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Abstract

This paper discusses a flaw in Murasugi–Przytycki’s Memoir ‘An index of a graph with applications to
knot theory’ [Mem. Amer. Math. Soc. 106 (1993)]. We point out and partly fix a gap occurring in the proof
of Murasugi–Przytycki’s braid index inequalities involving the graph index. We explain why their notion
of index fails to precisely reflect the reduction of Seifert circles by their diagram move, and redefine the
index to account for that discrepancy.
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1. Introduction

As an important part of the literature devoted to studying the braid index in the
aftermath of the discovery of the Jones polynomial and its successors, Murasugi–
Przytycki’s Memoir [MP] introduces the notion of the index of a graph.

Their motivation stems from the relation discovered [Ya] between the braid index
and the number of Seifert circles of a link diagram. They introduce a link diagram
move to reduce the number of Seifert circles (see [MP, Figure 8.2], Figure 1, and
Definition 2.1 below).

The Murasugi–Przytycki move reduces this number by one, and can (often) be
applied repeatedly. However, the choice of move(s) is in general highly ambiguous,
and the number of applicable moves depends heavily on this choice. The highest
economy on Seifert circles is thus achieved when the number of moves is maximized.

Murasugi–Przytycki’s definition of a graph index is based on a transformation of
graphs, which models their diagram move on the level of Seifert graphs (see the proof
of [MP, Lemma 8.6]). The precise definition of the index (and where a problem occurs
with it) will be discussed in detail below, but it is important to notice already here that
it entails a maximization over possible ways to modify the graph.

This work was partly funded by a grant of NRF (Korea).
c© 2013 Australian Mathematical Publishing Association Inc. 1446-7887/2013 $16.00

417

https://doi.org/10.1017/S1446788713000050 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788713000050
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Murasugi–Przytycki aim to obtain the inequality

b(L) ≤ s(D) − ind(D). (1.1)

Here D is a diagram of s(D) Seifert circles of a link L with braid index b(L), and ind(D)
is the index of the Seifert graph of D. The inequality (1.1) is one of the central results
of [MP], and many applications there and elsewhere, for example [Oh], rely on it.

During our study of Murasugi–Przytycki’s proof, we found a gap. It occurred when
we wanted to understand the diagram move of [MP, Figure 8.2]. Murasugi–Przytycki
seem to assume that Figure 8.2 is the general case, but we will explain that it is not.
Taking care of the missing cases leads to a modified definition of index, which we
call ind0. Roughly speaking, the correction needed is that in certain situations some
edges in the star of a vertex are not contracted (unlike in their procedure; see beneath
Definition 3.2). Therefore, Murasugi–Przytycki’s diagram move just proves instead
of (1.1) that

b(L) ≤ s(D) − ind0(D). (1.2)

Then the question naturally arises of how ind(D) and ind0(D) relate to each other. We
will argue that

ind(D) ≤ ind0(D), (1.3)

which justifies (1.1). This is necessary in order to rehabilitate the applications of
this inequality inside and outside Murasugi–Przytycki’s Memoir. We then speculated,
based on our computational evidence, whether in fact

ind(D) = ind0(D) (1.4)

is always true. Later Traczyk [Tr] provided an argument that this is indeed true, by
proving the reverse inequality to (1.3). Our understanding is that Traczyk’s work thus
clarifies an important point in the matter, but that this is not exactly what is needed
(and it is not enough) to fix the error.

To do that, the explanation of ind0 and (1.3) remains necessary, and succeeds only
at a (minor) cost. This drawback is that Murasugi–Przytycki’s definition of index loses
its geometric meaning per se. It simplifies the true transformation of the Seifert graph
under their diagram move, in a way which is a priori incorrect but (fortunately) a
posteriori turns out to still give the right quantity. This fact must be taken care of in
subsequent applications of Murasugi–Przytycki’s method, for example, in [MT].

The following account tries to explain the details.

