TRACES OF MATRICES OF ZEROS AND ONES
H. J. RYSER

1. Introduction. This paper continues the study appearing in (9) and
(10) of the combinatorial properties of a matrix A4 of m rows and # columns,
all of whose entries are 0’'s and 1’s. Let the sum of row 7 of 4 be denoted
by 7; and let the sum of column j of 4 be denoted by s;. We call R = (r4, ...,

7wm) the row sum vector and S = (sy1,...,s,) the column sum vector of A. The
vectors R and S determine a class
(1.1) A=AR,S)

consisting of all (0, 1)-matrices of m rows and # columns, with row sum
vector R and column sum vector S. The majorization concept yields simple
necessary and sufficient conditions on R and S in order that the class ¥ be
non-empty (4; 9). Generalizations of this result and a critical survey of a
wide variety of related problems are available in (6).

Consider the 2 by 2 submatrices of 4 of the types

10 01
Al—[o 1] and Ag— [1 0].

An interchange is a transformation of the elements of A which changes a
minor of type 4, into type 4., or vice versa, and leaves all other elements
of A unaltered. The interchange theorem (9) asserts that if 4 and 4* belong
to 4, then A is transformable into A* by interchanges.

The term rank p of A is the order of the greatest minor of 4 with a non-zero
term in its determinant expansion (8). This integer equals the minimal number
of rows and columns which contain collectively all of the non-zero elements
of A4 (7). Now let p be the maximal and s the minimal term rank for the
matrices in 9. The interchange theorem implies the existence of a matrix 4
in 9 of term rank p (9). Here p is an arbitrary integer in the interval

(1.2) p < p<p

Lets, = (1,...,1,0,...,0) be a vector of n components, with 1’s in the
first 7, positions and 0’s elsewhere. The matrix

(1.3) i-=
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is called maximal, and A is the maximal form of A. Suppose that the com-
ponents of R and S are positive. Define

.R/=(1’1—1,...,7’m‘—].)

and let A’ be the maximal matrix of m rows and # columns with row sum
vector R’. Let the column sum vector of A’ equal

S =G, . .., 8.

Renumber the subscripts of the column sum vector S = (s1,...,s,) so that
S1 2> ... > Sy
Define
sh=s;,—1 G=1,...,n),
50 =so =0,
and let
k
(1.4) M= max<z (sh — §i)> (B=0,...,n).
=0
One may prove (10)
(1.5) p=m— M.

A simple formula for 5 analogous to (1.5) for g does not appear to exist.
However, Haber in a forthcoming paper obtains an algorithm that yields an
effective procedure for the determination of 5 (5).

Throughout the discussion we suppose that 2 is non-empty and that

R=(ry,...,7) and S = (s1,...,s,) satisfy
(16) 71>...>7’m>0,
(1.7) S1> ... 85 >0.

We call the above R and S and the associated U of (0, 1)-matrices normalized.
Term rank is invariant under permutations of rows and columns. Thus normal-
ization does not restrict this concept. Indeed, formula (1.5) for g actually
requires a normalized S.

For 4 = [a,,] in A we define the trace of 4 by

(18) tr(A) = Zjl a;iq,
where
(1.9) e = min(m, n).

Fulkerson has recently investigated feasibility conditions for the existence
of a (0, 1)-matrix of order # with specified row and column sums and 0 trace
(3). He utilizes the theory of network flows (1;2;4) and obtains an especially
simple criterion for the case in which 9 is normalized (3). Let & be the maximal
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and ¢ the minimal trace for the matrices in the normalized ¥. In the present
paper we develop a trace theory for ¢ and ¢ analogous to the term rank theory
for 5 and p. The requirement of positive components on R and .S is without
loss of generality. The ordering of the components in accordance with (1.6)
and (1.7) does impose a restriction. But this is necessary in order to obtain
conclusions of the uncomplicated type to be described.

