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Abstract
For every ∞-category 𝒞, there is a homotopy n-category h𝑛𝒞 and a canonical functor 𝛾𝑛 : 𝒞 → h𝑛𝒞. We study
these higher homotopy categories, especially in connection with the existence and preservation of (co)limits, by
introducing a higher categorical notion of weak colimit. Using homotopy n-categories, we introduce the notion of
an n-derivator and study the main examples arising from ∞-categories. Following the work of Maltsiniotis and
Garkusha, we define K-theory for∞-derivators and prove that the canonical comparison map from the Waldhausen
K-theory of 𝒞 to the K-theory of the associated n-derivator D(𝑛)

𝒞
is (𝑛 + 1)-connected. We also prove that this

comparison map identifies derivator K-theory of ∞-derivators in terms of a universal property. Moreover, using
the canonical structure of higher weak pushouts in the homotopy n-category, we also define a K-theory space
𝐾 (h𝑛𝒞, can) associated to h𝑛𝒞. We prove that the canonical comparison map from the Waldhausen K-theory of
𝒞 to 𝐾 (h𝑛𝒞, can) is n-connected.
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1. Introduction

It has long been understood in homotopy theory that the homotopy category is only a crude invariant
of a much richer homotopy-theoretic structure. The problem of finding a suitable formalism for this
additional structure, one that encodes homotopy-theoretic extensions of ordinary categorical notions, led
to several foundational approaches, each with its own distinctive advantages and special characteristics.
The theory of∞-categories (or quasi–categories) [20, 21, 22, 4] is one of several successful approaches
to develop useful foundations for the study of homotopy theories and has led to groundbreaking new
perspectives and results in the field.

Even though passing to the homotopy category certainly neglects homotopy-theoretic information,
the general problem of understanding how much information this process retains still poses interesting
questions in specific contexts. This has inspired many important developments, for example, in the
context of rigidity theorems for homotopy theories [12, 35, 33, 31], derived/homotopical Morita and
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tilting theory (see [36] for a nice survey) or in connection with K-theory regarded as an invariant of
homotopy theories [9, 28, 34, 24].

The theory of derivators, first introduced and developed by Grothendieck [16], Heller [19] and
Franke [12], is a different foundational approach based on the idea of considering the homotopy
categories of all diagram categories as a remedy to the defects of the homotopy category (see also
[18]). By supplementing the homotopy category with the network of all these (homotopy) categories,
it is possible to encode the collection of homotopy (co)limit functors and general homotopy Kan
extensions as an enhancement of the homotopy category. This approach provides a different, lower (= 2–)
categorical formalism for expressing homotopy-theoretic universal properties (see [5] and [37, 7] for
some interesting applications). Moreover, Maltsiniotis [24] defined K-theory in the context of derivators
with a view towards partially recovering Waldhausen K-theory from the derivator. The K-theory of
derivators and its comparison with Waldhausen K-theory has been studied extensively in [6, 14, 15, 24,
25, 26, 27]. In the context of the theory of derivators, the question about the information retained by the
homotopy category is then upgraded to the analogous question for the derivator. The theory of derivators
still does not provide in general faithful representations of homotopy theories; however, it is possible in
certain cases to recover in a non-canonical way the homotopy theory from the derivator (see [32]).

The purpose of this paper is to extend these ideas on the comparison between homotopy theories and
homotopy categories or derivators to n-categories (= (𝑛, 1)-categories), where the ordinary homotopy
category is now replaced by the homotopy n-category of an∞-category. More specifically:

(a) Higher homotopy categories. Using the definition of the higher homotopy categories by Lurie [22],
we consider the tower of homotopy n-categories {h𝑛𝒞}𝑛≥1 associated to an∞-category 𝒞, together
with the canonical (localization) functors 𝛾𝑛 : 𝒞 → h𝑛𝒞, and we analyse the properties of h𝑛𝒞

inherited from 𝒞. (Sections 2–3, 6.1–6.2)
(b) Higher derivators. We introduce a higher categorical notion of a derivator that takes values in

n-categories. Then we develop the basic theory of higher derivators with a special emphasis on the
examples that arise from∞-categories. (Section 4)

(c) K-theory of higher derivators. We extend the definition of derivator K-theory by Maltsiniotis [24]
and Garkusha [14, 15] to n-derivators and study the comparison map from Waldhausen K-theory.
Our main result shows that the comparison map is (𝑛 + 1)-connected (Theorem 5.5). Moreover,
following [26], we prove that this comparison map has a universal property (Theorem 5.13).

(d) K-theory of homotopy n-categories. In analogy with the K-theory of triangulated categories [28],
we introduce K-theory for n-categories equipped with distinguished squares. In the case of a
homotopy n-category, we study the comparison map from Waldhausen K-theory and prove that it
is n-connected (Theorem 6.5).

(a) Higher homotopy categories. Every ∞-category 𝒞 has an associated homotopy n-category
h𝑛𝒞 and a canonical functor 𝛾𝑛 : 𝒞 → h𝑛𝒞. The construction of the homotopy n-category and its
properties are studied in [22]. We will review this construction and its properties in Section 2. Intuitively,
for 𝑛 ≥ 1, h𝑛𝒞 is an ∞-category with the same objects as 𝒞 and whose mapping spaces are the
appropriate Postnikov truncations of the mapping spaces in 𝒞. For 𝑛 = 1, the homotopy category h1𝒞
is the ordinary homotopy category of 𝒞. The collection of homotopy n-categories defines a tower of
∞-categories

𝒞

𝛾𝑛

��
𝛾𝑛−1

���
��

��
��

��
𝛾1

������
�����

�����
�����

�����
���

· · · �� h𝑛𝒞 �� h𝑛−1𝒞 �� · · · �� h1𝒞

that approximates 𝒞. One of the defects of the homotopy category h1𝒞, which is essentially what the
theory of derivators tries to rectify, is that it does not in general inherit (co)limits from 𝒞. As a general
rule, if 𝒞 admits (co)limits, then h1𝒞 admits only weak (co)limits – which may or may not be induced
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from 𝒞. (We recall that a weak colimit of a diagram is a cocone on the diagram that admits a morphism
to every other such cocone, but this morphism may not be unique in general.) Do the higher homotopy
categories have better inheritance properties for (co)limits, and in what sense? This question is closely
related to the problem of understanding how much information h𝑛𝒞 retains from 𝒞. We introduce a
higher categorical version of weak (co)limit in order to address this question. In analogy with ordinary
weak (co)limits, a higher weak colimit is a cocone for which the mapping spaces to other cocones are
highly connected but not necessarily contractible. The relative strength of the weak colimit is measured
by how highly connected these mapping spaces are; the connectivity of these mapping spaces determines
the order of the weak colimit. The properties of higher weak (co)limits will be discussed in Section 3.
For any simplicial set K, there is a canonical functor

Φ𝐾
𝑛 : h𝑛 (𝒞

𝐾 ) → h𝑛 (𝒞)
𝐾 ,

which is usually not an equivalence. The properties of this functor are relevant for understanding the
interaction of K-colimits in 𝒞 and in h𝑛𝒞. One of our conclusions (Corollary 3.17) is the following:

Φ𝐾
𝑛 induces an equivalence: h𝑛−dim(𝐾 ) (𝒞

𝐾 ) � h𝑛−dim(𝐾 )
(
h𝑛 (𝒞)

𝐾 )
.

Moreover, in connection with higher weak colimits in h𝑛𝒞, we also conclude (Corollary 3.22):

Suppose that 𝒞 admits finite colimits. Then h𝑛𝒞 admits finite coproducts and
weak pushouts of order 𝑛 − 1. In addition, the functor 𝛾𝑛 : 𝒞 → h𝑛𝒞 preserves

coproducts and sends pushouts in 𝒞 to weak pushouts of order 𝑛 − 1.

These properties of homotopy n-categories h𝑛𝒞 single out a class of n-categories for each 𝑛 ≥ 1,
called (finitely) weakly cocomplete n-categories (Definition 3.23). These classes of ∞-categories form
a sequence of refinements between ordinary categories with (finite) coproducts and weak pushouts and
(finitely) cocomplete∞-categories. We explore further the properties of these n-categories in connection
with adjoint functor theorems and (higher) Brown representability in joint work with H. K. Nguyen and
C. Schrade [30] (building on and extending our previous joint work in [29]).

(b) Higher derivators. The main example of a (pre)derivator is given by the 2-functor that sends a
small category I to the homotopy category h1 (𝒞

𝑁 (𝐼 ) ), for suitable choices of an∞-category 𝒞. Using
homotopy n-categories instead, we may consider more generally the example of the enriched functor
that sends a simplicial set K to the homotopy n-category h𝑛 (𝒞

𝐾 ). Following the axiomatic definition
of ordinary derivators, we introduce a definition of an n-derivator, which is meant to encapsulate the
main abstract properties of this example. The basic definitions and properties of (left, right, pointed,
stable) n-(pre)derivators, 1 ≤ 𝑛 ≤ ∞, will be discussed in Section 4. For any∞-category 𝒞, there is an
associated n-prederivator

D
(𝑛)
𝒞

: Diaop → Catn, 𝐾 ↦→ h𝑛 (𝒞
𝐾 ),

where Dia denotes a category of diagram shapes and Catn is the ∞-category of n-categories. These
assemble to define a tower of∞-prederivators

D
(∞)

𝒞

�� ���
��

��
��

�

�����
����

����
����

����
����

���

· · · �� D
(𝑛)
𝒞

�� D
(𝑛−1)
𝒞

�� · · · �� D
(1)
𝒞

that approximates D(∞)
𝒞

: 𝐾 ↦→ 𝒞𝐾 . The n-prederivator D(𝑛)
𝒞

is an n-derivator if certain homotopy Kan
extensions exist in 𝒞 and the corresponding base change transformations satisfy the Beck–Chevalley
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condition. For any fixed 𝑛 ∈ Z≥1 ∪ {∞}, we prove the following fact, which can be used to obtain many
examples of n-derivators (Proposition 4.17 and Theorem 4.18):

𝒞 admits limits and colimits indexed by diagrams in Dia
if and only if D(𝑛)

𝒞
is an 𝑛-derivator.

The motivation for higher derivators is to bridge the gap between ∞-categories and derivators by
introducing a hierarchy of intermediate notions, a different one for each categorical level, starting
with ordinary derivators. For any fixed 1 ≤ 𝑛 < ∞, the theory of n-derivators is still not a faithful
representation of homotopy theories; it dwells in an (𝑛 + 1)-categorical context in the same way the
classical theory of derivators is restricted to a 2-categorical context. In this respect, our approach using
n-derivators remains close to the original idea of a derivator and differs from other recent perspectives on
(pre)derivators in which (pre)derivators are reconsidered and revised into a model for the theory of∞-
categories [13, 2, 26]. We will address the problem of comparing suitable nice classes of∞-categories
with n-derivators in future joint work with D.–C. Cisinski.

(c) K-theory of higher derivators. K-theory for (pointed, right) derivators was introduced by
Maltsiniotis [24] and Garkusha [14, 15]. The basic feature of a derivator that allows this definition
of K-theory is that there is a natural notion of cocartesian square for a derivator. The motivation for
introducing this K-theory is connected with the problem of recovering Waldhausen K-theory from the
derivator. Maltsiniotis [24] conjectured that derivator K-theory of stable derivators satisfies additivity
and localization and that it agrees with Quillen K-theory for exact categories. Cisinski and Neeman [6]
proved additivity for the derivator K-theory of stable derivators, and Coley [8] has recently extended this
result to the unstable context. In joint work with Muro [27], we proved that localization and agreement
with Quillen K-theory cannot both hold. On the other hand, Muro [25] proved that agreement with
Waldhausen K-theory holds for 𝐾0 and 𝐾1 (see also [24, Section 6]). Moreover, Garkusha [15] obtained
further positive results in the case of abelian categories. In Section 5, after a short review of the K-theory
of ∞-categories, we will define derivator K-theory for general (pointed, right) ∞-derivators. For any
pointed∞-category 𝒞 with finite colimits, there is a comparison map to derivator K-theory,

𝜇𝑛 : 𝐾 (𝒞) → 𝐾 (D(𝑛)
𝒞
),

and these comparison maps assemble to give a tower of derivator K-theories and comparison maps

𝐾 (𝒞)

𝜇𝑛
��

𝜇𝑛−1 ���
��

��
��

��
𝜇1

������
�����

�����
�����

�����
�����

�

· · · �� 𝐾 (D(𝑛)
𝒞
) �� 𝐾 (D(𝑛−1)

𝒞
) �� · · · �� 𝐾 (D(1)

𝒞
)

that approximates 𝐾 (𝒞). Our main result on the comparison map 𝜇𝑛 is the following connectivity
estimate (Theorem 5.5):

𝜇𝑛 is (𝑛 + 1)-connected.

We believe that this connectivity estimate is best possible in general (Remarks 5.7 and 5.8). Following
the ideas of [26], we also consider the Waldhausen K-theory 𝐾𝑊 ,Ob (D) (and 𝐾𝑊 (D)) of a general
(pointed, right)∞-derivatorD. This K-theory always agrees with the usual K-theory (Proposition 5.10);
the proof is based on a version of the s•-construction in the ∞-categorical context (Proposition 5.1).
However, Waldhausen K-theory of derivators is not invariant under equivalences of derivators in general.
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Similarly to the case of ordinary derivators treated in [26], we prove that the comparison map to derivator
K-theory,

𝜇 : 𝐾𝑊 ,Ob (D) → 𝐾 (D),

identifies derivator K-theory in terms of a universal property (Theorem 5.13):

𝜇 is the initial natural transformation to a functor
that is invariant under equivalences of∞-derivators.

(d) K-theory of homotopy n-categories. The motivation for introducing K-theory for homotopy
n-categories is to identify the part of Waldhausen K-theory that may be reconstructed from the homotopy
n-category. As a basic instance of this phenomenon, we recall that 𝐾0(𝒞) can be recovered from the
triangulated category h1𝒞 for any stable ∞-category 𝒞. The main feature of the homotopy n-category
that is needed for our definition of K-theory is the collection of higher weak pushouts that come from
pushouts in𝒞. We will revisit the properties of homotopy n-categories in Subsections 6.1–6.2 and discuss
possible axiomatisations of these properties. We will then define K-theory for pointed n-categories with
distinguished squares – this is a higher categorical, but much more elementary, version of Neeman’s
K-theory of categories with squares [28]. For a pointed∞-category 𝒞 with finite colimits, we consider
the K-theory 𝐾 (h𝑛𝒞, can) associated to h𝑛𝒞 with the canonical structure of higher weak pushouts as
distinguished squares. For every 𝑛 ≥ 1, there is a comparison map

𝜌𝑛 : 𝐾 (𝒞) → 𝐾 (h𝑛𝒞, can),

and these assemble to define a tower of K-theories and comparison maps

𝐾 (𝒞)

𝜌𝑛

��
𝜌𝑛−1

		��
���

���
���

�
𝜌1



					
						

						
						

						
						

· · · �� 𝐾 (h𝑛𝒞, can) �� 𝐾 (h𝑛−1𝒞, can) �� · · · �� 𝐾 (h1𝒞, can)

that approximates 𝐾 (𝒞). Our main result in Section 6 on the comparison map 𝜌𝑛 is the following
connectivity estimate (Theorem 6.5):

𝜌𝑛 is 𝑛-connected.