2. Braid representations and braid index

The braid group Bn on n strands (or strings) is considered to be generated by the
Artin standard generators σi for i = 1, . . . , n − 1. These are subject to relations of
the type [σi, σ j] = 1 for |i − j| > 1, which we call commutativity relations (the bracket
denotes the commutator) and σi+1σiσi+1 = σiσi+1σi, which we call Yang–Baxter (or
YB) relations.
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A classical theorem of Alexander [Al] asserts that each link L can be represented as
L = β̂, the closure of some braid β. We call β a braid representation of L. The braid
index b(L) of a link L is the smallest number of strands among all braid representations
of L (see [Mo, FW, Mu]). A braid β on b(L) strands with β̂ = L is called a minimal
braid (representation) of L.

The skein polynomial P [F, LM] is a Laurent polynomial in two variables l and m
of oriented knots and links and can be defined by being 1 on the unknot and by the
(skein) relation

l−1P
( )

+ lP
( )

= −mP
( )

. (2.1)

As usual, the three fragments depict link diagrams identical elsewhere. The convention
uses the variables of [LM], but differs from the one adopted by the interchange of l
and l−1.

Let P ∈ Z[l±1, m±1]. The minimal respectively maximal l-degree min degl P
respectively max degl P is the minimal respectively maximal exponent of l in a
monomial (with nonzero coefficient) in P. Let spanlP = max degl P −min degl P.

A crossing as on the left in (2.1) has writhe (or skein sign) 1 and is called positive.
A crossing as in the middle of (2.1) has writhe −1 and is called negative. The writhe
w(D) of a link diagram D is the sum of writhes of all its crossings.

The replacement of a (positive or negative) crossing by the the rightmost expression
in (2.1) is called smoothing out. When all crossings of D are smoothed out, we
have a collection of loops called Seifert circles. When a crossing in D is reinstalled
by undoing the smoothing operation, it can be regarded as connecting two (distinct)
Seifert circles. Let s(D) be the number of Seifert circles of D.

In [Mo, FW] it was proved for the skein polynomial P(l, m) that

1
2 spanlP(L) + 1 ≤ b(L), (2.2)

the Morton–Williams–Franks (MWF) inequality.
It was soon noticed that for many links the MWF inequality is sharp (that is, an

equality), and for a while it was conjectured that this would be so for all alternating
links. Murasugi–Przytycki disproved this conjecture, obtaining (among others) an 18
crossing counterexample alternating knot.

The inequality (2.2) results from two other inequalities, due to Morton, namely that
for a diagram D, we have

1 − s(D) + w(D) ≤min degl P(D) ≤max degl P(D) ≤ s(D) − 1 + w(D). (2.3)

Williams–Franks showed these inequalities for the case of braid representations. Later
it was observed from the algorithms of Yamada [Ya] and Vogel [Vo] that the braid
version is actually equivalent to, and not just a special case of, the diagram version.
These algorithms allow any diagram D to be turned into a braid diagram without
altering s(D) and w(D). Nonetheless we will refer to (2.3) as ‘Morton’s inequalities’.
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With the relation to Seifert circles at hand, Murasugi–Przytycki’s effort centers
around minimizing by isotopy their number for a given link diagram. For this purpose
they introduce a move as follows.

D 2.1 (See [MP, Figure 8.2] and Figure 1). Let D be a diagram of a link L
and e a crossing which connects as a unique crossing two Seifert circles v and w.
Choose one of these two Seifert circles, say, v. The Murasugi–Przytycki move takes
the undercrossing strand at e and reroutes it to a long arc of undercrossings going along
some Seifert circles neighbored (that is, connected by crossings) to v in D. This way
one obtains another diagram D′ of L with s(D′) = s(D) − 1.

The resulting long arc in D′ is indicated by a dashed line in Figure 1. It is supposed
to pass below any other strand it crosses. Note that one can also reroute the overpass
at e, obtaining a (generally) different diagram D′′ of L with one Seifert circle less than
D. However, the graph theory discussed below will imply that, for the purpose of
minimizing the number of Seifert circles, the two new diagrams D′ and D′′ do equally
well.

This move aims at an improvement of the inequalities (2.3) (restated below in
Proposition 3.3), which allows one to settle the braid index problem for many links
(see Theorem 7.1, Conjecture 3.5, and also [Oh]). For the purpose of simplifying the
work with their move using Seifert graphs, Murasugi–Przytycki developed the concept
of index of a graph. We recall some main points of their work, referring to [MP] for
further details.

