ I }
of structures together with a family � of restrictions satisfying the above
conditions gives an IQC-Kripke model (I,≤I ,M, �,�) defined by

i � R(a1, ... , am) ⇔Mi |=c R(a1, ... , am)

for each i ∈ I , where |=c denotes the classical interpretation in the structure;
we sometimes simply writeMi |=c A for Mi |=c A.

Definition 3.3. Let E = ((K,≤), f, (I,≤I )) be an extended frame. Then
each IQC-Kripke model I = (I,≤I ,M, �,�) induces an IQC-Kripke model
KE ,I = (K,≤, D, 	,�E ,I) by defining for each k, k′ ∈ K with k ≤ k′,

Dk =Mf(k),

	kk′ = �f(k)f(k′),

k �E ,I R(a1, ... , an) ⇔ f(k) � R(a1, ... , an)

for prime formula R(a1, ... , an) with a1, ... , an ∈ Dk .

We introduce the notion of a schema following [26], [33, Chapter 2, Section
3.13], and [19, 20].

Definition 3.4. We introduce certain predicate symbols 
1, 
2, 
3, ...
(being outside of our standard language), called place holders, to deal with
schemata as syntactic objects similar to formulae. Schemata are inductively
defined by:

1. a prime formula is a schema;
2. if 
 is an n-ary place holder and t1, ... , tn are terms, then

(t1, ... , tn) is a schema;

3. if α and � are schemata, then α ◦ � is a schema for ◦ ∈ {∧,∨,→};
4. if α is a schema, then Qxα is a schema for Q ∈ {∀, ∃}.

Formulae are schemata without place holders.

For example, the induction schema is given by a schema


(0) ∧ ∀x(
(x) → 
(Sx)) →∀x
(x),

where 
 is a unary place holder.
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Definition 3.5. Let α be a schema, and let B1, ... , Bk be formulae. Let

1, ... , 
k be place holders, and let �x1, ... , �xk be sequences of variables with
lengths of the arities of 
1, ... , 
k , respectively. Then a schema

α[
1/ �x1.B1, ... , 
k/ �xk.Bk]
is defined by:

1. P[
1/ �x1.B1, ... , 
k/ �xk.Bk] ≡ P for P prime;
2. 
(t1, ... , tn)[
1/ �x1.B1, ... , 
k/ �xk.Bk] ≡ Bi [y1/t1, ... , yn/tn]

if 
 ≡ 
i and �xi ≡ y1, ... , yn, and 
(t1, ... , tn) otherwise;
3. (α ◦ �)[
1/ �x1.B1, ... , 
k/ �xk.Bk]

≡ α[
1/ �x1.B1, ... , 
k/ �xk.Bk] ◦ �[
1/ �x1.B1, ... , 
k/ �xk.Bk]
for ◦ ∈ {∧,∨,→};

4. (Qxα)[
1/ �x1.B1, ... , 
k/ �xk.Bk]
≡ Qx(α[
1/ �x1.B1, ... , 
k/ �xk.Bk])

for Q ∈ {∀, ∃}.

We simply write α[
1/B1, ... , 
k/Bk] or even α[B1, ... , Bk] for

α[
1/ �x1.B1, ... , 
k/ �xk.Bk]
whenever possible, if it does not cause confusion. An instance of a schema
α with place holders exactly �
 is a formula α[�
/ �B] or α[ �B].

Remark 3.6. In using the substitution notations α[�
/ �B], we shall assume
that  �x. �B are free for �
 in α, or we assume that a suitable renaming of bound
variables is carried out. Here  �x.B is free for 
 in P for prime P;  �x.B is free
for 
 in 
 ′(t1, ..., tn);  �x.B is free for 
 in α ◦ � if  �x.B is free for 
 in α and
� , where ◦ ∈ {∧,∨,→};  �x.B is free for 
 in Qyα if y ∈ FV(B) \ { �x} and
 �x.B is free for 
 in α, where Q ∈ {∀, ∃}.

Definition 3.7. We extend the deducibility relation � and the forcing
relation � to schemata as follows. Let Γ and Δ be a set of schemata, let α be
a schema, and let C be a formula. Then Γ � C if

{B | B is an instance of a schema in Γ} � C ;

Γ � α if Γ � B for all instance B of α; Γ � Δ if Γ � α for all α ∈ Δ. Similarly,
for IQC-Kripke model K, K � α if K � B for all instance B of α; K � Δ if
K � α for all α ∈ Δ.

Definition 3.8. Each formula ϕ[p1, ... , pn] of L(IPC) may be naturally
regarded as a schema

ϕ∗ ≡ ϕ[
0
1 , ... , 


0
n ],

where 
0
1 , ... , 


0
n are nullary place holders.
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Lemma 3.9. Let (K,≤, D, 	,�) be an IQC-Kripke model, and let (K,≤,�′)
be an IPC-Kripke model. Let ϕ[p1, ... , pn] be a formula of L(IPC), and
let A1, ... , An be formulae of L(IQC) with FV(A1, ... , An) ⊆ { �x}. For each
k ∈ K and �a ∈ Dk , if

k′ �′ pm⇔ k′ � Am[ �x/	kk′(�a)]

for all k′ ≥ k and m ∈ {1, ... , n}, then

k′ �′ ϕ⇔ k′ � (ϕ[A1, ... , An])[ �x/	kk′(�a)]

for all k′ ≥ k.

Proof. Straightforward by induction on the complexity of ϕ. �

Proposition 3.10. Let E = ((K,≤), f, (I,≤I )) be an extended frame.
If ϕ ∈ L(K,≤), then

KE ,I �E ,I ϕ
∗

for all IQC-Kripke model I = (I,≤I ,M, �,�).

Proof. Suppose that ϕ ∈ L(K,≤), and consider an IQC-Kripke model
I = (I,≤I ,M, �,�) and an instance

ϕ[A1, ... , An]

of the schema ϕ∗. Let KE ,I = (K,≤, D, 	,�E ,I) be the induced IQC-Kripke
model. Then for each k ∈ K and �a ∈ Dk , defining a valuation �′ on
(K,≤) by

k′ �′ pm⇔ k′ �E ,I Am[ �x/	kk′(�a)]

for each k′ ≥ k and m ∈ {1, ... , n}, by Lemma 3.9, we have

k �′ ϕ⇔ k �E ,I (ϕ[A1, ... , An])[ �x/�a].

Since ϕ is valid on (K,≤), we have

k �E ,I (ϕ[A1, ... , An])[ �x/�a]. �

Definition 3.11. For each formula ϕ[p1, ... , pn] of L(IPC), define a
schema Σ-ϕ by

Σ-ϕ ≡ ∀ �x(
1( �x) ∨ ¬
1( �x)) ∧ ··· ∧∀ �x(
n( �x) ∨ ¬
n( �x))
→ ϕ[∃ �x
1( �x), ... , ∃ �x
n( �x)],

where 
1, ... , 
n are place holders with the arity of the length of �x.
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Proposition 3.12. Let EK = ((K,≤), fK, (IK,≤K)) be the extended frame
generated by an IPC-Kripke model K = (K,≤,�), and let ϕ[p1, ... , pn] be a
formula of L(IPC). If K �� ϕ, then

KEK,I ��EK,I Σ-ϕ

for some IQC-Kripke model I = (IK,≤K,M, �,�′).

Proof. Recall the construction in Example 2.4 of the extended frame
EK. Suppose that K �� ϕ. LetR1( �x), ... , Rn( �x) be predicate symbols, and let
Uq = {k ∈ K | k � q} for each q ∈ V . Then define an IQC-Kripke model
I = (IK,≤K,M, �,�′) by

M[k]K = {Uq | k � q} ∪ {K},
�[k]K[k′]K = the inclusion mapM[k]K →M[k′]K ,

[k]K �′ Rm(Uq1 , ... , Uqn′ ) ⇔Uq1 ∩ ··· ∩Uqn′ ⊆ Upm
for each [k]K, [k′]K ∈ IK with [k]K ≤K [k′]K, Uq1 , ... , Uqn′ ∈M[k]K and
m ∈ {1, ... , n}. Let KEK,I = (K,≤, D, 	,�EK,I) be the induced IQC-Kripke
model, and assume that

k �EK,I ∀ �x(R1( �x) ∨ ¬R1( �x)) ∧ ··· ∧∀ �x(Rn( �x) ∨ ¬Rn( �x))
→ ϕ[∃ �xR1( �x), ... , ∃ �xRn( �x)]

for all k ∈ K . Then given a k ∈ K , if [k]K �′ Rm(Uq1 , ... , Uqn′ ) for
some Uq1 , ... , Uqn′ ∈ Dk =M[k]K , then k ∈ Uq1 ∩ ··· ∩Uqn′ ⊆ Upm , and
hence k � pm; if k � pm, then Upm ∈M[k]K = Dk , and hence [k]K �′

Rm(Upm, ... , Upm). Therefore

k � pm⇔ k �EK,I ∃ �xRm( �x) (†)

for all k ∈ K and m ∈ {1, ... , n}. For each k ∈ K , Uq1 , ... , Uqn′ ∈ Dk and
m ∈ {1, ... , n}, either

[k]K �′ Rm(Uq1 , ... , Uqn′ ) or [k]K ��′ Rm(Uq1 , ... , Uqn′ ).

