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Abstract

Objective: The Harmonized Cognitive Assessment Protocol (HCAP) describes an assessment battery and a family of population-representative
studies measuring neuropsychological performance. We describe the factorial structure of the HCAP battery in the US Health and Retirement
Study (HRS).Method: The HCAP battery was compiled from existing measures by a cross-disciplinary and international panel of researchers.
The HCAP battery was used in the 2016 wave of the HRS. We used factor analysis methods to assess and refine a theoretically driven single and
multiple domain factor structure for tests included in the HCAP battery among 3,347 participants with evaluable performance data. Results: For
the eight domains of cognitive functioning identified (orientation, memory [immediate, delayed, and recognition], set shifting, attention/speed,
language/fluency, and visuospatial), all single factor models fit reasonably well, although four of these domains had either 2 or 3 indicators where
fitmust be perfect and is not informative.Multidimensionalmodels suggested the eight-domainmodel was overly complex. A five-domainmodel
(orientation, memory delayed and recognition, executive functioning, language/fluency, visuospatial) was identified as a reasonable model for
summarizing performance in this sample (standardized root mean square residual= 0.05, root mean square error of approximation= 0.05,
confirmatory fit index= 0.94). Conclusions: The HCAP battery conforms adequately to a multidimensional structure of neuropsychological
performance. The derived measurement models can be used to operationalize notions of neurocognitive impairment, and as a starting point
for prioritizing pre-statistical harmonization and evaluating configural invariance in cross-national research.
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Introduction

In 2015, Alzheimer disease and dementia were health outcomes of
topmost concern for older adults living in the US and Europe
(Cutler, 2015). The relatively high prevalence of Alzheimer’s dis-
ease and related dementias (ADRD), together with shifting dem-
ographics and an absence of disease-modifying treatments
conspire to make ADRD a costly public health concern
(Alzheimer’s Association, 2019; Hurd et al., 2013). Research to
support public health planning and knowledge accumulation
regarding the economic, epidemiologic, sociologic, and psycho-
logical impact of ADRD requires high quality information on cog-
nitive functioning of older and aging adults.

The Health and Retirement Study (HRS) has been collecting
information on cognition using brief measures from more than

43,000 community dwelling older adults since 1992 (Sonnega
et al., 2014). HRS investigators previously conducted a focused
dementia substudy known as the Aging, Demographics and
Memory Study (Langa et al., 2005; Plassman et al., 2008). A new
dementia-focused substudy launched in 2016 (Langa et al., 2020).
The new cognitive assessment, named the Harmonized Cognitive
Assessment Protocol (HCAP), was designed to create a new data re-
source to better assess the prevalence, determinants, and costs and
consequences of mild cognitive impairment (MCI) and dementia in
the US and to facilitate cross-national multidisciplinary studies of
cognitive aging. The instrumentation was collaboratively assembled
with leaders of international partner studies (IPS) implementing
similar studies around the world and field leaders in cross-national
cognitive epidemiology (Langa et al., 2020; Meng et al., 2019).
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Currently, the HCAP has been fielded by 9 IPS, and 3 IPS are plan-
ning to put the HCAP in the field in the near future.

There are three anticipated uses of the HCAP in the HRS. First,
the HCAP can be used to generate summaries of multiple domains
of cognitive performance among older adults in a nationally rep-
resentative population sample. Second, the HCAP can be used to
evaluate measurement invariance in support of cross-national
studies of adult cognition. Third, the HCAP can be used together
with other relevant information to approximate clinically relevant
states such as MCI and probable dementia. Each of these intended
uses places different pressures on the decision-making process
regarding the measurement of cognitive performance. We use
latent variable models to describe how several cognitive perfor-
mance tests measure a smaller number of cognitive domains.
The results provide a framework for the three intended uses of
the HCAP (summarizing multiple domains of cognitive perfor-
mance, supporting cross-national studies of adult cognition,
approximating clinically relevant states such as MCI and probable
dementia). Latent variable modeling, and specifically factor analy-
sis, invokes the following assumptions: (1) persons possess certain
related but to some degree distinct cognitive capacities that are not
directly measurable; (2) observed cognitive performance reflects
the causal effect of these underlying cognitive capacities; (3) the
selection of cognitive tasks in the battery and in our analysis is suf-
ficient to reveal the hypothesized underlying domains; and (4) our
modeling decisions regarding co-dependence of test performance
data on underlying domains is a reasonable reflection of the true
causal dependence. Even if these assumptions are false, our mod-
eling results may be useful. Simplifying cognitive performance data
on many tests that similarly reflect underlying domains provides a
framework for the efficient description of cognitive performance.
Cross-national studies must be concerned with measurement
equivalence, and latent variable models provide a natural frame-
work for exploring and characterizing differences due to language
and culture. Finally, approximating cognitive states, for example
those described by the Diagnostic and Statistical Manual of
Mental Disorders (DSM-5) (American Psychiatric Association,
2013) require the demonstration of deficits among core neuro-
psychological processes, including learning andmemory, executive
function, language, perceptual-motor, and complex attention.
Basing judgments on the presence or absence of deficits at the
latent variable level, rather than the individual test level, is an
approach that can be generalized to different studies with different
batteries and generate more comparable results.

Methods

Participants

The HRS began in 1992 and is ongoing in 2022. The HRS was ini-
tially conceived as a study of health and wealth as adults
approached retirement age. A stratified national probability sam-
ple of 12,652 adults aged 51–61 (birth years 1931–1941) was
recruited in 1992. The content areas of the interview included
health, cognition, income, wealth, family relationships, and factors
relevant to retirement decisions. The sampling frame has been
expanded by adding additional birth years every 6 years.
Currently, the HRS represents cohorts born 1965 and before,
and includes nursing home residents and has oversampled
African-Americans and Hispanics. In 2006, the sample was ran-
domly and evenly split to a telephone mode and an in-person,
face-to-face mode. Thereafter, participants alternate mode at each
subsequent biennial interview. The in-person face-to-face mode

allows for expanded data collection. Following the 2016wave a sep-
arate in-person interview was conducted with a more in-depth
neuropsychological performance evaluation component: the HCAP.

