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Abstract
A company with 𝑛 geographically widely dispersed sites seeks insurance that pays off if𝑚 out of the 𝑛 sites experience
rarely occurring catastrophes (e.g., earthquakes) during a year. This study describes an adaptive dynamic strategy
that enables an insurance company to offer the policy with smaller loss probability than more conventional static
policies induce, but at a comparable or lower premium. The strategy accomplishes this by periodically purchasing
reinsurance on individual sites. Exploiting rarity, the policy induces zero loss with probability one if no more than
one quake occurs during any review interval. The policy also may induce a profit if 𝑚 or more quakes occur in
an interval if no quakes have occurred in previous intervals. The study also examines the benefit of more than
one reinsurance policy per active site. The study relies on expected utility to determine indifference premiums and
derives an upper bound on loss probability independent of premium.

1. Introduction

This paper studies an apparently novel insurance product: a policy that pays off if at least 𝑚-out-of-𝑛
sites have a catastrophic event in a given time interval. Although the literature on catastrophe insurance
scarcely mentions this product, there are hints that insurers have offered it to clients who are exposed to
multiple perils.1

As motivation, consider a multi-national company (MNC) with 𝑛 sites, widely dispersed geograph-
ically. (Geographic dispersion allows us to regard events at different sites as independent. See Section
1.3 for discussion of dependent risks.) The company wants to buy insurance to compensate for potential
losses arising from a variety of catastrophic events such as earthquakes, hurricanes, wildfires, volcanic
eruptions, or other natural hazards. Although a catastrophic event at any one site is rare, the company
is likely to experience an increasing number of these events per year on average as 𝑛 increases, ergo
the potential for financial loss increases. Hereafter, we refer to catastrophic events generically as quakes
and to a global company seeking insurance as a customer.

One coverage option, Strategy A, has an insurance company offering the MNC individual policies
with a fixed amount of coverage on each site. Because the total premium increases linearly with the
number of sites, a customer with many sites would find this approach overly expensive, especially when
quakes are rare events. The approach also holds limited appeal for a customer who has contingency cash
reserves that allow it to absorb some of the financial loss associated with multiple quakes occurring
within the coverage period. As a consequence, a customer, able to absorb the loss from quakes at 𝑚 − 1

1Michael Lewis’s article in The New York Times about catastrophe insurance (“In Nature’s Casino,” Lewis [15]) cites John Seo’s scheme for
pricing a 2-out-of-2 policy. Also, as part of consulting work for the financial services industry, Dimitris Bertsimas proposed a similar scheme for
annuities, designing a contract that pays insurance when 𝑚-out-of-𝑛 adverse events happen. Bertsimas and Sim [3] consider a model for robust
optimization, which shares some of the characteristics of the 𝑚-out-of-𝑛 problem.
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sites, may need a cash infusion, presumably from insurance, only if 𝑚 or more sites have quakes during
the coverage period.

Insurance policies that provide less than full coverage of customers’ losses are common. They
usually contain a deductible clause requiring a customer to self-insure the first 𝑥 dollars, where 𝑥 is
the deductible. But in the context of multi-peril catastrophes spread out over time and space, there is
the alternative coverage option in which the deductible takes the form of a minimal number of sites
suffering losses rather than a minimal dollar amount before a customer receives a payout.

1.1. Potential applications

Many multi-national companies (MNCs) now develop a captive: an insurance company that operates
within the set of companies comprising the MNC and its subsidiaries. Using capital provided by the
MNC, the captive insures the risks of the MNC, leveraging the geographic and product diversification
of the MNC, and then organizes external (re)insurance for losses exceeding the retention limit of the
captive. Thus, an MNC with a captive might choose an 𝑚-out-of-𝑛 policy. Quoting from Westover [17]:
“Many captives are established because insurance in the commercial market is prohibitively expensive,
poorly matched to the insured’s needs, or not available at all. A captive insurer can successfully provide
coverage for difficult risks that is tailored to fit the exact needs of the insured.” Indeed, when it comes
to obtaining 𝑚-out-of-𝑛 coverage, there may be no alternative to a captive, since providers in the
commercial market seem to have little interest in offering such a “boutique” insurance product.

Another potential application with increasing relevance as global temperatures increase is insurance
against damages from wildfires. For example, an electric power company with power lines in 𝑛 geo-
graphically dispersed locations may want insurance which pays if 𝑚 or more of these locations have
wildfires caused by power-line malfunctions resulting in liability claims against the company. The power
company may be able to go to reinsurers to provide policies on individual locations.

1.2. Preview of results

To offer a policy with 𝑚-out-of-𝑛 coverage, an insurance company needs a strategy for determining the
premium to charge to a customer. This study describes Strategies B and C, both of which provide this
coverage. Each determines a minimal premium for which the insurance company is indifferent between
offering and not offering the policy. Whereas Strategy B is relatively static, Strategy C is adaptive. As the
covered properties’ quake history evolves, it periodically adjusts its reinsurance level based on a review
of the number of sites that have had quakes so far. In particular, it exploits the rarity of more than one
quake occurring between successive reviews. The study principally focuses on Strategy C, comparing
the risk of loss to which it exposes an insurance company with Strategy B’s corresponding risk of loss
for the minimal premiums at which the company is willing to offer the policy under each strategy. The
study also describes decision rules for choosing between strategies, based in large part on utility theory.

Strategy C exploits the property that the event, 𝑚-out-of-𝑛 sites have quakes, is a contingent claim: it
is completely determined by whether or not the individual sites have quakes, events for which the insurer
can purchase reinsurance policies. The situation is analogous to the pricing of derivatives in financial
markets, but unlike the latter, the market for reinsurance is typically neither complete nor necessarily
free from arbitrage. For this and other reasons, the powerful theory for pricing financial derivatives
using dynamic hedging (buying and selling a portfolio of cash and stock) is not fully applicable to the
𝑚-out-of-𝑛 problem. For a more detailed discussion of these issues, see Section 3.

1.3. Related research

The present paper employs utility functions (primarily exponential) to set premiums and compare
strategies. The use of utility theory in insurance models goes back at least to the 1960s (see, e.g.,
[1,2,6]). As an alternative to traditional actuarial methods for setting premiums, Bühlmann [7] develops
an economic model based on an equilibrium solution for prices in a market with utility-maximizing
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insurers and reinsurers, each with a concave utility function. For the special case of an exponential
utility function, this solution is closely related to the traditional actuarial premium principle introduced
by Esscher [12].

Embrechts and Meister [11] combine utility theory with dynamic hedging to study the pricing of
insurance derivatives, using more abstract mathematical models than the present paper. A common
thread in both papers is acknowledgement that markets for insurance are typically incomplete and
therefore do not admit a unique price even in a no-arbitrage context.

Cummins and Trainar [9] provide a comprehensive survey of the literature on the relative merits of
reinsurance and securitization for managing insurable risks. Their setting is that of an insurer deciding
how much of a specific risk to cede to one or more reinsurers versus shedding some or all of that risk
by means of an insurance-linked security (ILS). There is an analogy between this situation and the
comparison of Strategy B and Strategy C for insuring an 𝑚-out-of-𝑛 risk. The analysis of Strategy B
in this paper yields an upper bound on how much the insurer would be willing to pay a reinsurer to
assume the risk in its entirety. By the same token, Strategy C is analogous to an ILS, in that the insurer is
transferring some (indeed, most) of the risk to an external market, in this case not a financial market but
rather a market (typically not complete) for policies on the individual sites. By contrast, the kind of ILS
considered by Cummins and Trainor [9] is a conventional financial instrument, such as a catastrophe
bond based on a risk index, which trades on a conventional financial market. For the insurer in their
setting, there is typically a basis risk associated with the ILS, inasmuch as it is not 100% correlated
with the insurer’s risk. By contrast, the basis risk associated with Strategy C comes from the small but
positive probability that more than one site will have a quake during the review period. (There is also a
risk that the seller of the single-site insurance will default, which this paper does not consider.)

The present paper assumes that insurers and reinsurers are risk averse. An alternative model assumes
that they are risk neutral with convex capital costs (e.g., [13]). Higher capital costs in adverse states
cause firms to avoid these states, which leads to behavior that looks like risk aversion. Risk aversion in
firms can be a type of short-hand for cases like this.

Risk-shedding instruments based on the 𝑚-out-of-𝑛 concept have arisen in finance, in particular, as
a basket of credit default swaps. Originally developed to allow lending institutions to shed the risk of
default associated with a commercial loan, a credit default swap (CDS) is a transaction between two
parties in which the seller of the CDS agrees to compensate the buyer (e.g., a bank making a loan) in
the event of a default on a credit obligation. In return, the buyer periodically pays the seller a premium.
Therefore, a CDS is a form of insurance that lacks the regulatory features associated with conventional
insurance products.

A basket of credit default swaps is a contract involving more than one credit obligation. One variation,
called an 𝑚-out-of-𝑛 basket of CDSs, is a contract that pays the buyer an agreed-upon sum if and when
𝑚-out-of-𝑛 credit obligations have defaulted. As previously mentioned, our 𝑚-out-of-𝑛 catastrophic
insurance model on globally distributed sites assumes that quakes occur independently. However, defaults
among the credit obligations in a basket rarely are probabilistically independent. (An extreme example
of the danger of ignoring dependence among default risks is the failure of AIG to hedge its portfolio of
default swaps tied to subprime mortgages in 2008.) This dependence has prompted substantial research
on baskets of CDSs that focusses on models that explicitly take dependence into account.

Assuming a complete trading market for individual CDSs with no arbitrage, Bielecki et al. [4] develop
a general theory for pricing a basket of correlated credit default swaps based on dynamic replication by
trading individual CDSs (see also [14]). By contrast, the present paper presents a model that assumes
that the risks at individual sites are independent (a realistic assumption for widely dispersed sites),
but does not assume that the underlying entities (reinsurance contracts on individual sites) trade in a
complete market with no arbitrage. (To assume so would not be realistic.)

In principle, the ideas behind the present paper’s dynamic reinsurance model could be extended to
dependent risks, but at the cost of confronting the well-known curse of dimensionality associated with
multi-dimensional dynamic models, a task better left to future research.
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1.4. Organization of paper

To set the stage, Section 2 describes Strategy B, including a mechanism, based on expected utility,
for determining the minimal premium that the insurance company requires before offering the 𝑚-out-
of-𝑛 policy. Section 3 introduces Strategy C. In particular, it specifies Condition (7) for the coverage
period’s quake history which, if satisfied, guarantees that Strategy C is self-financing when purchasing
reinsurance coverage periodically as dictated by the minimal working capital scheme derived in Section
3.1. It also determines the minimal premium to charge that, together with the schedule, accounts for
the reduction in the insurance company’s risk exposure. It also derives the indifference premium for
Strategy C, again based on expected utility. To fix ideas, the study principally focuses on one-year
coverage with daily review. Of course, daily reinsurance on individual sites may not exist. Later sections
illustrate the analysis for 7 and 30-day review intervals. A review interval denotes the number of days
between successive reviews.

How well Strategy C sheds risk depends on how often quake histories satisfy Condition (7). Section
3.2 derives a bound on C’s loss probability that, for 𝑚 small relative to 𝑛, often is considerably less than
the corresponding loss probability for Strategy B. Section 3.3 next describes how Strategy C induces a
sometimes substantial profit when at least 𝑚 quakes occur but Condition (7) is not satisfied, offering an
additional advantage over Strategy B, which realizes a profit only if fewer than 𝑚 quakes occur.

Section 4 provides guidance for choosing between the two strategies based on expected utility, loss
probabilities, and the premium dictated by the market for this form of 𝑚-out-of-𝑛 policy. Section 5
carries the analysis further by examining the scenario, (𝑚, 𝑛) = (2, 5), in considerably more detail.
In particular, it shows how premium and loss probability vary for insurance companies with different
levels of risk aversion. Section 5.1 then describes how Strategy C may induce a profit when 𝑚 or more
quakes occur during the first review interval that experiences quakes. Most notably, it shows how the
probability of a profit increases as the review interval increases.

To fix ideas, Sections 3 through 4 assume daily reviews. Later, Sections 5 through 6 examine
how increasing the length of the review interval affects the premium and loss probability. Sections 3
through 5 also assume that the reinsurer’s markup remains constant over the entire coverage period.
Section 6 relaxes that assumption and examines how the reinsurer’s markup varies in response to
changing risk exposure over the coverage period and how those changes affect the insurance company’s
minimal working capital scheme. Most notably, the varying reinsurer’s markup lowers the insurance
company’s indifference premium at the expense of modestly increasing Strategy C’s working-capital
loss probability. Both premium and loss probability are substantially less than those for Strategy B. For
this variable–reinsurer–markup environment, Section 6.1 describes how Strategy C can induce a profit
when 𝑚 or more quakes occur during the first review interval that experiences quakes. Section 6.2 then
shows how dividing reinsurance coverage on each active site into multiple policies affects premiums
and loss probabilities. An active site denotes a site where no quake has occurred during the elapsed
coverage period.

1.5. Basic model and notation

Suppose a quake occurs at a given site during a fixed coverage period of 𝑇 days with probability 𝑞. For
example, 𝑇 = 365 implies one-year coverage with annual quake rate 𝑞. The probability that 𝑗 quakes
occur among the 𝑛 sites during a year is

𝑓 ( 𝑗 ; 𝑛, 𝑞) =
(
𝑛
𝑗

)
𝑞 𝑗 (1 − 𝑞)𝑛− 𝑗 ,

𝑗 ∈ {0, 1, . . . , 𝑛}, and the probability of 𝑚 or more quakes during a year is 1 − 𝐹 (𝑚 − 1; 𝑛, 𝑞), where

𝐹 (𝑚; 𝑛, 𝑞) =
𝑚∑
𝑗=0

𝑓 ( 𝑗 ; 𝑛, 𝑞).
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The following definitions are used throughout the paper:

𝜋 := premium per dollar of coverage for𝑇 days
𝑤I := insurance company’s wealth at the beginning of the coverage period
𝜃 := total coverage in dollars

𝜅(𝜋) := insurance company’s final working capital at the
end of the coverage period, given premium 𝜋

= 𝑤I + 𝜃𝜋 − 𝜃 × (payout per coverage dollar).

