
J. Austral. Math. Soc. 72 (2002), 181-197

FREE ALGEBRAS IN THE VARIETY OF THREE-VALUED
CLOSURE ALGEBRAS

M. ABAD and J. P. DIAZ VARELA

(Received 30 September 1999; revised 26 February 2001)

Communicated by B. A. Davey

Abstract

In this paper, the variety of three-valued closure algebras, that is, closure algebras with the property that
the open elements form a three-valued Heyting algebra, is investigated. Particularly, the structure of the
finitely generated free objects in this variety is determined.
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1. Introduction and preliminaries

In a paper of paramount importance titled 'The algebra of topology', McKinsey and
Tarski [12] started the investigation of a class of algebraic structures which they
named closure algebras. A closure algebra is an algebra (A; v, A, —, V, 0, 1) such
that (A; v, A, —, 0, 1) is a Boolean algebra and V is an additive closure operator, that
is, V is a unary operator on A that satisfies the 'Kuratowski axioms', for all x, y e A:

(1) V(0) = 0,

(2) x < V(JC),

(3) V(V(JC)) = V(JC),

(4)

Closure algebras have been extensively studied by several authors. Particularly,
Blok in an exhaustive and very deep work, developed in [4] the general properties of
the lattice of subvarieties of the variety of closure algebras.
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An important feature in the structure of a closure algebra is the set of open elements.
In a continuation of their work on closure algebras, McKinsey and Tarski showed in
[13] and [14] that the set of open elements of a closure algebra is a Heyting algebra.
Conversely, any Heyting algebra can be embedded as the lattice of open elements of
a closure algebra.

The present paper is devoted to a deeper investigation of a subvariety of the variety
of closure algebras, namely, the variety of three-valued closure algebras ^ r (see [7]).
This is the subvariety of those closure algebras such that the set of open elements form
a three-valued Heyting algebra.

The variety of monadic algebras is the largest variety of closure algebras whose
associated variety of Heyting algebras consists of Boolean algebras; the variety of
'three-valued closure algebras' studied in this paper is the variety of closure algebras
whose associated Heyting algebras of open elements belong to the variety generated
by the three-element chain. This last variety is the unique cover in the lattice of
varieties of Heyting algebras of the variety of Boolean Heyting algebras.

When investigating the structure of algebras in a given variety it is of particular
interest to find out what the finitely generated members are. In [4], Blok devotes a large
part of his work to obtain the closure algebra with one free generator, which shows
the difficulty of the problem (see also [5] and [6]). The main result in Section 3 is the
determination of the free finitely generated objects in the variety ^T. To this end, a
study of the variety ^V is carried out, paying particular attention to the determination
of simple and subdirectly irreducible algebras, as well as the characterization of
maximal subalgebras of subdirectly irreducible algebras. We also study the finitely
generated subdirectly irreducible algebras (Section 2).

Throughout this paper, ^Oi» ^ . ̂  and M will denote the equational classes of
all distributive lattices with 0 and 1, all Boolean algebras, all Heyting algebras and all
monadic Boolean algebras, respectively. If J^" is a class of similar algebras, the lattice
of congruences of an algebra A 6 JfT is denoted by Con(A). In general, for a variety
f and A, B e V, A <r B means that A is a ̂ -subalgebra of B. The subalgebra
generated by a part X of A e f is denoted by [X]y. Finally, the free algebra over a
finite poset G in V is denoted ¥y{G).

With the operators V and — we can define a new unary operator Q (interior
operator) by means of Q(x) = — V(—x), for all JC e A. This operator satisfies the
following conditions:

(5)

(6) x > Q(x),

(7) Q(Q(x)) = Q(x),

(8) Q(xAy)=Q(x)AQ(y).
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In addition, it is readily verifiable that the following properties hold:

(9) G(0) - 0,

(10) Q(Q(x) V QO0) = Q(x) V Q(y),

(11) if x<y then Q(x) < Q(y).

Closure algebras can be defined by means of the equations (5) to (8) and in that case,
by defining V(x) = — Q(—x) we obtain the closure operator satisfying equations (1)
to (4).

The equational class of closure algebras will be denoted by H?. These algebras
were named interior algebras by Blok in [4]. Other authors called them topological
Boolean algebras, but they were named Lewis algebras by Monteiro after the founder
of the S4 logic [11]. We will use the most traditional name of closure algebras, though
we will make use of the interior operator Q.