Let A be in the normalized 2 and write

L) R

where W is of size ¢ by f (0 < e < m;0 < f < n). For an arbitrary (0, 1)-
matrix Q, let No(Q) denote the number of 0’s in Q and N;(Q) the number
of I'sin Q. Let

(1.11) ter = No(W) + N1(2)
(e=0,...,m;f=0,...,n)

and define

(1.12) T=T[yl (=0,...,m;f=0,...,n).

T is called the structure matrix of the class U. Its elementary properties are

developed in § 2. Section 3 yields explicit formulae for ¢ and ¢ in terms of
the entries of T:

(1.13)

Qi

= min {t,; + max(e, f)}
e f

(1.14)

N

= max {min(e,f) - tef}
e.f

(e=0,...,m;f=0,...,n).

Matrices with an unusually simple block decomposition are shown to exist
for the case of maximal and minimal trace, and these matrices play an essential
role in the derivations of (1.13) and (1.14). Section 4 stresses similarities and
differences in the behaviour of trace and term rank. The paper concludes with
the determination of the domain of intermediate values for the traces o of
the matrices in . This usually consists of all integers in the interval

(1.15) <o <a.

But certain classes 9 exclude ¢ + 1 and others exclude ¢ — 1.

2, The structure matrix. Let 4 belong to the normalized class 9 = A
(R, S) described in § 1 and write

WX
(2.1 A—I:Y Z}’
where Wisof size e by f (0 < e < m; 0 < f < n). Let
(2.2) T = [te/] e=0,...,m; f=0,...,n)
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denote the structure matrix of . This means that

(2.3) tey = No(W) + N.1(2)
(e=0,...,m; f=0,...,n).

where No(WW) denotes the number of 0’s in W and N;(Z) the number of 1's
in Z. It follows at once from (2.3) that

(2.4) ty=e + (Ferr+ ...+ ) — (1 + ...+ s/
(e=0,...,m; f=0,...,n).

Thus the structure matrix is independent of the particular choice of A4 in .
Note that if

(25) T = ;/\71(44) =71 + e + Ym,y
then the first row and column of 7" are given by

tOf:T—(Sl‘l“...“'Sf),

(2.6)
to=717— (ri+ ...+ 7).

The structure matrix has a number of interesting properties that give
insight into the combinatorial behaviour of . Its entries are, of course, non-
negative integers and its size is m + 1 by = 4+ 1. For notational convenience
we number the rows of a matrix of these dimensions from 0 through m and
its columns from 0 through #. Let E; be the triangular matrix of order & 4 1,
with 1's on and below the main diagonal and 0’s elsewhere. Let E.” denote
the transpose of E,, and number the rows and columns of E, and E,” from
0 through k. Let S be the m by # matrix of 1’s. Then

T — 8 —Sn
—7

2.7 E, El'=1.

—Vm
For the eth row vector of the product of the first two matrices on the left
side of equation (2.7) is

o1+ oo F 7, —s1+e, ..., — s, + ).
If this row is multiplied by the fth column of E,7, then we obtain
(2.8) of + (Pey1+ ..o Frw) — (14 ...+ s)).

But by (2.4) this is £,;.
If in (2.4) we replace f by f + 1, then

(29) te_f+1=ef—|—e—|— (Te+1+‘..+1’m) —_ (81+...+S/+1)
(e=0,...,m; f=0,...,n—1).
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By (2.4) and (2.9),

(2.10) tepb1 = e+ € — Sy
(e=0,..,m; f=0,...,n—1).

Similarly, we may deduce

(2.11) teriy = bey +F — 7enr
(e=0,...,m—1;,1f=0,...,n).