(1)

2. Strategy B

Suppose a customer wants a one-year 𝑚-out-of-𝑛 policy for 𝜃 dollars of coverage, and an insurance
company, embracing Strategy B, offers the policy for a premium of 𝜋 per dollar of coverage. If fewer than
𝑚 quakes occur during the coverage period, the insurance company pays out nothing with probability
1 − 𝐹 (𝑚 − 1; 𝑛, 𝑞). If 𝑚 or more quakes occur, it pays out 𝜃 dollars with probability 𝐹 (𝑚 − 1; 𝑛, 𝑞). As
a consequence, the insurance company has final working capital

𝜅 (B) (𝜋) = 𝑤I +

{
𝜃𝜋, if fewer than 𝑚 quakes occur
−𝜃 (1 − 𝜋), otherwise.

That is, it increases its wealth by 𝜃𝜋 if fewer than 𝑚 quakes occur, but incurs a −𝜃 (1 − 𝜋) loss in
wealth if more than 𝑚 − 1 occur.

As one basis for comparing strategies, the study relies on 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 for determining the
premiums per dollar of coverage under each strategy. For a given strategy, the insurance company wants
to determine the minimal 𝜋 at which it is indifferent between offering and not offering the policy. Let
{𝑢(𝑤), −∞ < 𝑤 < ∞} denote a concave increasing utility function in wealth 𝑤. Then, 𝜋∗ is the minimal
𝜋 that solves

E𝑢(𝜅(𝜋)) = E𝑢(𝑤I + 𝜃𝜋 − 𝜃 × (payout per coverage dollar)) = 𝑢(𝑤I), (2)

where the expectation is taken with respect to the (real-world) distribution of the random payout per
unit coverage. For Strategy B, (2) becomes

E𝑢(𝜅 (B) (𝜋)) = 𝐹 (𝑚 − 1; 𝑛, 𝑞) × 𝑢(𝑤I + 𝜃𝜋)

+ [1 − 𝐹 (𝑚 − 1; 𝑛, 𝑞)] × 𝑢(𝑤I + 𝜃 (𝜋 − 1))
= 𝑢(𝑤I). (3)

As illustration, the utility function

𝑢(𝑥) = −e−𝛼𝑥 𝛼 > 0 and −∞ < 𝑥 < ∞, (4)

leads (from (2)) to

𝜋 = (𝛼𝜃)−1 ln(E(e𝛼𝜃×(payout per unit coverage) )).

Here, increasing 𝛼 denotes increasing aversion to risk. Moreover, as 𝛼 → 0, 𝜋 →

E (payout per coverage dollar), that is, the standard net premium.
It follows that the premium for Strategy B is

𝜋∗
B =

1
𝛼𝜃

ln(𝐹 (𝑚 − 1; 𝑛, 𝑞) + 𝑒𝛼𝜃 [1 − 𝐹 (𝑚 − 1; 𝑛, 𝑞)]). (5)
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Strategy B responds to increased aversion to risk by increasing the premium, while the loss probability,
1 − 𝐹 (𝑚 − 1; 𝑛, 𝑞), remains constant. To facilitate comparison of the properties of Strategies B and C,
all indifference premiums in this study are based on the exponential utility function (4). Use of the
exponential utility function dramatically simplifies the analysis since the indifference premiums for both
strategies do not depend on the initial wealth, 𝑤I. Additional motivation comes from the property that
with an exponential utility function the premium is closely related to the one determined by the Esscher
premium principle, which may be thought of as an exponential tilting of the original distribution, in
this case the binomial distribution. See Bühlmann [7,8]. Note that Strategy B has the property that its
(random) payout is proportional to 𝜃 and, as a result, the indifference premium 𝜋∗

B depends on 𝛼 and 𝜃
only through their product, 𝛼𝜃.

3. Strategy C

Although an insurer’s exposure to risk for an 𝑚-out-of-𝑛 policy varies as the policy’s coverage period
elapses, Strategy B commits the company to offer the policy based on perceived risk at the beginning of
the coverage period. Strategy C overcomes that limitation by providing a means for the insurer to shed
some or all this risk in a costless way as the coverage period elapses.

During that period, any one of a multiplicity of quake histories may evolve. For expository conve-
nience, assume that reviews occur daily. The following definitions are used throughout the rest of the
paper:

𝑇 := coverage per period in days
𝑝 := one-day quake probability at a given site,

given annual probability 𝑞

= 1 − (1 − 𝑞)1/𝑇

𝑡 := remaining number of coverage days
𝐿 := the random first coverage day on which the number

of active sites becomes less than 𝑛 − 𝑚

𝐾𝑡 := the random number of active sites at
the beginning of remaining day 𝑡

𝐽𝑡 := the random number of sites that
have quakes on remaining day 𝑡

= 𝐾𝑡 − 𝐾𝑡−1.

(6)

Strategy C gains its advantage by focussing most attention on a particular subset of quake histories,
namely those for which:

either
a. Fewer than 𝑚 quakes occur during the coverage period
and no more than one quake occurs on each quake day;

or
b. More than 𝑚 − 1 quakes occur during the coverage period

but no more than one quake occurs on each of the first
𝑚 − 1 quake days.

(7)

Hereafter, we refer to this property as Condition (7).
Strategy C first divides the coverage period into smaller intervals of equal size. For illustration, we

take the interval as one day. Later, Section 5 describes how longer and shorter intervals affect final
working capital. Then,
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Table 1. Loss probability for 𝑚 = 2 (𝜃 = 1, 𝑇 = 365, 𝜋′ ∈ (0, 1), 𝜋 ≥ 𝑣𝑇 𝑛).

𝑛

𝑞 Probability 2 3 4 5 10

0.01 pr[𝜅 (B) (𝜋′) < 𝑤I] = 10−4 2.980 × 10−4 5.920 × 10−4 9.801 × 10−4 4.266 × 10−3

pr[𝜅 (C) (𝜋) < 𝑤I] ≤ 2.740 × 10−7 8.178 × 10−7 1.627 × 10−6 2.699 × 10−6 1.185 × 10−5

0.1 pr[𝜅 (B) (𝜋′) < 𝑤I] = 10−2 0.0280 0.0523 0.0815 0.2639
pr[𝜅 (C) (𝜋) < 𝑤I] ≤ 2.742 × 10−5 7.822 × 10−5 1.489 × 10−4 2.364 × 10−4 8.457 × 10−4

• For each remaining day of coverage, 𝑡, with 𝑘 sites remaining active (i.e., having had no quake so far),
Schedule C provides a schedule for purchasing one-day coverage in a daily reinsurance market with
given daily markup per dollar of coverage, 𝑔, that remains constant for the entire coverage period.
Later, Section 6 extends the study to a reinsurer’s markup that varies on successive review intervals.

• If the quake history satisfies Condition (7) during the coverage period, the schedule provides the
minimal premium per dollar of coverage to charge a customer at the beginning of the coverage
period that for a premium, 𝜋, no less than this minimal premium, guarantees w.p.1 that final working
capital, 𝜅 (C) (𝜋), is no less than initial wealth 𝑤I.

That is, whenever either a or b in Condition (7) holds, this 𝑚-out-of-𝑛 policy is self-financing,
regardless of how many quakes actually occurred during the coverage period.

The ability to shed risk in this way clearly depends on how probable is a quake history satisfying
Condition (7) during a coverage period. As illustration, suppose at least one quake occurs at a given site
during a year with probability 𝑞 = 0.1 with corresponding daily quake probability 𝑝 = 2.886×10−4 (see
(6)). Consider an (𝑚, 𝑛) = (2, 5) one-year policy. Because the probability of daily satisfying Condition
(7) for one year is 1 − 2.364 × 10−4 (see Table 1), Strategy C incurs a loss with probability no greater
than 2.364 × 10−4. In contrast, Strategy B would incur a loss with probability 0.0815. Therefore, an
insurance company using Strategy C incurs a loss with considerably less probability than with Strategy
B, thus establishing the efficacy of Strategy C.

3.1. Schedule

Shedding risk in this way depends crucially on the amount of coverage scheduled for purchase on each
of the active sites on each coverage day. To make these purchases, the insurer needs to have working
capital. In particular, the schedule derives the minimal working capital needed on each day to guarantee
no loss w.p.1. if Condition (7) is satisfied. This section derives the schedule that satisfies that requirement
and determines the minimal annual premium per dollar charged at the beginning of the coverage that
makes that minimal working capital sequence feasible.

Let 𝑡 denote the number of remaining days of coverage and 𝑘 , the number of sites that remain active.
Suppose Condition (7) is satisfied. Let 𝑤I + 𝑣𝑡 𝑘 denote the minimal working capital in state (𝑡, 𝑘) that
guarantees that working capital on the final coverage day, min(𝐿, 𝑇), is no less than 𝑤I. For coverage 𝜃,
this ending condition determines the boundary values for the bivariate function {𝑣𝑡 𝑘 } as:

𝑣𝑡 𝑘 = 𝜃 𝑘 ∈ {0, 1, . . . , 𝑛 − 𝑚} and 𝑡 ∈ {0, 1, . . . , 𝑇}
𝑣0𝑘 = 0 𝑘 ∈ {𝑛 − 𝑚 + 1, . . . , 𝑛}.

(8)

Consider a particular state (𝑡, 𝑘), 𝑡 ∈ {1, . . . , 𝑇}, 𝑘 ∈ {𝑛 − 𝑚 + 1, . . . , 𝑛}, and suppose we already
know the values 𝑣𝑡−1,𝑖 for all 𝑖 ∈ {0, 1, . . . , 𝑘}.

Let 𝑥 denote the amount of reinsurance to purchase on each active site and 𝑦 denote the amount of
cash held in reserve in state (𝑡, 𝑘). If 𝑗 sites have quakes, then working capital available at the end of the
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day is 𝑤I + 𝑗𝑥 + 𝑦 for 𝑗 ∈ {0, 1, . . . , 𝑘}. To satisfy the criterion that 𝑣𝑡 𝑘 is the minimal working capital
at remaining time 𝑡 that guarantees that the working capital at remaining time 0 is no less than 𝑤I, no
matter what the value of 𝑗 , we must have

𝑣𝑡 𝑘 = min
𝑥,𝑦

{𝑘𝑔𝑝𝑥 + 𝑦}

s.t. 𝑗𝑥 + 𝑦 ≥ 𝑣𝑡−1,𝑛−𝑚+1− 𝑗 𝑗 ≥ 0.
(9)

Suppose either Condition (7a) or (7b) holds. First, consider the case 𝑘 ≥ 𝑛 − 𝑚 + 2. Condition (7a)
implies that at most one of the 𝑘 active sites has a quake at remaining time 𝑡. Thus, the constrained
minimization (9) defining 𝑣𝑡 𝑘 reduces to

𝑣𝑡 𝑘 = min
𝑥,𝑦

{𝑘𝑔𝑝𝑥 + 𝑦}

s.t. 𝑥 + 𝑦 ≥ 𝑣𝑡−1,𝑘−1

𝑦 ≥ 𝑣𝑡−1,𝑘 .

(10)

The solutions are
𝑥 = 𝑣𝑡−1,𝑘−1 − 𝑣𝑡−1,𝑘

𝑦 = 𝑣𝑡−1,𝑘 .
(11)

To fund the policies with face value 𝑥 on each of the 𝑘 active sites, we must pay a total premium of
𝑘 × 𝑔 × 𝑝 × 𝑥. It follows that the minimal working capital needed in state (𝑡, 𝑘) is given by

𝑣𝑡 𝑘 = 𝑘𝑔𝑝(𝑣𝑡−1,𝑘−1 − 𝑣𝑡−1,𝑘 ) + 𝑣𝑡−1,𝑘 (12)

for all 𝑘 ∈ {𝑛 − 𝑚 + 2, . . . , 𝑛}.
Now consider the case 𝑘 = 𝑛 −𝑚 + 1. Condition (7b) allows the number of quakes at remaining time

𝑡 to be any value 𝑗 ∈ {0, 1, . . . , 𝑛 − 𝑚 + 1}. But because 𝑣𝑡−1,𝑛−𝑚+1− 𝑗 = 1 for 𝑗 ≥ 1, the constrained
minimization problem is again equivalent to (10), the solution to which is again given by (12), now with
𝑘 = 𝑛 − 𝑚 + 1. It follows that the total working capital needed in state (𝑡, 𝑘) equals 𝑤I + 𝑣𝑡 𝑘 , where 𝑣𝑡 𝑘
is given by (12) for all 𝑘 ∈ {𝑛 − 𝑚 + 1, . . . , 𝑛}.

Starting from the boundary equations (8) and using the backward recursion (12) for 𝑘 ∈ {𝑛−𝑚+1, 𝑛},
for 𝑡 ∈ {1, . . . , 𝑇}, we can calculate all values of the function, {𝑣𝑡 𝑘 }, and in particular, 𝑣𝑇 𝑛, the minimal
premium that guarantees that final working capital is not less than 𝑤I when following Strategy C,
provided that Condition (7) holds.

The minimal capital array {𝑣𝑡 𝑘 }, together with the rule for purchasing daily reinsurance, makes it
possible to characterize working capital for any quake history, regardless of whether or not Condition
(7) is satisfied. Let 𝐾𝑡 denote the random number of active sites at the beginning of 𝑡 during the coverage
period. Then, for an initial premium per coverage dollar, 𝜋, Strategy C induces final working capital

𝜅 (C) (𝜋) = 𝑤I + 𝜋 +

max(0,𝑇 −𝐿)∑
𝑠=𝑇

[(𝐾𝑠 − 𝐾𝑠−1 − 𝑔𝑝𝐾𝑠)(𝑣𝑠−1,𝐾𝑠−1 − 𝑣𝑠−1,𝐾𝑠
) − 𝜃𝐼𝐾𝑠−1≤𝑛−𝑚], (13)

where

𝐼𝑦≤𝑥 =

{
1, if 𝑦 ≤ 𝑥
0, elsewhere.

and

𝐿 = min
𝑇 ≥𝑡≥1

(𝑇 − 𝑡 + 1 : 𝐾𝑡 > 𝑛 − 𝑚 and 𝐾𝑡−1 ≤ 𝑛 − 𝑚).
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Most notably, 𝜅 (C) (𝜋) > 𝑤I implies that the insurance company makes a profit on the 𝑚-out-of-
𝑛 policy whereas 𝜅 (C) (𝜋) < 𝑤I implies a loss. Proposition 3.1 formally shows that Condition (7) is
sufficient for Strategy C to be self-financing.