It is known that ^ and Jff are generated by their finite members, but neither of
these two varieties is locally finite ([1, 12, 13]).

If A € ^ , then Q(A) is a (0, l)-sublattice of A, and it is a Heyting algebra if we
define a —• b = Q(—a v b), for every a, b € A. If b e Q(A), b is said to be open.

Conversely, if A e 88 and L is a (0, l)-sublattice of A, then there exists a unique
interior operator Q on A satisfying properties (5) to (8) and such that L = Q(A) if
and only if for every a e A, the set (a] n L has a greatest element. In this case,
Q(a) = Max((a] n L) = \/{x e L : x < a}.

It is known that if L e J f , then the lattice Con(L) of congruences of L is
isomorphic to the lattice ${L) of all filters of L. If F e $(L), then the congruence 9
associated with F is defined by (a, b) e 9 4> a A u = b A u for some u e F.

If A e ^ and F is a filter in A, F is said to be an open filter if Q(x) G F whenever
x € F. It is known ([13]) that Con(A) is isomorphic to the lattice 3XA) of all open
filters of A, and it is not difficult to see that §(A) and $(Q(A)) are isomorphic. So
we have:

THEOREM 1.1 ([6]). LetAetf. Then Con(A) andCon(Q(A)) are isomorphic.

Recall (see [1]) that a Heyting algebra L is subdirectly irreducible if and only if
L = Lx © 1, with L| e J f and Li © 1 is the lattice obtained by adjoining a new 1
to L{.

The following corollary follows immediately from Theorem 1.1 and the above
remark.

COROLLARY 1.2. Let A ecg. Then A is subdirectly irreducible if and only if Q(A)
is subdirectly irreducible as a Heyting algebra, and hence, A is subdirectly irreducible
if and only if Q(A) = LX® 1, for some L, € 3V.
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2. Three-valued closure algebras

In this section we investigate subdirectly irreducible algebras and maximal sub-
algebras of subdirectly irreducible algebras in the variety ^j. Recall that a closure
algebra A is said to be three-valued if Q (A) is a three-valued Hey ting algebra, and
a three-valued Heyting algebra is a Heyting algebra (A, A, v, ->-,0, 1) such that
b = (-•a -*• b) A ((b -» a) —* b), for every a,b e A, where ->a = a -> 0 [16].

THEOREM 2.1 ([ 1, 2, 9]). The variety of three-valued Heyting algebras is generated
by the three-element chain.

The following theorem gives us an equational characterization of three-valued
closure algebras.

THEOREM 2.2. Let A e tf. Then, A e ^T if and only if for every b,a € A, the
following identity holds:

(12) Q(b) = (Q(-Q(a)) -> GOO) A ((Q(fc) -* Q(fl)) -+ Q(b)).

By a simple application of Jonsson's Lemma (see [10]) we see from Theorem 2.1
that the only subdirectly irreducibles in the variety of three-valued Heyting algebras
are, up to isomorphism, 2, the 2-element chain, and 3, the 3-element chain (see
also [16]). Then we can conclude:

THEOREM 2.3. Let A € ^ r - A is subdirectly irreducible if and only if either
Q(A) = {0,1} or Q(A) = {0, a, 1}.

Observe that the simple algebras in tf are the simple monadic Boolean algebras [17].
As a consequence of Theorem 2.1 we have the following characterization of the

ordered set of prime filters of an algebra in the variety of three-valued Heyting algebras.

THEOREM 2.4 ([16]). Let A be a Heyting algebra. Then the following are equiva-
lent:

(a) A is a three-valued Heyting algebra.
(b) Every prime filter of A is either maximal or minimal, and every prime filter is

contained in at most one maximal prime filter.