The recursions (2.10) and (2.11) are useful in constructing 7" from a given

R and S.
From (2.10) we see that the eth row of 7" may be written in the form
(2.12) (teoyteo + € — S, ter+ € — S2yo oo ton1 + € — Su).
S is normalized so that by (2.12), if e < s,, then
(2.13) beo > ter > oo > tens
and if e > s;, then
(2.14) to <t < oo < Lon.
On the other hand, if s, < e < 51, then there must exist an integer f(0 < f < n)
such that
(2.15) fo >t > oo >ty <tosr < ... < lon

The columns of 7" have an analogous monotonic behaviour.
The following numerical example affords a simple illustration of the pre-
ceding remarks:

R=(43,221), S = (44,211),
12 8 4 2 1 0
8 5 2 1 1 1
|53 11 2 3
=13 21 24 %
1 113 6 9
0 1 2 5 9 13

3. Maximal and minimal traces. Let ¢ be the maximal and ¢ the minimal
trace for the matrices in the normalized class . In this section we develop
simple block decompositions for the matrices of maximal and minimal trace
and use these decompositions to derive (1.13) and (1.14). We begin with an
elementary property of the trace function for the class .

THEOREM 3.1. Suppose the normalized A contains a matrix of trace o. Then
there exists an A = [a,s] in U of trace o with the 1's in the initial positions on
the main diagonal
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(31) (111=...=(1M=1,

Qog1o01 = o0 =Qee = 0 (e = min(m, n)).
For suppose that we have an 4 in ¥ of trace ¢ with

(32) a1 = ... = Qg 1,e-1 = 1 (6 - 1< 0‘),
Qoo = 0.

It suffices to show that it is possible to transform 4 by interchanges into a

matrix of trace ¢ with the e leading diagonal elements equal to 1. Now there

must exist an integer { > ¢ such that a,, = 1. Suppose that

(3.3) Aoy = Ay = 0.

Since 7, > 7, and s, > s, there exist integers # and » such that a,, = 1,
ay, =0 and a,, = 1, a;,, = 0. We apply an interchange involving positions
(e, 1), (e,9), (4, v), (4 t), and follow this by an interchange involving positions
(e, ), (e, 1), (u,1), (u,e). This gives a 0 in the (¢, t) position and a 1 in the
(e, e) position. The other diagonal elements are not altered. The remaining

cases
(3.4) Qer = Gy = 1,
(3.5) Aoy = 1, a; = 0,
(3.6) G = 0, @ =1,

are disposed of by similar arguments.
We turn now to a study of the maximal trace ¢ for matrices in the class 9.

THEOREM 3.2. Let &  min(m, n). Then there exists a matrix A of trace &
in the normalized N of the form

S * *
3.7 A-=|* 0 0
* 0 0

Here S is a matrix of U's of specified size e by f (0 < e < 6;0 < f < 5). The
matrix O is of size g by h and has 1’s in the main diagonal positions of A and
0’s 1n all other positions. Moreover,

(3.8) et+g=f+h=5s.
The Q's denote zero mairices.

Consider a matrix 4 in U with the ¢ 1’s in the initial positions on the main
diagonal. We have & > 0. The block in the lower right corner of size m — &
by n — & must be a zero block. For the row and column sum vectors are
normalized and if the block contained a 1, then a suitable interchange would
increase 6. Now the matrix 4 may be selected to be of the following form:
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Sl * Rl
(3.9) A=|* * 0
C: 0, O

Here 0 is the zero block of size m — & by » — &, 0; and 02 are zero blocks,
R; has at least one 1 in each row, and C; has at least one 1 in each column.
For let us consider two vectors X; and X, from among the first ¢ rows of 4
and let the entries of these vectors total x; and xs, resepctively. Let X; have
0’s in its last » — & positions and let X, have a 1 in at least one of these
positions. Suppose X; is above X, in 4. If x; > x», then we may apply an
interchange involving X and X, that does not shift a 1 on the main diagonal
and places a 1 in one of the last » — & positions of X;. If x; = xs, we may
still apply the interchange and place a 1 in one of the last # — ¢ positions
of X;. However, in exceptional cases a single interchange may be available
for this purpose and this may force a reduction in trace to ¢ — 1. But if this
is the case, then a second interchange confined to the first ¢ columns restores
trace &. This procedure yields the blocks R; and 0; of (3.9). Next we work
on the columns and in the same way. Again a single interchange may be
available and force a reduction in trace to ¢ — 1. But under these circum-
stances there is always available a second interchange confined to the first &
rows and columns that regains trace ¢. This is the case since otherwise an
interchange exists that restores the 1 to the main diagonal and places a 1 in
the block 0, contradicting the maximality of &. This gives us a matrix of the
form (3.9).