Proposition 3.1. Suppose an insurance company adopts Strategy C and offers a customer an 𝑚-out-of-𝑛
policy for a premium per dollar of coverage, 𝜋, no less than 𝑣𝑇 𝑛. Then,

i. If no quakes occur, then 𝜅 (C) (𝜋) ≥ 𝑤I w.p.1.
ii. If no more than one quake occurs on any coverage day, then 𝜅 (C) (𝜋) ≥ 𝑤I w.p.1.
iii. If a single quake occurs on each of the first 𝑚 − 1 quake days, then 𝜅 (C) (𝜋) ≥ 𝑤I w.p.1 regardless of

how many quakes occur on a subsequent, remaining coverage day.

The derivation of {𝑣𝑡 𝑘 } by backward recursion implicitly proves the proposition by induction.
Appendix A provides an alternative algebraic proof. That proof reveals that for a quake history
(1, . . . , 1︸���︷︷���︸
𝑚−1 ones

, 𝑟) (Condition (7b)) with 𝑟 > 1 and ending on coverage day 𝑠 (part iii), final working

capital is

𝜅 (C) (𝜋) = 𝑤I + 𝜋 − 𝑣𝑇 𝑛 + (𝑟 − 1)(𝑣𝑇 −𝑠,𝑛−𝑚 − 𝑣𝑇 −𝑠,𝑛−𝑚+1) ≥ 0 w.p.1,

implying a net profit that increases with 𝑟 .
One particular property of {𝑣𝑡 𝑘 } facilitates later analysis. Appendix A contains the proof.

Proposition 3.2. For the schedule {𝑣𝑡 𝑘 } determined by (12) with boundary conditions (8), 𝑣𝑡 𝑘 is
non-increasing in 𝑘 for all 𝑘 ∈ {𝑛 − 𝑚 + 1, . . . , 𝑛} for each 𝑡 ∈ {1, . . . , 𝑇}.

Remark. As noted in the Introduction, the event, 𝑚-out-of-𝑛 sites have quakes, is a contingent claim.
This property suggests using dynamic pricing techniques such as those used to price derivatives in
financial markets.

Derivative pricing theory following Black and Scholes [5] assumes a complete market in which
arbitrage is not possible and uses dynamic hedging, while modeling fluctuations in the stock’s price
as geometric Brownian motion in continuous time or as a Bernoulli process in discrete time. However,
pricing an 𝑚-out-of-𝑛 policy does not allow an analogous protocol unless one imposes similar restric-
tions. In a model with discrete review points such as the model in this paper, these restrictions would
include no arbitrage and at most one quake in each review period, in effect requiring that Condition (7)
hold for all quake histories.

Although making these assumptions would be tempting from a theoretical vantage point, the present
paper offers a more realistic, nuanced model which allows multiple quakes during a review period. As
the quake history evolves during the coverage period, Strategy C exploits the rarity of multiple-quake
review periods in the procedures for pricing the 𝑚-out-of-𝑛 policy and for setting reinsurance coverage
levels at each review point. The resulting coverage schedule and policy price reduce the insurance
company’s loss probability to a level substantially lower than under Strategy B, a beneficial property
that follows from the fact that the 𝑚-out-of-𝑛 event almost satisfies the conditions for eliminating risk by
dynamic hedging. As a result, Strategy C removes most, but not all, the risk for the insurance company,
as the analyses in the next and following sections show.

3.2. Bounding loss probability

Because Strategy C applies schedule {𝑣𝑡 𝑘 } to purchase daily reinsurance coverage regardless of whether
or not Condition (7) is satisfied, the insurer may have to ante up cash from his initial wealth to pay for
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this reinsurance and possibly for a customer payout during the coverage period. This possibility implies
that for 𝜋 ≥ 𝑣𝑇 𝑛

pr[𝜅 (C) (𝜋) < 𝑤I] ≤ 1 − pr [Condition (7)] .

This section determines this upper bound as a function of 𝑚, 𝑛, and 𝑝, with equality when 𝜋 = 𝑣𝑇 𝑛.
For 𝑗𝑖 ∈ {1, . . . , 𝑛} for 𝑖 = 1, . . . , 𝑛 s.t. 𝑗1 + · · · + 𝑗𝑙−1 < 𝑚 and 𝑗1 + · · · + 𝑗𝑙 ≥ 𝑚, let

𝑃𝑛 ( 𝑗1, . . . , 𝑗𝑙) =

��

probability that 𝑗1 quakes occur on
the first quake day, 𝑗2 on the second

quake day, . . . , 𝑗𝑙 on the 𝑙th quake day

��
𝑃𝑛 ( 𝑗1 ≥ 𝑚) =

𝑛∑
𝑗1=𝑚

𝑃𝑛 ( 𝑗1)

𝑃𝑛 ( 𝑗1, 𝑗2 ≥ 𝑟) =
𝑛− 𝑗1∑
𝑗2=𝑟

𝑃𝑛 ( 𝑗1, 𝑗2), 𝑟 ∈ {1, . . . , 𝑛 − 𝑗1}, 𝑗1 ∈ {1, . . . , 𝑚 − 1}.

(14)

We first consider scenarios with 𝑚 = 2 ≤ 𝑛. During a 𝑇-day coverage period, one of several different
events occurs: No quakes (0), one quake (1), two or more quakes on the same day ( 𝑗1 ≥ 2), two quakes
on different days (1,1), and one quake on the first quake day and two or more on a second day (1, 𝑗2 ≥ 2)
exhaust the list. These events occur with probabilities

𝑃𝑛 (0) = (1 − 𝑞)𝑛

𝑃𝑛 (1) = 𝑛𝑞(1 − 𝑞)𝑛−1

𝑃𝑛 ( 𝑗1 ≥ 2) =
1 − (1 − 𝑝)𝑛𝑇

1 − (1 − 𝑝)𝑛
[1 − (1 − 𝑝)𝑛 − 𝑛𝑝(1 − 𝑝)𝑛−1]

𝑃𝑛 (1, 1) =
𝑓 (1; 𝑛, 𝑝) 𝑓 (1; 𝑛 − 1, 𝑝)

𝑝
(1 − 𝑝) (𝑛−2) (𝑇 −1)

×

{
1 − (1 − 𝑝)2𝑇

1 − (1 − 𝑝)2 −
(1 − 𝑝)𝑇 −1 [1 − (1 − 𝑝)𝑇 ]

𝑝

}
𝑃𝑛 (1, 𝑗2 ≥ 2) = 𝑓 (1; 𝑛, 𝑝) [1 − 𝑓 (0; 𝑛 − 1, 𝑝) − 𝑓 (1; 𝑛 − 1, 𝑝)]

×

𝑇 −1∑
𝑠=1

(1 − 𝑝)𝑛(𝑠−1)
[
1 − (1 − 𝑝) (𝑛−1) (𝑇 −𝑠)

1 − (1 − 𝑝)𝑛−1

]
,

(15)

so that
𝑃𝑛 (0) + 𝑃𝑛 (1) + 𝑃𝑛 (1, 1) + 𝑃𝑛 (1, 𝑗2 ≥ 2) + 𝑃𝑛 ( 𝑗1 ≥ 2) = 1. (16)

Moreover,
pr[Condition (7)] = 𝑃𝑛 (0) + 𝑃2 (1) + 𝑃𝑛 (1, 1) + 𝑃𝑛 (1, 𝑗2 ≥ 2).

Then, for any premiums 𝜋 ≥ 𝑣𝑇 𝑛 and 𝜋′ ∈ (0, 1),

pr[𝜅 (C) (𝜋) < 𝑤I] ≤ 1 − pr[Condition (7)]
= 𝑃𝑛 ( 𝑗1 ≥ 2)
≤ pr[𝜅 (B) (𝜋′) < 𝑤I] = 1 − (1 − 𝑞)𝑛 − 𝑛𝑞(1 − 𝑞)𝑛−1.

(17)

Table 1 (at the beginning of this section) shows the substantial reduction in loss probability that
Strategy C induces for 𝑚 = 2 and 𝜃 = 1.
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More generally, for 2 ≤ 𝑚 ≤ 𝑛, Strategy C with premium 𝜋 ≥ 𝑣𝑇 𝑛 has loss probability pr[𝜅 (C) (𝑣𝑇 𝑛) <
𝑤I] ≤ 𝛽𝑚𝑛, where

𝛽𝑚𝑛 := 1 − pr[Condition (7) ]

= 1 − 𝑃𝑛 (0) −
𝑚−1∑
𝑙=1

𝑃𝑛 (1, . . . , 1︸���︷︷���︸
𝑙 ones

) −

𝑛−𝑚+1∑
𝑟=1

𝑃𝑛 (1, . . . , 1︸���︷︷���︸
𝑚−1 ones

, 𝑟), (18)

where for 1 ≤ 𝑙 ≤ 𝑚, 𝑖 ∈ {1, . . . , 𝑙}, 𝑗𝑖 ≥ 1, 𝑗1 + · · · + 𝑗𝑙−1 < 𝑚, 𝑘0 = 𝑛, and 𝑘𝑖 = 𝑘𝑖−1 − 𝑗𝑖 ,

𝑃𝑛 ( 𝑗1, . . . , 𝑗𝑙) =
𝑙∏
𝑖=1

𝑓 ( 𝑗𝑖; 𝑘𝑖−1, 𝑝)

×
∑

1≤𝑠1<𝑠2< · · ·<𝑠𝑙 ≤𝑇

[
(1 − 𝑝)

∑𝑙
𝑖=1 𝑘𝑖−1 (𝑠𝑖−𝑠𝑖−1−1)

]
×

{
(1 − 𝑝)𝑘𝑙 (𝑇 −𝑠𝑙 ) , if 𝑘𝑙 > 𝑛 − 𝑚
1, otherwise

=

[
𝑙∏
𝑖=1

𝑓 ( 𝑗𝑖; 𝑘𝑖−1, 𝑝)

]
× (1 − 𝑝)−

∑𝑙
𝑖=1 𝑘𝑖−1 ×

𝑇∑
𝑠𝑙=𝑙

[ ∑
1≤𝑠1< · · ·<𝑠𝑙−1≤𝑠𝑙

(1 − 𝑝)
∑𝑙−1

𝑖=1 𝑗𝑖𝑠𝑖 𝜌(𝑠𝑙)

]
,︸������������������������������������������︷︷������������������������������������������︸

𝜔1 (𝑠𝑙 )

(19)

where

𝜌(𝑥) =

{
(1 − 𝑝) 𝑗𝑙 𝑥+𝑘𝑙𝑇 , if 𝑘𝑙 > 𝑛 − 𝑚,
(1 − 𝑝)𝑘𝑙−1𝑥 , otherwise, 𝑥 ∈ {𝑙, . . . , 𝑇}

and

𝜔𝑖 (𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜌(𝑥), 𝑖 = 𝑙,

(1 − 𝑝) 𝑗𝑖 𝑥
𝑇∑
𝑦=𝑥

𝜔𝑖+1 (𝑦), 𝑖 ∈ {𝑙 − 1, . . . , 1}, 𝑥 ∈ {𝑖, . . . , 𝑇 − 𝑙 + 𝑖}. (20)

The (𝑚, 𝑛, 𝑞) scenarios in Table 2 reveal that Condition (7) induces pr[𝜅 (B) (𝜋) < 𝑤I] > 𝛽𝑚𝑛 ≥

pr[𝜅 (C) (𝜋′) < 𝑤I] for 𝑚 small relative to 𝑛. However, Strategy C offers an additional benefit. The
next section and later Section 6.1 reveal that it can further reduce loss probability for quake histories
( 𝑗1, . . . , 𝑗𝑙+1) = ( 1, . . . , 1︸���︷︷���︸

𝑙<𝑚−1 ones

, 𝑟) for some 𝑟 + 𝑙 ≥ 𝑛 − 𝑚.

3.3. An additional benefit

Whereas Strategy B incurs a loss of −(1 − 𝜋∗
B) for any quake history with 𝑚 or more quakes during the

coverage period, for some of these quake histories Strategy C may have positive probability of producing
a profit. Recall that Proposition 3.1(iii) exemplifies this for a history in which a single quake occurs on
each of the first 𝑚−1 quakes regardless of how many quakes occur on a subsequent quake day. A similar
result holds if one quake occurs on each of the first 𝑙 (< 𝑚 − 1) quake days followed by 𝑗 (≥ 𝑚 − 𝑙)
quakes on the (𝑙 + 1)st quake day. Assume 𝜋∗

C ≥ 𝑣𝑇 𝑛 and recall that 𝜋∗
C − 𝑣𝑇 𝑛 + 𝑣𝑡 ,𝑘 denotes working

capital on remaining day 𝑡 with 𝑘 active sites. If 𝑗 (≥ 𝑚 − 𝑙) quakes occur on the (𝑙 + 1)st quake day,
then coverage ends on remaining day 𝑡 and, after pay out, final working capital is

𝜅 (C) (𝜋∗
C) = 𝑤I + 𝜋∗

C − 𝑣𝑇 𝑛 + 𝑣𝑡 ,𝑛−𝑙 + 𝑗 (𝑣𝑡−1,𝑛−𝑙−1 − 𝑣𝑡−1,𝑛−𝑙)

− (𝑛 − 𝑙)𝑔𝑝(𝑣𝑡−1,𝑛−𝑙−1 − 𝑣𝑡−1,𝑛−𝑙) − 1. (21)
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Table 2. Loss probability for 𝑛 = 5 and 10 (𝜃 = 1, 𝑇 = 365, 𝜋′ ∈ (0, 1), 𝜋 ≥ 𝑣𝑇 ,𝑛).