A variety V has the Fraser-Horn Property if there are no skew congruences on
any direct product of a finite number of algebras in y, that is, for all Au A2 € y,
every 9 e ContA, x A2) is a product congruence 0i x 92, 9t e Con(A,), i = 1, 2.
Every congruence-distributive variety has the Fraser-Horn Property. In particular, the
variety if r has the Fraser-Horn Property.
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If the congruence lattice of an algebra A has a unique coatom, then A is directly
indecomposable. A variety Y has the Apple Property if the converse holds as well
for all finite algebras; that is, if the finite directly indecomposables in "V are precisely
the finite algebras whose congruence lattices have a unique coatom. If A is a finite
directly indecomposable algebra in ^ r , then, from Theorem 1.1, Q(A) is directly
indecomposable as a three-valued Heyting algebra. So, from Theorem 2.4, Q(A) is
of the form 0 © B where B is a finite Boolean algebra. Then $(Q(A)) has a unique
coatom and so Con(<2(A)), and consequently Con(A), has a unique coatom. Hence
the variety ^T has the Apple Property.

The Fraser-Horn and Apple Properties, extensively studied in [3], will play an
important role in the determination of the free algebra over a finite poset in the
variety # r-

2.1. Maximal subalgebras In this subsection we determine the maximal subalge-
bras of the finite subdirectly irreducible algebras.

In the rest of the paper, a will denote the only non-trivial open element of any non-
simple subdirectly irreducible algebra. The finite non-simple subdirectly irreducible
algebra with k + I atoms, where there are k atoms preceding a and / atoms preceding
—a, will be denoted by Bt/ . Similarly, the simple monadic Boolean algebra with
k atoms will be denoted by Bt (or B*,o). A.a and A_a will be the sets of atoms
preceding a and —a, respectively. So, the set At(Bt/) of atoms of Bkh can be written
At(Bw) = AaUA_fl.

Recall that if A < ^ B, A, B finite, then A is determined by a partition P of the
set At(fl) of atoms of B. If s < k and t < I then, identifying isomorphic algebras,
B,, < y Bkl.

Next, we characterize maximal subalgebras of finite non-simple subdirectly irre-
ducible three-valued closure algebras.

Let M <cg B*,/. Consider two cases.
Case 1: a € M.

LEMMA 2.5. Let M <<g> Bi>( and a € M. M is maximal if and only if M is a
maximal Boolean subalgebra ofBkj.

PROOF. If M is not maximal as a Boolean subalgebra of B*,;, then there exists
M' <g BkJ such that M £ M' and M' ^ BM. Let JC e M'; then Q(x) e {0, a, 1}.
But {0, a, 1} c M', so Q(x) e M'. Hence M' <<g BM, a contradiction.

The converse is trivial. •

Case 2: a £ M.
Let PM be the partition of At(B*,,) associated to M, PM = U L I ^ M - (S - k + 0.

where Pl
M are the blocks of PM.
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LEMMA 2.6. P^ n Aa £ 0.

PROOF. If there would exist a block P'M such that P'MC\Aa = 0, and x{ is the atom
of M associated to the block P'u, then P'M c A_o and hence xt < —a. So — xt > a
and — xt ^ 1. Consequently, Q(—xt) = a e M, a contradiction. •

Observe that if M is a maximal subalgebra of B*j(, with a £ M, then [Af U {a}]gg =
[M U [a]]<g = B*,/. In addition, [a]<g = {0,a, —a, 1} is a ^f-subalgebra with
associated partition Pa = {Aa,A_a}, and [Af U (a}]<g> = [MU \a\<g\<g = [M U
[a]gg]<g = Bt,/. Since the partition associated to [M U [a]gg]<g is the intersection of
PM and Pfl, then for* e At(Bt,/) we have that either {JC} = P^nAaOT{x} = P^nA_ a .
From this we conclude that \P'M D Aa\ < 1 and that |Pjj, n A_a| < 1, thus | P ^ | < 2.
But if |Pjj,| = 2, then by the previous lemma, \Pl

M n Aa\ = 1 and |P^ n A_a| = 1. If
| P ^ | = 1, then |Pjj, D Aa| = 1 and | P ^ n A_fl| = 0.

Let M <<g BkJ and a i M. Then we have:

LEMMA 2.7. M is maximal if and only if for each block P'M the following conditions
are satisfied:

(i) |P^DAa| = l.
(ii) \P>l\ = lor\P>i\=2.

(iii) lf\Pl
M\ = 2 /Aen \Pl

M D A_a| = 1.

PROOF. If Af is maximal, the conclusion follows from Lemma 2.6 and the previous
remark.