This connectivity estimate is best possible in general (Remark 6.10). Let 𝑃𝑛𝑋 denote the Postnikov n-
truncation of a topological space X: that is, the homotopy groups of 𝑃𝑛𝑋 vanish in degrees > 𝑛, and the
canonical map 𝑋 → 𝑃𝑛𝑋 is (𝑛 + 1)-connected. Based on the connectivity estimate above, we conclude
(Corollary 6.11):

𝑃𝑛−1𝐾 (𝒞) depends only on (h𝑛𝒞, can).

This confirms a recent conjecture of Antieau [1, Conjecture 8.35] in the case of connective K-theory.

2. Higher homotopy categories

2.1. n-categories

We recall the definition and basic properties of n-categories following [22, 2.3.4]. Let 𝒞 be an
∞-category, and let 𝑛 ≥ −1 be an integer. 𝒞 is an n-category if it satisfies the following conditions:
(1) Given a pair of maps 𝑓 , 𝑓 ′ : Δ𝑛 → 𝒞, if f and 𝑓 ′ are homotopic relative to 𝜕Δ𝑛, then 𝑓 = 𝑓 ′.

(We recall that the notion of homotopy employed here means that the two maps are homotopic via
equivalences in 𝒞.)

(2) Given a pair of maps 𝑓 , 𝑓 ′ : Δ𝑚 → 𝒞, where 𝑚 > 𝑛, if 𝑓 |𝜕Δ𝑚 = 𝑓 ′
|𝜕Δ𝑚 , then 𝑓 = 𝑓 ′.
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These conditions say that 𝒞 has no morphisms in degrees > 𝑛 and any two morphisms in degree n agree
if they are equivalent. The conditions can be equivalently expressed as follows: 𝒞 is an n-category,
𝑛 ≥ 1, if for every diagram

Λ𝑚
𝑖

��

��

𝒞

Δ𝑚

��









where 𝑚 > 𝑛 and 0 < 𝑖 < 𝑚, there exists a unique dotted arrow that makes the diagram commutative
[22, Proposition 2.3.4.9]. Using an inductive argument (see [22, Proposition 2.3.4.7]), it can also be
shown that the conditions (1) and (2) together are equivalent to:

(3) Given a simplicial set K and maps 𝑓 , 𝑓 ′ : 𝐾 → 𝒞 such that 𝑓 |sk𝑛 (𝐾 ) and 𝑓 ′
|sk𝑛 (𝐾 ) are homotopic

relative to sk𝑛−1 (𝐾), then 𝑓 = 𝑓 ′.

An important immediate consequence of (3) is that for every n-category 𝒞, the∞-category Fun(𝐾,𝒞)
is again an n-category for any simplicial set K [22, Corollary 2.3.4.8].

Example 2.1. The only (−1)-categories up to isomorphism are∅ andΔ0. An∞-category is a 0-category
if and only if it is isomorphic to (the nerve of) a poset. 1-categories are up to isomorphism (nerves of)
ordinary categories. See [22, Examples 2.3.4.2–2.3.4.3, Proposition 2.3.4.5].

The property of being an n-category is not invariant under equivalences of ∞-categories. The
following proposition gives a characterization of the invariant property that an∞-category is equivalent
to an n-category. We recall that an ∞-groupoid (= Kan complex) X is n-truncated, where 𝑛 ≥ −1, if X
has vanishing homotopy groups in degrees > 𝑛. We say that X is (-2)-truncated if X is contractible.

Proposition 2.2. Let 𝒞 be an ∞-category, and let 𝑛 ≥ −1 be an integer. Then 𝒞 is equivalent to an
n-category if and only if Map𝒞 (𝑥, 𝑦) is (𝑛 − 1)-truncated for every pair of objects 𝑥, 𝑦 ∈ 𝒞.

Proof. See [22, Proposition 2.3.4.18]. �

2.2. Homotopy n-categories

Let 𝒞 be an ∞-category, and let 𝑛 ≥ 1 be an integer. We recall from [22] the construction of the
homotopy n-category h𝑛𝒞 of 𝒞. Given a simplicial set K, we denote by [𝐾,𝒞]𝑛 the set of maps

sk𝑛 (𝐾) → 𝒞,

which extend to sk𝑛+1 (𝐾). Two elements 𝑓 , 𝑔 ∈ [𝐾,𝒞]𝑛 are called equivalent, denoted 𝑓 ∼ 𝑔, if the
maps 𝑓 , 𝑔 : sk𝑛 (𝐾) → 𝒞 are homotopic relative to sk𝑛−1 (𝐾). The equivalence classes of such maps
for 𝐾 = Δ𝑚 define the m-simplices of a simplicial set h𝑛𝒞: that is,

(h𝑛𝒞)𝑚 := [Δ𝑚,𝒞]𝑛/∼ .

Clearly an m-simplex of 𝒞 defines an m-simplex in h𝑛𝒞, so we have a canonical map 𝛾𝑛 : 𝒞 → h𝑛𝒞.
Note that this map is a bijection in simplicial degrees < 𝑛 and surjective in degrees n and 𝑛 + 1.

The following proposition summarises some of the basic properties of this construction.

Proposition 2.3. Let 𝒞 be an∞-category and 𝑛 ≥ 1.

(a) The set of maps 𝐾 → h𝑛𝒞 is in natural bijection with the set [𝐾,𝒞]𝑛/∼.
(b) h𝑛𝒞 is an n-category. In particular, it is an∞-category.
(c) 𝒞 is an n-category if and only if the map 𝛾𝑛 : 𝒞 → h𝑛𝒞 is an isomorphism.
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(d) Let 𝒟 be an n-category. Then the restriction functor along 𝛾𝑛 : 𝒞 → h𝑛𝒞,

𝛾∗𝑛 : Fun(h𝑛𝒞,𝒟) → Fun(𝒞,𝒟),

is an isomorphism.

Proof. See [22, Proposition 2.3.4.12]. �

Example 2.4. For 𝑛 = 1, the 1-category h1𝒞 is isomorphic to the (nerve of the) usual homotopy
category of 𝒞.

Remark 2.5. For an ∞-category 𝒞, the homotopy 0-category h0𝒞 can be described in the following
way. For 𝑥, 𝑦 ∈ 𝒞, we write 𝑥 ≤ 𝑦 if Map𝒞 (𝑥, 𝑦) is non-empty. This defines a reflexive and transitive
relation. We say that two objects x and y are equivalent if 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥. Then the relation ≤ descends
to a partial order on the set of equivalence classes of objects in 𝒞. The homotopy 0-category h0𝒞 is
isomorphic to the nerve of this poset. We will often ignore the case 𝑛 = 0 and focus on the homotopy
n-categories for 𝑛 ≥ 1.

Proposition 2.6. Let 𝒞 be an ∞-category and 𝑛 ≥ 1. The functor 𝛾𝑛 : 𝒞 → h𝑛𝒞 is a categorical
fibration between∞-categories. In addition, for every lifting problem

𝜕Δ𝑚 𝑢 ��

��

𝒞

𝛾𝑛

��

Δ𝑚
𝜎

��

���
�

�
�

�
h𝑛𝒞

where 𝑚 ≤ 𝑛 + 1 (respectively, 𝑚 < 𝑛), there is a (unique) filler Δ𝑚 → 𝒞 that makes the diagram
commutative.

Proof. Clearly, for any object c in 𝒞 and any equivalence 𝑓 : 𝑐 → 𝑐′ in h𝑛𝒞, we may find a lift
𝑓 : 𝑐 → 𝑐′ of f in 𝒞 (uniquely if 𝑛 > 1), which is again an equivalence. Then we need to show that 𝛾𝑛

is an inner fibration. Consider a lifting problem

Λ𝑚
𝑖

𝑗

��

𝑢 �� 𝒞

𝛾𝑛

��

Δ𝑚
𝜎

�� h𝑛𝒞

where 0 < 𝑖 < 𝑚. For 𝑚 ≤ 𝑛, there is a diagonal filler Δ𝑚 → 𝒞 because 𝛾𝑛 is a bijection in simplicial
degrees < 𝑛 and surjective on n-simplices. For 𝑚 > 𝑛, there is a map 𝑣 : Δ𝑚 → 𝒞 that extends u
because 𝒞 is an∞-category. We claim that v defines a diagonal filler for the diagram. To see this, note
that an extension of 𝛾𝑛𝑢 along j is unique up to homotopy relative to Λ𝑚

𝑖 (⊇ sk𝑛−1Δ𝑚), since h𝑛𝒞 is
an ∞-category. In particular, the maps 𝜎 and 𝛾𝑛𝑣 are homotopic relative to sk𝑛−1Δ𝑚. Then the result
follows because the n-category h𝑛𝒞 satisfies condition (3) (see Subsection 2.1). Therefore, 𝛾𝑛 is an
inner fibration, and this completes the proof of the first claim.

The second claim for 𝑚 ≤ 𝑛 follows again from the fact that 𝛾𝑛 is bijective in simplicial degrees < 𝑛
and surjective in degree n. For 𝑚 = 𝑛 + 1, we may find a map 𝜎′ : Δ𝑛+1 → 𝒞 such that 𝛾𝑛𝜎

′ = 𝜎, since
𝛾𝑛 is surjective on (𝑛 + 1)-simplices. The maps

𝑢, 𝜎′
|𝜕Δ𝑛+1 : 𝜕Δ𝑛+1 → 𝒞

become equal after postcomposition with 𝛾𝑛. By Proposition 2.3(a), this means they are homotopic (in the
sense of the Joyal model category) relative to sk𝑛−1 (𝜕Δ𝑛+1). Using that the inclusion 𝜕Δ𝑛+1 ⊂ Δ𝑛+1 is a
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cofibration, this homotopy can be extended to a homotopy on Δ𝑛+1 between 𝜎′ and a map 𝑣 : Δ𝑛+1 → 𝒞

such that 𝑣 |𝜕Δ𝑛+1 = 𝑢. This new homotopy is still constant on sk𝑛−1(𝜕Δ𝑛+1) = sk𝑛−1(Δ𝑛+1). Therefore,
given that 𝜎′ and v are homotopic relative to sk𝑛−1 (Δ𝑛+1), it follows that 𝛾𝑛𝑣 = 𝛾𝑛𝜎

′ = 𝜎; this shows
that v defines a diagonal filler for the diagram. �

Corollary 2.7. Let 𝒞 be an∞-category, and let 𝑛 ≥ 1 be an integer. There is a (non-canonical) map

𝜖 : sk𝑛+1h𝑛𝒞 → sk𝑛+1𝒞

such that the following diagram commutes

sk𝑛+1𝒞 �� 𝒞

𝛾𝑛

��

sk𝑛+1h𝑛𝒞

𝜖





�� h𝑛𝒞

where the horizontal maps are the canonical inclusions.

Proof. We have a diagram as follows:

sk𝑛−1𝒞

�
��

�� sk𝑛𝒞

����

�� sk𝑛+1𝒞 ��

����

𝒞

𝛾𝑛

��

sk𝑛−1h𝑛𝒞 �� sk𝑛h𝑛𝒞 �� sk𝑛+1h𝑛𝒞 �� h𝑛𝒞.

We may choose a section 𝜖 ′ : sk𝑛h𝑛𝒞 → sk𝑛𝒞 – uniquely up to equivalence. We claim that this section
can be extended further to a section 𝜖 as required. Let 𝜎 : Δ𝑛+1 → h𝑛𝒞 denote a nondegenerate (𝑛+ 1)-
simplex in h𝑛𝒞. Then we consider the composite map

𝑢 : 𝜕Δ𝑛+1 = sk𝑛Δ
𝑛+1 sk𝑛 (𝜎)
−−−−−→ sk𝑛h𝑛𝒞

𝜖 ′

−→ sk𝑛𝒞 → 𝒞

and this commutative diagram:

𝜕Δ𝑛+1

��

𝑢 �� 𝒞

𝛾𝑛

��

Δ𝑛+1
𝜎

�� h𝑛𝒞.

By Proposition 2.6, there is a diagonal filler 𝜏 : Δ𝑛+1 → 𝒞 – that is, an (𝑛 + 1)-simplex of 𝒞 – that
makes the diagram commutative. We set 𝜖 (𝜎) := 𝜏. Repeating this process for each 𝜎, we obtain the
required extension 𝜖 : sk𝑛+1h𝑛𝒞 → sk𝑛+1𝒞. �

Example 2.8. Let 𝒞 be an∞-category. The functor 𝛾1 : 𝒞 → h1𝒞 is bijective on objects, so there is a
unique section sk0h1𝒞 → sk0𝒞. By making choices of morphisms, one from each homotopy class, this
map extends to a section sk1h1𝒞 → sk1𝒞. The last map extends further to a section sk2h1𝒞 → sk2𝒞
by making (non-canonical) choices of homotopies for compositions.

The functor h𝑛 (−) preserves categorical equivalences of ∞-categories. Using Proposition 2.3, it
follows that there is a tower of∞-categories:

𝒞 → · · · → h𝑛𝒞 → h𝑛−1𝒞 → · · · → h1𝒞.
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By construction, the canonical map

𝒞 −→ lim(· · · → h𝑛𝒞 → h𝑛−1𝒞 → · · · → h1𝒞)

is an isomorphism, and by Proposition 2.6, this inverse limit defines also a homotopy limit in the Joyal
model structure.

Example 2.9. As a consequence of Proposition 2.2, an ∞-groupoid X is categorically equivalent to an
n-category if and only if it is n-truncated. For example, a Kan complex is equivalent to a 0-category if
and only if it is homotopically discrete and to an 1-category if and only if it is equivalent to the nerve
of a groupoid. Given an∞-groupoid X, the canonical tower of∞-groupoids

𝑋 → · · · h𝑛𝑋 → h𝑛−1𝑋 → · · · → h1𝑋 → 𝜋0𝑋

models the Postnikov tower of X and the map 𝑋 → h𝑛𝑋 is (𝑛 + 1)-connected (i.e., for every 𝑥 ∈ 𝑋 , the
map 𝜋𝑘 (𝑋, 𝑥) → 𝜋𝑘 (h𝑛𝑋, 𝑥) is a bijection for 𝑘 ≤ 𝑛 and surjective for 𝑘 = 𝑛 + 1.)

Remark 2.10. An n-category 𝒞 is n-truncated in the ∞-category of ∞-categories: that is, the
∞-groupoid Map(𝐾,𝒞) is n-truncated for any ∞-category K (see [22, 5.5.6] for the definition and
properties of truncated objects in an ∞-category). To see this, recall that Fun(𝐾,𝒞) is again an n-
category, and then apply Proposition 2.2. But an n-truncated ∞-category 𝒞 is not equivalent to an
n-category in general, so the analogue of Example 2.9 fails for general ∞-categories. An ∞-category
𝒞 is n-truncated if and only if 𝒞 is equivalent to an (𝑛 + 1)-category and the maximal ∞-subgroupoid
𝒞� ⊆ 𝒞 is n-truncated. Indeed, given an n-truncated∞-category 𝒞, 𝒞� � Map(Δ0,𝒞) is n-truncated.
Moreover, since n-truncated objects are closed under limits, it follows that Map𝒞 (𝑥, 𝑦) is n-truncated
for every 𝑥, 𝑦 ∈ 𝒞, using the fact that there is a pullback in the∞-category of∞-categories:

Map𝒞 (𝑥, 𝑦)

��

�� 𝒞Δ1

��

Δ0 (𝑥,𝑦)
�� 𝒞 ×𝒞.