𝑞 = 0.01 𝑞 = 0.1

pr[𝜅 (B) (𝜋′) < 𝑤I] pr[𝜅 (C) (𝜋) < 𝑤I] pr[𝜅 (B) (𝜋′) < 𝑤I] pr[𝜅 (C) (𝜋) < 𝑤I]

𝑛 𝑚 = 1 − 𝐹 (𝑚 − 1; 𝑛, 𝑞) < 𝛽𝑚𝑛 = 1 − 𝐹 (𝑚 − 1; 𝑛, 𝑞) < 𝛽𝑚𝑛

𝑛 = 5 2 9.801 × 10−4 2.699 × 10−6 8.146 × 10−2 2.364 × 10−4

3 9.851 × 10−6 8.001 × 10−6 8.560 × 10−3 6.484 × 10−4

4 4.960 × 10−8 8.173 × 10−6 4.600 × 10−4 7.758 × 10−4

5 10−10 8.175 × 10−6 10−5 7.900 × 10−4

𝑛 = 10 2 4.266 × 10−3 1.185 × 10−5 0.2639 8.457 × 10−4

3 1.138 × 10−4 3.483 × 10−5 0.0702 2.151 × 10−3

4 2.001 × 10−6 3.670 × 10−5 0.0128 3.102 × 10−3

5 2.417 × 10−8 3.677 × 10−5 1.635 × 10−3 3.452 × 10−3

Because 𝑣𝑡 ,𝑛−𝑙 = (𝑛 − 𝑙)𝑔𝑝(𝑣𝑡−1,𝑛−𝑙−1 − 𝑣𝑡−1,𝑛−𝑙) + 𝑣𝑡−1,𝑛−𝑙 (see Section 3.1), the insurance company
realizes a profit (i.e., 𝜅 (C) (𝜋∗

C) > 𝑤I) if

𝑗 > 𝐵𝑇 −𝑡+1 :=
1 − 𝜋∗

C + 𝑣𝑇 𝑛 − 𝑣𝑡−1,𝑛−𝑙

𝑣𝑡−1,𝑛−𝑙−1 − 𝑣𝑡−1,𝑛−𝑙
. (22)

Consider the events

E 𝑗𝑙 =

��

one quake occurs on each of the
first 𝑙 quake days followed by 𝑗

quakes on the (𝑙 + 1)st quake day

��
= (1, . . . , 1︸���︷︷���︸

𝑙 ones

, 𝑗) (23)

and

E 𝑗𝑙𝑠 = event E 𝑗𝑙 occurs on coverage day 𝑠

for 𝑗 ∈ {𝑚 − 𝑙, . . . , 𝑛 − 𝑙}, 𝑠 ∈ {𝑙 + 1, . . . , 𝑇}, and 𝑙 ∈ {0, 1, . . . , 𝑚 − 1}. If 𝑙 = 𝑚 − 1 on remaining day
𝑡, then 𝐵𝑇 −𝑡+1 = (1 − 𝜋∗

C + 𝑣𝑇 𝑛 − 𝑣𝑡−1,𝑛−𝑚+1)/(1 − 𝑣𝑡−1,𝑛−𝑚+1) ≤ 1 so that (22) is satisfied w.p.1 (as per
Proposition 3.1(iii)). However, for 𝑙 ≤ 𝑚 − 2, 𝑣𝑡−1,𝑛−𝑙−1 < 1, so that 𝐵𝑇 −𝑡+1 may exceed 1. Therefore,
for 𝑙 ≤ 𝑚 − 2

pr[𝜅 (C) (𝜋∗
C) > 𝑤I, E 𝑗𝑙] =

∑
𝑠∈T𝑗𝑙

pr(E 𝑗𝑙𝑠),

where

T𝑗𝑙 = {𝑠 : 𝑗 > 𝐵𝑠; 𝑠 = 𝑙 + 1, . . . , 𝑇}
= set of all coverage days that satisfy inequality (22) . (24)

This result implies the tighter bound on loss probability

pr[𝜅 (C) (𝜋∗
C) < 𝑤I] ≤ 𝛽𝑚𝑛 −

𝑚−2∑
𝑙=0

𝑛−𝑙∑
𝑗=𝑚−𝑙

∑
𝑠∈T𝑗𝑙

pr(E 𝑗𝑙𝑠),
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where (see (19))∑
𝑠∈T𝑗𝑙

pr(E 𝑗𝑙𝑠) = 𝑃𝑛 (1, 1, . . . , 1︸������︷︷������︸
𝑙−1 ones

𝑗), 𝑗 ∈ {𝑚 − 𝑙, . . . , 𝑛 − 𝑙} and 𝑙 ∈ {0, 1 . . . , 𝑚 − 2}.

Moreover, it implies a profit with probability

pr

[
𝜅 (C) (𝜋∗

C) > 𝑤I,
𝑛−𝑙⋃
𝑗=𝑚−𝑙

E 𝑗𝑙

]
=
𝑚−2∑
𝑙=0

𝑛−𝑙∑
𝑗=𝑚−𝑙

∑
𝑠∈T𝑗𝑙

pr(E 𝑗𝑙𝑠),

where

pr(E 𝑗𝑙𝑠) =
∑

𝑠0<𝑠1< · · ·<𝑠𝑙<𝑠<∞

{[
𝑙∏
𝑖=1

𝑓 (1; 𝑛 − 𝑖 + 1, 𝑝)(1 − 𝑝) (𝑛−𝑖+1) (𝑠𝑖−𝑠𝑖−1−1)

]
× 𝑓 ( 𝑗 ; 𝑛 − 𝑙, 𝑝)(1 − 𝑝) (𝑛−𝑙) (𝑠−𝑠𝑙−1)} 𝑗 = 1, . . . , 𝑛 − 𝑙, 𝑙 = 1, . . . , 𝑚 − 1.

Sections 5.1 and 6.1 offer examples that show positive probability of profit when the most catastrophic
event, ( 𝑗 ≥ 2), occurs for the (𝑚, 𝑛) = (2, 5) scenario.

4. Choosing a strategy

Recall that 𝜋∗
B denotes the premium at which the insurance company, using Strategy B, is indifferent

between offering and not offering the 𝑚-out-of-𝑛 policy, where (5) determines 𝜋∗
B for the exponential

utility function (4). For Strategy C,

𝜋∗
C = 𝛼−1 ln{E{e𝛼 [𝜅 (C) (0)−𝑤I ] }} (25)

gives the corresponding indifference premium. (In the case of 𝜃 ≠ 1, (25) determines the indifference
premium with 𝛼𝜃 replacing 𝛼.) Appendix B describes a procedure for computing 𝜋∗

C. Note that 𝜅 (𝐶) (0)−
𝑤I is the random total payout when following Strategy C, which does not depend on 𝑤I. Whereas (5)
implies that 𝜋∗

B < 1 for utility function (4), 𝜋∗
C > 1 for sufficiently large 𝛼 or 𝑔. When this occurs,

Strategy C with premium 𝜋∗
C has no appeal.

For an adaptive approach such as Strategy C to be implementable, a market must exist for daily
reinsurance purchases. Motivation for reinsurers to make this market comes from considerations of the
markup per coverage dollar, 𝑔, on daily policies. A reinsurer presumably would charge a higher markup
per dollar of reinsurance coverage for shorter than for longer term policies. Section 6 contains a fuller
treatment of this issue. See Proposition 6.1 for example. In particular, one can expect 𝑔 to exceed any
yearly markup for Strategy B. Moreover, 𝑔 may contribute to a larger indifference premium for Strategy
C than for Strategy B. However, Section 5 shows that Strategy C can have a considerably smaller loss
probability than Strategy B. This lower probability counters a strict preference for Strategy B based on
a smaller indifference premium.

The premiums, 𝜋∗
B and 𝜋∗

C, together with the minimal 𝑣𝑇 𝑛, provide a basis for deciding the appeal
of each strategy in practice. For the moment, assume 𝜋∗

C ≥ 𝑣𝑇 𝑛 and suppose the insurance market
for 𝑚-out-of-𝑛 policies dictates an annual premium, 𝜋M. (As noted below, 𝜋∗

C ≥ 𝑣𝑇 𝑛 in all but one of
the scenarios in Table 3. Although the assumption that a market exists for 𝑚-out-of-𝑛 policies may be
unrealistic in some situations, the insurer may still have competitors willing to offer coverage in one or
more particular scenarios.) Then:

A1. If min(𝜋∗
B, 𝜋

∗
C) > 𝜋M, the insurance company is averse to offering the policy, regardless of strategy.

A2. If 𝜋∗
C > 𝜋M > 𝜋∗

B, the insurance company can offer the policy at premium 𝜋M, follow Strategy B,
and realize final working capital 𝜅 (B) (𝜋M) = 𝑤I + 𝜋M (> 𝑤I + 𝜋∗

B) if fewer than 𝑚 quakes occur, or
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Table 3. Premiums for 𝑛 = 5 and 10 (𝑔 = 4, 𝜃 = 1, and 𝑇 = 365).

𝛼 = 4 𝛼 = 8

𝑛 𝑚 𝜋∗
B 𝜋∗

C 𝜋∗
B 𝜋∗

C 𝑣𝑇 𝑛

𝑞 = 0.01
5 2 0.0128 0.0143 0.1708 0.0147 0.0143

3 1.320 × 10−4 5.726 × 10−4 3.616 × 10−3 5.811 × 10−4 5.720 × 10−4

4 6.646 × 10−7 1.150 × 10−5 1.847 × 10−5 1.158 × 10−5 1.150 × 10−5

5 1.340 × 10−9 9.260 × 10−8 3.725 × 10−8 9.281 × 10−8 9.254 × 10−8

10 2 0.0515 0.0566 0.3273 0.0573 0.0565
3 1.521 × 10−3 5.927 × 10−3 0.0365 5.982 × 10−3 5.922 × 10−3

4 2.681 × 10−5 4.126 × 10−4 7.433 × 10−4 4.144 × 10−4 4.123 × 10−4

5 3.238 × 10−7 1.980 × 10−5 9.002 × 10−6 1.983 × 10−4 1.978 × 10−5

𝑞 = 0.10
5 2 0.4200 0.5606 0.6870 0.5633 0.5604

3 0.0944 0.2256 0.4097 0.2268 0.2255
4 6.089 × 10−3 0.0504 0.1079 0.0505 0.0504
5 1.340 × 10−4 4.736 × 10−3 3.671 × 10−3 4.786 × 10−3 4.746 × 10−3

10 2 0.6794 0.9091 0.8336 0.9124 0.9089
3 0.3902 0.7267 0.6685 0.7299 0.7264
4 0.1306 0.4702 0.4584 0.4716 0.4700
5 0.0210 0.2347 0.2213 0.2351 0.2346

𝜅 (B) (𝜋M) = 𝑤I + 𝜋M − 1 (> 𝑤I + 𝜋∗
B − 1) otherwise. Moreover, E𝑢(𝜅 (B) (𝜋M)) > E𝑢(𝜅 (B) (𝜋∗

B)) =
E𝑢(𝜅 (C) (𝜋∗

C)). But the corresponding loss probability remains 1 − 𝐹 (𝑚 − 1; 𝑛, 𝑞) which for 𝑚
small relative to 𝑛, tends to exceed 𝛽𝑚𝑛.

A3. If 𝜋∗
B > 𝜋M > 𝜋∗

C, then adopting Strategy C with premium 𝜋M implies E𝑢(𝜅 (C) (𝜋M)) > E𝑢(𝜅 (B)

(𝜋∗
B)) = E𝑢(𝜅 (C) (𝜋∗

C)) and pr[𝜅 (C) (𝜋M) < 𝑤I] ≤ pr[𝜅 (C) (𝜋∗
C) < 𝑤I] ≤ 𝛽𝑚𝑛.

A4. If 𝜋M > max(𝜋∗
B, 𝜋

∗
C), then adopting either strategy with premium 𝜋M increases potential profit

and increases expected utility. If 𝛽𝑚𝑛 < 1 − 𝐹 (𝑚 − 1; 𝑛, 𝑞), choosing Strategy C implies pr[𝜅 (C)
(𝜋M) < 𝑤I] ≤ pr[𝜅 (C) (𝜋∗

C) < 𝑤I] ≤ 𝛽𝑚𝑛.
A5. If 𝑣𝑇 𝑛 > 𝜋∗

C, then A1 through A4 continue to apply with 𝑣𝑇 𝑛 replacing 𝜋∗
C. In this case

E𝑢(𝜅 (C) (𝑣𝑇 𝑛)) > E𝑢(𝜅 (B) (𝜋∗
B)).

Note that for all 𝜋M ∈ (𝜋∗
C, 1)

pr[𝜅 (C) (𝜋M) < 𝑤I] < pr[𝜅 (C) (𝜋∗
C) < 𝑤I + 𝜋M − 𝜋∗

C] .

By way of comparison, Table 3 displays 𝜋∗
B, 𝜋∗

C, and 𝑣𝑇 𝑛 for selected 𝛼, 𝑔, 𝑚, 𝑛, and 𝑞. Most notably,
𝜋∗

C > 𝑣𝑇 𝑛 for all but scenario (𝛼, 𝑚, 𝑛, 𝑞) = (4, 5, 5, 0.01). For 𝛼 = 4, 𝜋∗
B is less than the corresponding

𝜋∗
C for both 𝑞 = 0.01 and 0.1. For 𝛼 = 8, a mixed picture obtains.

5. Example: (𝒎, 𝒏, 𝜽) = (2, 5, 1)
This section focuses on the scenario (𝑚, 𝑛, 𝜃) = (2, 5, 1), examining in detail how Strategy C’s indiffer-
ence premium, 𝜋∗

C, loss probability, pr[𝜅 (C) (𝜋∗
C) ≤ 𝑤I], and its corresponding upper bound, 𝛽𝑚𝑛, behave

as functions of annual quake probability, 𝑞, level of risk aversion, 𝛼, markup, 𝑔, and review interval, Δ,
(in days). Although previous sections assume Δ = 1, Strategy C applies more generally. For example,
a policy with one year coverage may have intervals Δ =1, 7, 30, 90, or 180 days, with 365, 52, 12, 4,
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and 2 reviews, respectively. (The corresponding total coverage periods are 365, 364, 360, 360, and 360
days, respectively. Presumably, these slight differences in coverage period should have negligible effect
when comparing results for different Δ.) The present analysis focuses on Δ = 1, 7, and 30 with

𝑝Δ := probability of a quake at a site during a period ofΔdays
= 1 − (1 − 𝑞)1/	𝑇 /Δ
 . (26)

The corresponding upper bound on loss probability takes the form

𝛽25 = 1 − 𝑃5(0) − 𝑃5 (1) − 𝑃5 (1, 𝑗2 ≥ 1)
= 𝑃5( 𝑗1 ≥ 2)

= [1 − (1 − 𝑝Δ)
4(1 + 4𝑝Δ)] ×

1 − (1 − 𝑝Δ)
5 	𝑇 /Δ


1 − (1 − 𝑝Δ)5 ,

Table 4(a) characterizes Strategy B with regard to premium, loss, and loss probability. Tables 4(b) and
4(c) do likewise for Strategy C. They reveal that:

• For final working capital, Strategy B concentrates probability 1 − 𝐹 (1; 5, 𝑞) on loss, −(1 − 𝜋∗
B), and

𝐹 (1; 5, 𝑞) on profit, 𝜋∗
B. By contrast, Strategy C concentrates virtually all its probability mass in a

small profit interval [0, 𝑑), where 𝑑 increases as 𝜋∗
C − 𝑣𝑇 𝑛 increases. Its modal value is in (0, 𝑑).