As described more completely in Langa et al (2020), the HRS
sample provided the sampling frame for the HCAP field study.
Half of the HRS sample was randomly selected for participation
in the HCAP, subject to some restrictions. Inclusion/exclusion
criteria were only based on age and completion of the 2016
HRS core interview. Participation was restricted to those who
completed the 2016 core HRS interview, and who did so when
at least age 65 (birth year 1952 or earlier) (n = 5,001). Some of
those identified for recruitment were never invited to HCAP (n
= 576) as accrual goals were met prior to their invitation date.
About 21% (n = 929/(5001-576)) of eligible and invited partici-
pants did not participate in the HCAP. For about 4% of those par-
ticipating in HCAP (149/3496) only informant interviews were
available. For these 149 participants, there were no non-missing
observations on the cognitive indicators used in the present
analysis, and these participants were not included. The analytic
sample size for this study is therefore 3,347 persons (see Figure
S3). Factors associated with non-participation are discussed in
Langa et al.’s review of the HCAP (2020). Briefly, non-partici-
pants and participants were similar in terms of age, sex, race/eth-
nicity, educational attainment, and equally distributed across US
Census regions. However, non-participants were more likely to
be living in a nursing home (6% vs 3% among participants)
and more likely to have participated in the HRS 2016 core via
proxy (14% vs 6%). Participants provided written informed con-
sent using procedures approved by the University of Michigan
Institutional Review Board. The HRS and HCAP studies are con-
ducted in accordance with the Helsinki Declaration.

Measures

The HCAP project and neuropsychological assessment battery
have been described previously (Langa et al., 2020; Weir et al.,
2014). The HCAP assessment battery includes items from several
different tests. In Table 1, we detail the tests included in HCAP and
the domain to which they were assigned. TheHCAP includes items
from brief mental status tests including the Mini-Mental State
Examination (MMSE) (Folstein et al. 1975), the Telephone
Interview for Cognitive Status (TICS) (Brandt et al. 1988), and
the Community Screening Instrument for Dementia (CSI-D)
(Hall et al., 2000; Hall et al., 1993). Elements from neuropsycho-
logical tests and batteries are also included. Additionally:

• from the Consortium to Establish a Registry for Alzheimer’s
Disease (CERAD) battery (Morris et al., 1989), a 10 item word
list learning, delayed recall, and recognition of a word list, and
constructional praxis, the immediate and delayed copying of
figures (four geometric forms: circle, overlapping rectangles,
diamond and cube);

• Timed backwards counting from the Brief Test of Adult
Cognition by Telephone (BTACT), and used in the MIDUS
(Midlife in the US) study (Lachman et al., 2013), which assesses
how low a participant can count starting from 100 in 30 seconds;

• Animal naming, adapted from the Woodcock Johnson-III (WJ-
III) Tests of Achievement (Woodcock et al., 2001), which asks
participants to name as many animals as possible in 1 minute
(Schrank & Flanagan, 2003; Weir et al., 2014);

• Symbol Digit Modalities Test (SDMT) (Smith, 1982), that asks
the respondent to substitute a number for geometric figures
using a key under a 90 second time limit;
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• Trail Making parts A & B, which was included in the Army
Individual Test (Armitage, 1946), involves tracing lines among
sequentially numbered nodes (part A) or alternating numbered
and letter-labeled notes (part B) within a 300 second time limit
for each part;

• Raven’s Standard Progressive Matrices (Raven, 1981) as adapted
for studies of cognitive aging based at Rush University (Wilson
et al., 2002), wherein respondents are shown a series of 17 illus-
trations of geometric shapes and patterns and are asked to iden-
tify the missing picture from among six to eight choices;

• The HRS Number Series task (Fisher et al., 2014). The Number
Series task used in the HRS was adapted from measures used in
the WJ-III Cognitive Abilities Assessment (Fisher et al., 2014).

The test measures the ability to reason with concepts that depend
upon numerical relationships (quantitative reasoning).
Respondents are presented with a series of numbers and a blank
indicating a number missing from the series (e.g., “6 7 [ ] 9"). The
respondent must determine the numerical pattern and then pro-
vide the missing number (e.g., “8") in the series. In HRS, the
number series task is administered in an adaptive fashion, as
described in Fisher et al (2014). The resulting score is based
on a Rasch (1960) measurement model using the items admin-
istered and item parameters derived from a separate calibrations
sample. The score is standardized to a typical metric used in the
WJ-III test battery, called aW score. On this score, a value of 500
is the expected average score for the calibration sample, and a 10
point difference on the W-score metric represents a halving or
doubling of the probability of a correct response to a given item
(Fisher et al., 2014);

• A letter cancellation task developed by the National (UK) Survey
of Health and Development (NSHD) used in the British 1946
Birth Cohort Study (Richards et al., 1999) and the English
Longitudinal Study of Aging (Steptoe et al., 2013);

• Immediate and delayed verbal memory was assessed with two
story recall tasks. The East Boston Memory Test (EBMT)
(Scherr et al., 1988), also referred to as the Brave Man story,
is a short story (three sentences) that is read to participants.
Immediately after, and again after a delay, respondents are asked
to recall twelve details from the story;

• The HCAP also included Logical Memory I & II from the
Wechsler Memory Scale (Wechsler, 1987). Note that sections
from the WMS-R are not the newer versions to maintain com-
parability with other field studies of cognitive aging. Like the
EBMT, participants are read a story, but respondents are asked
to recall the story verbatim (LM-I) and after a 20 to 30-minute
delay (LM-II). Respondents are also presented with a recogni-
tion task regarding the story.

The HCAP was offered in both English (95% of completed
HCAP) and Spanish (5% of completed HCAP), but no other lan-
guages. Some instruments or tasks from instruments had Spanish
language versions available from the test publisher (MMSE, WMS,
CERAD, SDMT, Raven’s Standard Progressive Matrices, Trail
Making) while others were translated. Translations were com-
pleted collaboratively by HRS/HCAP investigators and investiga-
tors affiliated with the Mexican Cognitive Aging Ancillary Study
(Mex-Cog) study, a sub-study of the Mexican Health and Aging
Study, and discussed by Mejia-Arango et al., (2020), especially
the EBMT. Other translations were performed by HRS investiga-
tors, completed for prior waves of the HRS or for the current
HCAP field study, and included tasks from the TICS,
Woodcock-Johnson III tasks, HRS Number Series, letter cancella-
tion, backwards counting task from the BTACT, and items from
the CSI-D. Interviewers were trained to skip a test or to be flexible
in administration to accommodate sensory impairments or physi-
cal limitations.