(Using the definition of n-truncated objects, we see that 𝒞Δ1 is again n-truncated.) Conversely, if 𝒞 is
an (𝑛+1)-category and 𝒞� is n-truncated, then it is possible to show that Map(Δ 𝑘 ,𝒞) is n-truncated by
induction on 𝑘 ≥ 0, from which it follows that 𝒞 is n-truncated. (I am grateful to Hoang Kim Nguyen
for interesting discussions related to this remark.)

Let Cat∞ denote the category of ∞-categories, regarded as enriched in ∞-categories, and let Catn
denote the full subcategory of Cat∞ that is spanned by n-categories.

Proposition 2.11. Let 𝒞 and 𝒟 be∞-categories, and let 𝑛 ≥ 1 be an integer.

(a) The natural map h𝑛 (𝒞 ×𝒟)
�
−→ h𝑛𝒞 × h𝑛𝒟 is an isomorphism.

(b) There is a functor

h𝒞,𝒟
𝑛 : Fun(𝒞,𝒟) → Fun(h𝑛𝒞, h𝑛𝒟)

that is natural in 𝒞 and 𝒟. In particular, h𝑛 : Cat∞ → Catn is an enriched functor.

Proof. (a) follows directly from the definition of h𝑛. For (b), we define the functor h𝒞,𝒟
𝑛 as follows: a

k-simplex 𝐹 : 𝒞 × Δ 𝑘 → 𝒟 is sent to the composite

h𝑛𝒞 × Δ
𝑘 � h𝑛𝒞 × h𝑛Δ

𝑘 � h𝑛 (𝒞 × Δ
𝑘 )

h𝑛𝐹
−−−→ h𝑛𝒟.

The functor h𝒞,𝒟
𝑛 is natural in 𝒞 and 𝒟 and turns h𝑛 into an enriched functor. �
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3. Higher weak colimits

3.1. Basic definitions and properties

It is well known that homotopy categories do not admit small (co)limits in general, even when the
underlying ∞-category has small (co)limits. On the other hand, if the ∞-category 𝒞 admits pushouts
(respectively, coproducts), for example, then the homotopy category h1𝒞 admits weak pushouts (re-
spectively, coproducts), which are induced from pushouts (respectively, coproducts) in 𝒞. Moreover, if
𝒞 admits small colimits, then h1𝒞 admits small weak colimits – which may or may not be induced from
𝒞. These observations suggest the following questions: does h𝑛𝒞, 𝑛 > 1, have in some sense more or
better (co)limits than the homotopy category, and how do these compare with (co)limits in 𝒞?

In this section, we introduce and study a notion of higher weak (co)limits in the context of
∞-categories. This is both a higher categorical version of the classical notion of weak (co)limits and a
weak version of the higher categorical notion of (co)limits. We will mainly focus on the properties of
higher weak (co)limits in the context of higher homotopy categories. We also refer to [30] for further
properties and applications of higher weak (co)limits.

We will restrict to higher weak colimits since the corresponding definitions and results about higher
weak limits are obtained dually. First we recall that an ∞-groupoid (= Kan complex) X is k-connected,
for some 𝑘 ≥ −1, if it is non-empty and 𝜋𝑖 (𝑋, 𝑥) � 0 for every 𝑥 ∈ 𝑋 and 𝑖 ≤ 𝑘 . For example, X is
(−1)-connected (respectively, 0-connected, ∞-connected) if it is non-empty (respectively, connected,
contractible).

We begin with the definition of a weakly initial object. Fix 𝑡 ∈ Z≥0 ∪ {∞}.

Definition 3.1. An object x of an ∞-category 𝒞 is weakly initial of order t if the mapping space
Map𝒞 (𝑥, 𝑦) is (𝑡 − 1)-connected for every object 𝑦 ∈ 𝒞.

Example 3.2. If 𝒞 is an ordinary category, a weakly initial object 𝑥 ∈ 𝒞 of order 0 is a weakly initial
object in the classical sense. For a general n-category 𝒞, a weakly initial object of order n is an initial
object.

Proposition 3.3. Let 𝒞 be an∞-category and 𝑥 ∈ 𝒞. The following are equivalent:

(1) x is weakly initial in 𝒞 of order t.
(2) x is weakly initial in h𝑛𝒞 of order t for any 𝑛 > 𝑡.
(3) x is initial in h𝑡𝒞.

These imply:

(4) x is initial in h𝑛𝒞 for any 𝑛 < 𝑡.

Proof. This follows from the fact that the functor 𝛾𝑛 : 𝒞 → h𝑛𝒞 restricts to an n-connected map
Map𝒞 (𝑥, 𝑦) → Maph𝑛𝒞 (𝑥, 𝑦) for every 𝑥, 𝑦 ∈ 𝒞. �

Proposition 3.4. Let 𝒞 be an∞-category, and let 𝑡 > 0. The full subcategory 𝒞′ of 𝒞, which is spanned
by the weakly initial objects of order t is either empty or a t-connected∞-groupoid.

Proof. Suppose that the full subcategory 𝒞′ is non-empty. Then the mapping spaces of 𝒞′ are (𝑡 − 1)-
connected, where 𝑡 − 1 ≥ 0. It follows that every morphism in 𝒞′ is an equivalence, and therefore 𝒞′ is
an∞-groupoid. �

Remark 3.5. The full subcategory 𝒞′ of weakly initial objects in 𝒞 of order 0 is not an∞-groupoid in
general. In this case, we only have that Map𝒞 (𝑥, 𝑦) is non-empty for every 𝑥, 𝑦 ∈ 𝒞′.

Definition 3.6. Let 𝒞 be an ∞-category and K a simplicial set, and let 𝐹 : 𝐾 → 𝒞 be a K-diagram in
𝒞. A weakly initial object 𝐺 ∈ 𝒞𝐹/ of order t is called a weak colimit of F of order t.
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Example 3.7. If 𝒞 is an n-category and 𝐺 : 𝐾⊲ → 𝒞 is a weak colimit of 𝐹 = 𝐺 |𝐾 : 𝐾 → 𝒞 order
𝑡 ≥ 𝑛, then G is a colimit diagram. This follows from Example 3.2 using the fact that 𝒞𝐹/ is again an
n-category (see [22, Corollary 2.3.4.10]). In particular, a weak colimit of order∞ is a colimit diagram. If
𝒞 is an ordinary category, then a weak colimit of order 0 is a weak colimit diagram in the classical sense.

Remark 3.8. There is an important difference between weak colimits of order 0 and weak colimits of
order > 0: as a consequence of Proposition 3.4, any two weak colimits of F of order > 0 are equivalent.
In particular, if 𝐺 ∈ 𝒞𝐹/ is a weak colimit of order 𝑡 > 0 and 𝐺 ′ ∈ 𝒞𝐹/ is a weak colimit of order > 0,
then 𝐺 ′ is also a weak colimit of order t.

The following proposition gives an alternative characterization of higher weak colimits following the
analogous characterization for colimits in [22, Lemma 4.2.4.3].

Proposition 3.9. Let 𝒞 be an ∞-category and K a simplicial set, and let 𝐺 : 𝐾⊲ → 𝒞 be a diagram
with cone object 𝑥 ∈ 𝒞. Then G is a weak colimit of 𝐹 = 𝐺 |𝐾 of order t if and only if the canonical
restriction map

Map𝒞 (𝑥, 𝑦) � Map𝒞𝐾⊲ (𝐺, 𝑐𝑦) → Map𝒞𝐾 (𝐹, 𝑐𝑦)

is t-connected for every 𝑦 ∈ 𝒞, where 𝑐𝑦 denotes, respectively, the constant diagram at 𝑦 ∈ 𝒞.

Proof. The fibre of the restriction map over 𝐹 ′ : 𝐾⊲ → 𝒞 with cone object y is identified with
Map𝒞𝐹/ (𝐺, 𝐹 ′) (see the proof of [22, Lemma 4.2.4.3]). �

The basic rules for the manipulation of higher weak colimits can be established similarly as for
colimits. The following procedure shows that higher weak colimits can be computed iteratively, exactly
like colimits, but with the difference that the order of the weak colimit may decrease with each iteration.

Proposition 3.10. Let 𝒞 be an∞-category, and let 𝐾 = 𝐾1 ∪𝐾0 𝐾2 be a simplicial set, where 𝐾0 ⊆ 𝐾1
is a simplicial subset. Let 𝐹 : 𝐾 → 𝒞 be a diagram, and denote its restrictions by 𝐹𝑖 := 𝐹|𝐾𝑖 , for
𝑖 = 0, 1, 2. Suppose that 𝐺𝑖 : 𝐾⊲

𝑖 → 𝒞 is a weak colimit of 𝐹𝑖 of order 𝑡𝑖 ≥ 0, for 𝑖 = 0, 1, 2.

(a) There are morphisms 𝐺0 → 𝐺1 |𝐾 ⊲
0

and 𝐺0 → 𝐺2 |𝐾 ⊲
0

in 𝒞𝐹0/. These together with 𝐺1 and 𝐺2
determine a diagram in 𝒞 as follows:

𝐻 : 𝐾⊲
1 ∪𝐾0∗Δ {1} (𝐾0 ∗ Δ

1) ∪𝐾0∗Δ {0} (𝐾0 ∗ Δ
1) ∪𝐾0∗Δ {1} 𝐾

⊲
2 → 𝒞.

(b) Let 𝐻� : Δ1∪Δ0 Δ1 → 𝒞 be the restriction of H to the cone objects. Suppose that 𝐻 ′ : Δ1×Δ1 → 𝒞

is a weak pushout of 𝐻� of order k. Then 𝐻 ′ determines a cocone 𝐺 : 𝐾⊲ → 𝒞 over F, with the
same cone object as 𝐻 ′, which is a weak colimit of F of order ℓ := min(𝑘, 𝑡1, 𝑡0 − 1, 𝑡2).

Proof. (a) follows directly from the properties of higher weak colimits. For (b), we first explain the
construction of the cocone 𝐺 : 𝐾⊲ → 𝒞. The functor 𝐻 ′ is represented by a diagram

𝑥0

𝑣

��

𝑢 �� 𝑥1

𝑓

��
𝑥2 𝑔

�� 𝑦

where 𝑥𝑖 is the cone object of 𝐺𝑖 and the morphisms u and v are given, respectively, by the morphisms
𝐺0 → 𝐺1 |𝐾 ⊲

0
and 𝐺0 → 𝐺2 |𝐾 ⊲

0
in 𝒞𝐹0/. The morphisms f and g produce two new cocones (essentially

uniquely) 𝐺 ′1 : 𝐾⊲
1 → 𝒞 over 𝐹1 and 𝐺 ′2 : 𝐾⊲

2 → 𝒞 over 𝐹2, with common cone object y. The restrictions
𝐺 ′1 |𝐾 ⊲

0
and 𝐺 ′2 |𝐾 ⊲

0
are equivalent as cocones over 𝐹0. We may then extend 𝐺 ′2 |𝐾 ⊲

0
in an essentially unique

way to a new cocone 𝐺 ′′1 : 𝐾⊲
1 → 𝒞 over 𝐹1, which is equivalent to 𝐺 ′1. The resulting cocones

𝐺 ′2 |𝐾 ⊲
0

: 𝐾⊲
0 → 𝒞, 𝐺 ′′1 : 𝐾⊲

1 → 𝒞and 𝐺 ′2 : 𝐾⊲
2 → 𝒞
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assemble to define the required cocone 𝐺 : 𝐾⊲ → 𝒞. Then the claim in (b) is shown by applying
Proposition 3.9, first for weak pushouts and then for 𝐾𝑖-diagrams, and using the fact that 𝒞𝐾 is the
homotopy pullback (in the Joyal model category) of the diagram of∞-categories (𝒞𝐾1 → 𝒞𝐾0 ← 𝒞𝐾2 ),
so its mapping spaces can also be identified with the corresponding (homotopy) pullbacks of mapping
spaces. �

Example 3.11. Let 𝒞 be (the nerve of) an ordinary category that admits small coproducts and weak
pushouts. By Proposition 3.10, every diagram 𝐹 : 𝐾 → 𝒞, where K is 1-dimensional, admits a weak
colimit (of order 0). Now suppose that 𝐹 : 𝐼 → 𝒞 is a diagram where I is (the nerve of) an arbitrary
ordinary small category. Since 𝒞 is an 1-category, a cocone 𝐺 : 𝐼⊲ → 𝒞 over F is determined uniquely
by its restriction to a cocone 𝐺 ′ : (sk1𝐼)

⊲ → 𝒞 over 𝐹|sk1𝐼 , and similarly for morphisms between
cocones. As a consequence, we may deduce the well-known fact that 𝒞 has weak I-colimits.

Example 3.12. Let 𝑇 ⊂ Δ1 × Δ2 be the full subcategory spanned by the objects (0, 𝑖), for 𝑖 = 0, 1, 2,
and (1, 0). Let 𝒞 be an ∞-category with weak pushouts of order t, and let 𝐹 : 𝑇 → 𝒞 be a T-diagram
in 𝒞. Write 𝑇 = 𝑇1 ∪𝑇0 𝑇2, where 𝑇1 is spanned by (0, 𝑖), 𝑖 = 0, 1 and (1, 0), 𝑇2 is spanned by (0, 𝑖),
𝑖 = 1, 2 and 𝑇0 = {(0, 1)}. Using Proposition 3.10, we may compute a weak colimit of F of order t in
terms of iterated weak pushouts of order t.

3.2. Homotopy categories and (co)limits

Let 𝒞 be an∞-category, and let K be a simplicial set. By the universal property of h𝑛 (−), the functor

Fun(𝐾,𝒞) → Fun(𝐾, h𝑛𝒞),

which is given by composition with 𝛾𝑛 : 𝒞 → h𝑛𝒞, factors canonically through the homotopy n-
category:

Φ𝐾
𝑛 : h𝑛Fun(𝐾,𝒞) → Fun(𝐾, h𝑛𝒞). (3.13)

The comparison between K-colimits in 𝒞 and in h𝑛𝒞 is essentially a question about the properties
of the functor Φ𝐾

𝑛 . Note that for 𝑛 = 1, Φ𝐾
1 is simply the canonical functor of ordinary categories:

h1 (𝒞
𝐾 ) → h1(𝒞)

𝐾 .