In the latter case, if [k′]K �′ Rm(Uq1 , ... , Uqn′ ) for some k′ ≥ k, then Uq1 ∩
··· ∩Uqn′ ⊆ Upm , and hence [k]K �′ Rm(Uq1 , ... , Uqn′ ), a contradiction.
Therefore k �EK,I ¬Rm(Uq1 , ... , Uqn′ ). Thus,

k �EK,I ∀ �x(Rm( �x) ∨ ¬Rm( �x))

for all k ∈ K and m ∈ {1, ... , n}, and so

k �EK,I ϕ[∃ �xR1( �x), ... , ∃ �xRn( �x)]

for all k ∈ K . By (†) and Lemma 3.9, we have k � ϕ for all k ∈ K , a
contradiction. �
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Lemma 3.13. Let E = ((K,≤), f, (I,≤I )) be a locally directed extended
frame, and let KE ,I = (K,≤, D, 	,�E ,I) be the induced IQC-Kripke model
by an IQC-Kripke model I = (I,≤I ,M, �,�). Then for each formula A of
L(IQC) with FV(∃ �xA) ⊆ {�y}, k ∈ K , and �b ∈ Dk , there exists an upward
closed subset U of I such that if

k �E ,I (∀ �x(A ∨ ¬A))[�y/�b],
then

f(k′) ∈ U ⇔ k′ �E ,I (∃ �xA)[�y/	kk′(�b)]

for all k′ ≥ k.

Proof. Consider formula A of L(IQC) and k ∈ K . We may assume
without loss of generality that FV(∃ �xA) = ∅. Define an upward closed
subset U of I by

U =
⋃

{↑f(l) | k ≤ l ∧ l �E ,I ∃ �xA},
and suppose that k �E ,I ∀ �x(A ∨ ¬A). Then given k′ ≥ k, we show that

f(k′) ∈ U ⇔ k′ �E ,I ∃ �xA.
Assume thatf(k′) ∈ U . Then there exists l ≥ k such thatf(l) ≤I f(k′) and
l �E ,I A[ �x/�a] for some �a ∈ Dl . Since k′, l ∈ f–1(↑f(l)) ∩ ↑k, there exists
l ′ ∈ f–1(↑f(l)) ∩ ↑k such that l ′ ≤ k′ and l ′ ≤ l . Note that f(l ′) = f(l)
and �a ∈ Dl =Mf(l) = Dl ′ . Since k �E ,I ∀ �x(A ∨ ¬A) and k ≤ l ′, either

l ′ �E ,I A[ �x/�a] or l ′ �E ,I ¬A[ �x/�a].

However, since l �E ,I A[ �x/�a] and l ≥ l ′, the former must be the case.
Therefore l ′ �E ,I ∃ �xA, and, since l ′ ≤ k′, we have k′ �E ,I ∃ �xA. Conversely,
if k′ �E ,I ∃ �xA, then trivially f(k′) ∈ U. �

Proposition 3.14. Let E = ((K,≤), f, (I,≤I )) be a locally directed
extended frame. If ϕ ∈ T (E), then

KE ,I �E ,I Σ-ϕ

for all IQC-Kripke model I = (I,≤I ,M, �,�).

Proof. Suppose that ϕ ∈ T (E), and consider an IQC-Kripke model
I = (I,≤I ,M, �,�) and an instance

∀ �x(A1 ∨ ¬A1) ∧ ··· ∧ ∀ �x(An ∨ ¬An) → ϕ[∃ �xA1, ... , ∃ �xAn]
of the schema Σ-ϕ. Let k ∈ K . We may assume without loss of generality
that FV(∃ �xA1, ... , ∃ �xAn) = ∅. Given a k′ ≥ k, by Lemma 3.13, there exist
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upward closed subsets U1, ... , Un of I such that for each m ∈ {1, ... , n}, if
k′ �E ,I ∀ �x(Am ∨ ¬Am), then

f(k′′) ∈ Um⇔ k′′ �E ,I ∃ �xAm
for all k′′ ≥ k′. Let I ′ = (I,≤I ,�′) be an IPC-Kripke model defined by

i �′ pm⇔ i ∈ Um
for each i ∈ I and m ∈ {1, ... , n}. Assume that k′ �E ,I ∀ �x(Am ∨ ¬Am) for
all m ∈ {1, ... , n}. Then

k′′ �E ,I′ pm⇔ k′′ �E ,I ∃ �xAm
for all k′′ ≥ k′ and m ∈ {1, ... , n}. By Lemma 3.9, we have

k′ �E ,I′ ϕ⇔ k′ �E ,I ϕ[∃ �xA1, ... , ∃ �xAn].
Therefore, since ϕ is valid on E , we have

k′ �E ,I ϕ[∃ �xA1, ... , ∃ �xAn].
Thus k �E ,I ∀ �x(A1 ∨ ¬A1) ∧ ··· ∧ ∀ �x(An ∨ ¬An) → ϕ[∃ �xA1, ... , ∃ �xAn].

�

For a set S of formulae of L(IPC), define sets S∗ and Σ-S of schemata by
S∗ = {ϕ∗ | ϕ ∈ S} and Σ-S = {Σ-ϕ | ϕ ∈ S}.

Now, we arrive at a separation theorem for IQC.

Theorem 3.15. Let K = (K,≤,�) be an IPC-Kripke model, and let ϕ be a
formula of L(IPC). If K �� ϕ and EK is locally directed, then

L(K,≤)∗ + Σ-T (EK) ��IQC Σ-ϕ.

Proof. Straightforward by Proposition 3.10, Proposition 3.12, Proposi-
tion 3.14, and the soundness theorem [33, Chapter 2, Section 5.10]. �

Example 3.16. By applying Theorem 3.15 to Example 2.10, we have

L(K1,≤1)∗ ��IQC Σ-DNE,

especially WPEM∗ ��IQC Σ-DNE; to Example 2.11, we have

L(K2,≤2)∗ + Σ-T (EK2) ��IQC Σ-WPEM,

especially Σ-DML + Σ-DNE ��IQC Σ-WPEM; to Example 2.12, we have

L(K3,≤3)∗ + Σ-T (EK3) ��IQC Σ-DML,

especially Σ-DNE ��IQC Σ-DML; to Example 2.13, we have

L(K4,≤4)∗ + Σ-T (EK4) ��IQC Σ-WDML,
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especially Σ-RPEM ��IQC Σ-WDML; to Example 2.14, we have

L(K2,≤2)∗ ��IQC Σ-RPEM.

Note that Σ-DNE, Σ-WPEM, Σ-DML, Σ-WDML, and Σ-RPEM
correspond to MP, WLPO, LLPO, MP∨, and Δ1-PEM, respectively.

§4. Separations by extended frames in HA. In this section, we apply the
results in the previous section to HA, and show a separation theorem
(Theorem 4.17) of a sentence from a set of schemata. We then see
the examples which give us separations among omniscience principles
(Example 4.18).

We use the standard language L1 = L(HA) of intuitionistic first-order
arithmetic HA containing the constant 0, the unary function symbol S, the
binary function symbols + and ×, and the binary predicate = (equality).
The axioms and rules are those of IQC with equality, the axioms

Sx = Sy→ x = y, ¬0 = Sx, ¬0 = x→∃y(x = Sy)

and

x + 0 = x, x + Sy = S(x + y), x × 0 = 0, x × Sy = (x × y) + x,

and the induction axiom schema

A(0) ∧ ∀x(A(x) →A(Sx)) →∀xA(x)

(see [27, Chapter 1]).
A Σ0-formula (and Π0-formula) is a formula built up from prime formulae

by the propositional connectives ∧, ∨, and →, and the bounded quantifiers
∀x ≤ t and ∃x ≤ t; A Σn+1-formula is a Πn-formula or a formula of the form
∃xA, where A is a Πn-formula, and a Πn+1-formula is a Σn-formula or a for-
mula of the form ∀xA, where A is a Σn-formula. A Σn-sentence (respectively,
Πn-sentence) is a Σn-formula (respectively, Πn-formula) without free
variables.

In the following, we use � and �c for deducibilities of intuitionistic and
classical first-order predicate logic IQC and CQC, respectively. Recall that
|=c denotes the classical interpretation in a (first-order) structure.

Definition 4.1. Let HA also denote the (recursive) set of L1-sentences
consisting of (the universal closures of) axioms and instances of the axiom
schema of HA. Then HA �c Ameans that a formula A is derivable in classical
first-order arithmetic PA. Let Th(�) denote the set of L1-sentences which
are true in �, that is, Th(�) = {A | � |=c A}. For a set T of L1-sentences,
a Σ1-representation of T is a Σ1-formula �(x) such that

HA �c ∀x[(�(x) → “x is a sentence”) ∧ (�HA(x) → �(x))], and
A ∈ T if and only if HA �c �(�A�)( or equivalently � |=c �(�A�))
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for all L1-sentence A, where �A� is a Gödel number of A and �HA(x) denotes

“x is (a Gödel number of) a sentence”
∧ “x is an axiom or an instance of the axiom schema of HA.”

A set T of L1-sentences is well-behaved if T has a Σ1-representation and
HA ⊆ T ⊆ Th(�).

Remark 4.2. It is easy to see that if T has a Σ1-representation, then it is
recursively enumerable. Conversely, if T (⊇ HA) is recursively enumerable,
then there exists a Σ1-formula which represents T. For each recursively
enumerable set T (⊇ HA), we fix a Σ1-representation (say, by choosing
the one with the smallest Gödel number), and identify T with its
Σ1-representation. With this identification, one may refer to the consistency
statement Con(T ) ≡ ¬“T �c ⊥′′ of T within HA.

Definition 4.3. Let M be an L1-structure. Then a subset S of Mn is
definable in M if there exists a formula B with FV(B) = {x1, ... , xn} such
that

S = {(a1, ... , an) ∈Mn |M |=c B[x1, ... , xn/a1, ... , an]};

a function is definable in M if its graph is a definable subset in M. An
L1-structure M̂ is a definable structure in M if the universe of M̂ is a definable
subset in M, and the interpretations of + and × in M̂ are definable functions
in M (see [13, 22] for the basic notions of model theory of arithmetic).