For our modeling we selected 29 indicators (items) capturing
responses to tasks contained in 12 distinct instruments in the
HCAP. Specific details are presented in Table 1, organized accord-
ing to eight domains. Initial assignments of items to domains pro-
posed by an expert committee of HRS and ISP investigators (Weir
et al., 2014) and revised as a starting domain structure for the
present analyses. In addition to the analytic variables summarized
in Table 1, we also considered error scores on letter cancellation,
symbol digit, and animal fluency. However, after initial descriptive

Table 1. Health and Retirement Study (HRS) Harmonized Cognitive Assessment
Protocol (HCAP) cognitive performance tasks, initial domain assignment,
observed score ranges, and analytic variable definitions

Cognitive performance item(s) or
task(s) and initial domain assignment Source

Raw
score
range

Analytic var-
iable range†

Orientation
Orientation to time and place (10
items)

MMSE 0-10 0-10

Name President TICS 0/1 0/1
Memory: immediate
10 word list immediate recall CERAD 0-30 0-30
3 word immediate recall MMSE 0-3 0-3†

Logical Memory I WMS 0-25 0-25
Story recall, immediate (Brave man) EBMT 0-12 0-12
Memory: delayed
10 word list delayed recall CERAD 0-10 0-10
Logical Memory II WMS 0-25 0-25
3 word delayed recall MMSE 0-3 0-3
Constructional praxis, delayed CERAD 0-11 0-11
Story recall, delayed (Brave man) EBMT 0-12 0-12
Memory: recognition
10 Word list recognition CERAD 0-20 0-20
Logical Memory recognition WMS 0-15 0-15
Set shifting
Standard Progressive Matrices Raven 0-17 0-17
Number series HRS 409-584 409-504
Trail making part B Army

Alpha
T = [0-
300]

1-log(T)/
log(300)

Attention, speed of processing
Substitution number correct, minus
mistakes and skips

SDMT 0-71 0-71

Trail making part A Army
Alpha

T = [0-
300]

1-log(T)/
log(300)

Backwards spelling MMSE 0-5 0-5†

Backwards counting BTACT 0-80 0-80
Letter cancellation, number correct NHSD 0-37 0-37
Language, fluency
Animal naming WJ-III 0-43 0-43
Naming two objects (cactus, scissors) TICS 0-2 0-2†

Naming two objects (pencil, watch) MMSE 0-2 0-1/2‡

Write a sentence MMSE 0/1 0/1
Read and follow command MMSE 0/1 0/1
Object naming CSI-D 0-4 0-2/3/4‡

Visuospatial
Constructional praxis, immediate CERAD 0-11 0-11
Copy polygons MMSE 0/1 0/1

Note. The order of tests and indicators in Table 1 is according to initial domain assignment,
rather than order of administration. Abbreviations: BTACT, Brief Test of Adult Cognition by
Telephone; CERAD, Consortium to Establish a Registry for Alzheimer’s Disease; CSI-D,
Community Screening Instrument for Dementia; EBMT, East Boston Memory Test; MMSE,
Mini-Mental State Examination; NHSD, National Survey of Health and Development; SDMT,
Symbol Digit Modalities Test; T, time in seconds; TICS, Telephone Interview for Cognitive
Status; WJ-III, Woodcock Johnson III; WMS, Wechsler Memory Scale.
†Variables with fewer than 10 response levels treated as categorical in analytic models, all
other indicators treated as continuous and normalized to a 0–1 scale given sample observed
minimumandmaximumprior to factor analysis; ‡categories with sparsely populated cells are
collapsed as indicated.
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analyses revealed these indicators were extremely skewed and
demonstrated very low absolute correlation with other indicators
(maximum of r = .26), these error scores were removed from the
analytic model.

Analytic approach

The goal of the analyses was to develop and evaluate latent variable
models that inform the measurement of broad domains of cogni-
tive performance measured with the HCAP battery. Our process
included (1) descriptive analyses to inform analytic sample inclu-
sion and variable definitions (Table 1), (2) single factor models,
approached as confirmatory factor analysis (CFA) within a priori
defined domains, (3) correlated factors models, approached as a
CFA attempting to fit a multidimensional factor model, (4) sec-
ond-order factor models, approached as a CFA with multiple spe-
cific and one general latent variable, and (5) estimation of factor
score estimates for HRS/HCAP participants. The general sequence
of model steps is illustrated in Supplementary Figure S1.

The purpose of the single factor models is to assess whether
domains specified a priori form reasonable latent variable models
as hypothesized. The results of these models are not expected to be
unambiguously successful, as some factors are measured with only
2 or 3 indicators, and are just identified (have a unique solution) or
identified only with the imposition of modeling constraints
(Brown, 2006). The correlated factors models address whether
the a priori specific domains are measured distinctly by the tests
included in HCAP. Because our goal was to define a relatively
smaller number of a priori defined cognitive domains – relative
to the number of included neuropsychological tests – it would have
been sufficient for our purposes to stop our modeling with the
description of adequately fitting single factor models. Using the
HCAP battery to define a small number of domains to operation-
alize neurocognitive impairment criteria was one of the main goals
of this analysis. The second-order factor model, a model nested
within the correlated factors model, specifies a single common gen-
eral cognitive performance trait underlies the specific domains.
This model, if adequately fitting in the HCAP data, could be useful
for descriptive analyses and for cross-national linking and com-
parison (Nichols et al., 2022).

Latent variablemeasurementmodels, or CFAmodels, were esti-
mated using Mplus software (version 8.2, Muthén & Muthén, Los
Angeles CA). We used three different estimators: least squares,
maximum likelihood, and Bayesian. We used the weighted least
squares estimator with mean and variance standardization
(WLSMV) and theta parameterization to evaluate proposed and
alternative factor models. Because our indicators included cat-
egorical variables, this is the only of the three estimators for which
conventional model fit statistics are available. Because the least
squares estimator relies upon a pairwise complete missing data
handling strategy that invokes unreasonable assumptions about
missing data, we use robust maximum likelihood (MLR) estima-
tors to obtain final parameter estimates and expected a posteriori
(EAP) factor score estimates, which involves the less restrictive
conditionally random missingness assumption. We use Bayesian
estimation to obtain factor score estimates as plausible values
(PVs), which are draws from themodel-implied posterior distribu-
tion of factor scores for each individual. Factor indicators were
treated as continuous or categorical as indicated in Table 1. We
only moved to multidimensional models after a satisfactorily fit-
ting unidimensional model within a pre-specified domain was

achieved. Specific methods factors, uncorrelated with domain or
general factors, were specified a priori to capture item-level
residual covariance when indicators derived from the same stimu-
lus (e.g., immediate and delayed recall of a commonword list, short
story, or design set) (Reise, 2012). The correlated factors models
were specified following a simple structure implied by the single
factor models. Factor models were identified by freely estimating
the factor variance and all but one of the factor loadings. Model fit
was evaluated with the standardized root mean square residual
(SRMR), confirmatory fit index (CFI), and root mean squared
error of approximation. Greatest weight was afforded the SRMR
and an examination of model residuals. The SRMR is an absolute
measure of model fit and suggests the value of the average residual
for the model-implied correlation matrix given the observed cor-
relation matrix. We considered a model to fit satisfactorily if the
SRMR was less than or equal to 0.08 (Asparouhov & Muthén,
2018; Hu & Bentler, 1999). We also considered two model fit sta-
tistics derived from the model χ2: the CFI (a relative or incremental
fit index, meaning the target model is compared to a null or base-
line model) and the RMSEA (an absolute fit index, meaning no
comparison to a null or baseline model). Both the CFI and
RMSEA reward more parsimonious models. We used CFI values
of at least 0.95 and RMSEA values of less than 0.05 (Hu & Bentler,
1999) to indicate satisfactory model fit. Because the CFI and
RMSEA are known to be sensitive to the number of parameters
estimated (Kenny et al., 2015), and our model designs are largely
determined a priori, we gave the greatest emphasis to the SRMR in
adjudging model fit. When misfit was identified, we explored the
inclusion of omitted paths and dropped indicators with weak load-
ings or other identified problems (e.g., high residual correlation
with other indicators, suggesting lack of conditional independ-
ence) in attempts to resolve identified issues.