3. Graph index

Graphs will be finite. It will be no restriction to assume that they are planar, that
is, to admit a planar embedding. (We later remark on the ambiguity of the planar
embedding.) We allow different edges to connect the same two vertices. Such edges
will be counted (and in certain cases, treated) separately. We thus understand a multiple
edge as a set consisting of the edges connecting the same two vertices.

An edge is simple if no other edge connects the same two vertices. Such an edge
will be sometimes denoted by its two vertices (order irrelevant).

Loop edges can also be allowed, but are not very relevant.

D 3.1. Let G be a connected graph. For a vertex v in G let the star starv of v be
the set of edges in G incident from v, that is, those for which v is one of the endpoints.
Let Gv = G/v be the graph obtained from G by contracting starv.

Let G \ v be the graph obtained from G by deleting starv, and additionally v itself.
(When we delete an edge, we understand that any vertex it is incident to is not to be
deleted along the way.) We call v a cut vertex of G, if G \ v is disconnected.

Let G be a connected signed graph; ‘signed’ will mean for us that each edge carries a
sign + or −. There is no problem in extending the various introduced graph operations
to signed graphs.
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D 3.2. We define (recursively) a sequence of edges µ = (e1, . . . , en) to be
independent in a graph G if the following conditions are satisfied.

1. The empty (edge) sequence is independent per definition.
2. Let e1 connect vertices v1 and v2. Then we demand that e1 is simple, that is, there

is no other edge connecting v1,2, and that e2, . . . , en is independent in (one of)
Gv1 or Gv2 (in particular, { e2, . . . , en } is disjoint from at least one of starv1 and
starv2, respectively).

An independent set is a set of edges admitting an ordering as an independent sequence.
The index ind(G), the positive index ind+(G), respectively negative index ind−(G)

of G, are defined as the maximal length of an independent edge set (or sequence),
independent positive, and independent negative edge set/sequence in G, respectively.
A sequence is maximal independent if it realizes the index of G.

Now to each link diagram D we associate its Seifert graph G = Γ(D), which is
a planar bipartite signed graph. It consists of a vertex for each Seifert circle in D
and an edge for each crossing, connecting two Seifert circles. Each edge is signed
by the writhe (or skein sign) of the crossing it represents, as explained underneath
Equation (2.1). Note that several edges between the same vertices can thus occur,
and they may also carry different signs. We will for convenience sometimes identify
crossings/Seifert circles of D with edges/vertices of G.

Then we can set ind(±) (D) = ind(±) (Γ(D)). Murasugi–Przytycki claim the following
proposition.

P 3.3 (See [MP, (8.4) and (8.8)]). If D is a diagram of an oriented link L,
then

max degl P(L) ≤ w(D) + s(D) − 1 − 2ind+(D) (3.1)

min degl P(L) ≥ w(D) − s(D) + 1 + 2ind−(D) (3.2)

b(L) ≤ mpb(D) := s(D) − ind(D). (3.3)

An important operation on diagrams studied in relation to the index is this of
Murasugi sum decomposition (see [Cr, Section 1]). On the level of Seifert graphs
it corresponds (mainly) to block decomposition.

D 3.4. The join (or block sum) G1 ∗G2 of two graphs G1 and G2 is defined by

∗ = (3.4)

This operation depends on the choice of a vertex vi in each one of the graphs Gi.
(Although this dependence will not be notationally highlighted, it should be kept in
mind.)

Every connected nontrivial (that is, with at least one edge) graph G can be written
as a join G1 ∗ · · · ∗Gn for some nontrivial connected graphs Gi, such that no Gi has a
cut vertex. We call Gi the block components or join factors of the graph G.
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The precise relation between block and Murasugi sum decomposition is as follows.
A Seifert circle in D is separating if it has crossings attached to it from both its interior
and exterior. A diagram with no separating Seifert circles is called special. The blocks
of D are the connected sum components of the pieces of D obtained by Murasugi sum
decomposition of D along its separating Seifert circles. See for this [Cr, Section 1], but
keep in mind that Cromwell’s definition of blocks does not take into account connected
sum decomposition. (Thus some of Cromwell’s blocks can decompose into several
blocks in our sense.)