Remark 4.4. Let M be an L1-structure such thatM |=c HA, and let M̂
be a definable L1-structure in M. Then the interpretation of closed L1-terms
in M̂ , that is, a function �0 from the codes (in M) of closed L1-terms into
M̂ ⊆M , is definable in M. This �0 yields the canonical embedding � :M →
M̂ , defined by �(m) = �0(m̄) where m̄ is the m-th numeral coded in M.
Moreover, this � is a Σ0-elementary embedding, that is, M |=c B[ �x/�a] ⇔
M̂ |=c B[ �x/�(�a)] for all Σ0-formula B and �a ∈M (see [31, Lemma 6.12
and Lemma 3.8]).

Theorem 4.5 (Arithmetized completeness theorem). Let T be a well-
behaved set of L1-sentences, and let M be an L1-structure such that

M |=c HA + Con(T ).

Then there exist a definable L1-structure M̂ in M and a Σ0-elementary
embedding � :M → M̂ such that M̂ |=c T. Moreover, for each formula B,
there exists a formula [B] such that FV([B]) = FV(B) and

M |=c [B][ �x/�a] ⇔ M̂ |=c B[ �x/�(�a)]

for all �a ∈M , where �x are the free variables of B.
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This is the semantic form of the arithmetized completeness theorem
[31, Theorem 6.10] together with the Σ0-elementary canonical embedding
obtained in Remark 4.4. This theorem is also referred to as the interpretabil-
ity theorem (see, e.g., [2, 21]). We will digest the proof of the relativized form
of this theorem in Appendix B.

Lemma 4.6 (Fixed point lemma [27, Chapter 1, Lemma 1(b)]). Let k ≥ 1.
For any Πk-formula �(w, n), there exists a Πk-formula � ≡ �(v) such that

HA �c ∀n(�(n) ↔ �(���, n)).

Lemma 4.7 [27, Chapter 2, Exercise 11]. Let T be a well-behaved set of
L1-sentences. Then there exists a Π1-formula K(v) such that T ��c K(m) for
all natural number m, and HA �c K(m) ∨K(l) for all natural numbers m and
l with m �= l .

Proof. We follow the hint in [27]. Let �(w, n) be a formula which denotes

“w is a formula such that FV(w) ⊆ {v}”
→ ∀y[“y is a proof of T �c w[v/n̄]”
→ ∃z∃u(〈u, z〉 < 〈n, y〉 ∧ “z is a proof of T �c w[v/ū]”)],

where 〈·, ·〉 denotes the usual pairing function. Then apply the fixed
point lemma and obtain a Π1-formula K ≡ K(v) such that HA �c
∀n(K(n) ↔ �(�K�, n)). It is easy to check that thisK(v) satisfies the desired
conditions. �

Lemma 4.8. Let {T1, ... , Tn} be a nonempty and finite set of well-behaved
sets of L1-sentences. Then there exist a well-behaved set T of L1-sentences
with

⋃n
j=1 Tj ⊆ T and a set {A1, ... , An} of Σ1-sentences such that:

1. T �c Con(Tj +Aj),
2. T �c ¬Aj,
3. if j �= j ′, then HA �c ¬(Aj ∧ Aj′),

for all j, j ′ ∈ {1, ... , n}.

Proof. Let {T1, ... , Tn} be a nonempty and finite set of well-behaved
sets of L1-sentences, and let T ′ =

⋃n
j=1 Tj. Then T ′ is a well-behaved set

of L1-sentences. By Lemma 4.7, there exists a Σ1-formula K(x) such that
T ′ ��c ¬K(m) for all natural number m, and HA �c ¬(K(m) ∧K(l)) for all
natural numbers m and l with m �= l . Note that for each natural number m,
since T ′ +K(m) ��c ⊥, we have Con(T ′ +K(m)) ∈ Th(�). Since

HA �c K(m) → “HA �c K(m),′′

by Σ1-completeness of the provability predicate [27, Chapter 1, Fact 9], we
have

HA �c K(m) → “HA +K(l) �c K(m),′′
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and hence HA �c K(m) → “HA +K(l) �c ⊥′′ for all natural numbers m
and l with m �= l . Therefore,

HA �c K(m) →¬Con(HA +K(l)),

and so HA �c Con(HA +K(l)) →¬K(m). Let Aj ≡ K(j) for each j ∈
{1, ... , n}, and let

T = T ′ + {Con(T ′ +K(0)),Con(T ′ +A1), ... ,Con(T ′ +An)}.

Then HA �c ¬(Aj ∧Aj′) for all j, j ′ ∈ {1, ... , n}with j �= j ′, and T is a well-
behaved set of L1-sentences. For each j ∈ {1, ... , n}, since HA �c Con(T ′ +
Aj) → Con(Tj +Aj) and HA �c Con(T ′ +K(0)) → Con(HA +K(0)),
we have T �c Con(Tj +Aj) and T �c ¬Aj. �

In the following, we call an IQC-Kripke model for the language L1 an
L1-Kripke model. The construction in the proof of the following lemma is
essentially the same as Smoryński’s construction for the refinement of de
Jongh’s theorem (see [32, Chapter V, Section 2–3]).

Lemma 4.9. Let T0 be a well-behaved set of L1-sentences, and let (I,≤I )
be a finite tree with the root i0 ∈ I . Then there exists a well-behaved set T of
L1-sentences with T0 ⊆ T such that for each Σ1-sentence C0 and L1-structure
M0, if

M0 |=c T + C0,

then there exist an L1-Kripke model I = (I,≤I , {Mi | i ∈ I }, �,�) and a
family {Ci | i ∈ I } of Σ1-sentences with Mi0 =M0 and Ci0 ≡ C0 satisfying
that for each i ∈ I ,

1. Mi |=c T0 + Ci ;
2. i ≤I i ′ implies HA �c Ci ′ → Ci for all i ′ ∈ I ;
3. Mi ′ |=c Ci implies i ≤I i ′ for all i ′ ∈ I ;
4. for each i ′ ∈ I with i ≤I i ′ and formula B, there exists an L1-formula

[B]i
′
i such that FV([B]i

′
i ) = FV(B) and

Mi |=c [B]i
′
i [ �x/�a] ⇔Mi ′ |=c B[ �x/�ii ′(�a)]

for all �a ∈Mi , where �x are the free variables of B;
5. if B is a Σ0-formula, then

Mi |=c B[ �x/�a] ⇔Mi ′ |=c B[ �x/�ii ′(�a)]

for all i ′ ∈ I with i ≤I i ′ and �a ∈Mi , where �x are the free variables
of B.

Proof. We proceed by induction on the complexity of (I,≤I ).
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Basis: If i0 is a leaf, then note that I = {i0}, and set T = T0. For each
Σ1-sentence C0 and L1-structureM0 with

M0 |=c T + C0,

settingMi0 =M0, define an L1-Kripke model I = (I,≤I ,M, �,�) byM =
{Mi0}, � = {idMi0} and i0 � P⇔Mi0 |=c P for each atomic P, and setCi0 ≡
C0. Then it is straightforward to see that I and {Ci0} satisfy (1)–(5) for all
i ∈ I .
Induction step: Let J be the (nonempty and finite) set of direct descendants
(children) of i0, and note that i0 = i ∨ ∃! j ∈ J (j ≤I i) for all i ∈ I . Then,
since (↑ j,≤I ) is a finite tree with the root j for all j ∈ J , there exist, by the
induction hypothesis, the set {Tj | j ∈ J} of well-behaved sets including T0

such that for each j ∈ J , Σ1-sentence Cj and L1-structure Mj , if Mj |=c
Tj + Cj, then there exist an L1-Kripke model (↑ j,≤I ,Mj, �j,�j) and a
family {Cji | i ∈ ↑ j}of Σ1-sentences satisfying that (1)–(5) for all i ∈ ↑ j. By
Lemma 4.8, there exist a well-behaved set T of L1-sentences with

⋃
j∈J Tj ⊆

T and a set {Aj | j ∈ J} of Σ1-sentences such that T �c Con(Tj +Aj),
T �c ¬Aj, and if j �= j ′, then HA �c ¬(Aj ∧Aj′) for all j, j ′ ∈ J . Consider
a Σ1-sentence C0 and an L1-structureM0 such that

M0 |=c T + C0.

Then M0 |=c HA + Con(Tj +Aj) and M0 |=c ¬Aj for all j ∈ J . By the
arithmetized completeness theorem, for each j ∈ J there exist a definable
L1-structure M̂j inM0 and a Σ0-elementary embedding �j :M0 → M̂j such
that M̂j |=c Tj +Aj. Let Cj be a Σ1-sentences such that HA �c Cj ↔ C0 ∧
Aj. Then, since M̂j is a Σ0-elementary extension ofM0, we have M̂j |=c C0,
and hence

M̂j |=c Tj + Cj.