Now let .S; of (3.9) be of size & by f. S; must be a block of 1’s, for other-
wise we could increase 3. An 4 of the form (3.9) with fixed & and f we call
reduced. The & 1's on its main diagonal we call essential 1’s. All other 1’s are
called unessential. Without loss of generality we may assume & < f.

We now consider a reduced 4* in U of the form

Si | S| YV R
(3.10) A*¥ = X Z | 0y
Cl ! 02 0

Here S, is a block of 1’s of size & by f* — f with f* — f maximal in 4*. Among
all reduced 4 in A we select that A* with its corresponding f* — f minimal.
We must allow the case f* — f = 0. But if the minimal f* — f > 0, then .S,
is a block of 1’s that appears in all of the reduced 4 in . If ¥ is not present,
then (3.7) holds with & = 0. Suppose then that Y is present. Then our 4*
has a 0 in the first column of Y. If the block Z contains no unessential 1,
then (3.7) holds with f = f*. Suppose, therefore, that an unessential 1 appears
in the (s, f) position of Z, where s is maximal in Z. If ¢ = 1, then there is a
0 in column ¢ of Y. Suppose that ¢ # 1 and let the (s, 1) position of Z contain
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a 0 or an essential 1. If column ¢ of ¥ contains only 1’s, then we may per-
form an interchange using unessential 1's and the 0 in column 1 of ¥ to obtain
a 0 in column ¢ of ¥. We henceforth require 4* to have a 0 in column ¢ (but
no longer column 1) of V.

The preceding remarks imply that the entries in row s of X must be 1’s.
For if this is not the case then a single interchange gives a reduced .4* with
a 0 in S,, contradicting f* — f minimal, or else two interchanges place a 1
in 0, contradicting ¢ maximal. Suppose that X has a 0 present in its (u, )
position, where # < s. Then we may apply an interchange involving this 0
and the 1 in the (s, 2) position of X. If this interchange does not involve an
essential 1, then a second interchange involving the unessential 1 in the
(s, t) position of Z introduces a 0 into S; or Sp. This leads us to the same
contradiction as before. Suppose then that the interchange involving the 0
in the (#,2) position and the 1 in the (s,v) position of X does involve an
essential 1. Consider the case s < f* — €. Then a second interchange involving
the unessential 1 in the (s, {) position of Z regains trace ¢ and introduces a 0
into .S; or S,. This is again a contradiction. If s > f* — ¢, then the second
interchange involving the unessential 1 in the (s, {) position of Z introduces
a 0 into S; or S,. However, the trace of the matrix upon completion of this
interchange remains at 6 — 1. But then we may apply a third interchange
involving rows # and s of Z and regain trace ¢. Thus in all cases there is no
0 present in the (u,v) position of X, where u < s. This gives a matrix of
the form (3.7) and completes the proof.

THEOREM 3.3. The maximal trace G for the mairices in the normalized N is
given by

(3.11) & = min {t,; + max(e, f)}
e f
(e=0,...,m;f=0,...,n).

Let A4 be a matrix in I of trace & with the & 1’s in the initial positions on
the main diagonal. Let .1 be subdivided into the four blocks W, X, V, Z of
(2.1) with W of size e by f. Now for the matrix 4 under consideration it is
clear that

(3.12) Ni(Z) > 6 — max(e, f)
(e=0,...,m; f=0,...,n).
But No(W) > 0 so that
(3.13) tey + max(e, f) = No(W) + Ni(Z) + max(e, f) > &
(e=0,...,m; f=0,...,n).

Suppose that ¢ # min(m, #n). Then we may specialize our A to the .1. of
Theorem 3.2. The submatrix S of 4. is of size ¢ by f. We may set W =S
and obtain No(W) = 0 and N,(Z) = ¢ — max(e, f). Thus if ¢  min(m, n),
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equality is attained in (3.13) for the dimension numbers ¢ and f of the sub-
matrix S of 4.. If ¢ = m, equality is attained in (3.13) for f = 0 and e = m.
If & = n, equality is attained in (3.13) for ¢ = 0 and f = #. This proves
Theorem 3.3.