Lemma 3.14. Let 𝒞 be an ∞-category and K a finite dimensional simplicial set of dimension 𝑑 > 0,
and let 𝑛 ≥ 1 be an integer. The functor

Φ𝐾
𝑛 : h𝑛Fun(𝐾,𝒞) → Fun(𝐾, h𝑛𝒞)

satisfies the following:

(a) Φ𝐾
𝑛 is a bijection in simplicial degrees < 𝑛 − 𝑑.

(b) Φ𝐾
𝑛 is surjective in simplicial degree 𝑛 − 𝑑; it identifies (𝑛 − 𝑑)-simplices, which are homotopic

relative to the (𝑛 − 1)-skeleton of Δ𝑛−𝑑 × 𝐾 .
(c) Φ𝐾

𝑛 is surjective in simplicial degree 𝑛 − 𝑑 + 1.

Proof. The m-simplices of Fun(𝐾, h𝑛𝒞) are equivalence classes of maps

sk𝑛 (Δ
𝑚 × 𝐾) → 𝒞

that extend to sk𝑛+1 (Δ𝑚 × 𝐾). On the other hand, the m-simplices of h𝑛Fun(𝐾,𝒞) are equivalence
classes of maps

sk𝑛 (Δ
𝑚) × 𝐾 → 𝒞
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that extend to sk𝑛+1 (Δ𝑚) × 𝐾 . The functor Φ𝐾
𝑛 is induced by the canonical map

sk𝑛 (Δ
𝑚 × 𝐾) → sk𝑛 (Δ

𝑚) × 𝐾,

which is an isomorphism if 𝑑 ≤ max(𝑛 − 𝑚, 0). This shows that the map Φ𝐾
𝑛 is surjective in simplicial

degrees ≤ 𝑛 − 𝑑 + 1. Similarly, the map

sk𝑛−1 (Δ
𝑚 × 𝐾) → sk𝑛−1 (Δ

𝑚) × 𝐾

is an isomorphism if 𝑑 ≤ max(𝑛 − 𝑚 − 1, 0), so the two equivalence relations agree for 𝑚 < 𝑛 − 𝑑. �

Remark 3.15. The case 𝑑 = 0 is both special and essentially trivial, since the functor Φ𝐾
𝑛 is an

isomorphism in this case.
Proposition 3.16. Let 𝒞 be an∞-category and K a finite dimensional simplicial set of dimension 𝑑 > 0,
and let 𝑛 ≥ 1 be an integer. Then for every lifting problem

𝜕Δ𝑚 𝑢 ��

��

h𝑛 (𝒞
𝐾 )

Φ𝐾𝑛
��

Δ𝑚
𝜎

��

���
�

�
�

�
(h𝑛𝒞)

𝐾

where 𝑚 ≤ 𝑛 − 𝑑 + 1 (respectively, 𝑚 < 𝑛 − 𝑑), there is a (unique) filler Δ𝑚 → h𝑛 (𝒞
𝐾 ), which makes

the diagram commutative.

Proof. The case 𝑚 < 𝑛−𝑑+1 is a direct consequence of Lemma 3.14. For 𝑚 = 𝑛−𝑑+1 ≤ 𝑛, Lemma 3.14
shows that there is a lift 𝜏 : Δ𝑚 → h𝑛 (𝒞

𝐾 ) of 𝜎, represented by a map 𝜏′ : Δ𝑚 → 𝒞𝐾 . The maps

𝑢, 𝛾𝑛 ◦ 𝜏
′
|𝜕Δ𝑚 : 𝜕Δ𝑚 → h𝑛 (𝒞

𝐾 )

become equal after composition with Φ𝐾
𝑛 . Moreover, note that u corresponds uniquely to a map

𝑢 : 𝜕Δ𝑚 → 𝒞𝐾 . The maps Φ𝐾
𝑛 ◦ 𝑢 and Φ𝐾

𝑛 ◦ (𝛾𝑛𝜏
′
|𝜕Δ𝑚 ) correspond to the equivalence classes of

maps (using here the same notation for the adjoint maps)

𝑢, 𝜏′|𝜕Δ𝑚×𝐾 : 𝜕Δ𝑚 × 𝐾 → 𝒞,

so these last two maps are homotopic relative to sk𝑛−1 (𝜕Δ𝑚 × 𝐾) (see Proposition 2.3). Let

𝐻 : (𝜕Δ𝑚 × 𝐾) × 𝐽 → 𝒞

be a homotopy from 𝜏′
|𝜕Δ𝑚×𝐾

to u relative to the subspace sk𝑛−1 (𝜕Δ𝑚 × 𝐾), where 𝐽 = 𝑁 (0 � 1)
denotes the Joyal interval object. Using the fact that

𝜕Δ𝑚 × 𝐾 ∪sk𝑛−1 (𝜕Δ𝑚×𝐾 ) sk𝑛−1 (Δ
𝑚 × 𝐾) ⊂ Δ𝑚 × 𝐾

is a cofibration, this homotopy can be extended to a homotopy

𝐻 ′ : (Δ𝑚 × 𝐾) × 𝐽 → 𝒞,

where 𝜏′ = 𝐻 ′
|Δ𝑚×𝐾×{0} and 𝐻 ′ is constant on sk𝑛−1(Δ𝑚 × 𝐾). Then the map

𝜏̃ : = 𝐻 ′|Δ𝑚×𝐾×{1} : Δ
𝑚 × 𝐾 → 𝒞

extends u. Moreover, the (adjoint) map 𝜏̃ : Δ𝑚 → 𝒞𝐾 defines an element in h𝑛 (𝒞)
𝐾
𝑚 , after composition

with 𝛾𝑛, which agrees with Φ𝐾
𝑛 ◦ 𝜏 = 𝜎, so 𝜏̃ represents a diagonal filler, as required. �
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As a consequence of Proposition 3.16, we obtain the following result about the comparison between
the n-categories h𝑛 (𝒞

𝐾 ) and h𝑛 (𝒞)
𝐾 .

Corollary 3.17. Let 𝒞 be an∞-category and K a finite dimensional simplicial set of dimension 𝑑 > 0,
and let 𝑛 ≥ 𝑑 be an integer. The functor Φ𝐾

𝑛 : h𝑛 (𝒞
𝐾 ) → (h𝑛𝒞)

𝐾 is essentially surjective, and for
every pair of objects 𝐹, 𝐺 in h𝑛 (𝒞

𝐾 ), the induced map between mapping spaces

Maph𝑛 (𝒞𝐾 ) (𝐹, 𝐺) −→ Map(h𝑛𝒞)𝐾 (Φ
𝐾
𝑛 (𝐹),Φ

𝐾
𝑛 (𝐺))

is (𝑛 − 𝑑)-connected. As a consequence, Φ𝐾
𝑛 induces an equivalence:

h𝑛−𝑑
(
Fun(𝐾,𝒞)

)
� h𝑛−𝑑

(
Fun(𝐾, h𝑛𝒞)

)
. (3.18)

Now assume that 𝒞 is an ∞-category that admits K-colimits, where K is a simplicial set. We have
colimit-functors:

𝒞𝐾 colim𝐾 ��

𝛾𝑛
��

𝒞

𝛾𝑛

��

h𝑛 (𝒞
𝐾 )

h𝑛 (colim𝐾 ) �� h𝑛𝒞.

Assuming also that 𝒞 and K are as in Corollary 3.17, and passing to the homotopy (𝑛 − 𝑑)-categories
as in (3.18), we obtain the following corollary.
Corollary 3.19. Let 𝒞 be an∞-category and K a finite dimensional simplicial set of dimension 𝑑 > 0,
and let 𝑛 ≥ 𝑑 be an integer. Suppose that 𝒞 admits K-colimits. Then there is an adjoint pair

h𝑛−𝑑 (colim𝐾 ) : h𝑛−𝑑
(
Fun(𝐾, h𝑛𝒞)

)
� h𝑛−𝑑 (𝒞) : h𝑛−𝑑 (𝑐),

where c denotes the constant K-diagram functor.

Proposition 3.20. Let𝒞 be an∞-category with weak K-colimits of order k, where K is a simplicial set of
dimension 𝑑 > 0, and let 𝑛 ≥ 1 be an integer. Then h𝑛𝒞 has weak K-colimits of order ℓ = min(𝑛− 𝑑, 𝑘).
Moreover, the functor 𝛾𝑛 : 𝒞 → h𝑛𝒞 sends weak K-colimits of order k to weak K-colimits of order ℓ.

Proof. We may assume that 𝑛 ≥ 𝑑, and therefore the functor 𝒞𝐾 → (h𝑛𝒞)
𝐾 is surjective on objects.

Then it suffices to prove the second claim. Let 𝐺 : 𝐾⊲ → 𝒞 be a weak colimit of 𝐹 = 𝐺 |𝐾 of order k
with cone object 𝑥 ∈ 𝒞. By Proposition 3.9, it suffices to prove that the canonical map

Map(h𝑛𝒞)𝐾⊲ (𝐺, 𝑐𝑦) → Map(h𝑛𝒞)𝐾 (𝐹, 𝑐𝑦)

is ℓ-connected for every 𝑦 ∈ 𝒞. Note that there is a k-connected map:

Map(h𝑛𝒞)𝐾⊲ (𝐺, 𝑐𝑦) � Maph𝑛𝒞 (𝑥, 𝑦) � Maph𝑛 (𝒞𝐾⊲ ) (𝐺, 𝑐𝑦) → Maph𝑛 (𝒞𝐾 ) (𝐹, 𝑐𝑦).

Hence it suffices to show that the canonical map

Maph𝑛 (𝒞𝐾 ) (𝐹, 𝑐𝑦) → Map(h𝑛𝒞)𝐾 (𝐹, 𝑐𝑦)

is (𝑛−𝑑)-connected. This follows from Corollary 3.17. (Alternatively, note that the last map is identified
with the canonical map from the (𝑛 − 1)-truncation of a 𝐾op-limit of ∞-groupoids to the 𝐾op-limit of
the (𝑛 − 1)-truncations of the∞-groupoids:

h𝑛−1
(
lim𝐾 op Map𝒞 (𝐹 (−), 𝑦)

)
→ lim𝐾 op h𝑛−1

(
Map𝒞 (𝐹 (−), 𝑦)

)
.

An inductive argument on d shows that the map is (𝑛 − 𝑑)-connected.) �
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Remark 3.21. A different proof of Proposition 3.20 is also possible using elementary lifting arguments
based on Proposition 3.16.

Corollary 3.22. Let 𝒞 be an∞-category that admits finite (respectively, small) colimits.

(a) The homotopy n-category h𝑛𝒞 admits finite (respectively, small) coproducts and weak pushouts of
order 𝑛 − 1. Moreover, the functor 𝛾𝑛 : 𝒞 → h𝑛𝒞 preserves finite (respectively, small) coproducts
and sends pushouts in 𝒞 to weak pushouts of order 𝑛 − 1.

(b) Suppose that 𝛾𝑛 : 𝒞 → h𝑛𝒞 preserves finite colimits. Then 𝒞 is equivalent to an n-category.

Proof. (a) h𝑛𝒞 admits finite coproducts by Remark 3.15. The existence and preservation of higher weak
pushouts is a consequence of Proposition 3.20. (b) is a consequence of [29, Corollary 3.3.5]. �

These properties of homotopy n-categories of (finitely) cocomplete∞-categories suggest considering
the following class of n-categories as a convenient general context for the study of these n-categories.

Definition 3.23. Let 𝑛 ≥ 1 be an integer or 𝑛 = ∞. A (finitely) weakly cocomplete n-category is an
n-category 𝒞 that admits small (finite) coproducts and weak pushouts of order 𝑛 − 1.

These n-categories are studied further in [30] in connection with adjoint functor theorems and Brown
representability theorems for n-categories (extending the results of [29]). Also, in Section 6 (which can
be read independently of Sections 4 and 5), we will return to the properties of weak (co)limits in higher
homotopy categories, especially, for pointed and stable ∞-categories, and use higher weak colimits in
order to define K-theory for higher homotopy categories.

Remark 3.24. Corollary 3.19 produces a truncated K-colimit functor for h𝑛𝒞:

h𝑛−𝑑 (colim𝐾 ) : h𝑛−𝑑
(
Fun(𝐾, h𝑛𝒞)

)
→ h𝑛−𝑑 (𝒞).

According to Proposition 3.16 (compare to Proposition 2.6 and Corollary 2.7), there is a (non-canonical)
section

𝜖 : sk𝑛−𝑑+1
(
Fun(𝐾, h𝑛𝒞)

)
→ sk𝑛−𝑑+1

(
h𝑛 (𝒞

𝐾 )
)
.

(Note that the target is closely related to sk𝑛−𝑑+1 (𝒞
𝐾 ).) Then we may define the partial K-colimit

functor for h𝑛 (𝒞) (which depends on 𝒞 and the section 𝜖)

sk𝑛−𝑑+1
(
Fun(𝐾, h𝑛𝒞)

)
→ h𝑛 (𝒞)

as the composition

sk𝑛−𝑑+1
(
Fun(𝐾, h𝑛𝒞)

) 𝜖
−→ sk𝑛−𝑑+1

(
h𝑛 (𝒞

𝐾 )
)
→ h𝑛 (𝒞

𝐾 )
h𝑛 (colim𝐾 )
−−−−−−−−−→ h𝑛 (𝒞).

Example 3.25. Let 𝒞 be an∞-category that has pushouts, and let K denote the (nerve of the) ‘corner’
category �:= Δ1 ∪Δ0 Δ1. The functor

Φ𝐾
1 : h1(𝒞

𝐾 ) → (h1𝒞)
𝐾

is surjective on objects and full. By Corollary 3.17, the pushout-functor on 𝒞 induces a truncated
pushout-functor

h0 (colim𝐾 ) : h0
(
Fun(𝐾, h1𝒞)

)
→ h0 (𝒞),

which is left adjoint to the constant diagram functor. Furthermore, we have a map as follows

sk0
(
Fun(𝐾, h1𝒞)

)
→ h1 (𝒞), (3.26)
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which sends 𝐹 : 𝐾 → h1𝒞 to the pushout of a choice of a lift 𝐹 : 𝐾 → 𝒞. This is simply regarded as
a map from the set of 0-simplices. Moreover, (3.26) extends further to the 1-skeleton, but this involves
non-canonical choices that are not unique even up to homotopy. As explained in Remark 3.24, an
extension of this type can be obtained from a section 𝜖 : sk1

(
Fun(𝐾, h1𝒞)

)
→ sk1

(
h1 (𝒞

𝐾 )
)
. The fact

that this process cannot be continued to higher-dimensional skeleta is related to the non-functoriality of
weak pushouts in the homotopy category.

More generally, for 𝑛 ≥ 1, there is a left adjoint truncated pushout-functor

h𝑛−1
(
Fun(𝐾, h𝑛𝒞)

)
→ h𝑛−1 (𝒞)

and partial pushout-functors

sk𝑛
(
Fun(𝐾, h𝑛𝒞)

)
→ h𝑛 (𝒞)

that define weak pushouts in h𝑛 (𝒞) of order 𝑛 − 1.