Then each block component of Γ(D) is the Seifert graph of a block of D. (It is for
the sake of this analogy that we alter here Cromwell’s definition.)

If G = Γ(D) is a block component itself (that is, has no cut vertex, and D is prime
and special), one can recover D uniquely from a concrete planar embedding of G
(both regarded up to moves in S 2). It is helpful, for example, in comparing Figures 1
and 2 below, to keep in mind the correspondence between a block of D and the planar
embedding of its Seifert graph. However, under block sum, there is little sense in
dwelling upon planar embeddings. This is why the block sum (3.4) of two graphs G1

and G2 is understood to depend on not more than the choice of vertices vi in Gi.
For any diagram D, we have

ind+(D) + ind−(D) ≥ ind(D).

For alternating (and more generally homogeneous [Cr]) diagrams D equality holds,
because each join factor of Γ(D) contains only edges of the same sign. This implies
that if in such diagrams (3.1), (3.2) are sharp, then (2.2) and (3.3) become sharp, too.

C 3.5 (Murasugi–Przytycki). If D is an alternating diagram of a link L, then
b(L) = mpb(D).

4. Hidden Seifert circle problem

Now we must understand the move of Murasugi–Przytycki that corresponds to
the choice of a simple edge e and the contraction of the star of v in G. To set the
record straight, we should mention that this move was also considered, apparently
simultaneously and independently, by Chalcraft [Ch], although only as a secondary
issue. With this understanding, we will still refer to it below as the Murasugi–Przytycki
move.

This move is shown in [MP, Figure 8.2], but see Figure 1 below for a more authentic
situation. Let D be the diagram before the move and D′ the diagram resulting from
it. Let us for simplicity identify an edge with its crossing and a vertex with its Seifert
circle (see the remark above Proposition 3.3). In this language, the move of Murasugi–
Przytycki eliminates one crossing, corresponding to e. The crossings of the other
edges e′ , e incident to v do not disappear under the Murasugi–Przytycki move.
Instead, they become in D′ parts of join factors of Γ(D′) that correspond to a Murasugi
summand on the opposite side of the modified Seifert circle. See the proof of [MP,
Lemma 8.6], and Figures 1 and 2 below.
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F 1. A move of Murasugi–Przytycki, where the relayed strand (dotted line) does not go along a
Seifert circle (denoted as u) adjacent to v. The Seifert circles are depicted in gray to indicate that their

interiors may not be empty.

The subtlety, which seems to have been overlooked in the proof of [MP], is
illustrated in Figures 1 and 2. The Seifert circles adjacent to v may be nested in D
in such a way that relaying the arc of v by the move, one does (and can) not go along
all Seifert circles adjacent to v. In the Seifert graph G′ = Γ(D′) of D′ some of the edges
incident to v in G = Γ(D) may not enter, as written in the proof of [MP, Lemma 8.6],
into block components that are 2-vertex graphs (with a multiple edge).

Still we see that contracting the star of v in G = Γ(D), we obtain a graph G̃ = G/v,
which is a contraction of G′ = Γ(D′). (We will later describe exactly how G′ is
constructed from G, but let us for the time being use the easier to obtain G/v instead.)
Here contraction G̃ of a graph G′ means that G̃ is obtained from G′ by contracting some
(possibly several or no) edges, and we allow multiple edges in G′ to be contracted (by
doing so simultaneously with all edges they consist of).

More precisely, the difference between the block component of G̃ and G′ is that in
the last block component of G′ in Figure 2 the star of v is contracted to obtain the block
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F 2. The various Seifert graphs of the diagrams related to the move of Murasugi–Przytycki in
Figure 1, in the case when the relayed strand does not go along all Seifert circles adjacent to v. The graph
of D′ is given in its block decomposition, which corresponds to the Murasugi sum decomposition along
the newly created Seifert circle. For simplicity, we display a multiple edge by attaching the multiplicity

to the edge drawn as simple (otherwise, a letter attached just indicates the name).

component of G̃ consisting of edges h and k. So for the proof of [MP, Lemma 8.6] and
(3.3), we actually need the following lemma.