We consider next the minimal trace ¢ for the matrices in .

THEOREM 3.4. Let the matrices in the normalized A have precisely u rows
and v columns composed entirely of 1's and let ¢ = max(u, v). Then there exists
a matrix Az of trace ¢ wn A of the form

* 0 U
* Ul

(3.14) A; =

o % %

Here S 1s a matrix of 1's of order ¢. Sy of size ¢ by s and S, of size t by ¢ are
matrices of 1's. S is a matrix with O's in the main diagonal positions of A; and
1's in all other positions. 0 is a zero matrix. (The cases s = 0 and t = 0 are not
excluded.)

Let A be a matrix in . If 4 is not square, then add zero rows at the bottom
or zero columns at the right and obtain a square matrix 4 of order max (m, n).
In 4 replace the 1's by 0’s and the 0’s by 1’s. This yields a matrix C called
the complement of A. The matrix C determines a class €. Let €' be a matrix
in € of maximal trace ¢,. Evidently

(3.15) ¢ = max(m, n) — .

The matrix € has row sums and column sums in ascending order. Moreover,
G, # max(m, n) — max(u,v), for otherwise ¢ = max(u,v). We now apply
Theorem 3.2 to the block in the lower right corner of € of size max(m, n) — u
by max(m, n) — v. This tells us that ¢ may be written in the form

0

o

*

(3.16) C=| 0

*

0
0

O

*|—|—
*

| S

The 0's denote zero blocks. The 0 in the upper left corner of C is of size
u by ». S is a block of_l's of size & by f. 0 of size § by A has I’s in the main
diagonal positions of C' and 0’s in all other positions. Moreover,

3.17 e+g=7+h=5s.

Now take the complement of €' and delete all zero rows or columns. This
vields a matrix 4; of the type described in the theorem.
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THEOREM 3.5. The minimal trace ¢ for the matrices in the normalized N 1is
given by

(3.18) ¢ = max {min(e, f) — t.s}
er

(e=0,...,m;f=0,...,n).

Let A be a matrix in U of trace ¢ with the ¢ 1’s in the initial positions on
the main diagonal. Let 4 be subdivided into the four blocks W, X, ¥, Z of
(2.1) with W of size e by f. Now for the matrix 4 under consideration, it is
clear that

(3.19) No(W) > min(e, f) — ¢
(e=0,...,m; f=0,...,n).
But N,(Z) > 0 so that

(3.20) min(e, f) — t,; = min(e, f) — (No(W) + N1(2)) < ¢
(e=0,...,m; f=0,...,n).

Suppose that ¢ # max(u, v), where the matrices in 9 have precisely u
rows and v columns composed entirely of 1’s. Then we may specialize our 4
to the 4; of Theorem 3.4. The matrix A4; yields a W, X, ¥, Z block sub-
division with W of size e by f for which No(W) = min(e, f) — ¢and N:(Z) = 0.
Thus if ¢ # max(u, ), then there exists an e and an f for which equality is
attained in (3.20). If ¢ = u, equality is attained in (3.20) for ¢ = ¢ and
f =mn If ¢ = v, equality is attained in (3.20) for ¢ = m and f = 4.

4. Trace and term rank. Let A belong to the normalized class ¥, and
let p be the maximal term rank for the matrices in . The integer p is given
explicitly by (1.5). We derive a second formula for g analogous to (3.11)
for 4.

THEOREM 4.1. The maximal term rank § for the matrices in the normalized
A is given by

(4.1) p =mi;1 {ter + (e + )}
(e=0,...,m;f=0,...,n).