Related tomodel fit, we report an internal consistency reliability
coefficient for our latent variable factor models: MacDonald’s
omega (ωt). Omega is interpreted as is Cronbach’s internal consis-
tency coefficient alpha. We computed omega as the sum of factor
loadings, squared, divided by the sum of factor loadings, squared,
plus the sum of the indicator residual variances (Peters, 2014).
Reliability of 0.70 is typical for early measurement development
work, but should be at least 0.80 for group differences research,
and 0.90–to 0.95 is the preferred standard for individual-level
inference (Nunnally & Bernstein, 1994).

We estimated factor scores using Mplus and the MLR estima-
tor. The MLR estimator has more advantageous missing data han-
dling than the least squares estimator and will generate estimates of
the latent trait for respondents with at least 1 non-missing indica-
tor. MLR factor score estimates are EAP factor score estimates.
EAP factor score estimates are similar to regression method factor
scores when all indicators are continuous. Each response pattern
(i.e., the vector of item responses for an individual participant)
has a distinct EAP factor score associated with it. The EAP estimate
is the average of the posterior distribution of ability given the
observed response pattern and estimated measurement model
parameters.We compare these EAP factor score estimates to factor
scores estimated as Bayesian PV. Bayesian PVs are draws from the
posterior distribution of the latent trait determined for a partici-
pant given their response pattern and the estimated measurement
model. PV are centered on the EAP estimate but have a level of
variability that reflects the level of precision of themodel. The com-
parison of EAP and PV can give insight into the level of precision of
the measurement across the range of the latent trait.
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Data and code availability

The source variables used in this analysis are publicly available at
the HRS website (http://hrsonline.isr.umich.edu/index.php?
p=shoavail&iyear=ZU). Full details on distributions, data han-
dling, and analytic models are available on GitHub (https://
github.com/rnj0nes/HCAP).

Results

Characteristics of the HCAP sample used in this analysis

Characteristics of the HRS respondents randomly selected for the
HCAP sample and included in this analysis (not missing on at least
one of the cognitive performance tasks) are shown in Table 2. The
range of MMSE scores was 0–30 with a mean of about 27 and stan-
dard deviation of 3.9; about 11% (n= 384/3347) had a total score
less than 23.

Single factor models

Single factor models are summarized in Table 3. Three hypoth-
esized domains had only two indicators (orientation,memory: rec-
ognition, and visuospatial; models I, IIC, and VI, Table 3). These
models were identified by forcing the two factor loadings to be
equal to 1, and a variance parameter for the latent variable was esti-
mated (as were residual variances for continuous factor indicators
and indicator means/thresholds). As specified, these models have 0
degrees of freedom and will generate fit statistics that indicate per-
fect fit. However, this perfect fit is misleading, as we have merely

estimated a covariance parameter rather than measured a latent
dimension. Similarly, factor models with 3 indicators (set shifting,
model III, Table 3) were identified estimating 2 factor loadings and
one latent variable variance (and residual variances for continuous
indicators and indicator means/thresholds) and this specification
produces a just-identified model with 0 degrees of freedom.

The orientation model (model I, Table 3) had only two indica-
tors, and was specified as described above to produce a just-iden-
tified model. This model fit well, as it must, but the results revealed
a problem. As can be seen in Table 3, one of the items was esti-
mated with a negative residual variance, a standardized measure-
ment slope (i.e., factor loading) of greater than 1, and the computed
ω coefficient was greater than 1. These inadmissible values suggest
that the linearity assumptions imposed by the model are unreason-
able. We determined that the most plausible explanation for this
was that beyond theMMSE orientation to time and place questions,
the ability to name the president offered no new information rel-
evant to the underlying trait. Based on these results we opted to
drop name president item.

The memory: immediate episodic single factor model (model
IIA, Table 3) included 4 indicators and had 2 degrees of freedom.
The model had reasonable reliability (judged by ω) for group level
inference (Nunnally & Bernstein, 1994) and fit well by SRMR and
CFI, but not RMSEA. The RMSEA is known to be a poor indicator
of model fit in low degree of freedom models. We retained this
model as a satisfactorily fitting model.

The memory: delayed episodic single factor model (model IIB,
Table 3) included 5 indicators and had 5 degrees of freedom.

Table 2. Characteristics of sample who participated in HCAP interview and who were evaluated in this study

Characteristic Sampled Included Not Included

Total (N) 3,496 3,347 149
Age (years, M (SD)) 76.9 (7.6) 76.7 (7.5) 81.6 (8.9)
Sex (N, %)
Male 1,401 (40) 1,327 (40) 74 (50)
Female 2,095 (60) 2,020 (60) 75 (50)
Race/ethnicity (N, %)
White, not Latinx or Hispanic 2,483 (71) 2,383 (71) 100 (67)
Black, not Latinx or Hispanic 551 (16) 527 (16) 24 (16)
Latinx or Hispanic, any race 383 (11) 363 (11) 20 (13)
All other race/ethnicity groups 79 (2) 74 (2) 5 (3)
Mini-Mental State Examination (MMSE) score (M (SD) (N=3,347) 26.6 (3.9) 26.6 (3.9) NA

Table 3. Summary of single factor domain-specific models

Model Domain p ω χ2 df SRMR RMSEA CFI NRV Notes

I Orientation 2 NAa 0 0 0.000 0.000 1.000 þ Redundant indicators; retain MMSE orientation as single
indicator