• For each 4-tuple (𝛼, 𝑔, 𝑞,Δ), pr[𝜅 (C) (𝜋∗
C) < 𝑤I] < pr[𝜅 (B) (𝜋∗

B) < 𝑤I].
• For given 𝛼, 𝑔, and 𝑞, 𝜋∗

C increases relatively little as Δ increases.
• For given interval, 𝑔, and 𝑞, 𝜋∗

B increases substantially as 𝛼 increases from 4 to 8, whereas 𝜋∗
C

increases relatively little.
• For 𝑞 = 0.01, 𝜋∗

B < 𝜋∗
C for 𝛼 = 4 but 𝜋∗

B > 𝜋∗
C for 𝛼 = 8.

• For 𝑞 = 0.1 both strategies have relatively large indifference premiums, with 𝜋∗
B < 𝜋∗

C for 𝑔 = 8 and
(𝛼, 𝑔,Δ) = (8, 4, 30). For one dollar coverage, Strategy C clearly is not a serious alternative if 𝜋∗

C > 1.
• For each given (𝛼, 𝑔, 𝑞) in Table 4(c), max−min decreases as Δ increases. The reduction is most

noticeable for 𝑞 = 0.1 and Δ = 90 and 180 days.
• The maximal profit (> 3) occurs for the quake history (1,4) which has positive, but negligible,

probability of occurring.

Additional computation reveals that for 90 and 180 day intervals, Strategy C has loss probabilities
2.460 × 10−4 and 4.913 × 10−4, respectively, for 𝑞 = 0.01 and all 𝛼 and 𝑔. These are again less than the
corresponding loss probabilities for Strategy B. A similar property holds for 𝑞 = 0.1. For both intervals
and both 𝑞, 𝜋∗

B < 𝜋∗
C.

The entries in Table 4 for 𝑞 = 0.1 offer an example in which both 𝑣𝑇 𝑛 and 𝜋∗
C decrease as Δ decreases,

thus showing that Strategy C’s use of dynamic reinsurance sometimes provides the largest benefit to
the insurer when the review interval is shortest (Δ = 1). Additional computations for other parameter
values also exhibit such behavior. (Note, however, that the entries in Table 4 for 𝑞 = 0.01 do not.)

One might argue, nevertheless, that the assumption that 𝑔 is constant gives an unfair advantage to
shorter review intervals. As noted in Section 4, the conventional wisdom is that over a shorter interval
an insurer or reinsurer will demand a larger markup for coverage of the same risk (i.e., the same value
of 𝑞 in the present setting). In the context of utility theory, this conventional wisdom can be explained
as a consequence of risk aversion (see Proposition 6.1).

Section 6 below generalizes the model with different review intervals to accommodate a reinsurer’s
markup that depends on both the quake probability and the coverage amount in the review interval, under
the assumption that the reinsurer, like the insurer, has an exponential utility function with a positive
risk-aversion coefficient.
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Table 4. Premiums, probabilities and 𝜅 (C) (𝜋∗
C) range, for (𝑚, 𝑛, 𝜃) = (2, 5, 1).

a. Strategy B
𝑞 = 0.01 𝑞 = 0.1

Loss pr[𝜅 (B) (𝜋∗
B) = Loss pr[𝜅 (B) (𝜋∗

B) =
𝛼 𝜋∗

B −(1 − 𝜋∗
B) 𝑤I − (1 − 𝜋∗

B)] 𝜋∗
B −(1 − 𝜋∗

B) 𝑤I − (1 − 𝜋∗
B)]

4 0.0128 −0.9872 9.801 × 10−4 0.4200 −0.5800 0.0815
8 0.1708 −0.8292 9.801 × 10−4 0.6870 −0.3130 0.0815

b. Strategy C
Δ (days) 𝛼 𝑔 𝜋∗

C 𝑣𝑇 𝑛 pr[𝜅 (C) (𝜋∗
C) < 𝑤I] 𝑑 pr[𝜅 (C) (𝜋∗

C) ≥ 𝑤I + 𝑑]

𝑞 = 0.01
1 4 4 0.0143 0.0143 2.699 × 10−6 2.1 × 10−5 4.037 × 10−8

7 0.0143 0.0141 1.894 × 10−5 1.5 × 10−4 2.786 × 10−7

30 0.0141 0.0134 8.206 × 10−5 6.6 × 10−4 1.128 × 10−6

1 8 4 0.0147 0.0143 2.699 × 10−6 3.8 × 10−4 4.037 × 10−8

7 0.0168 0.0141 1.894 × 10−5 2.7 × 10−3 2.786 × 10−7

30 0.0253 0.0134 8.206 × 10−5 0.012 1.128 × 10−6

1 4 8 0.0509 0.0509 2.699 × 10−6 2.0 × 10−5 4.037 × 10−8

7 0.0505 0.0504 1.894 × 10−5 1.0 × 10−4 2.786 × 10−7

30 0.0489 0.0485 8.206 × 10−5 4.6 × 10−4 1.128 × 10−6

1 8 8 0.0511 0.0509 2.699 × 10−6 2.1 × 10−4 4.037 × 10−8

7 0.0520 0.0504 1.894 × 10−5 1.6 × 10−3 2.786 × 10−7

30 0.0558 0.0485 8.206 × 10−5 7.4 × 10−3 1.128 × 10−6

𝑞 = 0.1
1 4 4 0.5606 0.5604 1.467 × 10−4 2.2 × 10−4 1.249 × 10−4

7 0.5655 0.5639 1.016 × 10−3 1.7 × 10−3 8.840 × 10−4

30 0.5879 0.5787 3.699 × 10−3 9.2 × 10−3 4.436 × 10−3

1 8 4 0.5633 0.5604 1.453 × 10−4 3.0 × 10−3 1.249 × 10−4

7 0.5863 0.5639 9.143 × 10−4 0.023 8.840 × 10−4

30 0.6967 0.5787 2.524 × 10−3 0.12 4.436 × 10−3

1 4 8 0.8887 0.8886 6.679 × 10−5 9.6 × 10−5 2.048 × 10−4

7 0.8967 0.8959 4.488 × 10−4 8.0 × 10−4 1.451 × 10−3

30 0.9317 0.9254 1.449 × 10−3 6.3 × 10−3 6.686 × 10−3

1 8 8 0.8901 0.8886 6.620 × 10−5 1.5 × 10−3 2.048 × 10−4

7 0.9098 0.8959 4.202 × 10−4 0.014 1.451 × 10−3

30 1.0350 0.9254 1.449 × 10−3 0.11 6.686 × 10−3

c. Strategy C: Range for 𝜅 (C) (𝜋∗
C)

𝛼 = 4 𝛼 = 8

𝑞 = 0.01 𝑞 = 0.1 𝑞 = 0.01 𝑞 = 0.1

Δ (days) 𝑔 min max min max min max min max

1 4 −1.000 3.148 −1.000 3.810 −1.000 3.148 −0.997 3.813
7 −1.000 3.143 −0.998 3.783 −0.997 3.146 −0.978 3.804
30 −0.999 3.125 −0.991 3.679 −0.988 3.136 −0.882 3.788
90 −0.998 3.078 −0.949 3.436 −0.962 3.114 −0.671 3.714
180 −0.995 3.005 −0.833 3.167 −0.918 3.082 −0.498 3.502
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Table 4. (Continued)

c. Strategy C: Range for 𝜅 (C) (𝜋∗
C)

𝛼 = 4 𝛼 = 8

𝑞 = 0.01 𝑞 = 0.1 𝑞 = 0.01 𝑞 = 0.1

Δ (days) 𝑔 min max min max min max min max

1 8 −1.000 3.274 −1.000 −1.000 3.274 −0.999 3.95 3.957
7 −1.000 3.265 −0.999 3.903 −0.999 3.267 −0.986 3.916
30 −1.000 3.232 −0.994 3.699 −0.993 3.239 −0.891 3.802
90 −0.998 3.143 −0.950 3.214 −0.972 3.170 −0.671 3.492
180 −0.996 3.004 −0.833 3.167 −0.928 3.072 −0.498 3.502

Table 5. 𝛽25 for varying review intervals for (𝑚, 𝑛) = (2, 5).

𝑞 = 0.01 𝑞 = 0.1
Δ (days) 𝛽25 𝛽25

1 2.699 × 10−6 2.364 × 10−4

7 1.894 × 10−5 1.658 × 10−3

30 8.206 × 10−5 7.159 × 10−3

5.1. Profit from multiple quakes

Table 5 shows how 𝛽25, the upper bound in (18) on loss probability when applying Strategy C to the
scenario (𝑚, 𝑛) = (2, 5), varies with Δ. Comparing them to their corresponding loss probabilities in
Table 4(b) reveals that:

• For 𝑞 = 0.01 and all 𝛼,𝑔, and Δ, pr[𝜅 (C) (𝜋∗
C) < 𝑤I] and 𝛽25 agree to four digits.

• For 𝑞 = 0.1 and all 𝛼, 𝑔, and Δ, pr[𝜅 (C) (𝜋∗
C) < 𝑤I] is considerably less than 𝛽25.

To reconcile these similarities and differences, we first focus on 𝛼 = 4, 𝑔 = 4, and 𝑞 = 0.01 and
examine the event ( 𝑗 ≥ 2), using the nomenclature of Section 3.3. In order for a profit to materialize, the
bound 𝐵𝑇 −𝑡+1 in (22) must be less than 5 for the (𝑚, 𝑛) = (2, 5) scenario. However, min1≤𝑡≤𝑇 𝐵𝑇 −𝑡+1 ≥

7.359, 7.405, and 7.911 for Δ = 1, 7, and 30, respectively. Therefore, pr[𝜅 (C) (𝜋∗
C) > 𝑤I | E] = 0, where

E =
5⋃
𝑗=2

E 𝑗0

=

(
at least two events occur

on the first quake day

)
. (27)

The case of 𝑞 = 0.1 presents a considerably different picture. It has min1≤𝑡≤𝑇 𝐵𝑇 −𝑡+1 ≥ 1.725, 1.711,
and 1.649 for Δ = 1, 7, and 30, respectively, implying a profit if as few as two quakes occur during the
first review period in which a quake occurs. For example, Δ = 1 has

pr[𝜅 (C) (𝜋∗
C) > 𝑤I, E] =

117∑
𝑠=1

pr(E20𝑠) +

249∑
𝑠=1

pr(E30𝑠) +

290∑
𝑠=1

pr(E40𝑠) +

309∑
𝑠=1

pr(E50𝑠)

= 8.901 × 10−5,

https://doi.org/10.1017/S0269964821000504 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964821000504


Probability in the Engineering and Informational Sciences 123

leading to the tighter upper bound on loss probability

pr[𝜅 (C) (𝜋∗
C) < 𝑤I] = 𝛽25 −

117∑
𝑠=1

pr(E20𝑠) −

249∑
𝑠=1

pr(E30𝑠) −

290∑
𝑠=1

pr(E40𝑠) −

309∑
𝑠=1

pr(E50𝑠)

= 2.175 × 10−4.

That is, the insurance company realizes a profit if two quakes occur during any of the first 117 coverage
days, three quakes on any of the first 249 coverage days, four quakes on any of the first 290 coverage
days, or five quakes on any of the first 309 coverage days. For monthly review intervals (Δ = 30),

pr[𝜅 (C) (𝜋∗
C) > 𝑤I, E] =

5∑
𝑠=1

pr(E20𝑠) +

8∑
𝑠=1

pr(E30𝑠) +

9∑
𝑠=1

pr(E40𝑠) +

10∑
𝑠=1

pr(E50𝑠)

= 3.461 × 10−3.

implying a noticeably larger probability than for 𝑞 = 0.01. Moreover, it reduces the bound on loss
probability by about one half to

pr[𝜅 (C) (𝜋∗
C) < 𝑤I] = 𝛽25 −

5∑
𝑠=1

pr(E20𝑠) −

8∑
𝑠=1

pr(E30𝑠) −

9∑
𝑠=1

pr(E40𝑠) −

10∑
𝑠=1

pr(E50𝑠)

= 3.698 × 10−3.

Interestingly, among all possible quake histories that can occur during a coverage period, the most
catastrophic event, two or more quakes occurring within the same 30-day review interval, has positive,
although small, probability of generating a profit for the insurance company.

6. Reinsurer’s markup

Section 3.1 assumes that for 𝑘 active sites at the beginning of remaining day 𝑡, the insurance company
pays the premium, 𝑘𝑔𝑝𝜙𝑡 𝑘 , to buy reinsurance coverage, 𝜙𝑡 𝑘 = 𝑣𝑡−1,𝑘−1 − 𝑣𝑡−1,𝑘 , on each of the 𝑘
sites for Δ days. (This form of reinsurance is merely Strategy A applied to a coverage interval shorter
than one year.) Moreover, it treats the reinsurer’s markup, 𝑔, as constant over the entire coverage
period, presumably a function of the interval quake probability, 𝑝Δ. In reality, the markup may vary
on successive reviews as the risk facing the reinsurer varies with changing coverage, 𝜙𝑡 𝑘 . This section
extends the analysis of Section 3.1 by allowing the markup to be a function of both coverage and the
quake probability. It again illustrates the development for the (𝑚, 𝑛, 𝜃) = (2, 5, 1) scenario.

On each of 𝑘 sites at the beginning of remaining day 𝑡, the insurance company wants to purchase
reinsurance that pays it 𝜙𝑡 𝑘 dollars if a quake occurs at the site during the subsequent Δ coverage days.
Each potential reinsurer presumably determines the premium that would make him indifferent between
offering and not offering the coverage. In a competitive insurance market, the insurance company
purchases the policy at the current market price from a reinsurer who is willing to sell; that is, one
whose indifference premium is no greater than the market price. In the case of 𝑘 active sites, we assume
that the market is large enough that all 𝑘 policies are available (from one or more reinsurers) at the
current market price.