Therefore there exist an L1-Kripke model (↑ j,≤I ,Mj, �j,�j), where
Mj = {Mji | i ∈ ↑ j}, and a family {Cji | i ∈ ↑ j} of Σ1-sentences satisfying
(1)–(5), and Mjj = M̂j and Cjj ≡ Cj . Setting Mi0 =M0, define an L1-
Kripke model I = (I,≤I ,M, �,�) by

M = {Mi0} ∪
⋃
j∈J
Mj, � = {�i0i | i ∈ I } ∪

⋃
j∈J
�j, � = {�0} ∪

⋃
j∈J

�j ,

where �i0i0 = idMi0 and �i0i = �jji ◦ �j for i ∈ I with j ∈ J and j ≤I i , and�0

is defined by i0 �0 P⇔Mi0 |=c P for each atomic P. Set Ci ≡ C0 if i = i0;
Ci ≡ Cji if i ∈ I with j ∈ J and j ≤I i . We show that I and {Ci | i ∈ I }
satisfy (1)–(5). Let i ∈ I .
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(1): Either (i) i = i0; or (ii) j ≤I i for some j ∈ J .
(i): We haveMi0 |=c T0 + Ci0 .
(ii): We haveMi |=c T0 + Ci , by the induction hypothesis.

(2): If i ≤I i ′, then either (i) i = i ′ = i0; (ii) i = i0 and j ≤I i ′ for some
j ∈ J ; or (iii) j ≤I i ≤I i ′ for some j ∈ J .
(i): It is trivial.
(ii): Since HA �c Cj → Ci0 , we have HA �c Ci ′ → Ci , by the induc-

tion hypothesis.
(iii): It follows from the induction hypothesis.

(3): Suppose thatMi ′ |=c Ci . Then either (i) i = i0; (ii) i ′ = i0 and j ≤I i
for some j ∈ J ; or (iii) j ≤I i and j ′ ≤I i ′ for some j, j ′ ∈ J .
(i): There is nothing to prove.
(ii): SinceMi0 |=c Ci and HA �c Ci → Cj , we haveMi0 |=c Cj , and

henceMi0 |=c Aj , a contradiction toMi0 |=c ¬Aj .
(iii): Since Mi ′ |=c Ci , Mi ′ |=c Ci ′ , HA �c Ci → Cj , and HA �c

Ci ′ → Cj′ , we have Mi ′ |=c Cj and Mi ′ |=c Cj′ , and hence
Mi ′ |=c Aj ∧ Aj′ . Therefore, since j �= j ′ implies a contradic-
tion toMi ′ |=c ¬(Aj ∧ Aj′), we have j = j ′, and so i ≤ i ′, by
the induction hypothesis.

(4): Consider i ′ ∈ I with i ≤I i ′. Then either (i) i = i ′ = i0; (ii) i = i0
and j ≤I i ′ for some j ∈ J ; or (iii) j ≤I i for some j ∈ J .
(i): It is trivial.
(ii): Since for each formula B there exists a formula [B] with

FV(B) = FV([B]) = { �x} such that

Mi0 |=c [B][ �x/�a] ⇔ M̂j |=c B[ �x/�j(�a)]

for all �a ∈Mi0 , we have FV(B) = FV([[B]i
′
j ]) and

Mi0 |=c [[B]i
′
j ][ �x/�a] ⇔Mj |=c [B]i

′
j [ �x/�j(�a)]

⇔Mi ′ |=c B[ �x/�j
ji ′(�j(�a))],

for all �a ∈Mi0 , by the induction hypothesis, and hence

Mi0 |=c [[B]i
′
j ][ �x/�a] ⇔Mi ′ |=c B[ �x/�i0i ′(�a)]

for all �a ∈Mi0 .
(iii): It follows from the induction hypothesis.

(5): Consider i ′ ∈ I with i ≤I i ′. Then either (i) i = i ′ = i0; (ii) i = i0
and j ≤I i ′ for some j ∈ J ; or (iii) j ≤I i for some j ∈ J .
(i): It is trivial.
(ii): It suffices to show that if B is a Σ0-formula, then

Mi0 |=c B[ �x/�a] ⇔Mj |=c B[ �x/�j(�a)]

https://doi.org/10.1017/bsl.2023.29 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.29


EXTENDED FRAMES AND SEPARATIONS OF LOGICAL PRINCIPLES 335

for all j ∈ J and �a ∈Mi0 . This is the case, since Mj is a
Σ0-elementary extension ofMi0 .

(iii): It follows from the induction hypothesis. �
We need a couple of technical lemmas in the language of L(IQC) whose

proofs are given in Appendix A.

Definition 4.10. Recall the definition of a schema in Definition 3.4. Then
we define simultaneously classes A, B, C, and D of schemata as follows. Let
P range over atomic formulae, 
 over expressions 
k(t1 ... tn) (
k an n-ary
place holder symbol), α and α′ over A, � and � ′ over B, � and � ′ over C,
and � and �′ over D. Then A, B, C, and D are inductively generated by the
clauses

⊥, α ∧ α′, α ∨ α′, ∀xα, � → α ∈ A;
α,P, 
, � ∧ � ′, � ∨ � ′, ∀x�,∃x�, � → � ∈ B;
⊥, P, 
, � ∧ � ′, � ∨ � ′, ∃x�, α→ � ∈ C;
�, � ∧ �′, ∀x�, � → � ∈ D.

Lemma 4.11. Let E = ((K,≤), f, (I,≤I )) be an extended frame such that
(K,≤) is finite, and let KE ,I = (K,≤, D, 	,�E ,I) be the induced IQC-Kripke
model by an IQC-Kripke model I = (I,≤I ,M, �,�). Assume that for each
i, i ′ ∈ I with i ≤ i ′ and formula B, there exists a formula [B]i

′

i such that
FV([B]i

′

i ) = FV(B) and

Mi |=c [B]i
′

i [ �x/�a] ⇔Mi ′ |=c B[ �x/�ii ′(�a)]

for all �a ∈Mi , where �x are the free variables of B. If Γ ⊆ D andMf(k) |=c Γ
for all k ∈ K , then KE ,I � Γ.

Definition 4.12. Let Γ be a class of formulae. Then Γ is closed under
subformulae if:

1. if A ◦ B ∈ Γ, then A ∈ Γ and B ∈ Γ, where ◦ ∈ {∧,∨,→};
2. if ∀xA ∈ Γ or ∃xA ∈ Γ, then A[x/t] ∈ Γ for all term t.

The class ∃(Γ) of formulae is inductively generated by the rules:

1. A ∈ ∃(Γ) for A ∈ Γ;
2. if A,B ∈ ∃(Γ), then A ∧ B,A ∨ B ∈ ∃(Γ);
3. if A[x/t] ∈ ∃(Γ) for all term t, then ∃xA ∈ ∃(Γ).

Remark 4.13. In the language L1 of HA, the classes of Σn-formulae and
Πn-formulae are closed under subformulae, and each Σn+1-formula belongs
to a class ∃(Γ) of formulae, where Γ is the class of Πn-formulae.

Lemma 4.14. Let E = ((K,≤), f, (I,≤I )) be an extended frame, let Γ be a
class of formulae closed under subformulae, and let I = (I,≤I ,M, �,�) be an
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IQC-Kripke model such that if B ∈ Γ, then

Mi |=c B[ �x/�a] ⇔Mj |=c B[ �x/�ij(�a)]

for all i, j ∈ I with i ≤I j and �a ∈Mi . For the induced IQC-Kripke model
KE ,I = (K,≤, D, 	,�E ,I), if B ∈ ∃(Γ), then

k �E ,I B[ �x/�a] ⇔Mf(k) |=c B[ �x/�a]

for all k ∈ K and �a ∈ Dk =Mf(k).

Definition 4.15. For each formula ϕ[p1, ... , pm] of L(IPC) and n, we
define a set Σn-ϕ of L1-formulae by

Σn-ϕ = {ϕ[A1, ... , Am] | A1, ... , Am are Σn-formulae}.

Proposition 4.16. Let EK = ((K,≤), fK, (IK,≤K)) be the extended frame
generated by a finite IPC-Kripke model K = (K,≤,�) such that (IK,≤K) is
a rooted (and finite) tree, and let ϕ[p1, ... , pn] be a formula of L(IPC). If
K �� ϕ, then

KEK,I �EK,I HA and KEK,I ��EK,I Σ1-ϕ

for some L1-Kripke model I = (IK,≤K,M, �,�′).

Proof. Let i0 ∈ IK be the root of the finite tree (IK,≤K). Then, by
Lemma 4.9 with T0 = HA, there exists a well-behaved set T of L1-sentences
such that for each Σ1-sentence Ci0 and L1-structureMi0 , if

Mi0 |=c T + Ci0 ,

there exist an L1-Kripke model (IK,≤K,M, �,�′) and a family {Ci | i ∈ IK}
of Σ1-sentences satisfying that for each i ∈ I , (1)–(5) of Lemma 4.9. LetMi0
be a model of T, and letCi0 ≡ 0 = 0. ThenMi0 |=c T + Ci0 , and hence there
exist an L1-Kripke model I = (IK,≤K,M, �,�′) and a family {Ci | i ∈ IK}
of Σ1-sentences satisfying that (1)–(5) for all i ∈ IK.

Let KEK,I = (K,≤, D, 	,�EK,I) be the induced L1-Kripke model by I.
We show that KEK,I �EK,I HA and KEK,I ��EK,I ϕ[B1, ... , Bn] for some
Σ1-sentences B1, ... , Bn. Since (K,≤) is finite and the property (4) holds
for all i ∈ IK, by Lemma 4.11, if Γ ⊆ D and MfK(k) |=c Γ for all k ∈ K ,
then KEK,I �E ,I Γ. Therefore, since the axioms and the axiom schema
of HA belong to the class D and MfK(k) |=c HA for all k ∈ K , we have
KEK,I �EK,I HA.