Let 4 be in the normalized ¥ and of maximal term rank 5. Let 4 be sub-
divided into the four blocks W, X, YV, Z of (2.1) with W of size e by f. Now
the term rank of a matrix equals the minimal number of rows and columns
which contain collectively all of the non-zero elements of the matrix. Hence
for the matrix 4 under consideration, it is clear that

(4.2) Ni(Z)+ (e+f) >n
But No(W) > 0 so that
(4.3) ter + (e +f) = No(W) + Ni(Z) + (e + 1) > b
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Suppose that 3 < min(m, n). Then by Theorem 3.2 of (10) we may specialize
our 4 to a matrix 4 of term rank g with a I of size e by f for which No(I¥)=0
and Ny(Z) =5 — (e + f). Thus if p # min(m, n), equality is attained in
(4.3) for the dimension numbers ¢ and f of the submatrix W of 4;. If 5 = m,
equality is attained in (4.3) for f = O and e = m. If 5 = #n, equality is attained
in (4.3) for e = 0 and f = n. This establishes (4.1).

Let 4 belong to the normalized class A. An element a,; = 1 of 4 is an
invariant 1 provided that no sequence of interchanges applied to 4 replaces
a,s =1 by 0 (10). If a,; = 1 is an invariant 1 of 4, then the entries in the
(r, s) position of all of the matrices in ¥ must be invariant 1’s. Thus all or
none of the matrices in 9 contains an invariant 1, and we say % is with or
without an invariant 1. The normalized class 9 is with an invariant 1 if
and only if the matrices in 9 are of the form

(4.4) 4= [S 0]

Here S is a matrix of 1’'s of size e by f (0 < e <m;0 <f < %) and 0 is a
zero block (10). Now the entries of the structure matrix 7" of U are non-
negative integers. Moreover,

(4.5) by >0 (e=1,...,m; f=1,...,n)
if and only if ¥ is without an invariant 1. Indeed, each
(4.6) tey =0 (e,f>0)

vields the dimension numbers e and f for a block decomposition of the type
displayed in (4.4).

Let p be the maximal and 5 the minimal term rank for the matrices in 9.
If 5 < min(m, n) and if ¥ is without an invariant 1, then 5 < 5 (10). But
important classes do exist with p = p, for example, the class of all (0, 1)-
matrices of order m = n with exactly 2 1's in each row and column. An
unsettled problem asks for a neat classification of all % with 5 = 5. The corre-
sponding problem for traces in a normalized 9 has an easy solution. For let
A in U be of trace ¢ with 1’s in the initial positions on the main diagonal. Then
if ¢ = &, it follows readily that

@.7) A= ‘:f ;]

Here S is the matrix of 1’s of order ¢ and 0 is a zero block. Thus a normalized
class ¥ has ¢ = ¢ if and only if its structure matrix contains a zero on the
main diagonal.

A single interchange alters the term rank of a matrix by at most 1. It
follows from this and the interchange theorem that there exists an 4 in U
of term rank p, where p is an arbitrary integer such that

(4.8) p<p<5p
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However, a single interchange may alter the trace ¢ of a matrix in % by 2.
This causes a complication in finding the domain of intermediate values for ¢

(4.9) F<o<i.
The problem of intermediate values is settled by the following theorem.

THEOREM 4.2. The traces of the matrices in the normalized U take on all
integral values in the interval ¢ < o < ¢ unless A contains a matrix of the form

S S* *
(4.10) A=|57 1. 0
0 0

Here S is a matrix of 1's of order e, S* is a rectangular matrix of 1's, S*T is the
transpose of S*, I, is the identity matrix or the complement of this matrix, and
the O's are zero matrices. The order of I, is g with g > 2. (The cases e = 0,
e+ g=m,and e + g = n are not excluded.)

Two matrices in ¥ are transformable into each other by interchanges, and
a single interchange applied to a matrix in 9 may alter its trace by at most
2. Consecutive traces of mtarices in A may differ by at most 2. Suppose then
that ¢ and ¢ — 2 but not ¢ — 1 appear as the traces of matrices in . Then
there exists an 4, in A of trace ¢ with a principal minor of order 2 that is
the identity.