4. Higher derivators

4.1. Basic definitions and properties

We recall that Cat∞ denotes the category of ∞-categories, regarded as enriched in ∞-categories. Let
Dia denote a full subcategory of Cat∞ that has the following properties:

(Dia 0) Dia contains the (nerves of) finite posets.
(Dia 1) Dia is closed under finite coproducts and under pullbacks along an inner fibration.
(Dia 2) For every X ∈ Dia and 𝑥 ∈ X, the∞-category X/𝑥 is in Dia.
(Dia 3) Dia is closed under passing to the opposite∞-category.

The main examples of such subcategories of Cat∞ are the following:

(i) The full subcategory of (nerves of) finite posets.
(ii) The full subcategory of (ordinary) finite direct categoriesD𝑖𝑟 𝑓 . (We recall that an ordinary category

C is called finite direct if its nerve is a finite simplicial set.)
(iii) The full subcategory Catn ⊂ Cat∞ of n-categories for any 𝑛 ≥ 1.
(iv) Cat∞.

We denote by Diaop the opposite category taken 1-categorically: that is, the enrichment of Diaop is given
by

HomDiaop (X, Y) = HomDia (Y, X) = Fun(Y, X).

Definition 4.1. An∞-prederivator with domain Dia is an enriched functor

D : Diaop → Cat∞.

An ∞-prederivator D with domain Dia is an n-prederivator if it factors through the inclusion Catn ⊂
Cat∞: that is, D is an enriched functor

D : Diaop → Catn.

A strict morphism of ∞-prederivators is a natural transformation 𝐹 : D → D′ between enriched
functors. Thus we obtain a category of ∞-prederivators, denoted by PreDer∞, which is enriched in ∞-
categories. For any 𝑛 ≥ 1, there is a full subcategory PreDer𝑛 ⊂ PreDer∞ spanned by the n-prederivators.
In the same way that the classical theory of (pre)derivators is founded on a ((2,2)=)2-categorical
context, the general theory of∞-prederivators involves an (∞, 2)-categorical context. We point out that
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it would be natural to also consider non-strict morphisms (aka pseudonatural transformations) between
∞-prederivators, but these will not be needed in this paper.

Notation. Let D be an ∞-prederivator with domain Dia, and let 𝑢 : X → Y be a functor in Dia. We
will often denote the induced functor D(𝑢) : D(Y) → D(X) by 𝑢∗. Moreover, if 𝑖Y,𝑦 : Δ0 → Y is the
inclusion of the object 𝑦 ∈ Y and 𝐹 ∈ D(Y), we will often denote the objectD(𝑖Y,𝑦) (𝐹) inD(Δ0) by 𝐹𝑦 .

Example 4.2. A 1-prederivator with domain Cat1 is a prederivator in the usual sense [24, 18].

Example 4.3. Let𝒞 be an∞-category. There is an associated∞-prederivator (with domain Dia) defined
by D(∞)

𝒞
: Diaop → Cat∞, X ↦→ Fun(X,𝒞). Moreover, for any 𝑛 ≥ 1,

D
(𝑛)
𝒞

: Diaop → Catn, X ↦→ h𝑛
(
Fun(X,𝒞)

)

defines an n-prederivator.

Definition 4.4. An∞-prederivator D : Diaop → Cat∞ is a right ∞-derivator if it satisfies the following
properties:

(Der 1) For every pair of ∞-categories X and Y in Dia, the functor induced by the inclusions of the
factors to the coproduct X � Y,

D(X � Y) → D(X) × D(Y)

is an equivalence. Moreover, D(∅) is equivalent to the final∞-category Δ0.
(Der 2) For every∞-category X in Dia, the functor

(𝑖∗X,𝑥 = D(𝑖X,𝑥))𝑥∈X : D(X) →
∏
𝑥∈X
D(Δ0)

is conservative: that is, it detects equivalences. We recall that 𝑖X,𝑥 : Δ0 → X is the functor that
corresponds to the object 𝑥 ∈ X.

(Der 3) For every morphism 𝑢 : X→ Y in Dia, the functor 𝑢∗ = D(𝑢) : D(Y) → D(X) is a right adjoint.
We denote a left adjoint of 𝑢∗ by

𝑢! : D(X) → D(Y).

(Der 4) Given 𝑢 : X→ Y in Dia and 𝑦 ∈ Y, consider the following pullback diagram in Dia:

𝑢/𝑦

𝑝𝑢/𝑦

��

𝑗𝑢/𝑦
�� X

𝑢

��

Y/𝑦 𝑞Y/𝑦
�� Y.

Then the canonical base change natural transformation

𝑐𝑢,𝑦 : (𝑝𝑢/𝑦)! 𝑗
∗
𝑢/𝑦 −→ 𝑞∗Y/𝑦𝑢!

is a natural equivalence of functors.

We define left∞-derivators dually.

Definition 4.5. An ∞-prederivator D : Diaop → Cat∞ is a left ∞-derivator if it satisfies (Der1)–(Der2)
as stated above together with the following dual versions of (Der3)–(Der4):
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(Der 3)* For every morphism 𝑢 : X→ Y in Dia, the functor 𝑢∗ = D(𝑢) : D(Y) → D(X) is a left adjoint.
We denote a right adjoint of 𝑢∗ by

𝑢∗ : D(X) → D(Y).

(Der 4)* Given 𝑢 : X→ Y in Dia and 𝑦 ∈ Y, consider the following pullback diagram in Dia:

𝑢𝑦/

𝑝𝑦/𝑢

��

𝑗𝑦/𝑢
�� X

𝑢

��

Y𝑦/ 𝑞𝑦/Y
�� Y.

Then the canonical base change natural transformation

𝑐′𝑢,𝑦 : 𝑞∗𝑦/Y𝑢∗ −→ (𝑝𝑦/𝑢)∗ 𝑗
∗
𝑦/𝑢

is a natural equivalence of functors.

Example 4.6. Let D : Diaop → Cat∞ be a left∞-derivator. Then the∞-prederivator

D(−op)op : Diaop → Cat∞, X ↦→ D(Xop)op

is a right∞-derivator.

Definition 4.7. An ∞-prederivator D : Diaop → Cat∞ is an ∞-derivator if it is both a left and a right
∞-derivator.

We also specialise these definitions to n-prederivators as follows.

Definition 4.8. An∞-prederivatorD : Diaop → Cat∞ is a (left, right) n-derivator if it is an n-prederivator
and a (left, right)∞-derivator.

Example 4.9. A (left, right) 1-derivator with domain Cat1 is a (left, right) derivator in the usual sense
[24, 18]. Indeed, (Der 1)–(Der 3) are completely analogous to the usual axioms. (Der 4) is a convenient
variation of the usual axiom for ordinary derivators; the equivalence of the definitions is based on known
properties of homotopy exact squares in the context of ordinary derivators (see [18, 23]).

Example 4.10. Let D : Diaop → Catn be an n-prederivator, where 𝑛 ∈ Z≥1 ∪ {∞}. For any 𝑘 < 𝑛, there
is an associated k-prederivator:

h𝑘D : Diaop → Catn
h𝑘
−−→ Cat𝑘 .

If D is a left (right) n-derivator, then h𝑘D is a left (right) k-derivator.

As a consequence of the axioms of Definition 4.4, we have the following useful strong version of (Der
4) and (Der 4)*, which identifies a larger class of squares for which the base change transformations are
equivalences. Similar results are known for∞-categories and ordinary (1-)derivators (see, for example,
[4] and [23, 18]).

Proposition 4.11. Let D be an∞-derivator with domain Dia. Consider a pullback square in Dia:

Z

𝑝

��

𝑗
�� X

𝑢

��

W 𝑞
�� Y.
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(1) The canonical base change transformation

𝑝! 𝑗
∗ −→ 𝑞∗𝑢!

is a natural equivalence if u is a cocartesian fibration or if q is a cartesian fibration.
(2) The canonical base change transformation

𝑞∗𝑢∗ −→ 𝑝∗ 𝑗
∗

is a natural equivalence if u is a cartesian fibration or if q is a cocartesian fibration.

Proof. Using the duality D ↦→ D(−op)op, it suffices to prove only (1). Indeed, we obtain (2) by applying
(1) to the derivator D(−op)op in the case of the opposite pullback square in Dia.

Suppose that u is a cocartesian fibration. Applying (Der 2) and using the naturality properties of base
change transformations, it suffices to prove the claim only in the case where 𝑊 = Δ0:

X𝑦

𝑝

��

𝑗
�� X

𝑢

��

Δ0
𝑖𝑦

�� Y.

Using the following factorization of this square and applying (Der 4), it suffices to prove the claim for
the left square in the following diagram:

X𝑦
𝑗

��

𝑝

��

X/𝑦

𝑝𝑢/𝑦

��

𝑗𝑢/𝑦
�� X

𝑢

��

Δ0
𝑖(𝑦=𝑦)

�� Y/𝑦 𝑞Y/𝑦
�� Y.

Note that the horizontal functors in the left square admit left adjoints

ℓ1 : X/𝑦 → X𝑦

ℓ2 : Y/𝑦 → Δ0

because u is a cocartesian fibration and Y/𝑦 has a terminal object (𝑦 = 𝑦). Thus, after applying D,
we obtain pairs of adjoint functors ( 𝑗∗, ℓ∗1) and (𝑖∗

(𝑦=𝑦)
, ℓ∗2). Therefore, the base change transformation

between compositions of left adjoints

𝑝! 𝑗
∗ −→ 𝑖∗(𝑦=𝑦) (𝑝𝑢/𝑦)! (4.12)

is conjugate to the natural equivalence

id : 𝑝∗𝑢/𝑦 (ℓ2)
∗ � (ℓ1)

∗𝑝∗,

which then implies that (4.12) is an equivalence, as required.
Suppose now that q is a cartesian fibration. Then it suffices to show that the conjugate base change

transformation

𝑢∗𝑞∗ → 𝑗∗𝑝
∗ (4.13)
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is a natural equivalence. Again, by (Der 2), it suffices to restrict to the case where 𝑋 = Δ0

Z = W𝑦
𝑗

��

𝑝

��

Δ0

𝑢=𝑖𝑦

��

W 𝑞
�� Y.

The proof of the equivalence (4.13) in this case is obtained similarly by dualizing the arguments in the
previous proof. �

In the context of ordinary derivators, there is a well-known additional axiom (Der 5), which is very
useful in practice. Before we state the generalization of this axiom to higher derivators, we define
(similarly to the classical case) for every∞-prederivator D and X, Y ∈ Dia, the underlying (X−)diagram
functor

diaX,Y : D(X × Y) → Fun(X,D(Y))

to be the adjoint of the following composition:

X � Fun(Δ0, X)
(−×Y)
−−−−−→ Fun(Y, X × Y)

D

−→ Fun(D(X × Y),D(Y)).

We say that a functor 𝐹 : 𝒞 → 𝒟 between ∞-categories is n–full if it restricts to (𝑛 − 1)-connected
maps between the mapping spaces. For example, a full functor between ordinary categories is 1-full in
this sense.

Definition 4.14. Let D be an ∞-prederivator, and let 𝑛 ∈ Z≥1 ∪ {∞}. We say that D is n-strong if the
following axiom is satisfied:

(Der 5n) For every X ∈ Dia, the underlying diagram functor

diaΔ1 ,X : D(Δ1 × X) → Fun(Δ1,D(X))

is n-full and essentially surjective.

Remark 4.15. Similarly to the case of ordinary (pre)derivators, we may also consider a stronger form
of the last axiom (compare to [19]), which states that the underlying diagram functor

diaI,X : D(I × X) → Fun(I,D(X))

is n-full and essentially surjective for every I in Dia, which is equivalent in the Joyal model category
to a finite 1-dimensional simplicial set. Moreover, the following even stronger form of this axiom fits
naturally in the higher categorical context:

(�Der 5𝑛) For every X ∈ Dia and for every I ∈ Dia, which is equivalent (in the Joyal model category) to
a d-dimensional simplicial set for some 𝑑 ≤ 𝑛 + 1, the underlying diagram functor

diaI,X : D(I × X) → Fun(I,D(X))

is (𝑛 + 1 − 𝑑)-full and essentially surjective.

Note that this axiom for 𝑑 = 0 is also closely related to (Der 1).

Following the definitions of pointed and stable (1-)derivators [24, 18], we also define pointed and
stable∞-(pre)derivators as follows.
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Definition 4.16. An ∞-prederivator D : Diaop → Cat∞ is called pointed if it lifts to the ∞-category
Cat∞ ,∗ of pointed ∞-categories and functors that preserve zero objects. An ∞-derivator D : Diaop →
Cat∞ is called stable if it is pointed and the associated 1-derivator h1D is stable.

4.2. Examples of n-derivators

The examples of n-derivators we are mainly interested in are those where the underlying prederivator
arises from an∞-category as in Example 4.3. Let Dia ⊂ Cat∞ be a fixed full subcategory satisfying the
conditions (Dia 0)–(Dia 3).

Proposition 4.17. Let 𝒞 be an∞-category, and let 𝑛 ∈ Z≥1 ∪ {∞}.

(a) The n-prederivator D(𝑛)
𝒞

satisfies (Der 1), (Der 2) and (Der 5𝑛). Moreover, the underlying diagram
functor

diaI,X : D(𝑛)
𝒞
(I × X) → Fun(I,D(𝑛)

𝒞
(X))

is (𝑛+1−𝑑)-full and essentially surjective for every I in Dia, which is equivalent (in the Joyal model
category) to a d-dimensional simplicial set for some 𝑑 ≤ 𝑛 + 1 (i.e., D(𝑛)

𝒞
satisfies (�Der 5𝑛), too).

(b) Suppose that 𝒞 admits X-colimits (respectively, X-limits) for any X ∈ Dia. Then D(𝑛)
𝒞

satisfies (Der
3) and (Der 4) (respectively, (Der 3)* and (Der 4)*). As a consequence,D(𝑛)

𝒞
is a right (respectively,

left) n-derivator, which is n-strong.

Proof. (a) (Der 1) is obvious. (Der 2) says that the equivalences in h𝑛 (𝒞
X), X ∈ Dia, are given pointwise,

which holds by a theorem of Joyal [20, Chapter 5]. (Der 5𝑛) follows from Corollary 3.17. The second
claim also follows from Corollary 3.17 (and Lemma 3.14) because we may replace I by a d-dimensional
simplicial set.

(b) It suffices to show that (Der 3) and (Der 4) hold for the∞-prederivator D(∞)
𝒞

: that is, it suffices to
show that 𝒞 admits Kan extensions along functors in Dia and that Kan extensions are given pointwise
by the usual formulas as axiomatised in (Der 4). These claims are established in [4, 6.4] (see also [22,
4.3.2–4.3.3]). �

It is often possible to reduce statements about∞-derivators to the corresponding (known) statements
about 1-derivators. This happens, for example, in the case of statements that involve the detection of
equivalences. The following proposition shows another instance of this phenomenon and produces many
examples of n-derivators from known examples of 1-derivators.

Theorem 4.18. Let 𝒞 be an∞-category. The following are equivalent:

(1) 𝒞 admits X-colimits and X-limits for every X ∈ Dia.
(2) D(∞)

𝒞
is an∞-derivator.

(3) D(𝑛)
𝒞

is an n-derivator for every 𝑛 ∈ Z≥1.
(4) D(𝑛)

𝒞
is an n-derivator for some 𝑛 ∈ Z≥1.