Once again we rely on expected utility theory; this time to characterize the markup, and therefore
the premium, required to make the reinsurer indifferent between offering and not offering the policy
for given 𝑝Δ and 𝜙𝑡 𝑘 . Suppose the reinsurer’s utility function, {𝑢(𝑤)}, is concave increasing in initial
wealth, 𝑤. Then 𝑔(𝑝Δ, 𝜙𝑡 𝑘) × 𝑝Δ is the premium per dollar of coverage that makes him indifferent
between offering and not offering the coverage for Δ days, where 𝑔(𝑝Δ, 𝜙𝑡 𝑘) solves the expected utility
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Table 6. Strategy C: Upper bound on reinsurer’s indifference markup (𝑝 = 1 − (1 − 𝑞)1/	𝑇 /Δ
).

𝑔(𝑝, 1)

𝛾 Δ (days) 𝑞 = 0.01 𝑞 = 0.1 lim𝑝→0 𝑔(𝑝, 1)

2 1 3.194 3.192 3.195
7 3.193 3.174
30 3.186 3.110

3 1 6.360 6.344 6.362
7 6.350 6.242
30 6.312 5.890

4 1 13.390 13.297 13.400
7 13.331 12.723
30 13.112 11.015

indifference equation

(1 − 𝑝Δ)𝑢(𝑤 + 𝑔𝑝Δ𝜙𝑡 𝑘) + 𝑝Δ𝑢(𝑤 + 𝑔𝑝Δ𝜙𝑡 𝑘 − 𝜙𝑡 𝑘) = 𝑢(𝑤). (28)

Except to avoid ambiguity, we hereafter write 𝑔(𝑝, 𝜙) for 𝑔(𝑝Δ, 𝜙𝑡 𝑘).
Propositions 6.1 and 6.2 characterize how 𝑔(𝑝, 𝜙) varies with 𝑝 and 𝜙.

Proposition 6.1. If the Arrow-Pratt measure of absolute risk aversion, −𝑢′′(𝑤)/𝑢′(𝑤), decreases in 𝑤,
then for all 𝑡 and 𝑘 , 𝑔(𝑝, 𝜙) is decreasing in 𝑝 for given 𝜙.

Proposition 6.2. For given 𝑝, 𝑔(𝑝, 𝜙) is strictly increasing in 𝜙.

See Appendix A for the proofs. The property for the Arrow-Pratt measure is a common requirement
of utility theory because it is consistent with the property that an individual’s aversion to risk does
not increase as his wealth increases. Because 𝑣𝑡 ,𝑛−𝑚 = 1 and 𝑣𝑡 𝑘 is monotone non-increasing in
𝑘 ∈ {𝑛 − 𝑚, . . . , 𝑛} for given 𝑡 (Proposition 3.2), 𝜙 is bounded above by 1.

Suppose the reinsurer has the exponential utility function, 𝑢(𝑤) = −e−𝛾𝑤 , for −∞ < 𝑤 < ∞ and
level of risk aversion, 𝛾 > 0. Solving for 𝑔(𝑝, 𝜙) yields

𝑔(𝑝, 𝜙) =
ln(1 − 𝑝 + 𝑝e𝛾𝜙)

𝛾𝑝𝜙
. (29)

Because Proposition 6.1 implies that 𝑔(𝑝, 𝜙) decreases as 𝑞, Δ, or both increase, 𝑔(𝑝, 𝜙) in (29) has
upper bounds

lim
𝑝→0

𝑔(𝑝, 𝜙) =
e𝛾𝜙 − 1

𝛾𝜙
≤

e𝛾 − 1
𝛾

. (30)

Table 6 reveals that 𝑔(𝑝, 1) differs little from its limiting upper bound for quake probabilities 𝑞 ≤ 0.1
and Δ = 1, 7, and 30. Although one might be tempted to choose 𝑔(𝑝, 1) as the constant markup in
Section 3.1, doing can lead to a needlessly larger markup than necessary, as we now show.

Using the indifference markup 𝑔𝑡 𝑘 (𝑝Δ, 𝜙𝑡 𝑘) in (29) in place of a constant 𝑔, we extend the development
in Section 3.1 by computing the schedule, {𝑣𝑡 𝑘 }, as

𝑣𝑡 𝑘 = 𝑘 ln(1 − 𝑝 + 𝑝e𝛾𝜙𝑡𝑘 )/𝛾 + 𝑣𝑡−1,𝑘 , 𝑘 ∈ {𝑛 − 𝑚 + 1, . . . , 𝑛} and 𝑡 ∈ {1, . . . , 𝑇}, (31)

subject to the boundary conditions (8). Again, 𝑣𝑇 𝑛 is the minimal premium that guarantees no loss for
the insurance company when the quake history satisfies Condition (7), whereas 𝑘 × 𝑝×𝑔𝑡 𝑘 (𝑝, 𝜙𝑡 𝑘) is the

https://doi.org/10.1017/S0269964821000504 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964821000504


Probability in the Engineering and Informational Sciences 125

Table 7. Strategy C: 𝜋∗
C, 𝑣𝑇 𝑛, and pr[𝜅 (C) (𝜋∗

C) < 𝑤I] for variable markup ((𝑚, 𝑛, 𝜃) = (2, 5, 1) and
𝛾 = 4).

𝑞 = 0.01 𝑞 = 0.1

Δ (days) 𝛼 𝜋∗
C 𝑣𝑇 𝑛 pr[𝜅 (C) (𝜋∗

C) < 𝑤I] 𝜋∗
C 𝑣𝑇 𝑛 pr[𝜅 (C) (𝜋∗

C) < 𝑤I]

1 4 0.0128 0.0128 2.699 × 10−6 0.4209 0.4208 1.005 × 10−4

7 0.0128 0.0127 1.894 × 10−5 0.4268 0.4261 6.570 × 10−4

30 0.0127 0.0124 8.206 × 10−5 0.4632 0.4572 1.968 × 10−3

1 8 0.0129 0.0128 2.699 × 10−6 0.4219 0.4208 9.919 × 10−5

7 0.0138 0.0127 1.894 × 10−5 0.4376 0.4261 6.263 × 10−4

30 0.0179 0.0124 8.206 × 10−5 0.5657 0.4572 9.431 × 10−4

reinsurer’s indifference premium at review 𝑡 with 𝑘 active sites. Figure 1 displays coverage, reinsurer’s
indifference markup, and pr(one quake on the first quake day) for Δ = 1 and reinsurer risk aversion
level, 𝛾 = 4. Most notably, Figure 1(b) shows that over the coverage year, markups considerably smaller
than the corresponding upper bounds 𝑔(𝑝, 1) in Table 6 suffice to make the reinsurer indifferent between
offering or not offering the coverage. As illustration, let 𝜙max denote the maximal coverage during the
entire coverage period. Then for (𝛼, 𝛾,Δ) = (4, 4, 1), we have

pr(𝜙max = 0.1805) = 1 − (1 − 𝑝)5(𝑇 −1)

= 0.9511
pr(0.1805 < 𝜙max ≤ 1) = 0.0489

⎫⎪⎪⎬⎪⎪⎭ for 𝑞 = 0.01

pr(𝜙max = 0.3909) = 0.5916
pr(0.3909 < 𝜙max ≤ 1) = 0.4087

}
for 𝑞 = 0.1,

where
(1 − 𝑝)5(𝑇 −1) = pr(one quake occurs on the first quake day).

For premium, 𝜋, {𝑣𝑡 𝑘 } as in (31), and 𝑔(𝑝Δ, 𝜙𝑡 𝑘) as in (29), final working capital now becomes

𝜅 (C) (𝜋) = 𝑤I + 𝜋 +

max(0,𝑇 −𝐿)∑
𝑠=𝑇

{[𝐾𝑠 − 𝐾𝑠−1 − 𝐾𝑠𝑔(𝑝, 𝜙𝑠,𝐾𝑠
)𝑝]𝜙𝑠,𝐾𝑠

− 𝜃𝐼𝐾𝑠−1≤𝑛−𝑚}, (32)

and the insurance company’s corresponding indifference premium follows from (25). Table 7 displays
𝜋∗

C, 𝑣𝑇 𝑛, and pr[𝜅 (C) (𝜋∗
C) ≤ 𝑤I] based on the reinsurer’s indifference markup, 𝑔(𝑝Δ, 𝜙𝑡 𝑘), in (29).

Comparing its entries with those in Table 4 for Strategy B reveals that 𝜋∗
C ≤ 𝜋∗

B and pr[𝜅 (C) (𝜋∗
C) ≤ 𝑤I] ≤

pr[𝜅 (B) (𝜋∗
B) ≤ 𝑤I] for the same 𝛼, Δ, and 𝑞. This occurs for both 𝛾 = 3 and 4. But pr[𝜅 (C) (𝜋∗

C) ≤ 𝑤I]

tends to be greater than the corresponding entries in Table 4 for fixed reinsurer’s markups, 𝑔 = 4 and 8.
Whereas Section 3.1 takes the reinsurer’s markup, 𝑔, as a known constant for the total 𝑇 day coverage

period, the present development takes the reinsurer’s level of risk aversion, 𝛾, as known. Although the
insurance company knows neither of these with certainty, it is not unreasonable to assume 𝛾 ≤ 𝛼. That
is, the insurance company is at least as risk averse as reinsurers are.2 Then the resulting {𝑔(𝑝Δ, 𝜙𝑡 𝑘)}
provides an upper bound on the unknown markups, but for which the gap between them decreases as 𝛾
approaches 𝛼. This assumption is more plausible than assuming a constant markup.

In Table 7, note that 𝑣𝑇 𝑛 increases as Δ increases for 𝑞 = 0.1 and decreases as Δ increases for
𝑞 = 0.01, with 𝛾 = 4 and Δ = 1, 7, and 30. Additional computations suggest that in general for given 𝑞

2In fact, it can easily be shown that the right-hand side of equation (29) is increasing in 𝛾 and therefore an insurer with exponential utility function
with risk-aversion coefficient 𝛼 < 𝛾 would prefer to self-insure.
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Figure 1. Coverage and reinsurer’s indifference markup for (𝑚, 𝑛, 𝜃) = (2, 5, 1), 𝛼 = 4, 𝛾 = 4, and
Δ = 1 (solid: 𝑘 = 4, dash: 𝑘 = 5).

and sufficiently small (large) values of 𝛾, 𝑣𝑇 𝑛 decreases (increases) as the length of the review interval
increases, whereas for an intermediate range of values of 𝛾, 𝑣𝑇 𝑛 first decreases then increases as the
length of the review interval increases.

An important and perhaps unexpected implication of these results is that smaller values of 𝑣𝑇 𝑛 and
𝜋∗

C can still be associated with shorter review intervals even though the markups demanded by a risk-
averse reinsurer now vary with the length of the review interval. As was the case in Table 4 (where the
reinsurer’s markup 𝑔 was constant), the entries in Table 7 for 𝑞 = 0.1 show both 𝑣𝑇 𝑛 and 𝜋∗

C decreasing as
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Table 8. Strategy C: Profit probability on first quake interval with variable reinsurer’s markup
((𝑚, 𝑛, 𝜃) = (2, 5, 1), 𝛼 = 4, 𝛾 = 4, and 𝑞 = 0.1).

Δ (days) pr[𝜅 (C) (𝜋∗
C) > 𝑤I, E] pr[𝜅 (C) (𝜋∗

C) > 𝑤I | E]

1 2.364 × 10−4 0.3765
7 1.658 × 10−3 0.3871
30 7.159 × 10−3 0.4834

Δ decreases. The reason for this behavior, which at first may seem to contradict the conventional wisdom,
is that Strategy C’s schedule assigns smaller coverage amounts 𝜙 as well as smaller probabilities 𝑝 to
shorter review intervals. Whereas the reinsurer’s markup 𝑔(𝑝, 𝜙) increases as 𝑝 decreases, it decreases
as 𝜙 decreases (see Proposition 6.2). The net effect, as shown by the entries in Table 7 for 𝑞 = 0.1, can
once again be that the shortest review interval provides the largest benefit to the insurer, just as in the
case of constant markup 𝑔.

6.1. Profit from multiple quakes

Recall from Section 3.3 for constant reinsurer’s markup that a profit may occur if on remaining day
𝑡 the event E 𝑗 ,𝑙,𝑇 −𝑡+1 occurs for some 𝑙 < 𝑚 − 1 and 𝑗 ≥ 𝑚 − 𝑙. A similar property holds for the
variable markup case, with 𝑔(𝑝Δ, 𝜙𝑇 −𝑠+1,𝑛) replacing 𝑔 in expressions (21) and (22). As illustration for
(𝑚, 𝑛) = (2, 5), 𝛾 = 4, 𝛼 = 4, Δ = 1, and 𝑞 = 0.01, the bound in (22) satisfies

3.645 ≤ 𝐵𝑇 −𝑡+1 < 4 for 365 ≥ 𝑡 ≥ 310, 4 ≤ 𝐵𝑇 −𝑡+1 < 5 for 309
≥ 𝑡 ≥ 217, and 𝐵𝑇 −𝑡+1 ≥ 5 for 216 ≥ 𝑡 ≥ 1,

so that a profit accrues for 𝑗 ≥ 4 with probability

pr[𝜅 (C) (𝜋∗
C) > 𝑤I, E] =

56∑
𝑠=1

pr(E40𝑠) +

149∑
𝑠=1

pr(E50𝑠) = O(10−12).

This is consistent with the observation that 𝛽25 in Table 5 and pr[𝜅 (C) (𝜋∗
C) < 𝑤I] in Table 7 are

identical to at least four digits.
Realizing a profit when more than one quake occurs on the first quake day is more probable for

𝑞 = 0.1. Specifically,

pr[𝜅 (C) (𝜋∗
C) > 𝑤I, E] =

186∑
𝑠=1

pr(E20𝑠) +

314∑
𝑠=1

pr(E30𝑠) +

335∑
𝑠=1

pr(E40𝑠) +

344∑
𝑠=1

pr(E50𝑠)

= 1.359 × 10−4,

substantially reducing the upper bound, 𝛽25 = 2.364 × 10−4, on loss probability to

pr[𝜅 (C) (𝜋∗
C) < 𝑤I] = 𝛽25 −

185∑
𝑠=1

pr(E20𝑠) −

314∑
𝑠=1

pr(E30𝑠) −

335∑
𝑠=1

pr(E40𝑠) −

344∑
𝑠=1

pr(E50𝑠)

= 1.005 × 10−4.