For each m ∈ {1, ... , n}, let Bm be a Σ1-sentence such that

HA � Bm↔
∨

i∈{[k]K|k�pm}
Ci.
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Note that, by (1)–(3), we haveMi ′ |=c Ci ⇔ i ≤K i ′ for all i, i ′ ∈ IK. Then,
by (5) and Lemma 4.14, we have

k �EK,I Bm⇔∃k′ ∈ K(k′ � pm ∧ k �EK,I C[k′]K)
⇔∃k′ ∈ K(k′ � pm ∧M[k]K |=c C[k′]K)
⇔∃k′ ∈ K(k′ � pm ∧ [k′]K ≤K [k]K) ⇔ k � pm

for all k ∈ K and m ∈ {1, ... , n}. By Lemma 3.9, we have

KEK,I ��EK,I ϕ[B1, ... , Bn]. �

Now, we arrive at a separation theorem for HA.

Theorem 4.17. Let K = (K,≤,�) be a finite IPC-Kripke model such that
(IK,≤K) is a rooted (and finite) tree, and let ϕ be a formula of L(IPC). If
K �� ϕ and EK is locally directed, then

HA + L(K,≤)∗ + Σ-T (EK) �� Σ1-ϕ.

Proof. Straightforward by Proposition 3.10, Proposition 3.14, Proposi-
tion 4.16, and the soundness theorem [33, Chapter 2, Section 5.10]. �

Example 4.18. By applying Theorem 4.17 to Example 2.10, we have

HA + L(K1,≤1)∗ �� Σ1-DNE,

especially HA + WPEM∗ �� Σ1-DNE; to Example 2.11, we have

HA + L(K2,≤2)∗ + Σ-T (EK2) �� Σ1-WPEM,

especially HA + Σ-DML + Σ-DNE �� Σ1-WPEM; to Example 2.12, we have

HA + L(K3,≤3)∗ + Σ-T (EK3) �� Σ1-DML,

especially HA + Σ-DNE �� Σ1-DML; to Example 2.13, we have

HA + L(K4,≤4)∗ + Σ-T (EK4) �� Σ1-WDML,

especially HA + Σ-RPEM �� Σ1-WDML; to Example 2.14, we have

HA + L(K2,≤2)∗ �� Σ1-RPEM.

Note that Σ1-DNE, Σ1-WPEM, Σ1-DML, Σ1-WDML, and Σ1-RPEM cor-
respond to MPPR, WLPOPR, LLPOPR, MP∨

PR, and Δ1-PEMPR, respectively.

Remark 4.19. Σ-DNE (respectively, Σ-WPEM, Σ-DML, Σ-WDML, and
Σ-RPEM) is stronger than Σ1-DNE (respectively, Σ1-WPEM, Σ1-DML,
Σ1-WDML, and Σ1-RPEM) in HA, and they are equivalent in many-sorted
extensions of HA with countable choice.
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Figure 9. Derivabilities and underivabilities between omniscience principles.

Figure 9 summarizes derivabilities among the omniscience principles in
the introduction from which derivability between any pair of principles
follows.

We conclude the paper with discussing a possible relativization of the
previous results and lifting Theorem 4.17 up to Σn-level.

Let LQ1 be an extension of L1 by adding a unary predicate symbol Q.
ΣQ0 - and ΣQ1 -formulae are similarly defined with extra atomic formulae of
the form “Q(t).” HA∗ denotes the set of LQ1 -sentences consisting of axioms
and instances of the axiom schema of HA. AnLQ1 -structure is a pair (M,QM )
where M is an L1-structure and QM is an interpretation of Q on M.

For a set Q0 of natural numbers, we let

HAQ0 = HA∗ ∪ {Q(n̄) | n ∈ Q0} ∪ {¬Q(n̄) | n /∈ Q0}.

Note that HAQ0 is ΣQ1 -complete for (�,Q0), in other words, HAQ0 �c A
if and only if (�,Q0) |=c A for all ΣQ1 -sentence A. Consider a ΣQ1 -formula
�QHA(x) denoting

“x is (a Gödel number of) an LQ1 -sentence”

∧ [“x is an axiom or an LQ1 -instance of the axiom schema of HA”
∨ ∃y(“x is Q(ȳ)′′ ∧Q(y)) ∨ ∃y(“x is ¬Q(ȳ)′′ ∧ ¬Q(y))].

(Here, ȳ denotes y-th numeral as in Remark 7.)

Then, �QHA (uniformly) represents HAQ0 over HAQ0 in the sense that
A ∈ HAQ0 if and only if HAQ0 �c �QHA(�A�) for all LQ1 -sentence A.
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Definition 4.20. Let Q0 ⊆ �, and let T be a set of LQ1 -sentences. Then a
ΣQ1 -representation over Q0 of T is a ΣQ1 -formula �(x) such that

HA∗ �c ∀x[(�(x) → “x is a sentence”) ∧ (�QHA(x) → �(x))], and

A ∈ T if and only if HAQ0 �c �(�A�) (or equivalently (�,Q0) |=c �(�A�))

for all LQ1 -sentence A. A set of LQ1 -sentences T is well-behaved over Q0 if
T has a ΣQ1 -representation over Q0 and HAQ0 ⊆ T ⊆ Th(�,Q0). We then
identify T (⊇ HA∗) with its ΣQ1 -representation. Note that the condition
T ⊆ Th(�,Q0) implies (�,Q0) |= Con(T ).

As same as the usual relativization in computability theory, the discussions
and proofs in this section remain valid with the new predicate Q and
its interpretation Q0. In other words, for the extended language LQ1 , the
arithmetized completeness theorem (Theorem 4.5), and its applications,
Lemma 4.8, Lemma 4.9, and Proposition 4.16 are all relativizable in the
sense that they still hold if we replace L1, Σn, HA, and well-behavedness by
LQ1 , ΣQn , HAQ0 , and well-behavedness over Q0, respectively. (We will see the
relativization of Theorem 4.5 in Appendix B.)

As a typical application of relativization, we consider the case that
Q denotes the Σn-satisfaction predicate. Then, we have the following
generalization of Proposition 4.16.

Definition 4.21. A Σn-satisfaction predicate is a Σn-formula Satn(e, x)
such that

HA �c ∀ �x[A↔ Satn(�A�, 〈 �x〉)]

for all Σn-formula A with the free variables �x = x1, ... , xn, where 〈 �x〉 =
〈x1, ... , xn〉 (see, e.g., [13, Chapter I, Section 2, 2.55–2.57] for the definition
of Σn-satisfaction predicates).

Proposition 4.22. Let EK = ((K,≤), fK, (IK,≤K)) be the extended frame
generated by a finite IPC-Kripke model K = (K,≤,�) such that (IK,≤K)
is a rooted (and finite) tree, and let ϕ[p1, ... , pm] be a formula of L(IPC).
If K �� ϕ, then for each n

KEK,I �EK,I HA + Σn-PEM and KEK,I ��EK,I Σn+1-ϕ

for some L1-Kripke model I = (IK,≤K,M, �,�′).

Proof (sketch). Let Q0 ⊆ � be given by

Q0 = {a ∈ � | � |=c ∃e∃x(a = 〈e, x〉 ∧ Satn(e, x))},

and define a set T Satn of LQ1 -sentences by

T Satn = HAQ0 ∪ {∀y[Q(y) ↔ ∃e∃x(y = 〈e, x〉 ∧ Satn(e, x))]}.
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ThenT Satn is well-behaved overQ0. We follow the proof of Proposition 4.16.
Let i0 ∈ IK be the root of the finite tree (IK,≤K). Then, by (the
relativization of) Lemma 4.9 with T0 = T Satn , there exists a set T of LQ1 -
sentences well-behaved over Q0 such that for each ΣQ1 -sentence Ci0 and
LQ1 -structure (Mi0 , Q

Mi0 ), if

(Mi0 , Q
Mi0 ) |=c T + Ci0 ,

there exist an LQ1 -Kripke model (IK,≤K, {(Mi,QMi ) | i ∈ IK}, �,�′) and
a family {Ci | i ∈ IK} of ΣQ1 -sentences satisfying that for each i ∈ I ,
(1)–(5) of (the relativization of) Lemma 4.9. Let (Mi0 , Q

Mi0 ) be a model
of T, and let Ci0 ≡ 0 = 0. Then (Mi0 , Q

Mi0 ) |=c T + Ci0 , and hence there
exist an LQ1 -Kripke model I = (IK,≤K, {(Mi,QMi ) | i ∈ IK}, �,�′) and a
family {Ci | i ∈ IK} of ΣQ1 -sentences satisfying that (1)–(5) for all i ∈ IK.

Let KEK,I = (K,≤, D, 	,�EK,I) be the induced LQ1 -Kripke model by I.
Then, similar to the proof of Proposition 4.16, we have KEK,I �EK,I HA.
Moreover, for each Σn-formula B with the free variables �x, since

Mi |=c B[ �x/�a] ⇔ (Mi,QMi ) |=c Q(〈�B�, 〈�a〉〉)
for all i ∈ I , by the ΣQ0 -elementarity of �ij , we have

Mi |=c B[ �x/�a] ⇔Mj |=c B[ �x/�ij(�a)]

for all i, j ∈ IK with i ≤K j. Therefore for each k ∈ K , Σn-formula B with
the free variables �x and �a ∈MfK(k), by Lemma 4.14, we have

k �EK,I B[ �x/�a] ⇔MfK(k) |=c B[ �x/�a]

⇔MfK(k′) |=c B[ �x/�fK(k)fK(k′)(�a)]

⇔ k′ �EK,I B[ �x/�fK(k)fK(k′)(�a)]

for all k′ ∈ K with k ≤ k′. In particular, if k ��EK,I B[ �x/�a], then k �EK,I
¬B[ �x/�a]. Thus KEK,I �EK,I Σn-PEM.