(5) D𝒞 = D(1)
𝒞

is an 1-derivator.

Proof. (1) ⇒ (2) was shown in Proposition 4.17, and the implications (2) ⇒ (3) ⇒ (4) ⇒ (5) are
obvious. We prove the implication (5) ⇒ (1). We restrict to showing that 𝒞 admits X-colimits as the
case of X-limits can be treated similarly by duality. Let 𝐹 : X→ 𝒞 be an X-diagram, and let 𝐺 : X⊲ → 𝒞

be the diagram that is the image of 𝐹 ∈ D𝒞 (X) under

𝑢! : D𝒞 (X) −→ D𝒞 (X⊲),

where 𝑢 : X→ X⊲ is the canonical inclusion. As a consequence of (Der 4), the functor 𝑢! is fully faithful
because u is so. In particular, there is a canonical isomorphism 𝐹 � 𝑢∗𝑢!(𝐹), and therefore we may
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assume that G is an extension of the diagram F. We claim that G is a colimit diagram in 𝒞 for the
functor F. For this, it suffices to prove that for each sieve between (nerves of) finite posets 𝑣 : Y′ → Y
in Dia, the canonical map

Map(Y, Map𝒞X⊲ (𝐺, 𝑐𝑦))

��

Map(Y′, Map𝒞X⊲ (𝐺, 𝑐𝑦)) ×Map(Y′,Map
𝒞X (𝐹,𝑐𝑦 )) Map(Y, Map𝒞X (𝐹, 𝑐𝑦))

(4.19)

is a 𝜋0-isomorphism, where 𝑐𝑦 denotes the constant functor at 𝑦 ∈ 𝒞 in the respective functor ∞-
category. We will do this by first expressing 𝜋0 of the domain and the target of this map (4.19) in terms
of morphism sets in the (1-)category D𝒞 (X⊲ × Y) and then use the derivator properties of D𝒞 .

First, note that we have a canonical isomorphism of morphism sets

D𝒞 (X⊲ × Y) (𝜋∗X⊲ ,Y (𝐺), 𝑐𝑦) = 𝜋0
(
Map𝒞X⊲×Y (𝜋∗X⊲ ,Y (𝐺), 𝑐𝑦)

)
� 𝜋0

(
Map(Y, Map𝒞X⊲ (𝐺, 𝑐𝑦))

) (4.20)

where 𝜋X⊲ ,Y : X⊲ × Y→ X denotes the projection functor. Similarly, we have canonical isomorphisms

D𝒞 (X × Y) (𝜋∗X,Y (𝐹), 𝑐𝑦) � 𝜋0
(
Map(Y, Map𝒞X (𝐹, 𝑐𝑦))

)
D𝒞 (X × Y

′

) (𝜋∗X,Y′ (𝐹), 𝑐𝑦) � 𝜋0
(
Map(Y

′

, Map𝒞X (𝐹, 𝑐𝑦))
) (4.21)

where 𝜋X,Y and 𝜋X,Y′ denote again the projection functors.
Then consider the following pullback diagram in Dia:

X × Y
𝜋X,Y

��

𝑢×1
��

X

𝑢

��

X⊲ × Y 𝜋X⊲ ,Y
�� X⊲.

Since the horizontal functors are cartesian fibrations, it follows from (Der 4) and Proposition 4.11(1)
that the canonical base change morphism in D𝒞 (X⊲ × Y)

𝜋∗X⊲ ,Y (𝐺) = 𝜋∗X⊲ ,Y𝑢!(𝐹)
�
← (𝑢 × 1)!𝜋∗X,Y (𝐹) (4.22)

is an isomorphism.
Let 𝑖 : A = X⊲ × Y′ ∪X×Y′ X × Y ⊂ X⊲ × Y denote the full subcategory. This is again in Dia by (Dia 1)

and (Dia 3) because it can be described as the pullback of a functor X⊲ ×Y→ Δ1 ×Δ1 along the ‘upper
corner’ inclusion Δ1 ∪Δ0 Δ1 → Δ1 × Δ1. Note that using (4.21), we can identify the set of components
of the target of (4.19) canonically with the morphism set

D𝒞 (A) (𝑖∗𝜋∗X⊲ ,Y (𝐺), 𝑐𝑦) = D𝒞 (A) (𝑖∗𝜋∗X⊲ ,Y𝑢!(𝐹), 𝑐𝑦)

� 𝜋0 (target of (4.19))
(4.23)

and the map (4.19) on 𝜋0 agrees using the identifications (4.20) and (4.23) with the map defined by the
restriction functor

𝑖∗ : D𝒞 (X⊲ × Y) → D𝒞 (A).
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Since i is full, it follows from (Der 4) that the unit transformation 1→ 𝑖∗𝑖! of the adjunction (𝑖!, 𝑖∗) is a
natural isomorphism. Therefore it suffices to show that the counit morphism

𝑖!𝑖
∗
(
𝜋∗X⊲ ,Y (𝐺)

)
→ 𝜋∗X⊲ ,Y (𝐺) (4.24)

is an isomorphism.
Consider the following pullback diagram in Dia:

X × Y

𝑗

��

𝜋X,Y
�� X

𝑢

��

A
𝑞=𝜋X⊲ ,Y𝑖

�� X⊲.

The bottom functor q is a cartesian fibration because it is the composition of cartesian fibrations.
Therefore, it follows from (Der 4) and Proposition 4.11(1) that the canonical base change morphism in
D𝒞 (A):

𝑞∗(𝐺) = 𝑞∗𝑢!(𝐹)
�
← 𝑗!𝜋

∗
X,Y (𝐹) (4.25)

is an isomorphism. As a consequence of (4.22) and (4.25), we obtain canonical isomorphisms as follows:

𝜋∗X⊲ ,Y (𝐺) = 𝜋∗X⊲ ,Y𝑢!(𝐹) � (𝑢 × 1)!𝜋∗X,Y (𝐹)

� 𝑖! 𝑗!𝜋
∗
X,Y (𝐹) � 𝑖!𝑞

∗𝑢!(𝐹)

= 𝑖!𝑖
∗𝜋∗X⊲ ,Y (𝐺).

This implies that (4.24) is an isomorphism; therefore, using the adjunction (𝑖!, 𝑖∗) as explained above, it
follows that the map in (4.19) is a 𝜋0-isomorphism. �

Remark 4.26. We point out a significant simplification of the proof of Theorem 4.18 in the case where
Dia is large enough that it can detect equivalences of ∞-groupoids – that is, in the case where the
following holds: a map of∞-groupoids 𝑋 → 𝑋 ′ is an equivalence if and only if

𝜋0 (Map(Y, 𝑋)) −→ 𝜋0 (Map(Y, 𝑋 ′))

is an isomorphism for every Y ∈ Dia. This happens, for example, when Dia contains all posets – not just
the finite ones. Assuming that Dia is large enough in this sense, then we may restrict to the case Y′ = ∅
in the proof above, in which case the proof becomes more immediate.

5. K-theory of higher derivators

5.1. Preliminaries

We first recall the ∞-categorical version of Waldhausen’s S•-construction [39, 3]. Let 𝒞 be a pointed
∞-category that admits finite colimits. For every 𝑛 ≥ 0, let Ar[𝑛] denote the (nerve of the) category of
morphisms of the poset [𝑛]. The∞-category S𝑛𝒞 is the full subcategory of Fun(Ar[𝑛],𝒞) spanned by
the objects 𝐹 : Ar[𝑛] → 𝒞 such that:
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(i) 𝐹 (𝑖 → 𝑖) is a zero object for all 𝑖 ∈ [𝑛].
(ii) For every 𝑖 ≤ 𝑗 ≤ 𝑘 , the following diagram in 𝒞

𝐹 (𝑖 → 𝑗) ��

��

𝐹 (𝑖 → 𝑘)

��

𝐹 ( 𝑗 → 𝑗) �� 𝐹 ( 𝑗 → 𝑘)

is a pushout.

The construction is clearly functorial in [𝑛], 𝑛 ≥ 0, and S•𝒞 defines a simplicial object of pointed
∞-categories, which is functorial in 𝒞 with respect to functors that preserve zero objects and pushouts.

We denote by S�•𝒞 the associated simplicial object of pointed ∞-groupoids, which is obtained by
passing pointwise to the maximal∞-subgroupoids of S•𝒞. For 𝑛 ≥ 1, the∞-groupoid S�𝑛𝒞 is equivalent
to Map(Δ𝑛−1,𝒞). Moreover, we have S�0𝒞 � Δ0, so we may regard the geometric realization |S�•𝒞 | as
canonically pointed by a zero object in 𝒞. The Waldhausen K-theory of 𝒞 is defined to be the space

𝐾 (𝒞) := Ω|𝑆�•𝒞 |.

If 𝒞 arises from a nice Waldhausen category, this definition of K-theory agrees up to homotopy
equivalence with the Waldhausen K-theory of the corresponding Waldhausen category (see [3]). The
definition of K-theory is functorial with respect to functors 𝐹 : 𝒞 → 𝒞′, which preserve the zero object
and finite colimits.

Following [39, Lemma 1.4.1] and [26, Proposition 4.2.1], we consider also the following simpler
model for Waldhausen K-theory. Restricting pointwise to the objects of S•𝒞, we obtain a simplicial set

s•𝒞 : Δop → Set, [𝑛] ↦→ s𝑛𝒞 := (S𝑛𝒞)0.

There is a canonical comparison map, given by the inclusion of objects,

𝜄 : Ω|s•𝒞 | −→ Ω|S�•𝒞 | = 𝐾 (𝒞).

Proposition 5.1. The comparison map 𝜄 is a weak equivalence.

Proof. The proof is essentially the same as the proof of [39, Lemma 1.4.1 and Corollary] (see also [26,
Proposition 4.2.1]). �

5.2. Derivator K-theory

We extend the definition of derivator K-theory of Maltsiniotis [24] and Garkusha [14, 15] to general
pointed right∞-derivators. As in the case of ordinary derivators, this definition is based on the following
intrinsic notion of cocartesian square.

Let 𝑖 : �= Δ1 ∪Δ0 Δ1 → � = Δ1 ×Δ1 denote the ‘upper corner’ inclusion. For any right∞-derivator
D (with domain Dia), we have an adjunction

𝑖! : D(�) � D(�) : 𝑖∗.

Definition 5.2. Let D : Diaop → Cat∞ be a right ∞-derivator with domain Dia. An object 𝐹 ∈ D(�) is
called cocartesian if the canonical morphism

𝑖!𝑖
∗(𝐹) → 𝐹

is an equivalence in D(�).
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Let D be a pointed right∞-derivator (with domain Dia). Before we define the K-theory of D, we first
need to introduce some more notation. For every 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 ≤ 𝑛, we denote by 𝑖𝑖, 𝑗 ,𝑘 : � → Ar[𝑛]
the inclusion of the following square in Ar[𝑛]:

(𝑖 → 𝑗) ��

��

(𝑖 → 𝑘)

��

( 𝑗 → 𝑗) �� ( 𝑗 → 𝑘).

We define S𝑛D to be the full subcategory of D(Ar[𝑛]), which is spanned by the objects 𝐹 ∈ D(Ar[𝑛])
such that

(i) 𝐹(𝑖→𝑖) is a zero object for all 𝑖 ∈ [𝑛].
(ii) For every 𝑖 ≤ 𝑗 ≤ 𝑘 , the object 𝑖∗𝑖, 𝑗 ,𝑘 (𝐹) ∈ D(�), which may be depicted as follows

𝐹(𝑖→ 𝑗)
��

��

𝐹(𝑖→𝑘)

��

𝐹( 𝑗→ 𝑗)
�� 𝐹( 𝑗→𝑘) ,

is cocartesian in D(�).

The assignment [𝑛] ↦→ S𝑛D defines a simplicial object of pointed∞-categories. Moreover, it is natural
with respect to strict morphisms between pointed right ∞-derivators that preserve zero objects and
cocartesian squares.

Let S�•D denote the simplicial object of pointed∞-groupoids, which is obtained by passing pointwise
to the maximal ∞-subgroupoids of S•D. We have S�0D � Δ0, and we regard the geometric realization
|S�•D| as based at a zero object of D(Δ0).

Definition 5.3. Let D : Diaop → Cat∞ be a pointed right ∞-derivator with domain Dia. The derivator
K-theory of D is defined to be the space

𝐾 (D) := Ω|S�•D|.

We note that the definition of derivator K-theory is functorial with respect to strict morphisms
𝐹 : D → D′, which preserve the zero object and cocartesian squares. Moreover, derivator K-theory is
invariant under those strict morphisms that are pointwise equivalences of∞-categories.

This definition of derivator K-theory clearly agrees with the usual derivator K-theory for ordinary
derivators [14, 26]. Moreover, this definition of derivator K-theory is also an extension of the K-theory
of pointed∞-categories with finite colimits to pointed right∞-derivators; by definition, for any pointed
∞-category 𝒞 with finite colimits, the K-theory of 𝒞 agrees with the derivator K-theory of D(∞)

𝒞
.

Remark 5.4. Waldhausen’s Additivity Theorem [39] establishes one of the fundamental properties of
Waldhausen K-theory. The analogue of this theorem has been established for the derivator K-theory of
stable 1-derivators by Cisinski–Neeman [6], confirming one of Maltsiniotis’ conjectures in [24]. This
theorem has recently been extended to general pointed right 1-derivators by Coley [8]. It would be
interesting to know if the additivity theorem holds more generally for the derivator K-theory of pointed
right∞-derivators.
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5.3. Comparison with Waldhausen K-theory

Let𝒞 be a pointed∞-category with finite colimits. Applying pointwise the homotopy n-category functor
to the simplicial object [𝑘] ↦→ S�𝑘𝒞, we obtain a new simplicial object of (pointed)∞-groupoids,

h𝑛S�•𝒞 : Δop → Grpd∞, [𝑘] ↦→ h𝑛
(
S�𝑘𝒞

)
,

and there is a canonical comparison map:

S�•𝒞 −→ h𝑛
(
S�•𝒞

)
.

(We note that the n-groupoid h𝑛 (𝒟
�) is the maximal∞-subgroupoid of h𝑛 (𝒟) for every∞-category 𝒟;

this can be seen directly from the definitions of h𝑛 (−) and (−)�. As a result, the order of the operations
h𝑛 (−) and (−)� does not play an essential role in the definition of h𝑛S�•𝒞.)

Let D(𝑛)
𝒞

be the pointed right n-derivator associated to 𝒞 with domain D𝑖𝑟 𝑓 (see Proposition 4.17).
As a consequence of the natural identification between h𝑛

(
S�•𝒞

)
and S�•D

(𝑛)
𝒞

, we obtain a canonical
comparison map from the Waldhausen K-theory of 𝒞 to derivator K-theory:

𝜇𝑛 : 𝐾 (𝒞) → 𝐾 (D(𝑛)
𝒞
).