IIA Memory, immediate 4 0.76 36 2 0.021 0.071 0.981 Poor RMSEA, retain as final model
IIB Memory, delayed 5 0.85 44 5 0.018 0.048 0.985 Retain as final model
IIC Memory, recognition 2 0.65 0 0 0.000 0.000 1.000 No identified issues other than only 2 indicators
III Set shifting 3 0.81 0 0 0.000 0.000 1.000 No identified issues other than only 3 indicators
IV Attention, speed 5 0.87 126 5 0.020 0.085 0.974 Poor RMSEA, retain as final model
V Language, fluency 6 0.82 44 9 0.051 0.034 0.978 Retain as final model
VI Visuospatial 2 NAa 0 0 0.000 0.000 1.000 þ Redundant indicators; retain CERAD constructional praxis

as single indicator
IID Memory, delayed & recognition 7 0.89 147 12 0.023 0.058 0.979 Adopted after fitting multidimensional models
IIIA Executive functioning (Set shifting &

Attention, speed)
8 0.94 766 20 0.038 0.106 0.916 Considered after fitting multidimensional models

Note. Abbreviations: p, number of indicators,ω, MacDonald’s omega; χ2model chi-square, df, degrees of freedom; SRMR, standardized rootmean square residual (≤ 0.08 satisfactory for); RMSEA,
root mean square error of approximation (< 0.05 satisfactory fit); CFI, confirmatory fit index (>0.95 satisfactory fit); NRV, negative residual variance; MMSE, Mini-Mental State Examination;
CERAD, Consortium to Establish a Registry for Alzheimer’s Disease.
aOmega estimate greater than 1.0, an out-of-bounds estimate due to negative residual variance.
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The model had relatively high reliability (judged by ω), close to the
level suitable for individual-level inference (Nunnally & Bernstein,
1994) and fit well by all fit criteria (SRMR, CFI, and RMSEA). We
retained this model as a satisfactorily fitting model.

The memory: recognition single factor model (model IIC,
Table 3) had only 2 indicators, andmust fit perfectly. We identified
no evidence of inadmissible parameter estimates. The factor reli-
ability (ω) was relatively poor, which cannot be surprising for a
two-indicator model. We decided to retain this model as a satisfac-
torily fitting model as there was no way to improve it.

The set shifting factor model (model III, Table 3) had 3 indica-
tors, and as we specified the model it was just identified with zero
degrees of freedom and consequently fit perfectly. No modeling
pathologies were identified. The model had reasonable reliability
(judged by ω) for group level inference (Nunnally & Bernstein,
1994). We retained this model as a satisfactorily fitting model.

The attention, speed factor model (model IV, Table 3) included
5 indicators and had 5 degrees of freedom. The model had rela-
tively high reliability (judged byω), close to a level suitable for indi-
vidual-level inference (Nunnally & Bernstein, 1994) and fit well by
SRMR and CFI, but not by RMSEA. We retained this model as a
satisfactorily fitting model.

The language, fluency single factor model (model V, Table 3)
included 6 indicators and had 9 degrees of freedom. The model
had reasonable reliability (judged by ω) for group level inference
(Nunnally & Bernstein, 1994) and good fit was suggested by all
fit criteria (SRMR, CFI, and RMSEA). We retained this model
as a satisfactorily fitting model.

The visuospatial model (model VI, Table 3) had only two
indicators and was specified as described above to produce a
just-identified model. This model must fit well by standard fit cri-
teria, but as with the orientationmodel we identified an item with a
negative residual variance, a standardized measurement slope (i.e.,
factor loading) of greater than 1, and the computed ω coefficient
was greater than 1. These inadmissible values suggest that the lin-
earity assumptions imposed by the model are unreasonable. The
most plausible explanation for this was that beyond the CERAD
constructional praxis questions, which ask the respondent to copy
4 geometric figures, asking the respondent to copy 1 additional dia-
gram from the MMSE provides no unique information. Based on
these results we opted to drop the MMSE copy polygons task from
the HRS/HCAP indicator set.

Multidimensional models

Multidimensional models are summarized in Table 4. The first set
of models (VII and VIII) specified a correlated factors model
(model VIII is depicted in Figure 1, panel A). These models
included 27 indicators, omitting the TICS name president and

MMSE copy polygons as described above. Consequently, orienta-
tion and visuospatial factors were included with single indicators.
The remaining factors retained the loading pattern implied in
Table 1 and evaluated in the single factor models (Table 3). A com-
parison of model VII and VIII indicates the importance of includ-
ing methods factors. The methods factors load only in the items
reflecting shared content and are forced to be uncorrelated with
each other and with the common factors, impart a significant
improvement in model fit (change in model χ2 (df) = 3,174 (5)).

While model fit for model VIII is satisfactory according to the
SRMR, the CFI and RMSEA suggest the model could be improved.
CFI and RMSEA reward parsimony, and our pattern of model fit
results could signal the model is overly complex. Evidence for
excess model complexity is revealed by examining the model-
implied correlation matrix for the latent variables (Table S1).
The factor correlations range from 0.33 (visuospatial with orienta-
tion) to 0.95 (memory immediate episodic with memory delayed
episodic). The very high correlation of immediate and delayed epi-
sodic memory, even after accounting for the shared methods,
implies that the two factors share 90% of their variance. Of 28 fac-
tor correlations among the 8 latent factors, 8 were estimated at .9 or
higher. Included among this set were the correlations among the
three memory factors (immediate, delayed, recognition, mean
r = .92), the set shifting and attention, speed factors (r = .94).
Interestingly, the language factor was also highly correlated with
the memory domains (immediate r = .94; delayed r = .88; recogni-
tion r = .84).

Because in model VIII immediate episodic memory (MEI in
Figure 1, panel A) was very highly correlated with delayed epi-
sodic memory and language and fluency, we made the decision
to drop the items assessing immediate episodic memory from
the factor model. As a consequence, our subsequent models
(models IX and X in Table 4, and Panels B and C of Figure 1)
are no longer nested within the previous multidimensional mod-
els and differences in model fit statistics (e.g., χ2) are not compa-
rable. Moreover, it is worth pointing out that we are not reducing
the length of the HCAP battery because we must still ask partic-
ipants the immediate recall questions in order to assess delayed
recall and recognition. We also treated the indicators of delayed
episodicmemory and recognition memory as indicators of a single
memory factor (model IX). This modification was motivated by
the high correlation (.91) of these two specific factors in the
multidimensional model and the presence of only two indicators
for recognition memory. Additionally, we combined the set shift-
ing and attention, speed factors into a single factor labeled exec-
utive functioning. This modified model (model X, Table 4) fit
reasonably well against standard thresholds of model fit accord-
ing to SRMR, RMSEA, and CFI (0.047, 0.046, and 0.945,
respectively).