L 4.1. If a graph H′ is a contraction of H, then ind(H′) ≤ ind(H).

P. We prove that each independent set of edges in H′ is independent in H. We do
this inductively over the number of vertices of H.

Let e1, . . . , en be independent in H′. Then e2, . . . , en are independent in H′/v1, for
some vertex v1 to which e1 is incident. All edges e1, . . . , en exist in H, and so does v1.
(During the contractions that turn H into H′, the vertex v1 in H may be identified with
others.)

Now H′/v1 is a contraction of H/v1, and thus by induction assumption, e2, . . . , en

are independent in H/v1. Moreover, since e1 is simple in H′, it is simple in H.
(Contractions cannot eliminate multiple edges except by contracting them.) Thus,
e1, . . . , en are independent in H, as we wanted. �

With the lemma, we will establish in Lemma 5.4 below that we can reduce at least
ind(D) Seifert circles by Murasugi–Przytycki moves, and (3.3) is recovered.

Still it should be understood that the contraction of a vertex fails to model in full
accuracy the Murasugi–Przytycki diagram move.

5. Modifying the index

It becomes necessary to understand exactly the transformation of the Seifert graph
G under the move of Murasugi–Przytycki. We describe it now, also filling in the detail
overlooked by them.

Now we use marked graphs. This means that edges have a Z2-graduation. Each
edge either carries a mark (and is marked) or not (and is unmarked). Its marking is the
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status according to this graduation. This distinction is different from the +/− signing.
However, marked edges carry no sign, so that when signs are relevant, one should
distinguish edges into positive, negative (unmarked) and marked edges.

We assume for the rest of the exposition that G is bipartite. Thus G has no loop
edges (isthmusses) and no cycles of length 3, which avoids some technical difficulties.

In the initial (Seifert) graph all edges are unmarked (and carry, if relevant, the sign
of their corresponding crossing). A marked edge is to be understood as one that cannot
be chosen as an edge e. It corresponds to a multiple edge.

D 5.1. We choose a nonmarked edge e and a vertex v of e. Let w be the other
vertex of e (see Figure 1). We define the notion on the opposite side to e as follows.

A vertex y , v, w is on the opposite side to e if there is a vertex x , v, w, y adjacent
to v such that y and w are in different connected components of (G \ v) \ x.

(5.1)

(Here ‘\’ stands for the deletion of a vertex together with all its incident edges – but
not its adjacent vertices; see Definition 3.1.) Otherwise we say y is on the same side
a e.

The meaning of this distinction is that the Murasugi–Przytycki move lays the arc
along a Seifert circle x adjacent to (the Seifert circle of) v, if x is on the same side as e.
This move affects the crossings that connect x to v, or to a Seifert circle z on the same
side as e.

D 5.2. Let G be a marked graph, v a vertex of G, and e a simple unmarked
edge between v and another vertex w. We define now the marked graph G/ev.

The vertices of G/ev are those of G except w. The edges and their markings are
chosen by copying those in G as follows. Let an edge e′ in G connect vertices v1,2.

Case 1. v is among v1,2, say v = v1.

Case 1.1. If the other vertex v2 of e′ is w (that is e = e′), then e′ is deleted.

Case 1.2. If v2 is on the opposite side to e, then e′ is retained in G/ev with the same
marking.

Case 1.3. If v2 is on the same side as e, then e′ is retained in G/ev, but marked.

Case 2. v is not among v1,2.

Case 2.1. If none of v1,2 is adjacent to v, then e′ retains in G/ev the same vertices and
marking.

Case 2.2. One of v1,2, say v1, is adjacent to v. (Then v2 is not adjacent to v by
bipartacy.)
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Case 2.2.1. If v1 = w, then change v1 to v in G/ev, and retain the marking.

Case 2.2.2. So assume next v1 , w. If v2 is on the opposite side to e, then retain v1,2

and the marking.