In addition, the natural morphisms of simplicial objects h𝑛
(
S�•𝒞

)
→ h𝑛−1

(
S�•𝒞

)
, for 𝑛 > 1, define a

tower of derivator K-theories for 𝒞 that is compatible with the comparison maps 𝜇𝑛:

𝐾 (𝒞)

𝜇𝑛
��

𝜇𝑛−1 ���
��

��
���

�
𝜇1



					
						

						
						

						
						

	

· · · �� 𝐾 (D(𝑛)
𝒞
) �� 𝐾 (D(𝑛−1)

𝒞
) �� · · · �� 𝐾 (D(1)

𝒞
).

In the case of ordinary derivators, Maltsiniotis conjectured in [24] that the comparison map 𝜇1 is a weak
equivalence for exact categories. The comparison map 𝜇1 was subsequently studied in [15, 25, 26, 27].
It is known (see [27]) that 𝜇1 is not a weak equivalence for general 𝒞, and moreover that 𝜇1 will fail to
be a weak equivalence even for exact categories if derivator K-theory satisfies localization – a property
that was also conjectured by Maltsiniotis [24].

We prove a general result about the connectivity of the comparison map 𝜇𝑛 for general 𝒞 and 𝑛 ≥ 1.
This connectivity estimate is also a small improvement of the known estimate for 𝑛 = 1 that was shown
by Muro [25].

Theorem 5.5. Let 𝒞 be a pointed ∞-category that admits finite colimits. Then the comparison map
𝜇𝑛 : 𝐾 (𝒞) → 𝐾 (D(𝑛)

𝒞
) is (𝑛 + 1)-connected.

We will need the following useful elementary fact about simplicial spaces.

Lemma 5.6. Let 𝑓• : 𝑋• → 𝑌• be a map of simplicial spaces. Suppose that 𝑓𝑘 is (𝑚 − 𝑘)-connected for
every 𝑘 ≥ 0. Then the map | | 𝑓• | | : | |𝑋• | | → ||𝑌• | | is m-connected. (Here | | − | | denotes the fat geometric
realization of a simplicial space.)

Proof. See [11, Lemma 2.4]. �

Proof. (of Theorem 5.5) By Lemma 5.6, it suffices to show that the map of∞-groupoids

S�𝑘𝒞 → h𝑛
(
S�𝑘𝒞

)

is (𝑛 + 2 − 𝑘)-connected for all 𝑘 ≥ 0. This holds since the map is an equivalence for 𝑘 = 0 and
(𝑛 + 1)-connected for 𝑘 > 0 (Example 2.9). �
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Remark 5.7. The main result of [27, Theorem 1.2] shows that the comparison map 𝜇1 is not a
𝜋3-isomorphism in general. (In addition, a closer inspection of the proofs in [27] also shows that the
map 𝜇1 will not be 3-connected if derivator K-theory satisfies localization.) It seems likely that the
connectivity estimate of Theorem 5.5 is best possible in general.

Remark 5.8. By [15, Theorem 7.1], the comparison map 𝜇1 is 𝜋∗-split injective in the case where 𝒞 is
the bounded derived category of an abelian category. In fact, it is shown [15] that there is a retraction
map to 𝜇1. As a consequence, the comparison map 𝜇𝑛 also admits a retraction in this case for all 𝑛 ≥ 1.
Related to this, an interesting problem suggested by B. Antieau is whether 𝜇𝑛 is a weak equivalence
when 𝒞 is a stable∞-category that admits a bounded t-structure.

5.4. Waldhausen K-theory of derivators

Waldhausen K-theory for pointed right 1-derivators was defined in [26]. It was shown in [26] that this
K-theory of derivators agrees with the usual Waldhausen K-theory for all well-behaved Waldhausen
categories [26, Theorem 4.3.1]. We consider an analogous definition of K-theory for general pointed
right∞-derivators.

Let D be a pointed right∞-derivator with domain Dia. Let S••D be the bisimplicial set whose set of
(𝑛, 𝑚)-simplices S𝑛,𝑚D is the set of objects

𝐹 ∈ Ob
(
D(Δ𝑚 × Ar[𝑛])

)

such that

(1) For every 𝑗 : [0] → [𝑚], the object ( 𝑗 × id)∗(𝐹) ∈ Ob
(
D(Ar[𝑛])

)
is in S𝑛D.

(2) The underlying diagram functor associated to F,

diaΔ𝑚 ,Ar[𝑛] (𝐹) : Δ𝑚 → D(Ar[𝑛]),

takes values in equivalences.

The bisimplicial operators of S••D are again defined using the structure of the underlying∞-prederivator.
Moreover, it is easy to see that the construction is functorial in D with respect to strict morphisms that
preserve the zero objects and cocartesian squares. We regard the geometric realization |S••D| as based
at a zero object of D(Δ0).

Definition 5.9. LetD : Diaop → Cat∞ be a pointed right∞-derivator with domain Dia. The Waldhausen
K-theory of D is defined to be the space

𝐾𝑊 (D) := Ω|S••D|.

Following [26], we also consider the analogue of the s•-construction in this context. Restricting
pointwise to the objects of S•D, we obtain a simplicial set

s•D : Δop → Set, [𝑛] ↦→ s𝑛D := S𝑛,0D = (S𝑛D)0.

There is a canonical comparison map, given by the inclusion of 0-simplices,

𝜄 : Ω|s•D| −→ Ω|S••D| = 𝐾𝑊 (D).

This is the analogue of the comparison map in Proposition 5.1 for pointed right∞-derivators.
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Proposition 5.10. (a) The comparison map 𝜄 is a weak equivalence. (b) Let 𝒞 be a pointed∞-category
with finite colimits, and let 𝑛 ∈ Z≥1 ∪ {∞}. There is a commutative diagram of weak equivalences:

Ω|s•𝒞 |

�

��

Ω|Ob S•D(𝑛)𝒞
| = Ω|s•D

(𝑛)
𝒞
|

�𝜄

��

𝐾 (𝒞) = Ω|S�•𝒞 | �
�� Ω|S••D(𝑛)𝒞

| = 𝐾𝑊 (D
(𝑛)
𝒞
).

Proof. (a) The proof is essentially the same as the proof of [26, Proposition 4.2.1] (see also [39, Lemma
1.4.1 and Corollary]). (b) The bottom map is a weak equivalence (independently of n!) because we have
(S�𝑘𝒞)𝑚 = S𝑘,𝑚D

(𝑛)
𝒞

. The left vertical map is a weak equivalence by Proposition 5.1. Then the result
follows. �

5.5. Universal property of derivator K-theory

The comparison maps {𝜇𝑛} from Waldhausen K-theory to derivator K-theory can be defined more
generally for pointed right ∞-derivators. Given a pointed right ∞-derivator D (with domain Dia), the
underlying diagram functors define a bisimplicial map as follows,

diaΔ𝑚 ,Ar[𝑛] : S𝑛,𝑚D→ (S�𝑛D)𝑚,

which after passing to the geometric realization and taking loop spaces defines a comparison map:

𝜇 : Ω|s•D|
(5.10)
� 𝐾𝑊 (D) → 𝐾 (D).

A universal property of this comparison map in the case of 1-derivators was shown in [26, Theorem
5.2.2]. More specifically, it was shown that 𝜇 is homotopically initial among all natural transformations
from Waldhausen K-theory to a functor that is invariant under (pointwise) equivalences of pointed right
derivators. The proof of this universal property extends similarly to our present∞-categorical context.

Let Der denote the (ordinary) category of pointed right ∞-derivators and strict morphisms that
preserve the zero object and cocartesian squares. It will be convenient to work with the simpler model
for the Waldhausen K-theory of derivators given by the s•-construction. This will be denoted by

𝐾𝑊 ,Ob : Der→ Top, D ↦→ Ω|s•D|,

where Top denotes the ordinary category of topological spaces. Then we may regard the comparison
map 𝜇 as a natural transformation 𝐾𝑊 ,Ob → 𝐾 between functors defined on Der.

Definition 5.11. The category ℰ of invariant approximations to Waldhausen K-theory is the full sub-
category of the comma category 𝐾𝑊 ,Ob ↓ TopDer spanned by the objects (𝜂 : 𝐾𝑊 ,Ob → 𝐹) such that
𝐹 : Der→ Top sends pointwise equivalences in Der to weak equivalences. A morphism in ℰ

𝐾𝑊 ,Ob

𝜂

��














𝜂′

���
��

��
��

��

𝐹 𝑢
�� 𝐹 ′

is a weak equivalence if the components of u are weak equivalences.

Remark 5.12. As defined in Definition 5.11, the categoryℰ (denoted by App in [26]) may not be locally
small. This set–theoretical issue can be addressed by restricting to suitable small subcategories of Der,
as was done in [26].
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We recall from [10] that an object 𝑥 ∈ C in an (ordinary) category with weak equivalences (C,W)
(satisfying in addition the ‘2-out-of-6’ property) is homotopically initial if there are functors 𝐹0, 𝐹1 : C→
C that preserve the weak equivalences and a natural transformation 𝜙 : 𝐹0 ⇒ 𝐹1 such that

(i) 𝐹0 is naturally weakly equivalent to the constant functor at 𝑥 ∈ C.
(ii) 𝐹1 is naturally weakly equivalent to the identity functor on C.

(iii) 𝜙𝑥 : 𝐹0 (𝑥) → 𝐹1 (𝑥) is a weak equivalence.

A homotopically initial object in (C,W) defines an initial object in the associated∞-category.

Theorem 5.13. The object (𝜇 : 𝐾𝑊 ,Ob → 𝐾) ∈ ℰ is homotopically initial.

Proof. (Sketch) The proof is similar to [26, Theorem 5.2.2], so we only give a sketch of the proof.
Given D ∈ Der and 𝑚 ≥ 0, let D�𝑚 denote the ∞-prederivator whose value at X ∈ Dia is the full
subcategory Fun�(Δ𝑚,D(X)) ⊂ Fun(Δ𝑚,D(X)) spanned by the functors Δ𝑚 → D(X), which take
values in equivalences. This ∞-prederivator is pointwise equivalent to D and therefore also a pointed
right∞-derivator. Varying 𝑚 ≥ 0, we obtain a simplicial object (D�𝑚)𝑚≥0 in Der with D�0 = D.

For the proof of the theorem, it suffices to note that every object in ℰ,

(𝜂D : 𝐾𝑊 ,Ob (D) → 𝐹 (D))D∈Der

is naturally weakly equivalent (as object in ℰ) to the composite functor

(
𝐾𝑊 ,Ob (D) → ||𝐾𝑊 ,Ob (D�• ) | |

| |𝜂 | |
−−−→ ||𝐹 (D�• ) | |

)
D∈Der .

This uses the fact that F respects pointwise equivalences in Der. Moreover, the first map above defines
a natural transformation that is canonically identified with 𝜇. As a result, we have constructed a zigzag
of natural transformations from the constant endofunctor at 𝜇 to idℰ satisfying (i)–(iii). �

6. K-theory of homotopy n-categories

6.1. Revisiting the properties of homotopy n-categories

Let 𝒞 be a pointed ∞-category with finite colimits. Then the associated homotopy n-category h𝑛𝒞

satisfies the following:

(a) h𝑛𝒞 is a pointed n-category.
(b) The suspension functor Σ𝒞 : 𝒞 → 𝒞 induces a functor Σ : h𝑛𝒞 → h𝑛𝒞. This is an equivalence if

and only if 𝒞 is stable (see [21, Corollary 1.4.2.27]).
(c) h𝑛𝒞 admits finite coproducts and weak pushouts of order 𝑛 − 1. Moreover, these are preserved by

the functor 𝛾𝑛 : 𝒞 → h𝑛𝒞 (Proposition 3.20).
(d) For every 𝑥 ∈ h𝑛𝒞, there is a natural weak pushout of order 𝑛 − 1,

𝑥

��

�� 0

��

0 �� Σ𝑥.

Assuming that 𝒞 is a stable ∞-category, then the adjoint equivalence (Σ𝒞 ,Ω𝒞) induces an adjoint
equivalence Σ : h𝑛𝒞 � h𝑛𝒞 : Ω. Moreover, by duality, h𝑛𝒞 also satisfies in this case the following dual
versions of (c)–(d):

(c)′ h𝑛𝒞 admits finite products and weak pullbacks of order 𝑛 − 1. Moreover, these are preserved by
the functor 𝛾𝑛 : 𝒞 → h𝑛𝒞.
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(d)′ For every 𝑥 ∈ h𝑛𝒞, there is a natural weak pullback of order 𝑛 − 1

Ω𝑥

��

�� 0

��
0 �� 𝑥.

In addition, if 𝒞 is a stable∞-category, h𝑛𝒞 satisfies the following property:

(e) A square in h𝑛𝒞 is a weak pushout of order 𝑛 − 1 if and only if it is a weak pullback of order 𝑛 − 1.

Note that if 𝑛 > 1, weak pushouts (respectively, weak pullbacks) of order 𝑛 − 1 are unique up to (non-
canonical) equivalence. This observation can be used to deduce (e) for 𝑛 > 1. The validity of (e) for
𝑛 = 1 can be verified by a direct argument.

6.2. Towards stable n-categories

An attempt towards an axiomatization of the properties (a)–(d) would naturally lead to considering
triples

(𝒟,Σ : 𝒟→ 𝒟, 𝜎 : 𝒟→ 𝒟�),

where

(1) 𝒟 is a pointed n-category.
(2) Σ : 𝒟→ 𝒟 is an endofunctor.
(3) 𝒟 admits finite coproducts and weak pushouts of order 𝑛 − 1.
(4) The functor 𝜎 sends an object 𝑥 ∈ 𝒟 to a weak pushout of order 𝑛−1, which has the following form:

𝑥

��

�� 0

��

0 �� Σ𝑥.

Then, specializing to the stable context and using (c)′–(d)′ and (e), it would be natural to require in
addition:

(2)′ Σ : 𝒟→ 𝒟 is an equivalence.
(3)′ 𝒟 admits finite products and weak pullbacks of order 𝑛 − 1.
(5) A square in 𝒟 is a weak pushout of order 𝑛 − 1 if and only if it is a weak pullback of order 𝑛 − 1.

Antieau [1, Conjecture 8.28] conjectured that there is a good theory of stable n-categories, 1 ≤ 𝑛 ≤ ∞,
satisfying the following properties:

(i) Stable n-categories, exact functors and natural transformations form an (𝑛, 2)-category with a
forgetful functor to Catn.

(ii) For each 𝑛 ≥ 𝑘 , the homotopy k-category functor defines a functor from stable n-categories to
stable k-categories.

(iii) For 𝑛 = ∞, the theory recovers the theory of stable ∞-categories, exact functors and natural
transformations.

(iv) For 𝑛 = 1, the theory recovers the theory of triangulated categories, exact functors and natural
transformations.

It seems reasonable to take properties (1)–(5) (including (2)′–(3)′) as a minimal basis for such a notion
of stable n-category. Firstly, these properties are preserved after passing to lower homotopy categories
(Proposition 3.20). Also, for any 𝑛 > 2 and any pointed n-category 𝒟 that satisfies these properties,
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the associated homotopy category h1𝒟 can be equipped with a canonical triangulated structure. The
proof is essentially exactly the same as that for stable ∞-categories in [21, 1.1.2], using the properties
of weak pushouts of order 𝑛 − 1 > 1 instead of actual pushouts; we believe this claim also holds for
𝑛 = 2. Also, it would be interesting to explore possible connections between properties of type (1)–(5)
and n-angulated structures (on the ordinary homotopy category) in the sense of [17]. Finally, for 𝑛 = ∞,
these properties characterise stable∞-categories.