Finally, we show that there exist Σn+1-sentences B1, ... , Bn such that
KEK,I ��EK,I ϕ[B1, ... , Bn]. As in the proof of Proposition 4.16, KEK,I ��EK,I
ϕ[A1, ... , An] for some ΣQ1 -sentences A1, ... , An. Hence it suffices to show
that for each ΣQ1 -sentence A there exists a Σn+1-sentence B such that
KEK,I �EK,I A↔ B. For each ΣQ1 -sentence A, since Q(y) is equivalent to
a Σn-formula ∃e∃x(y = 〈e, x〉 ∧ Satn(e, x)) over T Satn , there exists a Σn+1-
sentence B such that T Satn �c A↔ B. Therefore for each k ∈ K , since
(MfK(k), Q

MfK(k) ) |=c T Satn , by Lemma 4.14, we have

k �EK,I A⇔ (MfK(k), Q
MfK(k) ) |=c A

⇔ (MfK(k), Q
MfK(k) ) |=c B ⇔ k �EK,I B. �

https://doi.org/10.1017/bsl.2023.29 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.29


EXTENDED FRAMES AND SEPARATIONS OF LOGICAL PRINCIPLES 341

Theorem 4.23. Let K = (K,≤,�) be a finite IPC-Kripke model such that
(IK,≤K) is a rooted (and finite) tree, and let ϕ be a formula of L(IPC).
If K �� ϕ and EK is locally directed, then for each n

HA + Σn-PEM + L(K,≤)∗ + Σ-T (EK) �� Σn+1-ϕ.

Example 4.24. By applying Theorem 4.23 to Example 2.10 with n ≥ 0,
we have

HA + Σn-PEM + L(K1,≤1)∗ �� Σn+1-DNE,

especially HA + Σn-PEM + WPEM∗ �� Σn+1-DNE; to Example 2.11, we
have

HA + Σn-PEM + L(K2,≤2)∗ + Σ-T (EK2) �� Σn+1-WPEM,

especially HA + Σn-PEM + Σ-DML + Σ-DNE �� Σn+1-WPEM; to Exam-
ple 2.12, we have

HA + Σn-PEM + L(K3,≤3)∗ + Σ-T (EK3) �� Σn+1-DML,

especially HA + Σn-PEM + Σ-DNE �� Σn+1-DML; to Example 2.13,
we have

HA + Σn-PEM + L(K4,≤4)∗ + Σ-T (EK4) �� Σn+1-WDML,

especially HA + Σn-PEM + Σ-RPEM �� Σn+1-WDML; to Example 2.14,
we have

HA + Σn-PEM + L(K2,≤2)∗ �� Σn+1-RPEM.

Note that Σ-DNE (respectively, Σ-WPEM, Σ-DML, Σ-WDML, and
Σ-RPEM) implies Σn+1-DNE (respectively, Σn+1-WPEM, Σn+1-DML,
Σn+1-WDML, and Σn+1-RPEM) in HA + Σn-PEM.

§5. Concluding remarks. In this paper, we have developed a general
technique to separate omniscience principles over HA by constructing a
Kripke model of HA from an IPC-Kripke model. Example 4.24 shows
that all the separation results in [1] obtained by using several different
kinds of functional interpretations can be proved uniformly by applying
Theorem 4.23 to simple IPC-Kripke models; for some further separation
results among weaker principles by using Theorem 4.17, see [8].

On the other hand, our technique is not totally universal. According to the
recent study of the hierarchical structure of the logical principles restricted
to prenex formulae (including the principles studied in [1, 8, 9]) by Fujiwara
and Kurahashi [11], some principles in the (n + 1)-th hierarchy are mutually
equivalent in the presence of DNE or the double negation shift (DNS):

∀x¬¬
(x) → ¬¬∀x
(x),
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in the n-th hierarchy. For example, Σn+1-DML is equivalent to (Πn+1 ∨
Πn+1)-DNE in the presence of Σn-DNE, but it is still open whether Σn+1-
DML implies (Πn+1 ∨ Πn+1)-DNE over HA (cf. [11, Figure 3]). Since the
relativized theory already contains Σn-PEM (which is stronger than Σn-DNE
and Σn-DNS), our Theorem 4.23 does not provide separations of equivalent
principles, such as Σn+1-DML and (Πn+1 ∨ Πn+1)-DNE, in the presence of
Σn-PEM.

Furthermore, our technique is available only for a separation of logical
principles which are obtained from those in propositional logic by
substituting propositional variables by predicate formulae, and therefore
the fragments of DNS (investigated in [10]) are outside of the range of our
technique.

It is also remarkable that separation of two propositional theories by
an IPC-Kripke model does not necessarily induce a separation of their
Σ1-substitution instances in HA. Consider the following propositional
formulae:

LIN[p, q] ≡ (p → q) ∨ (q → p),
LIN′[p, q] ≡ (p → ¬q) ∨ (¬q → p).

Example 5.1. We show the following.

1. LIN′ ��IPC LIN;
2. Σ-LIN′

�IQC Σ-LIN;
3. HA + Σ1-LIN′ � Σ1-LIN.

For (1) and (2), consider an IPC-Kripke model K6 = (K6,≤6,�6) given in
Figure 10. Then K6 ��6 LIN[p, q]. On the other hand, LIN′ is valid on the
Kripke frame (K6,≤6). Therefore we have LIN′

�IPC LIN. Furthermore,
since the extended frame EK6 generated by K6 is locally directed (cf.
Figure 10), we have

L(K6,≤6)∗ + Σ-T (EK6) ��IQC Σ-LIN,

by Theorem 3.15. Since T (EK6) contains LIN′[p, q] for all p and q, we have
Σ-LIN′

�IQC Σ-LIN. Note that the Kripke frame (IK6 ,≤K6) generated by K6

is not a tree, and Theorem 4.17 is not applicable.
For (3), first note that, since an instance

(p→¬p) ∨ (¬p→ p)

of LIN′ is equivalent to WPEM[p], Σ1-LIN′ implies Σ1-WPEM. Assume
that Σ1-LIN′. Then to show Σ1-LIN in HA, it suffices to prove that

(∃x (s(x) = 0) → ∃x (t(x) = 0)) ∨ (∃x (t(x) = 0) → ∃x (s(x) = 0)),
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Figure 10. The Kripke model and the extended frame in Example 5.1.

where s and t are (primitive recursive) terms of HA. Consider terms s and t
of HA, and let A(x) and B(x) be the following formulae:

A(x) ≡ s(x) = 0 ∧ ∀y ≤ x (t(y) �= 0),
B(x) ≡ t(x) = 0 ∧ ∀y ≤ x (s(y) �= 0).

Then

HA � ¬(∃xA(x) ∧ ∃xB(x)).

Since¬∃xA(x) ∨ ¬¬∃xA(x) and¬∃xB(x) ∨ ¬¬∃xB(x), by Σ1-WPEM, we
have

¬∃xA(x) ∨ ¬∃xB(x).

In the former case, if s(x) = 0, then ¬∀y ≤ x (t(y) �= 0), that is,

∃y ≤ x (t(y) = 0);

hence ∃x (s(x) = 0) → ∃x (t(x) = 0). In the latter case, similarly we have
∃x (t(x) = 0) → ∃x (s(x) = 0).

Interestingly, our technique can be applied even to an IPC-Kripke
model, which does not separate propositional principles, for separating their
substitution instances in IQC or HA.

Example 5.2. We show the following.

1. LIN �IPC LIN′;
2. Σ-LIN �IQC Σ-LIN′;
3. HA + Σ1-LIN � Σ1-LIN′.

Note that, since LIN′[p, q] is an instance of LIN[p, q], (1) is trivial.
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Figure 11. The Kripke model and the extended frame in Example 5.2.

For (2), let EK7 = ((K2,≤2), fK7 , (IK7 ,≤K7)) be the extended frame
generated by the IPC-Kripke model K7 = (K2,≤2,�7) given in Figure 11,
where (K2,≤2) is the Kripke frame in Example 2.11. Then it is easy to see
K7 ��7 LIN′[p, q]. Since the extended frame EK7 is identical with EK2 , which
is locally directed, we have

L(K2,≤2)∗ + Σ-T (EK7) ��IQC Σ-LIN′,

by Theorem 3.15. To prove that Σ-LIN �IQC Σ-LIN′, it suffices to show that
T (EK7) contains LIN[p, q] for all p and q. Consider an IPC-Kripke model
I = (IK7 ,≤K7 ,�′).

Then either 0 �EK7 ,I p, 0 �EK7 ,I q or 0 ��EK7 ,I p, q. In the first and second
cases, we have 0 �EK7 ,I q → p and 0 �EK7 ,I p → q, respectively. In the
third case, either 1 ��EK7 ,I p, 1 ��EK7 ,I q or 1 �EK7 ,I p, q; in the first and sec-
ond cases, since 2 ��EK7 ,I p, q, we have 0 �EK7 ,I p → q and 0 �EK7 ,I q → p,
respectively; in the third case, we have 0 �EK7 ,I p → q, q → p. Therefore, in
any case, we have 0 �EK7 ,I (p → q) ∨ (q → p).

For (3), since (IK7 ,≤K7) is a rooted tree, applying Theorem 4.17, we have
HA + Σ1-LIN � Σ1-LIN′.

To conclude the paper, we briefly examine the following assumptions
on a Kripke model K = (K,≤,�) in Theorem 4.17 and Theorem 4.23,
respectively:

1. The Kripke frame (IK,≤K) generated by K is a rooted finite tree.
2. The extended frame EK generated by K is locally directed.