For the converse, let W a subalgebra such that M £ M'. Then Pu properly
contains PM>. From the hypotheses there exists a block P'M such that P'M = P$, U Pfi,,
with Pfi, c A_a. Let xa the atom of M' associated to Pfi,. Then, xi2 < —a, so
-xa > a and xn # 1. Therefore Q(-xi2) = ae M'. So B*,, = [MU {a}]̂ > c Af'.
Hence Bt i / = Af', and Af is maximal. •

The following theorem gives us the number of maximal subalgebras of a non-simple
subdirectly irreducible algebra.

THEOREM 2.8. Let k > I, I > I be arbitrary. Then, in BtJ, there exist (*) maximal
subalgebras isomorphic to Bt_i;, Q maximal subalgebras isomorphic to Btt/_i. If
k > I there exist Vtj = k\/(k — /)! maximal subalgebras isomorphic to Bk.

PROOF. Let k, I be arbitrary and suppose that a € M. Then, by Lemma 2.5, the
partition PM has it + / — 1 blocks. That is, there exists a unique block P'M containing
two elements. We claim that P'M c Aa or P'M c A_a. To see this, suppose that
X = Pi, n Aa jL 0 and Y = P^ D A_a ^ 0. Since a € Af, [Af U {a}]^ = Af.

https://doi.org/10.1017/S1446788700003839 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003839


[7] Free algebras in the variety of three-valued closure algebras 187

X and Y are blocks of the partition associated to [M U {a}]<g>. Then X and Y are
blocks of PM, a contradiction. In these conditions it is easy to see that there exist (*)
partitions determining a maximal subalgebra isomorphic to B*_i;, and (̂ ) partitions
determining a maximal subalgebra isomorphic to Bt/_i. For k < I, observe that from
Lemma 2.7, there are no maximal subalgebras M such that a & M. Suppose that
k > I. From Lemma 2.7, if PM is the partition associated to a maximal subalgebra
M such that a & M, then each block has either a single element (necessarily in Aa),
or two elements, one of them in Aa and the other one in A_a. Then each partition
defines a one-to-one mapping g from A_a to Aa in the following way: for x e A_a,
g(x) is the element v e Aa such that v belongs to the same block P'M as x. Since it is
clear that there are k blocks in PM, it follows that there are Vkj maximal subalgebras
isomorphic to B*. •

2.2. Finitely generated subdirectly irreducible algebras Now we are going to
determine the largest simple algebra and the largest non-simple subdirectly irreducible
algebra which are homomorphic images of the free three-valued closure algebra F(G)
over a given poset G. We need the following results about the free Boolean algebra
over a poset.

DEFINITION 2.9. For a poset G, the Boolean algebra B(G) is said to be free over G
provided the following conditions hold:

(J31) G c B(G) and [G]g = B(G).
(B2) Given an order-preserving mapping / from G to D, with D a Boolean algebra,

there exists a homomorphism h from B(G) to D such that h\c = f.

The following is a construction of B(G) (see [15]).
For a poset G, consider the set E = 2[G] of all order-preserving mappings from G

into 2. For i e G, let G, = {/ 6 E such that/ (/) = 1}. Let B be the field of sets
generated by # = {G, : / e G) in £»(£) = 2£ (£»(£) = the set of subsets of E). It
can be proved that Bis the free Boolean algebra over the poset <£ = {G, : i € G} = G.

THEOREM 2.10. Let G be a finite poset. Then B(G) = 2l2'c'l = & (2!C)).

Let B* € f̂ r be a subdirectly irreducible algebra generated by a poset G* which is
a homomorphic image of G. Let / : G -*• G* be an onto order-preserving mapping.
Then / can be extended to a homomorphism of closure algebras / : F(G) ->• B*.
Then

[G*]tf = B*.

If B* is simple, B* = [G*]gg. Thus the following theorem holds.
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THEOREM 2.11. Let B* € *&T a simple algebra that is a homomorphic image of
F(G). Then \B*\ < 2l2'cll = |B(G)|.