Table 4. Summary of multidimensional models

Model Description p m χ2 df SRMR RMSEA CFI NPD Notes

VII Correlated factors 27 6 6,312 299 0.055 0.078 0.858 þ Poor fit
VIII Correlated factors, with methods factors 27 6 3,138 294 0.043 0.054 0.933 Acceptable fit by SRMR only
IX Model VIII, drop immediate memory, delayed and

recognition as 1 factor
23 4 1,672 215 0.047 0.045 0.948 Acceptable fit. Not nested within

above models
X IX, combine Set shifting and Attention, speed 23 3 1,777 220 0.047 0.046 0.945 Reasonably acceptable fit. CFI is lower

than ideal.
XI Second-order factor model implied from X 23 4 2,053 225 0.049 0.049 0.935 Degraded fit relative to model X

Note. Abbreviations: p, number of indicators; m, number of common latent variables (excludingmethods factors and single indicator factors); χ2model chi-square, df, degrees of freedom; SRMR,
standardized root mean square residual (≤ 0.08 satisfactory fit); RMSEA, root mean square error of approximation (< 0.05 satisfactory fit); CFI, confirmatory fit index (>0.95 satisfactory fit); NPD,
non-positive definite covariance matrix for latent variables.
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We also wanted to evaluate the fit of a second-order factor
model based on our final multidimensional model (Figure 1, panel
C). We expect the second-order factor model will be useful for har-
monization with other of the IPS, especially if partner studies do
not include all of the items or subtests within a domain and/or
if investigators wish to test the assumption of measurement invari-
ance across IPS (Nichols et al., 2022). Results of this model fit are
shown in Table 4 (model XI). This model estimates five fewer
parameters, but the cost to model χ2 is 259, suggesting a significant
reduction inmodel fit. Nevertheless, themodel returns similar esti-
mates as for model X for SRMR (0.049), RMSEA (0.049), but (as
with Model X) the CFI falls below typical thresholds for adequate
fit (CFI= 0.935).

Factor score estimation

We obtained factor score estimates using the EAP method and
Bayesian PVs (Asparouhov & Muthén, 2010). Estimates were
derived from the single factor models for specific domains (corre-
sponding to models IID, IIIA, V, Table 3), and from the second-
order model for the general domain (model XI, Table 4). Results of
these procedures are illustrated in Supplement Figure S2, which
illustrates the density of EAP factor score estimate (black line)
and the density of PVs (gray-filled density). What is interesting
to note is where the EAP density is less than the PV density.
These regions of the latent trait indicate areas where the standard
error of measurement is high, or the reliability is low, for the esti-
mated latent trait level.

As can be seen in Supplement Figure S2, thememory, executive
functioning, and the general cognitive performance latent trait

estimates seem reasonably precise across the range of cognitive
ability. The range of ability is based on the standard normal distri-
bution. The values for language/fluency are less precise, particu-
larly in the tails of the distribution. This is not surprising given
this domain is comprised mostly of components with two or three
response categories, except for animal naming. This specific
domain was also the one with lowest reliability (Table 3).

Discussion

We applied factor analysis methods to a pre-selected set of neuro-
psychological performance indicators included in the HCAP bat-
tery of tests fielded by the HRS in 2016. Using an a priori
conceptualization of the structure of the cognitive tests, we con-
ducted a set of analyses guided by model fit and parameter esti-
mates to derive a model of reasonably well-fitting domains of
cognitive performance in a general and broadly inclusive sample
of community dwelling older adults. Our final measurement model
maps well on to well-characterized domains of memory, executive
functioning, language/fluency, and visuospatial functioning.

Limitations of our approach and results are worth mentioning.
Firstly, we commenced our analysis with a definite view as to the
structure we were likely to observe among the tests included in the
HCAP battery. While we allowed some aspects of model fit and
factor correlation to drive final model structure, it is likely that
if we had started with a different set of assumptions, made different
decisions about which scores from tests to include, how to treat
those variables analytically, or followed a more exploratory factor
analysis method, wemay have settled on a different factor structure
in our final models. One of the strengths of basing this research

Figure 1. Summaries of model structure for models VIII, X, and XI. Figure 1 displays structure and model fit information for model VII (Panel A) displays a correlated factors model
will all initially included indicators), model X (Panel B, correlated factors model removing immediate episodic memory and using a single factor for delayed and recognition
memory and a single factor for set shifting and attention/speed), and Model XI, (Panel C) a second-order factor model based on Model X. Abbreviations: ORI, orientation;
MEI, immediate episodic memory; MDE, delayed episodic memory; MRE, recognition memory; SS, set shifting; ASP, attention/speed; LFL, language and fluency; VIS, visuospatial;
MEM, memory; EXF, executive functioning; GCP, general cognitive performance; SRMR, standardized root mean squared residual; RMSEA, root mean squared error of approxi-
mation; CFI, confirmatory fit index; TICS, Telephone Interview for Cognitive Status; MMSE, Mini-Mental State Examination; HRS, Health and Retirement Study; CSI-D, Community
Screening Instrument for Dementia; SDMT, Symbol Digit Modalities Test.
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within the HRS is that the data are public access and as such other
investigators can obtain the source variables and derive alternative
solutions. Another limitation is that our analysis does notmake use
of complex sampling weights, as these were not defined for the
HCAP sample at the time of analysis. It will be important to rep-
licate these results when those sampling weights are available.

As a final limitation, readers are reminded that factor structures
based on a general community sample, in which most participants
are functioning within the range of cognitively normal, may not
translate to clinical or impaired populations (c.f., Delis et al.,
2003). It is likely that far more creative and informative use of
the extensive HCAP battery could be used to identify persons with
an existing or developing cognitive disorder.

In terms of utility for identifying persons with probable demen-
tia within a DSM-5 neurocognitive disorder framework, our results
hold promise. We have identified 5 domains of functioning (ori-
entation, memory, executive functioning, language/fluency, visuo-
spatial). While two of these domains are assessed with single
items. The remaining 3 are assessed with multiple items and have
high reliability on the basis of the omega coefficient, but the mar-
ginal reliability (as indicated by the standard error of measure-
ment) around 2 standard deviations below the mean is 0.83 for
memory, 0.92 for executive, and 0.56 for language/fluency. These
results are encouraging for executive and memory, but suggest
the measurement of the language/fluency domain is in need of fur-
ther development.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S135561772300019X

Acknowledgments. This study was not preregistered.

Funding statement. The HRS is funded by the National Institute on Aging
(DW, U01-AG009740), with supplemental funding from the Social Security
Administration. The HCAP is funded by the National Institute on Aging
(KL, U01-AG058499).

Conflicts of interest. The authors report no conflicts of interest.

References

Alzheimer’s Association. (2019). 2019 Alzheimer’s disease facts and figures.
Alzheimer’s & Dementia, 15, 321–387. doi: 10.1016/j.jalz.2019.01.010

American Psychiatric Association. (2013). Diagnostic and statistical manual of
mental disorders, (DSM-5): American Psychiatric Publishers.