Thus there exists an 4, in A with a principal minor of order g

(4.11) M = [mij] (l,j = 1, “eey g)
composed of consecutive rows and columns of 4, and such that
(412) M1 = Myy = 1r Mg = My1 = 0.

We let g be maximal among all matrices in 2 of trace ¢ and write

(4.13) A, =

o by
Qg
T O

The first row of 4, passing through M must have the same sum as the last
row of A, passing through M, for otherwise an interchange yields a trace of
o — 1. But U is normalized so all rows of A, passing through M have the
same sum. Similar remarks hold for the columns of 4, passing through M.
Throughout the discussion we designate the submatrices of 4, in (4.13) by
A4 = [@y], F = [f4y], etc. Suppose that in F some f,, = 1. If f;, = 0, we may
apply an interchange involving f,, = 1 and f;, = 0. This interchange cannot
yield a trace of ¢ — 1. Nor can the interchange increase the trace to ¢ + 1,
for then an interchange involving m;; = m,, = 1 yieods a trace of ¢ — 1.
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Hence if some f,, = 1, then there exists an A, of the form (4.13) with fio =1.
We may now apply an interchange involving f;, = 1 and my, = 0. If the trace
remains equal to ¢, a second interchange involving mq; = 1 and m, = 0
yields a trace of ¢ — 1. Suppose then that the interchange involving f;, = 1
and my, = 0 yields a trace of ¢ + 1. Let the 1 introduced on the main diagonal
of .1, be in the (¢, {) position of A. Then g, = 1, for otherwise an interchange
yields a trace of ¢ — 1. But now by an interchange involving m,, = §, = 1,
we regain trace ¢ and contradict the maximality of g. Hence /' = 0. A similar
argument gives G = 0. By the maximality of g, each h,, = 0. If some %,, = 1
with # # v, then an interchange involving %,, = mi; = 1 vields a trace of
o — 1. Hence H = 0.

Suppose that some é,, = 0. The rows of 4, passing through M have the
same sum, so that if some ¢,, = 0, then there exists an 4, of the form (4.13)
with ¢, = 0. But then d,, = 1, b,; = 0 and b,, = ¢,, = 0, for otherwise an
interchange yields a trace of ¢ — 1. But this contradicts the maximality
of g. Hence C is a matrix of 1’s. Similarly, B is a matrix of 1’s.

Suppose that some d,, = 0. Then an interchange involving G,, = m;, = 0
yields a trace of ¢ + 1. Now apply an interchange involving my; = ¢, = 1.
This regains trace ¢ and contradicts the maximality of g. Hence each d,, = 1.
If some a,, = 0 with # 5 v, then an interchange involving d,, = m;, = 0
retains trace o. A second interchange yields a trace of ¢ — 1. Hence A is a
matrix of 1’s.

All row and column sums of M = [m;;] must be equal. Suppose there
exist # and » such that

(4.14) Moy = 1, My = 0 1 <u, v<y).

If m,, = 0 or if m,, = 1, an interchange yields a trace of ¢ — 1. Hence M
has trace g or trace 2. Suppose M has trace g. If m;, = 1 with £ > 1, then
my, = 1. An interchange involving columns ¢ and g followed by an inter-
change involving columns 1 and ¢ yields a trace of ¢ — 1. Hence row 1 of M
has sum 1 and M = I. Suppose M has trace 2. If m;, = 0 with £ < g, then
an interchange involving columns 1 and ¢ yields a trace of ¢ — 1. Hence
row 1 of M has sum g — 1 and an interchange replaces M by the complement
of I. This proves Theorem 4.2.

It is clear that Theorem 4.2 disposes of the problem of finding the domain
of intermediate values for the traces o of the matrices in 2. For suppose
that ¥ contains a matrix of the form (4.10) and that I, is the identity matrix.
Then ¢ — 1 is the single value excluded from the integers in the interval
¢ < ¢ < &. Suppose on the other hand that 9 contains a matrix of the form
(4.10) and that I, is the complement of the identity. Then ¢ + 1 is the single
value excluded from the integers in the interval ¢ < ¢ < 4.
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