The first and second assumptions are crucial for our constructions of
Kripke models of HA in Proposition 4.16 and of IQC-Kripke models in
Lemma 3.13, respectively. Although, as we have seen in Examples 2.10–2.14
and 5.2, many useful IPC-Kripke models enjoy these assumptions, we cannot
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remove the first assumption from Theorem 4.17. In fact, if we omitted it in
Theorem 4.17, since the locally directed extended frame EK6 in Example 5.1
separates LIN from LIN′, we could have

HA + Σ1-LIN′ �� Σ1-LIN,

which contradicts Example 5.1(3). Note that the Kripke frame (IK6 ,≤K6)
generated by K6 has a confluent point, and is not a tree. On the other hand,
we still do not know whether the second assumption is essential or not for
Theorem 4.17.

Appendix A. Proofs of Lemmas 4.11 and 4.14.

Lemma A.1. Let E = ((K,≤), f, (I,≤I )) be an extended frame such that
(K,≤) is finite, and let KE ,I = (K,≤, D, 	,�E ,I) be the induced IQC-Kripke
model by an IQC-Kripke model I = (I,≤I ,M, �,�). Assume that for each
i, i ′ ∈ I with i ≤ i ′ and formula B, there exists a formula [B]i

′

i such that
FV([B]i

′

i ) = FV(B) and

Mi |=c [B]i
′

i [ �x/�a] ⇔Mi ′ |=c B[ �x/�ii ′(�a)]

for all �a ∈Mi , where �x are the free variables of B. Then for each k ∈ K and
formula A, there exists a formula Âk such that FV(Âk) = FV(A) and

k �E ,I A[ �x/�a] ⇔Dk |=c Âk[ �x/�a]

for all �a ∈ Dk , where �x are the free variables of A.

Proof. Given a k ∈ K , define Âk by induction on the complexity of a
formula A as follows:

• Âk ≡ A for A prime;
• Âk ≡ B̂k ∧ Ĉk for A ≡ B ∧ C ;
• Âk ≡ B̂k ∨ Ĉk for A ≡ B ∨ C ;
• Âk ≡

∧
k′≥k([B̂k′ → Ĉk′]f(k′)

f(k)
) for A ≡ B → C ;

• Âk ≡ ∃yB̂k for A ≡ ∃yB ;
• Âk ≡

∧
k′≥k([∀yB̂k′ ]f(k′)

f(k)
) for A ≡ ∀yB .

Then it is straightforward to show that

k �E ,I A[ �x/�a] ⇔Dk |=c Âk[ �x/�a],

for all k ∈ K and �a ∈ Dk , by induction on the complexity of A except the
cases for → and ∀. For →, we have

k �E ,I A[ �x/�a] ⇔∀k′ ≥ k(k′ �E ,I B[ �x/	kk′(�a)] ⇒ k′ �E ,I C [ �x/	kk′(�a)])

⇔∀k′ ≥ k(Dk′ |=c B̂k′[ �x/	kk′(�a)] ⇒Dk′ |=c Ĉk′ [ �x/	kk′(�a)])
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⇔∀k′ ≥ k(Dk′ |=c (B̂k′ → Ĉk′)[ �x/	kk′(�a)])

⇔∀k′ ≥ k(Mf(k′) |=c (B̂k′ → Ĉk′)[ �x/�f(k)f(k′)(�a)])

⇔∀k′ ≥ k(Mf(k) |=c [B̂k′ → Ĉk′ ]f(k′)
f(k) [ �x/�a])

⇔Mf(k) |=c

⎛
⎝ ∧
k′≥k

[B̂k′ → Ĉk′ ]f(k′)
f(k)

⎞
⎠ [ �x/�a]

⇔Dk |=c Âk[ �x/�a],

for all �a ∈ Dk . For ∀, we have

k �E ,I A[ �x/�a] ⇔∀k′ ≥ k∀b ∈ Dk′(k′ �E ,I B[ �x, y/	kk′(�a), b])

⇔∀k′ ≥ k∀b ∈ Dk′(Dk′ |=c B̂k′ [ �x, y/	kk′(�a), b])

⇔∀k′ ≥ k(Dk′ |=c (∀yB̂k′)[ �x/	kk′(�a)])

⇔∀k′ ≥ k(Mf(k′) |=c (∀yB̂k′)[ �x/�f(k)f(k′)(�a)])

⇔∀k′ ≥ k(Mf(k) |=c [∀yB̂k′ ]f(k′)
f(k) [ �x/�a])

⇔Mf(k) |=c

⎛
⎝ ∧
k′≥k

[∀yB̂k′ ]f(k′)
f(k)

⎞
⎠ [ �x/�a]

⇔Dk |=c Âk[ �x/�a],

for all a ∈ Dk . �
Recall the definition of the classes A, B, C, and D of schemata in

Definition 4.10.

Lemma A.2. Let K = (K,≤, D,�, 	) be an IQC-Kripke model. Assume
that for each k ∈ K and formula A, there exists a formula Âk such that
FV(Âk) = FV(A) and

k � A[ �x/�a] ⇔Dk |=c Âk[ �x/�a]

for all �a ∈ Dk , where �x are the free variables of A. Then for each formula
A1, ... , An, k ∈ K , and �a ∈ Dk ,

1. if α ∈ A, then

∃k′ ≥ k(k′ � (α[A1, ... , An])[ �x/	kk′(�a)]) ⇒Dk |=c (α[Â1
k, ... , Â

n
k])[ �x/�a],

2. if � ∈ B, then

k � (�[A1, ... , An])[ �x/�a] ⇒Dk |=c (�[Â1
k, ... , Â

n
k])[ �x/�a],

3. if � ∈ C, then

Dk |=c (�[Â1
k, ... , Â

n
k])[ �x/�a] ⇒ k � (�[A1, ... , An])[ �x/�a],
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4. if � ∈ D, then

∀k′ ≥ k(Dk′ |=c (�[Â1
k′ , ... , Â

n
k′])[ �x/	kk′(�a)]) ⇒ k � (�[A1, ... , An])[ �x/�a],

where �x are the free variables of α[A1, ... , An] (respectively, �[A1, ... , An],
�[A1, ... , An] and �[A1, ... , An]).

Proof. By simultaneous induction on A, B, C, and D.
Basis. It is straightforward using the assumption.
Induction step. Since the cases for the propositional operators ∧ and ∨, and
the quantifier ∃ are straightforward, we review the propositional operator
→ and the quantifier ∀.
Case 1: ∀yα ∈ A. Suppose that k′ � ((∀yα)[A1, ... , An])[ �x/	kk′(�a)] for
some k′ ≥ k. Then, since k′ � (∀y(α[A1, ... , An]))[ �x/	kk′(�a)], we have
k′ � (α[A1, ... , An])[ �x, y/	kk′(�a), c] for all c ∈ Dk′ , and hence

k′ � (α[A1, ... , An])[ �x, y/	kk′(�a), 	kk′(b)]

for all b ∈ Dk . By the induction hypothesis, we have Dk |=c (α[Â1
k, ... , Â

n
k])

[ �x, y/�a, b] for all b ∈ Dk , and so Dk |=c (∀y(α[Â1
k, ... , Â

n
k]))[ �x/�a]. Thus

Dk |=c ((∀yα)[Â1
k, ... , Â

n
k])[ �x/�a].

Case 2: � → α ∈ A. Suppose that k′ � ((� → α)[A1, ... , An])[ �x/	kk′(�a)] for
some k′ ≥ k. Then

k′ � (�[A1, ... , An])[ �x/	kk′(�a)] → (α[A1, ... , An])[ �x/	kk′(�a)].

Assume that Dk |=c (�[Â1
k, ... , Â

n
k])[ �x/�a]. By the induction hypothesis, we

have k � (�[A1, ... , An])[ �x/�a], and hence k′ � (�[A1, ... , An])[ �x/	kk′(�a)].
Therefore k′ � (α[A1, ... , An])[ �x/	kk′(�a)]. By the induction hypothesis, we
have

Dk |=c (α[Â1
k, ... , Â

n
k])[ �x/�a].

Thus Dk |=c ((� → α)[Â1
k, ... , Â

n
k])[ �x/�a].

Case 3: ∀y� ∈ B. Suppose that k � ((∀y�)[A1, ... , An])[ �x/�a]. Then, since
k � ∀y((�[A1, ... , An])[ �x/�a]), we have

k � (�[A1, ... , An])[ �x, y/�a, b]
for all b ∈ Dk . By the induction hypothesis, we have Dk |=c (�[Â1

k, ... , Â
n
k])

[ �x, y/�a, b] for all b ∈ Dk . Therefore

Dk |=c ((∀y�)[Â1
k, ... , Â

n
k])[ �x/�a].

Case 4: � → � ∈ B. Suppose that k � ((� → �)[A1, ... , An])[ �x/�a]. Then

k � (�[A1, ... , An])[ �x/�a] → (�[A1, ... , An])[ �x/�a].
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Assume that Dk |=c (�[Â1
k, ... , Â

n
k])[ �x/�a]. By the induction hypothesis, we

have k � (�[A1, ... , An])[ �x/�a], and hence k � (�[A1, ... , An])[ �x/�a]. By the
induction hypothesis, we have Dk |=c (�[Â1

k, ... , Â
n
k])[ �x/�a]. Thus

Dk |=c ((� → �)[Â1
k, ... , Â

n
k])[ �x/�a].

Case 5: α→ � ∈ C. Suppose that Dk |=c ((α→ �)[Â1
k, ... , Â

n
k])[ �x/�a]. Then

Dk |=c (α[Â1
k, ... , Â

n
k])[ �x/�a] → (�[Â1

k, ... , Â
n
k])[ �x/�a].