If B* is not simple, then B* = [G* U {a}]@. Indeed, Q(B*) = {0,a, 1} c
[{a} U G*]@. Hence B* = [[{a} U G*]^]<g = [{a} U G*]@. So we can conclude
that

|B*| < 2l2ic'+"l = |B(G* + 1)|,

where G* + 1 is the cardinal sum of the poset G* and the 1-element poset.
We show that a non-trivial relation must hold among a and the elements of G*, that

is, G* U {a} is not a free generating set for B*, if we just consider the Boolean structure
of B*. In other words, B* ^ B(G* + [a}), and therefore |B*| < |B(G* + {a})\. To
see this, first observe that a e Q([G*]gg). Indeed, suppose that a g Q([G*]gg), then
Q([G*]^) = {0,1} and consequently [G*}@ = [[G*]^]<£> = [G*]<£> = B*. Thus
a i B*, a contradiction. Therefore, Q([G*]@) = {0, a, 1}.

Let ~G* = {-g : g e G*}. It is known that [G*]@ = [G* U ~G*]@0l. If we put

&* = G* U G*, then every element y € [G*]g§ can be written

where H, c <£*.
In particular, since a € Q([G*]<%) it follows that there exists * € [G*]^, x / 1,

such that (2(;t) = a. Then

a=Q(x)=Q(f\\/y)=/\Q(\/y).

But a is open meet-irreducible, so a = ( ) (V J e / / •x)> ^or s o m e " ^ ^*- Then

(13) a<\Jx£\.

Let H* = H U {g, e G* :gt & H and - g,- £ / / } . Then

(14) a < \ / JC.

It is clear that if g, € G* then either g, € H* or - g , e H*, and, in addition, if x 6 //*
then — x &. H*. Hence H* is a generating set for [G*]<%.

The above inequality (14), will allow us to prove that G* U {a} cannot be a free
generating set for B*, as a Boolean algebra. Indeed, let h : G* U [a] —> B(G*) x 2
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be given by h(g) = (g, 0), g e G \ and h{a) = (0, 1). Then h(.a) £ V n(G), so h
cannot be extended over B(G* + {a}).

Hence we have that \B*\ ^ 2l2'c+"l = |B(G + 1)|, and consequently, we obtain the
following theorem.

THEOREM 2.12. If B* is a non-simple subdirectly irreducible algebra which is a
homomorphic image of the free algebra F(G), then \B*\ < 2l2ic+"l~1.

Let us see that the upper bound given in this theorem is the best, that is, that
there exists a non-simple subdirectly irreducible algebra which is generated as closure
algebra by a homomorphic image of G and whose cardinality is the number given in
Theorem 2.12.

Let G + 1 = {gu g2 gn] U [gn+i] be a free generating set for B(G + 1). Let
x = V"=i' gt- It is clear that x is a dual atom. Let B* = B(G + \)/Fx, where
Fx is the principal filter generated by x. Let k : B(G + 1) ->• B(G + l)/Fx,
the natural homomorphism. Then 1 = k{x) = k(\/1*l g) = V7=i' *(&)• T ^
V"=i *(**) > ~Hgn+l) = k(-gn+1).

In B* we consider as a nontrivial open element a = k(—gn+1). Let Gn = {k(gi),

k(g2),.-. ,k(gn)}. Since V7-,«» S *. « follows that V"=, *(**) $ 1- So 1 >

fi( V7-i *(*')) ^ G(*(-*-+i)~) = «• Therefore, Q(\Jn
M k(gi)) = a.

Hence, we can conclude that a 6 [Gn]<g>. Then

5* = [k(G)]# = [Gn U \a\\gg = [Gn]<#.

So fl* is a non-simple subdirectly irreducible algebra with a generating set Gn which
is a homomorphic image of G, and | 5 * | = 2|2'c+1|/2 = 2|2'c+"'~1. Then we have proved
the following theorem.

THEOREM 2.13. There exists a non-simple subdirectly irreducible algebra B* which
is a homomorphic image ofF(G) and \B*\ = 2'2 + ' ' " ' .

Now, let Fa be the open filter generated by a e B*. Then B*/Fa is simple and is a
homomorphic image of F(G). Then, by Theorem 2.11, \B*/Fa\ < 212'0'1, that is, there
are at most |2[G)| atoms preceding the open element a in B*. If h : B* -> B*/Fa is
the natural homomorphism, h(G*) is a generating set for B*/Fa as a Boolean algebra.
In the same way as for non-simple subdirectly irreducible algebras, it can be seen that
h(G*) is not a free generating set for B*/Fa, that is, B*/Fa cannot be isomorphic
to the Boolean algebra B(G). Therefore, \B*/Fa\ < 212"7'1-1, that is, the number of
atoms preceding the element a in a non-simple subdirectly irreducible algebra is at
most |21G1| - 1.