Case 2.2.3. If v2 is on the same side as e, then we change v1 to v, and retain the
marking. (Note that by bipartacy, if v2 is on the same side as e, then so must be v1.)

In the case of a signed (unmarked) edge e′, the sign is copied (even if vertices are
changed), except in the case 1.3, when e′ receives a mark. In this case the sign of e′ is
deleted.

Since a mark will indicate for us only that the edge cannot be chosen as e, the
resulting graph G/ev may be reduced by turning a multiple edge into a simple marked
one. (This also makes it irrelevant to create a multiple edge in case 1.3.)

D 5.3. We can extend the Definition 3.2 of ind(G) to marked graphs G by
requiring in point 2 that e be simple and unmarked, and allowing at every stage the
option that a multiple edge can be turned into a simple marked one. Then ind(G)
coincides with the one previously defined if all edges of G are unmarked (in particular
ind(D) = ind(Γ(D)) when all edges of Γ(D) are understood unmarked).

If we further replace in Definition 3.2 the two occurrences of Gvi = G/vi by G/evi,
as given in Definition 5.2, then we define the corresponding notions of 0-independent
edges and the modified index ind0(G). Again we set ind0(D) = ind0(Γ(D)) with all
edges of Γ(D) unmarked.

If one requires that in a set of 0-independent edges all be positive or negative, one
obtains the modifications ind0,± of ind±.

With this definition, we obtain (1.2). The property (1.3) can be proved by induction.

L 5.4. For every marked graph G we have ind(G) ≤ ind0(G).

P. We prove inductively over the vertex number of G that each independent set of
edges in G is also 0-independent.

Let e1, . . . , en be independent in G. Thus e1 is simple and unmarked in G,
and e2, . . . , en are independent in G/v1. Since G/v1 is a contraction of G/ev1,
by the proof of Lemma 4.1, the edges e2, . . . , en are independent in G/ev1. By
induction assumption they are thus 0-independent in G/ev1. Therefore, e1, . . . , en are
0-independent in G. �

This fixes Murasugi–Przytycki’s proof of [MP, Lemma 8.6]. A similar fix works
for (3.1) and (3.2).

We speculated whether in fact (1.2) can be stronger than (1.1). If (1.4) is false,
then conjecture 3.5 is also false. We explained, though, that indeed (1.4) is true (and
was proved by Traczyk as a follow-up to our note). Still our (much more awkward)
definition of the modified index is needed, at least for the scope of this paper, in order
to prove (1.3) or (1.4), and fix the gap in [MP].
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Also, if one likes to keep the correspondence between (Seifert) graph and diagram,
one must accept the circumstance that (in general) not all of starv is to be contracted.
The idea of using vertex contraction (straightforwardly, following [MP]) appeared in
at least one further paper, [MT]. To prevent problems from propagating, we feel some
priority is justified to our point of caution. This was an additional motivation for the
present correction.

6. Simple properties of the modified index

The important difference of ind0 to ind lies in not affecting edges in case 1.2.
The treatment of vertices on the opposite side to e, the technical detail missed by
Murasugi–Przytycki, does not affect the result significantly, yet it creates a great deal
of calculation overhead (which we experienced in attempts to use the possibly better
estimate (1.2) prior to Traczyk’s proof of (1.4)). Note, however, that it implies the
additivity of ind0 under block sum in an easier (and much more natural) way than
Murasugi–Przytycki’s corresponding statement for ind.

D 6.1. A marked graph is not 2-connected if it has an unmarked edge whose
deletion disconnects it. If G is not 2-connected, there is a plane curve intersecting G
in a single, and unmarked, edge. We call such a curve a separating curve.

Note that the initial (unmarked Seifert) graph of D is 2-connected because we can
assume D has no nugatory crossings.

L 6.2. If G is 2-connected, so is G/ev.

P. We assume to the contrary that G/ev is not 2-connected. Let e′ be a
disconnecting edge. So there is a separating curve γ that intersects G/ev only in e′.
The only edges in G/ev which do not exist in G are of the type vz in (5.1). That is, z
is a vertex on the same side as e, adjacent to a vertex x adjacent to v in G. (Note that
when x = w, then all z adjacent to w are on the same side as e.) By Definition 5.1, the
property of z being on the same side as e implies that there is a cycle in G containing
the edges e = vw, vx and xz. In G/ev, this cycle is shortened when xz is replaced by vz
(and e contracted). Thus vz belongs to a cycle in G/ev, and cannot disconnect G/ev.