Consider k′ ≥ k, and assume that k′ � (α[A1, ... , An])[ �x/	kk′(�a)]. By the
induction hypothesis, we have Dk |=c (α[Â1

k, ... , Â
n
k])[ �x/�a], and hence

Dk |=c (�[Â1
k, ... , Â

n
k])[ �x/�a].

By the induction hypothesis, we have k � (�[A1, ... , An])[ �x/�a], and so k′ �
(�[A1, ... , An])[ �x/	kk′(�a)]. Thus

k � ((α→ �)[A1, ... , An])[ �x/�a].

Case 6: ∀y� ∈ D. Suppose that Dk′ |=c ((∀y�)[Â1
k′ , ... , Â

n
k′ ])[ �x/	kk′(�a)] for

all k′ ≥ k. Then Dk′ |=c (�[Â1
k′ , ... , Â

n
k′])[ �x, y/	kk′(�a), c] for all k′ ≥ k and

c ∈ Dk′ . Therefore if k′ ≥ k and c ∈ Dk′ , then

Dk′′ |=c (�[Â1
k′′ , ... , Â

n
k′′ ])[ �x, y/	k′k′′(	kk′(�a)), 	k′k′′(c)]

for all k′′ ≥ k′. By the induction hypothesis, we have k′ � (�[A1, ... , An])
[ �x, y/	kk′(�a), c]. Thus k � ((∀y�)[A1, ... , An])[ �x/�a].
Case 7: � → � ∈ D. Suppose thatDk′ |=c ((� → �)[Â1

k′ , ... , Â
n
k′ ])[ �x/	kk′(�a)]

for all k′ ≥ k. Then

Dk′ |=c (�[Â1
k′ , ... , Â

n
k′])[ �x/	kk′(�a)] → (�[Â1

k′ , ... , Â
n
k′ ])[ �x/	kk′(�a)]

for all k′ ≥ k. Consider k′ ≥ k, and assume that

k′ � (�[A1, ... , An])[ �x/	kk′(�a)].

Then k′′ � (�[A1, ... , An])[ �x/	k′k′′(	kk′(�a))]. for all k′′ ≥ k′. By the induc-
tion hypothesis, we have Dk′′ |=c (�[Â1

k′′ , ... , Â
n
k′′])[ �x/	k′k′′(	kk′(�a))] for all

k′′ ≥ k′. Therefore Dk′′ |=c (�[Â1
k′′ , ... , Â

n
k′′ ])[ �x/	k′k′′(	kk′(�a))] for all k′′ ≥

k′. By the induction hypothesis, we have k′ � (�[A1, ... , An])[ �x/	kk′(�a)].
Thus k � ((� → �)[A1, ... , An])[ �x/�a]. �

Proof of Lemma 4.11. Consider a schema �[
1, ... , 
n] in Γ. By
Lemma A.1, for each k ∈ K and formulae A1, ... , An, there exist formulae
Â1
k, ... , Â

n
k such that

k �E ,I A
i [ �x/�a] ⇔Mf(k) |=c Âik[ �x/�a]

https://doi.org/10.1017/bsl.2023.29 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.29


EXTENDED FRAMES AND SEPARATIONS OF LOGICAL PRINCIPLES 349

for all i ∈ {1, ... , n} and �a ∈Mf(k). Since

Mf(k) |=c (�[Â1
k, ... , Â

n
k)[ �x/�a]

for all k ∈ K and �a ∈Mf(k), by Lemma A.2, we have

k � (�[A1, ... , An])[ �x/�a]

for all �a ∈Mf(k). �
Proof of Lemma 4.14. It suffices to show that if B ∈ Γ, then

k �E ,I B[ �x/�a] ⇔Mf(k) |=c B[ �x/�a]

for all i ∈ I and �a ∈Mf(k). We proceed by induction on the complexity of
B, and review only the cases for → and ∀. If B ≡ B ′ → B ′′, by the induction
hypothesis and the assumption, we have

k �E ,I B[ �x/�a] ⇔∀k′ ≥ k(k′ �E ,I B
′[ �x/	kk′(�a)] ⇒ k′ �E ,I B

′′[ �x/	kk′(�a)])

⇔∀k′ ≥ k(Mf(k′) |=c B ′[ �x/�f(k)f(k′)(�a)]

⇒Mf(k′) |=c B ′′[ �x/�f(k)f(k′)(�a)])

⇔∀k′ ≥ k(Mf(k′) |=c B[ �x/�f(k)f(k′)(�a)])

⇔Mf(k) |=c B[ �x/�a].

IfB ≡ ∀yB ′, again by the induction hypothesis and the assumption, we have

k �E ,I B[ �x/�a] ⇔∀k′ ≥ k∀b ∈ Dk′(k′ �E ,I B
′[ �x, y/	kk′(�a), b])

⇔∀k′ ≥ k∀b ∈Mf(k′)(Mf(k′) |=c B ′[ �x, y/�f(k)f(k′)(�a), b])

⇔∀k′ ≥ k(Mf(k′) |=c B[ �x/�f(k)f(k′)(�a)])

⇔Mf(k) |=c B[ �x/�a]. �

Appendix B. The relativization of the arithmetized completeness theorem.
Recall that LQ1 is an extension of L1 by adding a unary predicate symbol Q
and an LQ1 -structure is a pair (M,QM ) where M is an L1-structure and QM

is an interpretation of Q on M. Thanks to LQ1 -instances of the induction
axiom schema in HA∗, most proofs and discussions for L1-statements and
structures within HA can be carried out analogously for LQ1 within HA∗.

Theorem B.1 (Arithmetized completeness theorem—relativized). Let
Q0 ⊆ �, let T be a set of LQ1 -sentences which is well-behaved over Q0, and
let (M,QM ) be an LQ1 -structure such that

(M,QM ) |=c HAQ0 + Con(T ).

Then there exist a definable LQ1 -structure (M̂ ,QM̂ ) in (M,QM ) and a ΣQ0 -
elementary embedding � :M → M̂ such that (M̂ ,QM̂ ) |=c T.Moreover, for
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each formula B, there exists an LQ1 -formula [B] such that FV([B]) = FV(B)
and

(M,QM ) |=c [B][ �x/�a] ⇔ (M̂ ,QM̂ ) |=c B[ �x/�(�a)]

for all �a ∈M , where �x are the free variables of B.

Note that a special case by lettingQ0 = � and forgetting Q is the original
arithmetized completeness theorem (Theorem 4.5).

Proof. Let �(x) be a ΣQ1 -representation over Q0 of T. By arithmetizing
the usual argument within HA∗, let T̂ be the Henkin extension of T. In
other words, obtain �̂(x) which represents a set of LQ1 ∪ C-sentences which
extends �(x) together with Henkin axioms for LQ1 where C is the set of
Henkin constants (coded by numbers). Then HA∗ �c ∀x(�(x) → �̂(x)) and
HA∗ �c Con(T ) → Con(T̂ ). Apply the syntactic form of the arithmetized
completeness theorem [31, Theorem 6.8] and obtain �(x) so that

HA∗ �c∀x[(�(x) → “x is a sentence”) ∧ (�̂(x) → �(x))]

∧ [Con(T̂ ) → “�(x) defines a complete set of LQ1 ∪ C-sentences”].

Now we see the semantic form of the arithmetized completeness theorem
[31, Theorem 6.10] in our formulation. Let (M,QM ) |=c HAQ0 + Con(T ).
Then we have (M,QM ) |=c Con(T̂ ). Hence, by arithmetizing the usual
Henkin construction using the complete theory defined by �(x), one
may obtain a definable LQ1 -structure (M̂ ,QM̂ ) in (M,QM ) such that

for any LQ1 -sentence A, (M,QM ) |=c �(�A�) ⇔ (M̂ ,QM̂ ) |=c A and thus

(M̂ ,QM̂ ) |=c HA∗. For a given LQ1 -formula B, one may obtain [B]
by formalizing Tarski’s truth definition. Moreover, for each standard
number m ∈ �, we have m ∈ Q0 ⇔ (M,QM ) |=c Q(m̄) ⇔ (M,QM ) |=c
�(�Q(m̄)�) ⇔ (M,QM ) |=c �(�Q(m̄)�) ⇔ (M̂ ,QM̂ ) |=c Q(m̄). Therefore
(M̂ ,QM̂ ) |=c HAQ0 .

Now consider the canonical embedding � :M → M̂ as in Remark 4.4,
then M can be embedded onto an initial segment of M̂ by [31, Lemma 6.12].
Moreover, for each m ∈M , we have (M,QM ) |=c Q(m) ⇔ (M̂ ,QM̂ ) |=c
Q(m̄) ⇔ (M̂ ,QM̂ ) |=c Q(�(m)), and hence � is LQ1 -homeomorphism.
Therefore, � is ΣQ0 -elementary by [31, Lemma 3.8]. �

See also [13, Chapter I, Section 4, especially 4.27] and [36] for stronger
forms of the arithmetized completeness theorem and a modern proof.
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[13] P. Hájek and P. Pudlák, Metamathematics of First-Order Arithmetic, Perspectives
in Mathematical Logic, Springer, Berlin, 1993.

[14] T. Hosoi, On intermediate logics. I. Journal of the Faculty of Science, University of
Tokyo, Section I , vol. 14 (1967), pp. 293–312.

[15] T. Hosoi and H. Ono, The intermediate logics on the second slice. Journal of the Faculty
of Science, University of Tokyo, Section IA, Mathematics, vol. 17 (1970), pp. 457–461.

[16] H. Ishihara, Continuity properties in constructive mathematics. The Journal of
Symbolic Logic, vol. 57 (1992), no. 2, pp. 557–565.

[17] ———, Markov’s principle, Church’s thesis and Lindelöf’s theorem. Indagationes
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