If /„ is the principal ideal generated by a in B* and q : B* -*• B*/Ia is the natural
Boolean homomorphism, then q(B*) = [q(G*)]gg. Hence \B*/Ia\ < 2|2'CI'. That

https://doi.org/10.1017/S1446788700003839 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003839


190 M. Abad and J. P. Diaz Varela [10]

is, there exist at most |2[G)| atoms not preceding the open element a (preceding the
element —a).

THEOREM 2.14. Let B* be a non-simple subdirectly irreducible algebra which is
a homomorphic image o/F(G). Then B* = BkJ with 1 < k < |2[G1| - 1 and
1 < / < |2[G1|. In addition, for every 1 < k < \2[G]\ - 1 and 1 < / < |2[G1|, every
algebra B* = Bt,; is a homomorphic image of¥(G).

PROOF. From the construction of B(G + Y)/Fx (x a dual atom), from the previous
theorems and remarks, and since |2[G+1'| - 1 = |2[G) x 2| - 1 = |2[G1| - 1 + |2[G]|, it
follows that

B(G+l)/Fx =

The second part of the theorem is immediate, since every algebra B*,;, with 1 < k <
\2lG]\ - 1, 1 < / < |2[G)|, is a^-subalgebraof B|2[C1|_,,|21C,|. D

For example (see [4, page 129, Lemma 6.1]), if G = [gi], the subdirectly irreducible
algebras which are homomorphic images of F(G) are, up to isomorphism, the algebras
listed in the following figure, where the open elements are highlighted. We also
represent the corresponding dual spaces.

B,

3. Free algebras over a poset

The aim of this section is to give explicitly the structure of F(G) = Fyr(G), the
free algebra over a finite poset G in the variety #r -

Since the finitely generated subdirectly irreducible algebras in ^T are finite and
there are only finitely many n-generated subdirectly irreducibles for every natural
number n, it follows that tfj is a locally finite variety. Then the algebra F(G) is finite,
and consequently, every meet-irreducible open filter Mp of F(G) is generated by a
join-irreducible open element p.

If V is a variety, the variety % generated by the finite simple algebras in V is the
prime variety associated with 'f (see [3]).
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In [3, Corollary 7.2], Berman and Blok showed that if "¥ is a locally finite variety
with the Fraser-Horn and Apple Properties, which, in addition, has the property that
every subalgebra of a finite simple algebra is a product of simple algebras, then the
number of directly indecomposable factors of F^o (G) equals that of Fy (G). They also
proved ([3, Theorem 7.3]) that if a given finite simple algebra A is a direct factor of
the free algebra in %, there exists a directly indecomposable factor of Fy (G) having
A as homomorphic image. These results can be applied to the variety if T, as this
variety has the Fraser-Horn and Apple Properties, and, in addition, every subalgebra
of a finite simple algebra is simple.

The prime variety if r o ' s the variety JK of monadic Boolean algebras. It is known
([17] and [8]) that the free monadic Boolean algebra F^g(G) is given by

|2'C1|

where (*2
k ') is the number of (monadic) epimorphisms from F^r(G) onto B*, that is,

the number of (Boolean) epimorphisms from B(G) onto Bk, and |2[G11 is the cardinal
number of the greatest simple monadic algebra generated by a copy of G.

So, from [3, Corollary 7.5], the algebra F(G) has a factorization as

F(G) =

where each A* has as homomorphic image a factor of the free monadic Boolean
algebra F^(G).

We will now determine the structure of the factors Ak of F(G).
Let J (G(F(G))) be the set of join-irreducible elements of Q(F(G)). Observe that

Mp is maximal (minimal) if and only if p is minimal (maximal) in ^ {Q(F(G))). Let
m, UJl respectively denote the set of minimal and maximal elements in ^ (Q(F(G))).
Then

pern

where Cp = {q 6 <J/(G(F(G))) : q > p). Every Cp looks like the diagram in the
following figure (Theorem 2.4):
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Then

^ ]"[£>„,
pem

where Dp is the distributive lattice such that J?{DP) = Cp. Thus the elements
p* = V«ec 9 a r e complemented, the complement coincides with the complement in
F(G) and is given by

-P- = V «•
9€,/(C(F(C)))\C,

In particular, — p* is open.
We establish the following simple but useful lemma.