Therefore, e′ persists in G. It must be unmarked in G, since the move from G to
G/ev never deletes marks. Thus the curve γ must intersect G in some other edge. The
only edges added in G when recovering it from G/ev (except that e is decontracted) are
of the form xz in (5.1) (with x a vertex adjacent to v, and z a vertex adjacent to x on the
same side as e). Then γ passes in G through a cycle as the right one in (5.1) (the one
containing z, x, v, w in consecutive order; note that z , w by bipartacy). In G/ev this
cycle is changed only by replacing xz and vx by vz (and contracting e). The only way
γ can avoid this cycle in G/ev is that γ passes through e′ = vx in G/ev (and G). But by
construction vx is marked in G/ev, and γ is not a separating curve, a contradiction. �

It is easy to see that G1 ∗G2 is 2-connected if and only if both G1 and G2 are. This
is true regardless of how (that is, at which vertices) ‘∗’ is performed.
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L 6.3. If G1,2 are 2-connected, then ind0(G1 ∗G2) = ind0(G1) + ind0(G2).

P. It is enough to see that the contraction procedure of an edge e in G1 does not
affect edges or markings in G2, except possibly the change of vertex at which the block
sum G1 ∗G2 is performed.

Let v, w be the ends of e, and we consider the building of G/ev for G = G1 ∗G2. Let
z be the (cut) vertex of G at which the block sum G1 ∗G2 is performed.

If z , v is not adjacent to v, then nothing is changed in G2 when building G/ev.
Next assume z = v. The vertex v must be adjacent to at least one more vertex x , w

in G1 (else G1 is not 2-connected or e is multiple). Then we see with this choice of
x in Definition 5.1 that the vertices in G2 except v lie on the opposite side to e. Thus
building G/ev does not affect G2.

Finally assume z , v, but z is adjacent to v. If z = w is the other end of e, then in
G/ev all edges incident in G2 to w are redirected to v with the same marking, and so
G2 is not affected. If z , w, then choosing z for x in Definition 5.1, we see that all
vertices of G2 except z are on the opposite side to e. Thus nothing of G2 is affected by
building G/ev. �

7. Outline of applications

We conclude by briefly outlining the context in which the above problem was
encountered.

Beside the standard presentation of the braid groups using Artin’s generators σi,
another presentation has been studied for some time [BKL] by means of an extended
set of band generators (and their inverses)

σ±1
i, j = σi . . . σ j−2σ

±1
j−1σ

−1
j−2 . . . σ

−1
i

for 1 ≤ i < j ≤ n. (Note that σi = σi,i+1.)
A representation of a braid β, and its closure link L = β̂, as word in σ±1

i, j is called a
band representation. A band representation of β spans naturally a Seifert surface of
the link L: one glues disks into the strands, and connects them by half-twisted bands
along the σi, j. The resulting surface is called the braided Seifert surface of L.

A minimal genus Seifert surface of L occurring in the form of a braided
Seifert surface is called a Bennequin surface. This term was coined by Birman–
Menasco [BM] in honor of Bennequin, who had proved in [Be] that such surfaces
exist for 3-braid links on a minimal (that is, 3-strand) braid. It is known that not all
links (or knots) carry a Bennequin surface on a minimal braid.

Murasugi–Przytycki’s work (and its present correction) will be applied to obtain the
following result.

T 7.1. Any alternating knot of genus up to 4 or of at most 18 crossings:

(a) makes the Morton–Williams–Franks inequality (2.2) sharp (that is, an equality),
except if it is the Murasugi–Przytycki knot or its mutant;
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(b) satisfies Conjecture 3.5 (for at least one alternating diagram D); and
(c) carries a Bennequin surface on a minimal braid.

The proof uses, among others, a computer implementation of Murasugi–Przytycki’s
graph algorithm. Details will be explained in a subsequent paper.
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