Armitage, S. (1946). Analysis of certain psychological tests used for the evalu-
ation of brain damage. Psychological Monographs, 60, 1–48. doi: 10.1037/
h0093567

Asparouhov, T., and Muthén, B. (2010). Plausible values for latent variables
using Mplus. Retrieved from http://www.statmodel.com/download/
Plausible.pdf

Asparouhov, T., andMuthén, B. (2018, 2May). SRMR inMplus. Retrieved from
http://www.statmodel.com/download/SRMR2.pdf

Brandt, J., Spencer, M., and Folstein, M. (1988). The telephone interview for
cognitive status. Neuropsychiatry, Neuropsychology, and Behavioral
Neurology, 1, 111–117. https://journals.lww.com/cogbehavneurol/toc/1988/
00120

Brown, T. A. (2006). Confirmatory Factor Analysis for Applied Research. New
York: Guilford Publications.

Cutler, S. J. (2015). Worries about getting Alzheimer’s: Who’s concerned?
American Journal of Alzheimer’s Disease & Other Dementias, 30, 591–598.
doi: 10.1177/1533317514568889

Delis, D. C., Jacobson, M.W., Bondi, M.W., Hamilton, J. M., and Salmon, D. P.
(2003). The myth of testing construct validity using factor analysis or

correlations with normal or mixed clinical populations: lessons from
memory assessment. Journal of the International Neuropsychological
Society, 9, 936–946. doi: 10.10170S1355617703960139

Fisher, G. G., McArdle, J. J., McCammon, R. J., Sonnega, A., and Weir, D. R.
(2014).Newmeasures of fluid intelligence in the HRS: Quantitative reasoning,
verbal reasoning, verbal fluency (DR-027). Retrieved fromAnnArbor: http://
hrsonline.isr.umich.edu/sitedocs/userg/dr-027b.pdf

Folstein, M. F., Folstein, S. E., and McHugh, P. R. (1975). 'Mini-mental state.' A
practical method for grading the cognitive state of patients for the clinician.
Journal of Psychiatric Research, 12(3), 189–198. doi: 10.1016/0022-3956(75)
90026-6

Hall, K., Gao, S., Emsley, C. L., Ogunniyi, A. O., Morgan, O., and Hendrie, H. C.
(2000). Community screening interview for dementia (CSI ‘D’); performance
in five disparate study sites. International Journal of Geriatric Psychiatry, 15,
521–531. doi: 10.1002/1099-1166(200006)15:6<521::aid-gps182>3.0.co;2-f

Hall, K., Hendrie, H., Brittain, H., Norton, J., Rodgers, D., Prince, C., Pillaym,
N., Blue, A. W.Kaufert, J. M., and Nath, A. (1993). The development of a
dementia screening interview in two distinct languages. International
Journal of Methods in Psychiatric Research, 3, 1–28. doi: 10.1002/1099-
1166(200006)15:6%3C521::aid-gps182%3E3.0.co;2-f

Hu, L. T., and Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance
structure analysis: Conventional criteria versus new alternatives. Structural
Equation Modeling: A Multidisciplinary Journal, 6, 1–55. doi: 10.1080/
10705519909540118

Hurd, M. D., Martorell, P., Delavande, A., Mullen, K. J., and Langa, K. M.
(2013). Monetary Costs of Dementia in the United States. The New
England journal of medicine, 368, 1326–1334. doi: 10.1056/NEJMsa1204629

Kenny, D. A., Kaniskan, B., and McCoach, D. B. (2015). The performance of
RMSEA in models with small degrees of freedom. Sociological methods &
research, 44, 486–507. doi: 10.1177/0049124114543236

Lachman, M. E., Agrigoroaei, S., Tun, P. A., and Weaver, S. L. (2013).
Monitoring cognitive functioning: Psychometric properties of the Brief
Test of Adult Cognition by Telephone. Assessment, 21, 404–417. doi: 10.
1177/1073191113508807

Langa, K., Plassman, B. L., Wallace, R. B., Herzog, A. R., Heeringa, S. G.,
Ofstedal, M. B., Burke, J. R., Fisher, G. G., Fultz, N. H., Hurd, M. D.,
Potter, G. G., Rodgers, W. L., Steffens, D. C., Weir, D. R., and Willis, R. J.
(2005). The Aging, Demographics, and Memory Study: study design and
methods. Neuroepidemiology, 25, 181–191. doi: 10.1159/000087448

Langa, K., Ryan, L., McCammon, R., Jones, R. N., Manly, J., Levine, D. A.,
Sonnega, A., Farron, M., and Weir, D. (2020). The Health and Retirement
Study Harmonized Cognitive Assessment Protocol (HCAP) Project: Study
Design andMethods.Neuroepidemiology, 54, 64–74. doi: 10.1159/000503004

Mejia-Arango, S., Nevarez, R., Michaels-Obregon, A., Trejo, B., Mendoza-
Alvarado, L., Sosa-Ortiz, A. L., Martinez-Ruiz, A., and Wong, R. (2020).
The Mexican Cognitive Aging Ancillary Study (Mex-Cog): Study Design
and Methods. Archives of Gerontology and Geriatrics, 91, 104210. doi: 10.
1016/j.archger.2020.104210

Meng, Q., Wang, H., Strauss, J., Langa, K. M., Chen, X., Wang, M., Qu, Q.,
WeiKuang,W., and Zhang, N. (2019). Validation of neuropsychological tests
for the China Health and Retirement Longitudinal study harmonized cogni-
tive assessment protocol. International Psychogeriatrics, 31, 1709–1719. doi:
10.1017/S1041610219000693

Morris, J. C., Heyman, A., Mohs, R. C., Hughes, J. P., van Belle, G., Fillenbaum,
G., Mellits, E. D., and Clark, C. (1989). The Consortium to Establish a
Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and neuro-
psychological assessment of Alzheimer’s disease. Neurology, 39(9), 1159–
1165. doi: 10.1212/WNL.39.9.1159

Nichols, E. L., Cadar, D., Lee, J., Jones, R. N., and Gross, A. L. (2022). Linear
linking for related traits (LLRT): A novel method for the harmonization
of cognitive domains with no or few common items. Methods, 204, 179–
188. doi: 10.1016/j.ymeth.2021.11.011

Nunnally, J. C., and Bernstein, I. H. (1994). Psychometric theory (3rd ed.). New
York: McGraw-Hill College Division.