For event E, as defined in (27), Table 8 shows that profit becomes more probable as the review
interval, Δ, increases. In particular, given that two or more quakes occur in the same interval, the
insurance company has a substantial conditional probability, pr[𝜅 (C) (𝜋∗

C) > 𝑤I | E], of realizing a profit.
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Table 9. Strategy C: Two reinsurers and variable reinsurer markup ((𝑚, 𝑛, 𝜃) = (2, 5, 1), 𝛾 = 4, and
𝜆 = 2).

𝑞 = 0.01 𝑞 = 0.1

Δ (days) 𝛼 𝜋∗
C 𝑣𝑇 𝑛 pr[𝜅 (C) (𝜋∗

C) < 𝑤I] 𝜋∗
C 𝑣𝑇 𝑛 pr[𝜅 (C) (𝜋∗

C) < 𝑤I]

1 4 3.137 × 10−3 3.114 × 10−3 2.699 × 10−6 0.2099 0.2096 2.363 × 10−4

7 3.233 × 10−3 3.070 × 10−3 1.894 × 10−5 0.2122 0.2099 1.656 × 10−3

30 3.623 × 10−3 2.896 × 10−3 8.206 × 10−5 0.2234 0.2114 7.119 × 10−3

1 8 3.563 × 10−3 3.114 × 10−3 2.699 × 10−6 0.2135 0.2096 2.363 × 10−4

7 6.227 × 10−3 3.070 × 10−3 1.894 × 10−5 0.2380 0.2099 1.656 × 10−3

30 0.0167 2.896 × 10−3 8.206 × 10−5 0.3380 0.2114 4.975 × 10−3

6.2. More than 𝒌 reinsurance policies for 𝒌 active sites

Because 𝑔(𝑝, 𝜙) increases with 𝜙, the insurance company has an incentive to purchase reinsurance in
the form of 𝜆 > 1 policies on each active site, each with coverage 𝜙/𝜆. Doing so lowers the risk of
individual reinsurers, with the result that the insurer’s total cost of reinsurance on a site, based on the
indifference markup in (29), is

𝜆 × 𝑔(𝑝, 𝜙/𝜆) × 𝑝 × 𝜙/𝜆 = 𝑔(𝑝, 𝜙/𝜆) × 𝑝 × 𝜙

< 𝑔(𝑝, 𝜙) × 𝑝 × 𝜙,

where the inequality follows from Proposition 6.2.
As illustration, Table 9 shows the effect of halving coverage per policy on each site but having 𝜆 = 2

policies on each. Comparing these entries with corresponding results in Table 7 reveals substantial
reductions in 𝜋∗

C and 𝑣𝑇 𝑛 with no change in pr[𝜅 (C) (𝜋∗
C) < 𝑤I] for 𝑞 = 0.01 and small changes for

𝑞 = 0.1. Nevertheless, these loss probabilities remain considerably smaller than those for Strategy B.

7. Concluding remarks

In contrast to other more conventional forms of insurance such as those mentioned in Embrechts [10],
an 𝑚-out-of-𝑛 policy is ideally suited to pricing via the techniques of dynamic hedging developed
for pricing financial derivatives. Indeed, if the hedging could be done (nearly) instantaneously (i.e.,
if, when a quake occurs, new reinsurance could be purchased before another quake occurs) dynamic
hedging would remove all risk for the insurer: the policy would become self-financing. Rather than make
this strong and probably unrealistic assumption, the present paper uses a combination of probabilistic
analysis and utility theory to study the risk of loss on the part of the insurer making dynamic purchases
of reinsurance and to compare it to actuarial pricing without reinsurance.

In principle, the techniques used in this paper extend to other insurance products that are contingent
claims on events for which there is a reinsurance market. Indeed, the desirable properties of such
compound products could serve as an incentive for reinsurers to create and offer products which could
be used as components in more complicated products, just as insurance policies on individual sites
constitute the components used to price the 𝑚-out-of-𝑛 policy.
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Appendix A. Proofs of propositions

Assume Δ = 1 and 𝜃 = 1. For Δ > 1, 𝑝Δ replaces 𝑝 and 	𝑇/Δ
 replaces 𝑇 .

Alternative Proof of Proposition 3.1. This is an alternative proof to the proof by induction in Section
3.1.

Part i. If no quakes occur on coverage days one through 𝑇 , then the insurance company has anted up

𝑛𝑔𝑝
𝑇∑
𝑡=1

(𝑣𝑡−1,𝑛−1 − 𝑣𝑡−1,𝑛) =
1∑
𝑡=𝑇

(𝑣𝑡𝑛 − 𝑣𝑡−1,𝑛)

= 𝑣𝑇 𝑛 − 𝑣0𝑛

= 𝑣𝑇 𝑛.

Therefore, any premium, 𝜋, no less than = 𝑣𝑇 𝑛 would cover that expense, proving part i.
Part ii. Suppose a single quake occurs on each of 𝑙 ∈ {1, . . . , 𝑚 − 1} coverage days, 1 ≤ 𝑠1 < . . . <

𝑠𝑙 ≤ 𝑇 . Then, on days 𝑠𝑖−1 + 1 through 𝑠𝑖 , the insurance company pays a total of

𝜁𝑖 = (𝑛 − 𝑖 + 1)𝑔𝑝
𝑠𝑖−1∑
𝑠=𝑠𝑖−1

(𝑣𝑇 −𝑠−1,𝑛−𝑖 − 𝑣𝑇 −𝑠−1,𝑛−𝑖+1)

= 𝑣𝑇 −𝑠𝑖−1 ,𝑛−𝑖+1 − 𝑣𝑇 −𝑠𝑖 ,𝑛−𝑖+1

for daily reinsurance coverage and receives

𝜆𝑖 = 𝑣𝑇 −𝑠𝑖 ,𝑛−𝑖 − 𝑣𝑇 −𝑠𝑖 ,𝑛−𝑖+1

from the reinsurer for the quake on day 𝑠𝑖 . For the remaining coverage days, the insurance company pays

𝜁𝑙+1 = (𝑛 − 𝑙)𝑔𝑝
𝑇 −1∑
𝑠=𝑠𝑙

(𝑣𝑇 −𝑠−1,𝑛−𝑙 − 𝑣𝑇 −𝑠−1,𝑛−𝑙+1)

= 𝑣𝑇 −𝑠𝑙 ,𝑛−𝑙+1 − 𝑣0,𝑛−𝑙+1.
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Then, the change in working capital during the 𝑇 days is

−𝜁𝑙+1 +

𝑙∑
𝑖=1

(−𝜁𝑖 + 𝜆𝑖) = −𝑣𝑇 −𝑠𝑙 ,𝑛−𝑙+1 − 𝑣0,𝑛−𝑙+1 +

𝑙∑
𝑖=1

(𝑣𝑇 −𝑠𝑖 ,𝑛−𝑖 − 𝑣𝑇 −𝑠𝑖−1 ,𝑛−𝑖+1)

= 𝑣𝑇 −𝑠𝑙 ,𝑛−𝑙 − 𝑣𝑇 −𝑠𝑙 ,𝑛−𝑙+1 − 𝑣0,𝑛−𝑙+1 − 𝑣𝑇 𝑛

Expression (8) implies 𝑣0,𝑛−𝑙+1 = 0 for 𝑙 < 𝑚. Because {𝑣𝑡 𝑘 } is non-increasing in 𝑘 (see Proposition
3.2), 𝑣𝑇 −𝑠𝑙 ,𝑛−𝑙 − 𝑣𝑇 −𝑠𝑙 ,𝑛−𝑙+1 ≥ 0. Therefore,

𝜅 (C) (𝜋) − 𝑤I = 𝜋 + 𝑣𝑇 −𝑠𝑙 ,𝑛−𝑙 − 𝑣𝑇 −𝑠𝑙 ,𝑛−𝑙+1 − 𝑣0,𝑛−𝑙+1 − 𝑣𝑇 𝑛

= 𝜋 − 𝑣𝑇 𝑛 ≥ 0,

proving part ii.
Part iii. Suppose 𝑟 ∈ {1, . . . , 𝑛−𝑚+1} quakes occur on the 𝑚th quake day. On days 𝑠𝑚−1+1 through

𝑠𝑚, the insurance company had paid out 𝜁𝑚 for daily reinsurance and on day 𝑠𝑚 receives 𝜆𝑚 as a payout
from the reinsurer for the 𝑟 quakes, where

𝜁𝑚 = 𝑣𝑇 −𝑠𝑚−1 ,𝑛−𝑚+1 − 𝑣𝑇 −𝑠𝑚 ,𝑛−𝑚+1

𝜆𝑚 = 𝑟 (𝑣𝑇 −𝑠𝑚−1,𝑛−𝑚 − 𝑣𝑇 −𝑠𝑚−1,𝑛−𝑚+1).

The insurance company also pays out one dollar to the customer. The resulting change in capital
during the total coverage interval is

𝜅 (C) (𝜋) − 𝑤I = 𝜋 +

𝑚∑
𝑖=1

(𝑣𝑇 −𝑠𝑖 ,𝑛−𝑖 − 𝑣𝑇 −𝑠𝑖−1 ,𝑛−𝑖+1) + (𝑘 − 1)(𝑣𝑇 −𝑠𝑚 ,𝑛−𝑚 − 𝑣𝑇 −𝑠𝑚 ,𝑛−𝑚+1) − 𝜃

= 𝜋 + 𝑣𝑇 −𝑠𝑚 ,𝑛−𝑚 − 𝑣𝑇 𝑛 + (𝑟 − 1)(𝑣𝑇 −𝑠𝑚 ,𝑛−𝑚 − 𝑣𝑇 −𝑠𝑚 ,𝑛−𝑚+1) − 𝜃.

From (8), 𝑣𝑇 −𝑠𝑚 ,𝑛−𝑚 = 𝜃, 𝜅 (C) (𝜋) − 𝑤I ≥ 0 for 𝜋 ≥ 𝑣𝑇 𝑛, proving part iii. �

Proof of Proposition 3.2. For 𝑡 = 0, we have

𝑣0,𝑛−𝑚 = 1 and 𝑣0𝑘 = 0 𝑛 − 𝑚 + 1 ≤ 𝑘 ≤ 𝑛,

so that 𝑣0𝑘 is non-increasing in 𝑛 − 𝑚 ≤ 𝑘 ≤ 𝑛.
Let 0 ≤ 𝑡 ≤ 𝑇 − 1 and suppose 𝑣𝑡 𝑘 is non-increasing (the induction hypothesis). From (12), we have,

for 𝑛 − 𝑚 + 1 ≤ 𝑘 ≤ 𝑛 − 1,

𝑣𝑡+1,𝑘+1 − 𝑣𝑡+1,𝑘 = (𝑘 + 1)𝑔𝑝𝑣𝑡 𝑘 + [1 − (𝑘 + 1)𝑔𝑝]𝑣𝑡 ,𝑘+1 − 𝑘𝑔𝑝𝑣𝑡 ,𝑘−1 − (1 − 𝑘𝑔𝑝)𝑣𝑡 𝑘

= 𝑘𝑔𝑝(𝑣𝑡 𝑘 − 𝑣𝑡 ,𝑘−1) + 𝑔𝑝𝑣𝑡 𝑘 + [1 − (𝑘 + 1)𝑔𝑝] (𝑣𝑡 ,𝑘+1 − 𝑣𝑡 𝑘) − 𝑔𝑝𝑣𝑡 𝑘

= 𝑘𝑔𝑝(𝑣𝑡 𝑘 − 𝑣𝑡 ,𝑘−1) + [1 − (𝑘 + 1)𝑔𝑝] (𝑣𝑡 ,𝑘+1 − 𝑣𝑡 𝑘 )

≤ 0, (A.1)

and for 𝑘 = 𝑛 − 𝑚,

𝑣𝑡+1,𝑘+1 − 𝑣𝑡+1,𝑘 = 𝑣𝑡+1,𝑛−𝑚+1 − 𝑣𝑡+1,𝑛−𝑚

= (𝑛 − 𝑚 + 1)𝑔𝑝𝑣𝑡 ,𝑛−𝑚 + [1 − (𝑛 − 𝑚 + 1)𝑔𝑝]𝑣𝑡 ,𝑛−𝑚+1 − 𝑣𝑡+1,𝑛−𝑚

≤ (𝑛 − 𝑚 + 1)𝑔𝑝 + 𝜃 − (𝑛 + 𝑚 − 1)𝑔𝑝 − 𝜃

= 𝜃 − 𝜃

≤ 0, (A.2)
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so that
𝑣𝑡+1,𝑘+1 − 𝑣𝑡+1,𝑘 ≤ 0, 𝑛 − 𝑚 ≤ 𝑘 ≤ 𝑛 − 1. (A.3)

It follows by induction on 𝑡 that {𝑣𝑡 𝑘 } is non-increasing in 𝑘 , 𝑛 − 𝑚 ≤ 𝑘 ≤ 𝑛, for all 0 ≤ 𝑡 ≤ 𝑇 . �

Proof of Proposition 6.1. Assume 𝜙 = 1. We determine conditions under which 𝑔′(𝑝) < 0, that is,
the indifference markup decreases as the probability of loss increases (or, equivalently, the indifference
markup increases as the probability of loss decreases). Differentiating both sides of (28) with respect to
𝑝 yields (upon setting 𝜋 = 𝑔(𝑝)𝑝)

(1 − 𝑝)𝑢′(𝑤 + 𝜋)(𝑔(𝑝) + 𝑔′(𝑝)𝑝) − 𝑢(𝑤 + 𝜋)

𝑝𝑢′(𝑤 + 𝜋 − 1)(𝑔(𝑝) + 𝑔′(𝑝)𝑝) + 𝑢(𝑤 + 𝜋 − 1) = 0 (A.4)

or equivalently,

(𝑔(𝑝) + 𝑔′(𝑝)𝑝) [(1 − 𝑝)𝑢′(𝑤 + 𝜋) + 𝑝𝑢′(𝑤 + 𝜋 − 1)] = 𝑢(𝑤 + 𝜋) − 𝑢(𝑤 + 𝜋 − 1).