LEMMA 3.1. Let x e At(F(G)). Then there exists p € ,/(£?(F(G))) suc/t f/w/
x<p.

PROOF. Letp € m. If x < q for some q € Cp, then the lemma holds. Suppose that
x £ 9, for every q e Cp. In particular, x £ p*. Then* < -p* = V,e</(G(F(G)))\c, 9-
Since x is an atom it follows that x < q for some ^ e / ( C ( F ( G ) ) ) \ Cp. •

The above lemma shows that the set P = {At(p*)}p€m, where At(p*) = [x €
At(F(G)): JC < p*}, is a partition of the set At(F(G)).

Let Fp. and Ip. respectively denote the principal filter and principal ideal generated
by p*. Then we have the following theorem.

THEOREM 3.2. F(G) =% n p e m F(G)/F,. =

If p , q e tn are such that Ip = / , = Bt, then there exists an automorphism a of
F(G) such that a(p) = q. Then a(Cp) = Cq, that is, a(p*) = q*, and consequently,
/p. = /,.. It is not difficult to see that the algebras Ip>, 1 < k < \2[G]\, are the directly
indecomposable factors At of F(G). Then

THEOREM 3.3. F(G) = nl l i

Our next objective is to determine the number of elements of F(G).
Let p € ^(G(F(G))) . If p e m , then F(G)/MP = Bk and thus, there exist *:

atoms preceding p. If p e 971, then F(G)/MP = B*,,. Thus there are k + I atoms
preceding p. In addition, k of these atoms precede the only element q em such that
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If we put mk = [p e m : F(G)/MP = Bk) and fOTt,, = {p e Wl : F(G)/MP =
B u }, then the number of atoms of the free algebra is

|At(F(G))|=

From what we have seen above,

Now, given Jt, /, 1 < k < \2[G]\ - 1, I < I < \2[G]\, (see Theorem 2.14), let
Ep(F(G), BM) be the set of all epimorphisms from F(G) onto Bt , , and let Aut(Bt/)
be the set of all automorphisms of B t ; . Then it is readily verifiable that

If h € Aut(Bt-/), then h is a Boolean automorphism such that h(a) = a, and thus
h is characterized by the bijections h\Aa : Aa —• Aa and h\A_a : A-a -*• A_o. Hence

|Aut(Bw)|=t!/L

Let us compute now the numerator of (15). Let G = [gu ...• , gn). Let G* =
[g\,... , g*n] be an isomorphic copy of G, and G* +1 = G* + {£;+,}. Let Ep*(B(G* +
1), Btt/) denote the set of all Boolean epimorphisms H from the free Boolean algebra
B(G* + 1) onto BkJ, such that H(g*+l) = a.

Consider two cases:
I. k < I.

In this case the open element a of BkJ belongs to every maximal subalgebra of B M

(see the proof of Theorem 2.8). Let

yj; : Ep(F(G), Bw) - • Ep*(B(G* + 1), B*,,)

be the mapping defined by x/f(F) = H, where H is the extension of the mapping
h such that h(g*) = F(g,) for every i ^ n + 1 and h(g*+l) = a. We have that
H(B(G* + 1)) = [H(G* + l)]g = [F(G) U {a}}g = Bkl, so H is onto and
consequently, H e Ep*(B(G* + 1), BM). It is clear that f is one-to-one. To
see that f is onto, let H e Ep*(B(G* + 1), BM). Observe that H(G*) £ B for
any maximal subalgebra B of B t / . Indeed, if we suppose that H(G*) c B for
£ a maximal subalgebra of Bt / , then, since a € B, [H(G*) U [a}]gg c B. But
B,,, = H(B(G* + 1)) = [H(G') U {#(*;+,)}]# = [»(G*) U [a}]@, which is a
contradiction.
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As a consequence we have that [H(G*)]<g = Bkt.
Now, let F be the extension of the mapping/ such that/ (g,) = H(g*), 1 < i < n.