On the other hand, concerning the case 𝑛 = 1, the notion of a triangulated structure includes more
structure than what is required in (1)–(5). This could be regarded as a singularity that arises at the lowest
level of coherence: since weak pushouts (of order 0) are not unique up to equivalence, they do not yield
canonical connecting ‘boundary’ maps, not even up to homotopy, and therefore they do not suffice for
defining distinguished triangles. Alternatively, it may be desirable to consider additional structure to
(1)–(5), in the form of fixed choices of higher weak colimits, and stipulate their properties in analogy
with triangulated structures. We will not attempt to give an axiomatic definition of a stable n-category
in this paper, but we will propose to consider a triple satisfying (1)–(5) as a basic invariant of any good
notion of a stable n-category.

6.3. K-theory of pointed n-categories with distinguished squares

We will define K-theory for certain n-categories equipped with distinguished squares. These distin-
guished squares are meant to play the role of the pushout squares in the definition of Waldhausen
K-theory. In the case of ordinary categories, this notion of a category with distinguished squares and its
K-theory can be viewed as a simpler and more basic version of Neeman’s K-theory of a category with
squares as defined in [28, Sections 5–7].

The main example we are interested in is the homotopy n-category h𝑛𝒞 of a pointed∞-category 𝒞,
which admits finite colimits, equipped with the squares that come from pushout squares in 𝒞 as the
distinguished squares. The main motivation for introducing K-theory for h𝑛𝒞 is to identify a part of
Waldhausen K-theory 𝐾 (𝒞) that may canonically be recovered from h𝑛𝒞, regarded as an n-category
with distinguished squares. In particular, our main result (Theorem 6.5) generalises the well-known fact
that 𝐾0(𝒞) can be recovered from h1𝒞, regarded as a category equipped with those squares that arise
from pushouts in 𝒞.

Definition 6.1. A pointed n-category with distinguished squares, 𝑛 ≥ 1, is a pair (𝒞, T ), where 𝒞 is a
pointed n-category and T is a collection of weak pushout squares in 𝒞 of order 𝑛 − 1 that contains the
constant squares at a zero object. We call the diagrams in T distinguished squares.

An exact functor 𝐹 : (𝒞, T ) → (𝒞′, T′ ) between pointed n-categories with distinguished squares is
a functor 𝐹 : 𝒞 → 𝒞′ that preserves zero objects and distinguished squares.

Definition 6.2. Let𝒞 be a pointed∞-category with finite colimits, and let 𝑛 ≥ 1. We define the canonical
structure of distinguished squares in h𝑛𝒞 to be the collection of squares in h𝑛𝒞 that are equivalent in
h𝑛𝒞 to the image of a pushout square in 𝒞 under the functor 𝛾𝑛 : 𝒞 → h𝑛𝒞. By Proposition 3.20, these
are weak pushout squares of order 𝑛− 1. For 𝑛 > 1, they are precisely the weak pushouts of order 𝑛− 1.
We will denote this pointed n-category with distinguished squares by (h𝑛𝒞, can).

Remark 6.3. The canonical structure on h𝑛𝒞 for 𝑛 > 1 is described in terms of an intrinsic property
of h𝑛𝒞 and therefore depends only on h𝑛𝒞. This canonical structure can be defined more generally for
any finitely weakly cocomplete n-category for 𝑛 > 1 (see Definition 3.23). For 𝑛 = 1, the canonical
structure is an additional structure on h1𝒞 that is canonically induced from 𝒞.

Let (𝒞, T ) be a pointed n-category with distinguished squares. Let S𝑞 (𝒞, T ) denote the full subcat-
egory of Fun(Ar[𝑞],𝒞) that is spanned by the functors 𝐹 : Ar[𝑞] → 𝒞 such that
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(i) 𝐹 (𝑖 → 𝑖) is a zero object for all 𝑖 ∈ [𝑞].
(ii) For every 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 ≤ 𝑚 ≤ 𝑞, the following diagram in 𝒞

𝐹 (𝑖 → 𝑘) ��

��

𝐹 (𝑖 → 𝑚)

��

𝐹 ( 𝑗 → 𝑘) �� 𝐹 ( 𝑗 → 𝑚)

is a distinguished square in (𝒞, T ).

Note that the construction is functorial in 𝑞 ≥ 0, and therefore S•(𝒞, T ) defines a simplicial object
of pointed n-categories. (Of course, the construction applies similarly to more general choices T of
distinguished squares, but we will be interested in collections T that consist of higher weak pushouts.)
Moreover, the construction is functorial with respect to exact functors between pointed n-categories
with distinguished squares.

We denote by S�• (𝒞, T ) the associated simplicial object of ∞-groupoids that is obtained by passing
to the maximal ∞-subgroupoids pointwise. We have S�0 (𝒞, T ) � Δ0, and therefore we may regard the
geometric realization |S�• (𝒞, T ) | as based at a zero object of 𝒞.

Definition 6.4. Let (𝒞, T ) be a pointed n-category with distinguished squares. The K-theory of (𝒞, T )
is defined to be the space

𝐾 (𝒞, T ) := Ω|𝑆�• (𝒞, T ) |.

6.4. Comparison with Waldhausen K-theory.

Let 𝒞 be a pointed ∞-category that admits finite colimits. By Proposition 3.20, it follows that passing
pointwise from S•𝒞 to the respective homotopy n-categories defines a map of simplicial objects

S•𝒞 → S•(h𝑛𝒞, can)

and therefore also a comparison map between K-theory spaces

𝜌𝑛 : 𝐾 (𝒞) → 𝐾 (h𝑛𝒞, can).

Note that this comparison map factors canonically through the comparison map 𝜇𝑛 : 𝐾 (𝒞) → 𝐾 (D(𝑛)
𝒞
)

(Subsection 5.3).
By Proposition 3.20, the canonical functors 𝛾𝑛−1 : h𝑛𝒞 → h𝑛−1𝒞, 𝑛 > 1, define exact functors

(h𝑛𝒞, can) → (h𝑛−1𝒞, can). Therefore, we obtain a tower of K-theories associated to 𝒞 that is com-
patible with the comparison maps 𝜌𝑛,

𝐾 (𝒞)

𝜌𝑛

��
𝜌𝑛−1

		��
���

���
���

�
𝜌1



������
�������

�������
�������

�������
�������

· · · �� 𝐾 (h𝑛𝒞, can) �� 𝐾 (h𝑛−1𝒞, can) �� · · · �� 𝐾 (h1𝒞, can).

The next result gives a general connectivity estimate for the comparison map 𝜌𝑛.

Theorem 6.5. Let 𝒞 be a pointed ∞-category that admits finite colimits. For 𝑛 ≥ 1, the comparison
map 𝜌𝑛 : 𝐾 (𝒞) → 𝐾 (h𝑛𝒞, can) is n-connected.

Proof. We write h𝑛𝒞 for (h𝑛𝒞, can) and S•h𝑛𝒞 for S•(h𝑛𝒞, can), when the canonical structure is
understood from the context, to simplify the notation in the proof. By Lemma 5.6, it suffices to show
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that the map of∞-groupoids

S�𝑞𝒞 → S�𝑞h𝑛𝒞 (6.6)

is (𝑛 + 1 − 𝑞)-connected for every 𝑞 ≥ 0. The claim is obvious for 𝑞 = 0. For 𝑞 = 1, the map is (𝑛 + 1)-
connected (Example 2.9). For 𝑞 = 2 and 𝑛 = 1, the map is 0-connected by definition. This completes
the proof for 𝑛 = 1.

We may now restrict to the case 𝑛 > 1. We claim that for every 𝑞 > 1, the map (6.6) is (𝑛 − 1)-
connected. We consider the diagram

S�𝑞𝒞 ��

�

��

S�𝑞h𝑛𝒞

��

(𝒞Δ𝑞−1
)� �� h𝑛 (𝒞

Δ𝑞−1
)� ��

(
(h𝑛𝒞)

Δ𝑞−1 )�

(6.7)

where the vertical maps are given by restriction along the inclusion map of posets [𝑞−1] ⊆ Ar[𝑞], 𝑗 ↦→
(0 → 𝑗 + 1). The left vertical map in (6.7) is an equivalence. The lower left map is (𝑛 + 1)-connected
(Example 2.9). The lower-right map in (6.7) is n-connected by Corollary 3.17, since we may replace
Δ𝑞−1 by its spine, which is 1-dimensional.

Thus, it suffices to show that the right vertical map in (6.7) is n-connected for any 𝑞 > 0. This claim
is obvious for 𝑞 = 1. For 𝑞 > 1, we proceed by induction on q and consider the following diagram:

S�𝑞h𝑛𝒞
𝑑𝑞

��

��

S�𝑞−1h𝑛𝒞

��(
(h𝑛𝒞)

Δ𝑞−1 )�
𝑑𝑞

��
(
(h𝑛𝒞)

Δ𝑞−2 )�
.

For 0 ≤ 𝑘 ≤ 𝑞, let 𝑇𝑞
𝑘 ⊆ Ar[𝑞] be the full subcategory that contains the subposet Ar[𝑞 − 1] ⊆ Ar[𝑞]

and the elements {( 𝑗 → 𝑞) | 0 ≤ 𝑗 ≤ 𝑘}. Moreover, let𝒯𝑞
𝑘 denote the full subcategory of Map(𝑇𝑞

𝑘 , h𝑛𝒞)

whose objects satisfy properties (i)–(ii) (Subsection 6.3) restricted to 𝑇𝑞
𝑘 . In other words, this is the full

subcategory (indeed an ∞-groupoid), which is spanned by the image of S�𝑞h𝑛𝒞 under the restriction
map Map(Ar[𝑞], h𝑛𝒞) → Map(𝑇𝑞

𝑘 , h𝑛𝒞). Then we may factorise the square above as the composition
of the following squares

S�𝑞h𝑛𝒞 = 𝒯
𝑞

𝑞
� ��

��

𝒯
𝑞

𝑞−1
��

��

· · ·

��

�� 𝒯
𝑞

1

��

�� 𝒯
𝑞

0

��(
(h𝑛𝒞)

Δ𝑞−1 )� (
(h𝑛𝒞)

Δ𝑞−1 )�
· · · · · ·

(
(h𝑛𝒞)

Δ𝑞−1 )�

followed by the pullback square

𝒯
𝑞

0
��

��

S�𝑞−1h𝑛𝒞

��(
(h𝑛𝒞)

Δ𝑞−1 )�
𝑑𝑞

��
(
(h𝑛𝒞)

Δ𝑞−2 )�
.

We note that all the horizontal and vertical maps in these diagrams are given by the respective restriction
functors. We claim that each map 𝒯

𝑞
𝑘 → 𝒯

𝑞
𝑘−1 is n-connected, for any 1 ≤ 𝑘 < 𝑞, from which the
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required result follows. To see this, we consider the pullback of∞-groupoids

𝒯
𝑞

𝑘

��

��
(
h𝑛 (𝒞)

�,can)�

��

𝒯
𝑞

𝑘−1
��
(
h𝑛 (𝒞)

� )�

(6.8)

where the bottom map is given by the restriction to the subposet of 𝒯𝑞
𝑘−1

(𝑘 − 1→ 𝑞 − 1)

��

�� (𝑘 − 1→ 𝑞)

(𝑘 → 𝑞 − 1)

and
(
h𝑛 (𝒞)

�,can)� ⊂ (
h𝑛 (𝒞)

�)� is the full subgroupoid that is spanned by the weak pushouts of
order 𝑛 − 1. The right vertical map in (6.8) is given by restriction along the upper corner inclusion in
� = Δ1 × Δ1. The fibre of this map at 𝐹 ∈

(
h𝑛 (𝒞)

� )� is exactly the ∞-groupoid of weak colimits of F
of order 𝑛− 1. Since h𝑛𝒞 admits weak pushouts of order 𝑛− 1 > 0, it follows that the fibres of the right
vertical map in (6.8) are (𝑛 − 1)-connected. This means the vertical maps in (6.8) are n-connected, and
the required result follows. �

Example 6.9. Theorem 6.5 for 𝑛 = 1 shows that the map 𝜌1 : 𝐾 (𝒞) → 𝐾 (h1𝒞, can) is 1-connected. In
particular, this recovers the well-known fact that 𝐾0(𝒞) can be obtained from h1𝒞 equipped with the
canonical structure of distinguished squares.

Remark 6.10. The connectivity estimate in Theorem 6.5 is best possible in general. Indeed, for 𝑛 = 1
and ℰ an exact category, the comparison map 𝜌1 for the ∞-category associated to the Waldhausen
category of bounded chain complexes in ℰ factors through the comparison map to Neeman’s K-theory
of the triangulated category 𝐷𝑏 (ℰ): that is, we have maps

𝜌1 : 𝐾 (ℰ)
𝛽𝛼
−−→ 𝐾 (𝑑𝐷𝑏 (ℰ)) → 𝐾 (𝐷𝑏 (ℰ), can),

where the last map is induced by the forgetful map of simplicial objects 𝑑S•𝐷𝑏 (ℰ) → S•(𝐷𝑏 (ℰ), can).
(We refer to [28] for a nice overview of the K-theory of triangulated categories and details about the
comparison maps 𝛼 and 𝛽.) The map induced on 𝐾1 by 𝛽𝛼 is not injective in general by [28, Section
11, Proposition 1]; see [38, Sections 2 and 5].

Let us write 𝑃𝑛𝑋 for the Postnikov n-section of a topological space X, which means the canonical
map 𝑋 → 𝑃𝑛𝑋 is (𝑛+1)-connected – this agrees with the homotopy n-category of an∞-groupoid. Then
Theorem 6.5 implies that the functor 𝒞 ↦→ 𝑃𝑛−1𝐾 (𝒞) descends to a functor defined for (h𝑛𝒞, can).
The following immediate corollary confirms a conjecture of Antieau in the case of connective K-theory
[1, Conjecture 8.35].

Corollary 6.11. Let 𝒞 and 𝒞′ be stable ∞-categories such that there is an equivalence (h𝑛𝒞, can) �
(h𝑛𝒞

′, can), as pointed n-categories with distinguished squares. Then there is a weak equivalence

𝑃𝑛−1𝐾 (𝒞) � 𝑃𝑛−1𝐾 (𝒞
′).

Remark 6.12. As explained in Remark 6.3, the canonical structure on (h𝑛𝒞, can) is preserved under
equivalences for 𝑛 > 1: that is, an equivalence h𝑛𝒞 � h𝑛𝒞

′ for 𝑛 > 1 is automatically an equivalence
of pointed n-categories with distinguished squares. For 𝑛 = 1, note that an equivalence h1𝒞

Δ
� h1𝒞

′, as
triangulated categories, clearly also respects the canonical structures of distinguished squares.
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