Solving for 𝑔′(𝑝) we obtain

𝑔′(𝑝) =
𝑢(𝑤 + 𝜋) − 𝑢(𝑤 + 𝜋 − 1) − 𝑔(𝑝) [(1 − 𝑝)𝑢′(𝑤 + 𝜋) + 𝑝𝑢′(𝑤 + 𝜋 − 1)]

𝑝[(1 − 𝑝)𝑢′(𝑤 + 𝜋) + 𝑝𝑢′(𝑤 + 𝜋 − 1)]
.

Since the denominator is positive (because 𝑢(·) is increasing), to show 𝑔′(𝑝) < 0 it is (necessary
and) sufficient to show that

𝑢(𝑤 + 𝜋) − 𝑢(𝑤 + 𝜋 − 1) < 𝑔(𝑝) [(1 − 𝑝)𝑢′(𝑤 + 𝜋) + 𝑝𝑢′(𝑤 + 𝜋 − 1)]

or equivalently,

𝑝(𝑢(𝑤 + 𝜋) − 𝑢(𝑤 + 𝜋 − 1)) < 𝜋[(1 − 𝑝)𝑢′(𝑤 + 𝜋) + 𝑝𝑢′(𝑤 + 𝜋 − 1)] .

Because 𝑝[𝑢(𝑤 + 𝜋) − 𝑢(𝑤 + 𝜋 − 1)] = 𝑢(𝑤 + 𝜋) − 𝑢(𝑤) (from (28)) this inequality is, in turn,
equivalent to

𝑢(𝑤 + 𝜋) − 𝑢(𝑤)

𝜋
< (1 − 𝑝)𝑢′(𝑤 + 𝜋) + 𝑝𝑢′(𝑤 + 𝜋 − 1). (A.5)

Note that both sides of (A.5) approach 𝑢′(𝑤) as 𝑝 approaches zero. Therefore, to show (A.5) it
suffices to show that for all 𝑝 > 0 and 𝜋 = 𝑔(𝑝)𝑝,

𝑢(𝑤 + 𝜋)

𝜋
< 𝑢′(𝑤) < (1 − 𝑝)𝑢′(𝑤 + 𝜋) + 𝑝𝑢′(𝑤 + 𝜋 − 1).

The first of these inequalities follows from the (strict) concavity of 𝑢(·). For the second inequality,
we shall need another condition on 𝑢(·) (in addition to strictly increasing and strictly concave), namely,

𝑢′′′(𝑤) > 0, for all 𝑤 ∈ (−∞, +∞). (A.6)

Under this condition (strict convexity of 𝑢′(·)) we have (1 − 𝑝)𝑢′(𝑤 + 𝜋) + 𝑝𝑢′(𝑤 + 𝜋 − 1) > 𝑢′(𝑤),
since 𝑤 + 𝜋 − 1 < 𝑤 < 𝑤 + 𝜋.

Note that condition (A.6) is satisfied if the utility function 𝑢(·) has the property that the Arrow-Pratt
measure of absolute risk aversion [2,16],

𝐴(𝑤) := −
𝑢′′(𝑤)

𝑢′(𝑤)
,
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is decreasing in 𝑤. This is a common requirement in utility theory because it is consistent with the
property that an individual’s aversion to risk does not increase as his wealth increases. �

Proof of Proposition 6.2. For conciseness of notation, let 𝑔 = 𝑔(𝑝, 𝜙). Recall that {𝑢(𝑤), −∞ < 𝑤 <
∞} denotes the reinsurer’s concave increasing utlity function. For given initial reinsurer’s wealth, 𝑤R,
and 𝑝 ∈ [0, 1], let

𝜓(𝑔, 𝜙) := (1 − 𝑝)𝑢(𝑤R + 𝑔𝑝𝜙) + 𝑝𝑢(𝑤R + 𝑔𝑝𝜙 − 𝜙) − 𝑢(𝑤R) 𝑔 ≥ 1 and 𝜙 > 0

=

(
difference between the expected utilities of the
reinsurer’s ending wealth and his initial wealth

)
. (A.7)

Then, the reinsurer is indifferent between offering and not offering the reinsurance at all points (𝑔, 𝜙)
satisfying

𝜓(𝑔, 𝜙) = 0, 𝑔 ≥ 1 and 𝜙 > 0. (A.8)

For given 𝑔 > 1, let 𝜙(𝑔) denote the maximal value of 𝜙 satisfying (A.8), and for given 𝜙, let 𝑔(𝜙)
denote the minimal value of 𝑔 satisfying (A.8), where the dependence on the fixed values of 𝑤R and 𝑝
have been suppressed. We determine conditions under which 𝑔′(𝜙) > 0, for all 𝜙 > 0.

Setting 𝑔 = 𝑔(𝜙) in (A.7) and differentiating both sides of (A.8) with respect to 𝜙 yield

[(1− 𝑝)𝑢′(𝑤R+𝑔(𝜙)𝑝𝜙)+ 𝑝𝑢′(𝑤R+𝑔(𝜙)𝑝𝜙−𝜙)] [𝑔(𝜙)𝑝+𝑔′(𝜙))𝑝𝜙] = 𝑝𝑢′(𝑤R+𝑔(𝜙)𝑝𝜙−𝜙). (A.9)

Rearranging terms and setting 𝜁 = 𝑔(𝜙)𝑝𝜙 yield

𝑔′(𝜙) =
𝑢′(𝑤R + 𝜁 − 𝜙) − 𝑔(𝜙) [(1 − 𝑝)𝑢′(𝑤R + 𝜁) + 𝑝𝑢′(𝑤R + 𝜁 − 𝜙)]

𝜙[(1 − 𝑝)𝑢′(𝑤R + 𝜁) + 𝑝𝑢′(𝑤R + 𝜁 − 𝜙)]
.

Because the r.h.s denominator is positive, the condition

[1 − 𝑔(𝜙)𝑝]𝑢′(𝑤R + 𝜁 − 𝜙) − 𝑔(𝜙)(1 − 𝑝)𝑢′(𝑤R + 𝜁) > 0 (A.10)

suffices for 𝑔′(𝜙) > 0 for all 𝜙 > 0. To show this, consider a different problem:

• Find the value of 𝜙 that maximizes 𝜓(𝑔, 𝜙) for a given value of 𝑔 > 1.

Because {𝑢(𝑤)} is concave in 𝑤, {𝜓(𝑔, 𝜙)} is concave in 𝜙 and, therefore, maximized at 𝜙∗(𝑔), where

𝜕𝜓(𝑔, 𝜙)

𝜕𝜙

####
𝜙=𝜙∗ (𝑔)

= 𝑝[(𝑔(1 − 𝑝)𝑢′(𝑤R + 𝑔𝑝𝜙) − (1 − 𝑔𝑝)𝑢′(𝑤R + 𝑔𝑝𝜙 − 𝜙)] = 0.

Equivalently, at 𝜙 = 𝜙∗ (𝑔)

(1 − 𝑔𝑝)𝑢′(𝑤R + 𝑔𝑝𝜙 − 𝜙) = (1 − 𝑝)𝑔𝑢′(𝑤R + 𝑝𝑔𝜙). (A.11)

But
𝜕𝜓(𝑔, 𝜙)

𝜕𝜙
= 𝑝[(𝑔(1 − 𝑝)𝑢′(𝑤R + 𝑔𝑝𝜙) − (1 − 𝑔𝑝)𝑢′(𝑤R + 𝑔𝑝𝜙 − 𝜙)] < 0

for 𝜙 > 𝜙∗ (𝑔), in particular, for 𝜙 = 𝜙(𝑔) or, equivalently, for 𝑔 = 𝑔(𝜙). Therefore, (A.10) is satisfied,
implying that 𝑔′(𝜙) > 0. �

Appendix B. Computing 𝝅∗
C

Assume the availability of the {𝑣𝑡 𝑘 } schedule computed in (12) for constant reinusrer’s markup, 𝑔, and
review interval, Δ = 1. For a variable markup, (31) replaces (12). For Δ > 1, 𝑝Δ replaces 𝑝 and 	𝑇/Δ
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replaces𝑇 . From expression (32) for (random) final working capital, 𝜅 (C) (𝜋), it follows that the insurance
company’s random total payout (the difference between initial and final working capital) is given by

𝑤I + 𝜋 − 𝜅 (C) (𝜋) =
max(0,𝑇 −𝐿)∑

𝑠=𝑇

[(𝑔𝑝𝐾𝑠 − (𝐾𝑠 − 𝐾𝑠−1))(𝑣𝑠−1,𝐾𝑠−1 − 𝑣𝑠−1,𝐾𝑠
) + 𝜃𝐼𝐾𝑠−1≤𝑛−𝑚] . (B.1)

Note that the expression on the r.h.s. of the equality is independent of both 𝑤I and 𝜋. Because the
total payout equals 𝑣𝑇 𝑛 if no more than one site has a quake on any day, (B.1) is equivalent to

𝑤I + 𝜋 − 𝜅 (C) (𝜋) = 𝑣𝑇 𝑛 + 𝐻𝑇 , (B.2)

where

𝐻𝑇 := 
��
the insurance company’s total additional expenditure
over the coverage interval as a result of quake days

on which more than one site has a quake

�� .

Therefore,

𝜅 (C) (𝜋∗
C) = 𝑤I + 𝜋∗

C − (𝑣𝑇 𝑛 + 𝐻𝑇 ),

where 𝜋∗
C satisfies the indifference equation

𝑢(𝑤I) = E[𝜅 (C) (𝜋∗
C)] = E[𝑢(𝑤I + 𝜋∗

𝐶 − 𝑣𝑇 𝑛 − 𝐻𝑇 )],

which in the case of the exponential utility function, 𝑢(𝑥) = −e−𝛼𝑥 , reduces to

e𝛼𝜋∗
C = e𝛼𝑣𝑇 𝑛 × E(e𝛼𝐻𝑇 ),

where

𝜋∗
C = 𝑣𝑇 𝑛 + 𝛼−1 ln[E(e𝛼𝐻𝑇 )] .

Therefore, it remains to calculate E(e𝛼𝐻𝑇 ).
Define

𝜂𝑡 𝑘 𝑗 := 𝑣𝑡−1,𝑘− 𝑗 − 𝑣𝑡−1,𝑘 − 𝑗 (𝑣𝑡−1,𝑘−1 − 𝑣𝑡−1,𝑘 ).

By way of interpretation, suppose the working capital at the beginning of remaining day 𝑡 is 𝑣𝑡 𝑘 ;
that is, the amount dictated by the entry in the {𝑣𝑡 𝑘 } schedule for 𝑘 active sites. If 𝑗 quakes occur on
remaining day 𝑡, then 𝜂𝑡 𝑘 𝑗 is the amount that the insurance company must ante up at the end of the day
in order to restore the working capital at the beginning of the next day to the level, 𝑣𝑡−1,𝑘− 𝑗 , dictated
by the schedule. Note that 𝜂𝑡 𝑘 𝑗 ≥ 0 for all 𝑗 ∈ {0, 1, . . . , 𝑘} and 𝜂𝑡 𝑘 𝑗 = 0 for 𝑗 = 0, 1. Moreover, for
𝑘 ∈ {0, 1, . . . , 𝑛 − 𝑚}, 𝜂𝑡 𝑘 𝑗 = 0 for all 𝑗 ∈ {0, 1, . . . , 𝑘}, whereas for 𝑘 = 𝑛 − 𝑚 + 1,

𝜂𝑡 ,𝑛−𝑚+1, 𝑗 = −( 𝑗 − 1)(𝜃 − 𝑣𝑡−1,𝑛−𝑚+1) < 0 for 𝑗 > 2.

Recall that 𝐾𝑡 denotes the random number of active sites at the beginning of remaining day 𝑡 and
𝐽𝑡 := 𝐾𝑡 − 𝐾𝑡−1, the random number of sites that have quakes on remaining day 𝑡, so that the random
ante required at the end of remaining day 𝑡 is 𝜂𝑡 ,𝐾𝑡 ,𝐽𝑡 . Also, recall that coverage starts on remaining day
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𝑇 with 𝑛 active sites, so that 𝐾𝑇 = 𝑛. Define

𝐻𝑡 :=
1∑
𝜏=𝑡

𝜂𝜏,𝐾𝜏 ,𝐽𝜏

=

��

the (random) total amount that the insurance
company antes up on remaining days

𝜏 = 𝑡 through 𝜏 = 1

�� , 𝑡 ∈ {1, . . . , 𝑇}.

The quantity 𝐻𝑇 is the insurance company’s total additional expenditure over the coverage interval
as a result of quake days on which more than one site has a quake.

Define
𝑧𝑡 𝑘 := E(e𝛼𝐻𝑡 | 𝐾𝑡 = 𝑘).

The following backward recursive algorithm calculates 𝑧𝑡 𝑘 recursively for 𝑘 ∈ {0, . . . , 𝑛} and 𝑡 ∈

{1, . . . , 𝑇}:

𝑧𝑡 𝑘 =
𝑘∑
𝑗=0

𝑓 ( 𝑗 ; 𝑘, 𝑝)E(e𝛼𝐻𝑡 | 𝐾𝑡 = 𝑘, 𝐽𝑡 = 𝑗)

=
𝑘∑
𝑗=0

𝑓 ( 𝑗 ; 𝑘, 𝑝)E(e𝛼(𝜂𝑡𝑘 𝑗+𝐻𝑡−1) | 𝐾𝑡 = 𝑘, 𝐽𝑡 = 𝑗)

=
𝑘∑
𝑗=0

𝑓 ( 𝑗 ; 𝑘, 𝑝)e𝛼𝜂𝑡𝑘 𝑗 E(e𝛼𝐻𝑡−1 | 𝐾𝑡−1 = 𝑘 − 𝑗)

=
𝑘∑
𝑗=0

𝑓 ( 𝑗 ; 𝑘, 𝑝)e𝛼𝜂𝑡𝑘 𝑗 𝑧𝑡−1,𝑘− 𝑗 , (B.3)

where, most notably,

𝑧𝑇 𝑛 = E(e𝛼𝐻𝑇 | 𝐾𝑇 = 𝑛)

= E(e𝛼𝐻𝑇 ).
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