Then F e Ep(F(G), Bw) since [H(G*)]<# = [F(G)]cg = BM, and it is clear that
r/f(F) = H. Therefore

| Ep(F(G), B u ) | = | Ep*(B(G* + 1), Bw)|,

and this is the number of injective functions/ : At(BM) - • At(B(G* + 1)) such that
f(Ak) c At(gn+1) and/(A_a) c M(-gm+l), and since At(gn+l) = 2™, it follows
that

|Ep(F(G),Bu)| =

II. k > /.
In this case (see Theorem 2.8) there exist maximal subalgebras in B*,/ which do not

contain the open element a. Let H 6 Ep*(B(G* + 1)). If B is a maximal subalgebra
of Bti/ such that a e B, then from case I, H(G*) £ B.

If £ is a maximal subalgebra of Btt/ such that a $ B and H(G*) C B, we claim
that [H(G*)]g = B. To see this, suppose that [H(G*)]g £ B. Then, in the
partition P associated with [H(G*)]<g there exists a block P, such that \P,i n Aa\ = 2
or \Pi D A_a| = 2. Since the partition associated with [[H(G*)]<g U {a\]gg is
Pn{Aa,A_a}, it follows that BkJ £ [[H(G*)]gU{a}]& = [H(G*)U{h(g*n+l))]a,
a contradiction.

From this we conclude that there exist H e Ep*(B(G* + 1)) which do not satisfy
the condition [H(G*)]<g> = BM. If H is such a homomorphism, then H\[G.} :

[G*]ijg -> B is an epimorphism, with B maximal subalgebra and a £ B. Since
[G*]@ = B(G) and 5 = Bt, then for each maximal subalgebra B with a £ B, there
exist VJ2ici|,t homomorphisms H such that [//(G*)]<g* ^ Bkt. Hence

| Ep(F(G), B»,,)| = | Ep*(B(G* + 1),

- \[H e Ep*(B(G* + 1)) :

k\

Consequently, if we put (*) = 0, whenever / > k, (*) = it!//! (k — /)!, whenever
/ < *, and M = |2'G'|, then |9ttM| = Q ((^) - (*)).

The following theorem gives the cardinality of F(G).

THEOREM 3.4. |F(G)| = 2M(22w~'-3"~'>.
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PROOF. From the previous considerations it follows that

l<k<M

In addition,

E *( ) =M2M~l a*"1

l<k<M ^ ' \<k<M-\

Thus

" E'(T)-
\<k<M-\

= M2M~X + (2M - 2)M2M~l - MQM~l - 2M~y)

= M (2 — 3 ). rj

From this theorem and the previous remarks, it is possible to evaluate the number
of join-irreducible elements pkj e 971*,/, for k and / given. Nevertheless, for pk e m*
it remains to evaluate how many covers it has in ^((?(B(G))), since this will allow
us to determine the algebraic structure of F(G).

From Theorem 3.3 and (16) the closure algebra /Pj. has

( ( T ) ( / ) ) = k
I</<M ^ ' V / /

atoms, with M = |2[G]|. In addition, Q (lp;) = 1 0 BSk, where BSt is the Boolean
algebra with 5* = £i<;<M ((") - (*)) = 2M - 2* atoms. From this we conclude

COROLLARY 3.5. £>(F(G)) = f]^.i (1 © BSk)^\

Let F(r) be the three-valued closure algebra with r free generators. This a special
case of the free algebra over a poset, where the poset is an antichain. Then

THEOREM 3.6. F(r) = n L 7 , ? ^ lF(r>l = 22'<22r+'"'-3yi) and C(F(r)) =

PROOF. It is an immediate consequence of Corollary 3.5, Theorem 3.4 and Theo-
rem 3.3. •
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The following example was also worked out in [4].

[ 16]

EXAMPLE 3.7. Let F(l) the free algebra with one generator, and let

Q(A) Q(B)

Then F(l) = A2 x B and G(F(1)) = Q(A2) x Q(B) = ( 1 0 B2)
2 x S,. The dual

space of F(l) looks like the following diagram:

c
A generator is given by g — [2, 3,5, 8,9), and the atoms can be obtained from g in
the following way:

• {1} = (V(G(*)) A -g) A -((V(G(«)) A -g) A V(£ A V(G(«)) A V ( -

{4} =
{5} = A V ( -

{7} = (V(s) A

{8} = (g A

-^) A V(^ A V(Q(*) A V ( -
A -V(V( j ) A -£));

-g)» A (-g A V(G(-«)));
) A -((V(g) A V( - j ) ) A

A
A -
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