Peters, G.-J. Y. (2014). The alpha and the omega of scale reliability and validity:
why and how to abandon Cronbach’s alpha and the route towards more

54 Richard N. Jones et al.

https://doi.org/10.1017/S135561772300019X Published online by Cambridge University Press

https://doi.org/10.1017/S135561772300019X
https://doi.org/10.1016/j.jalz.2019.01.010
https://doi.org/10.1037/h0093567
https://doi.org/10.1037/h0093567
http://www.statmodel.com/download/Plausible.pdf
http://www.statmodel.com/download/Plausible.pdf
http://www.statmodel.com/download/SRMR2.pdf
https://journals.lww.com/cogbehavneurol/toc/1988/00120
https://journals.lww.com/cogbehavneurol/toc/1988/00120
https://doi.org/10.1177/1533317514568889
https://doi.org/10.10170S1355617703960139
http://hrsonline.isr.umich.edu/sitedocs/userg/dr-027b.pdf
http://hrsonline.isr.umich.edu/sitedocs/userg/dr-027b.pdf
https://doi.org/10.1016/0022-3956(75)90026-6
https://doi.org/10.1016/0022-3956(75)90026-6
https://doi.org/10.1002/1099-1166(200006)15:6%3C521::aid-gps182%3E3.0.co;2-f
https://doi.org/10.1002/1099-1166(200006)15:6%3C521::aid-gps182%3E3.0.co;2-f
https://doi.org/10.1002/1099-1166(200006)15:6%3C521::aid-gps182%3E3.0.co;2-f
https://doi.org/10.1080/10705519909540118
https://doi.org/10.1080/10705519909540118
https://doi.org/10.1056/NEJMsa1204629
https://doi.org/10.1177/0049124114543236
https://doi.org/10.1177/1073191113508807
https://doi.org/10.1177/1073191113508807
https://doi.org/10.1159/000087448
https://doi.org/10.1159/000503004
https://doi.org/10.1016/j.archger.2020.104210
https://doi.org/10.1016/j.archger.2020.104210
https://doi.org/10.1017/S1041610219000693
https://doi.org/10.1212/WNL.39.9.1159
https://doi.org/10.1016/j.ymeth.2021.11.011
https://doi.org/10.1017/S135561772300019X


comprehensive assessment of scale quality. EuropeanHealth Psychologist, 16,
56–69. doi: 10.31234/osf.io/h47fv

Plassman, B. L., Langa, K. M., Fisher, G. G., Heeringa, S. G., Weir, D. R.,
Ofstedal, M. B., Burke, J. R., Hurd, M. D., Potter, G. G., Rodgers, W. L.,
Steffens, D. C., McArdle, J. J., Willis, R. J., and Wallace, R. B. (2008).
Prevalence of cognitive impairment without dementia in the United
States. Annals of Internal Medicine, 148, 427–434. doi: 10.7326/0003-
4819-148-6-200803180-00005

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests.
Copenhagen: Danish Institute of Educational Research.

Raven, J. (1981).Manual for Raven’s progressive matrices and vocabulary scales.
Research Supplement no. 1: The 1979 British standardization of the Standard
Progressive Matrices and Mill Hill Vocabulary Scales, together with compar-
ative data from earlier studies in the UK, US, Canada, Germany, and Ireland.
Oxford, England: Oxford Psychologists Press.

Reise, S. P. (2012). The rediscovery of bifactor measurement models.
Multivariate Behavioral Research, 47, 667–696. doi: 10.1080/00273171.
2012.715555

Richards,M., Kuh, D., Hardy, R., andWadsworth, M. (1999). Lifetime cognitive
function and timing of the natural menopause. Neurology, 53, 308–308. doi:
10.1212/WNL.53.2.308

Scherr, P. A., Albert, M. S., Funkenstein, H. H., Cook, N. R., Hennekens, C. H.,
Branch, L. G., White, L. R., Taylor, J. O., and Evans, D. A. (1988). Correlates

of cognitive function in an elderly community population. American Journal
of Epidemiology, 128, 1084–1101. doi: 10.1093/oxfordjournals.aje.a115051

Schrank, F. A., and Flanagan, D. P. (2003).WJ III clinical use and interpretation:
Scientist-practitioner perspectives: Academic Press.

Smith, A. (1982). Symbol digit modalities test. Los Angeles: Western
Psychological Services.

Sonnega, A., Faul, J. D., Ofstedal, M. B., Langa, K. M., Phillips, J. W., and Weir,
D. R. (2014). Cohort profile: the health and retirement study (HRS).
International journal of epidemiology, 43, 576–585. doi: 10.1093/ije/dyu067

Steptoe, A., Breeze, E., Banks, J., and Nazroo, J. (2013). Cohort profile: the
English longitudinal study of ageing. International journal of epidemiology,
42, 1640–1648. doi: 10.1093/ije/dys168

Wechsler, D. (1987). Wechsler Memory Scale-Revised manual. San Antonio:
Psychological Corporation.

Weir, D.,McCammon, R., Ryan, L., and Langa, K. (2014).Cognitive test selection
for the harmonized cognitive assessment protocol. Retrieved fromAnn Arbor:
http://hrsonline.isr.umich.edu/sitedocs/userg/HCAP_testselection.pdf

Wilson, R. S., Mendes De Leon, C. F., Barnes, L. L., Schneider, J. A., Bienias, J. L.,
Evans, D. A., and Bennett, D. A. (2002). Participation in cognitively stimu-
lating activities and risk of incident Alzheimer disease. JAMA, 287, 742–748.
doi: 10.1001/jama.287.6.742

Woodcock, R.W.,McGrew, K. S., andMather, N. (2001).Woodcock-Johnson III
tests of achievement. Itasca, IL: Riverside Publishing.

Journal of the International Neuropsychological Society 55

https://doi.org/10.1017/S135561772300019X Published online by Cambridge University Press

https://doi.org/10.31234/osf.io/h47fv
https://doi.org/10.7326/0003-4819-148-6-200803180-00005
https://doi.org/10.7326/0003-4819-148-6-200803180-00005
https://doi.org/10.1080/00273171.2012.715555
https://doi.org/10.1080/00273171.2012.715555
https://doi.org/10.1212/WNL.53.2.308
https://doi.org/10.1093/oxfordjournals.aje.a115051
https://doi.org/10.1093/ije/dyu067
https://doi.org/10.1093/ije/dys168
http://hrsonline.isr.umich.edu/sitedocs/userg/HCAP_testselection.pdf
https://doi.org/10.1001/jama.287.6.742
https://doi.org/10.1017/S135561772300019X

	Factor structure of the Harmonized Cognitive Assessment Protocol neuropsychological battery in the Health and Retirement Study
	Introduction
	Methods
	Participants
	Measures
	Analytic approach
	Data and code availability

	Results
	Characteristics of the HCAP sample used in this analysis
	Single factor models
	Multidimensional models
	Factor score estimation

	Discussion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages true
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


