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The paper deals with the existence of positive solutions with prescribed L2 norm for
the Schrödinger equation

−Δu + λu + V (x)u = |u|p−2u, u ∈ H1
0 (Ω),

∫
Ω

u2d x = ρ2, λ ∈ R,

where Ω = R
N or R

N \ Ω is a compact set, ρ > 0, V � 0 (also V ≡ 0 is allowed),
p ∈ (2, 2 + 4

N
). The existence of a positive solution ū is proved when V verifies a

suitable decay assumption (Dρ), or if ‖V ‖Lq is small, for some q � N
2

(q > 1 if
N = 2). No smallness assumption on V is required if the decay assumption (Dρ) is
fulfilled. There are no assumptions on the size of R

N \ Ω. The solution ū is a bound
state and no ground state solution exists, up to the autonomous case V ≡ 0 and
Ω = R

N .

Keywords: Nonlinear Schrödinger equations; normalized solutions; exterior domains;
positive solutions
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1. Introduction and main results

In this paper, we study a class of problems of the form⎧⎪⎨⎪⎩
−Δu+ λu+ V (x)u = |u|p−2u in Ω,

λ ∈ R, u ∈ H1
0 (Ω),

∫
Ω

u2 dx = ρ2,
(P )

where Ω = R
N or Ω is an exterior domain, that is R

N \ Ω is a compact set, N � 1,
V is a given potential and 2 < p < 2 + 4/N , namely the nonlinearity is superlinear
and mass-subcritical. Here λ will arise as a Lagrange multiplier related to the mass
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2 S. Lancelotti and R. Molle

constraint ‖u‖L2 = ρ > 0. We will focus on potentials that verify

V ∈ Lq(RN ), q ∈ [max(N/2, 1),∞], with q �= 1 if N = 2

V (x) � 0 a.e. in R
N .

(1.1)

Problems of the form (P) arise from the nonlinear Schrödinger and Klein-Gordon
equations

iΦt + ΔΦ + f(Φ) = 0 (S)

Φtt − ΔΦ +mΦ = f(Φ), (KG)

where Φ : R
N × (0,+∞) → C. If f(reiθ) = f(r)eiθ, r, θ ∈ R, then one can look for

standing wave solutions of (S) and (KG), namely solutions of the form

Φ(x, t) = eiλtu(x), x ∈ R
N , t > 0, (1.2)

where u is a real function. In the model case f(Φ) = |Φ|p−2Φ we consider, u has to
solve the equation in (P). We refer the reader to [8–10] for more detailed physical
motivations.

If the frequency λ in ansatz (1.2) is fixed, and we consider the pure power model
case with p ∈ (2, 2∗), where 2∗ = 2N

(N−2)+ , then looking for solutions of (S) and (KG)
corresponds to looking for critical points of the action functional

Eλ(u) =
1
2

∫
RN

(|∇u|2 + [λ+ V (x)]u2)dx− 1
p

∫
RN

|u|pdx, u ∈ H1(RN ).

A very large number of works are devoted to this unconstrained problem, we only
refer the reader to [2, 11, 39] for a survey on almost classical results, and to the
recent papers [16, 33] and references therein for new contributions.

Another point of view is to fix a priori the L2 norm of the solution. This point
of view is particularly relevant because this quantity (the mass or the charge of
the particle) is preserved along the time evolution. In this case, the solutions u
correspond to the critical points of the energy functional

E(u) =
1
2

∫
RN

[|∇u|2 + V (x)u2
]

dx− 1
p

∫
RN

|u|p dx u ∈ H1(Ω),

constrained on

Sρ :=
{
u ∈ H1(RN ) : |u|2 = ρ

}
,

and the frequency λ arises as a Lagrange multiplier. Even if this fixed mass problem
is classic (see for example [10]), only in the last decade it has been studied exten-
sively and, in particular, very little has been done in the non-autonomous case (see
[1, 5, 6, 24–26, 34, 41] and references therein).

We refer the reader to [17] for a recent analysis on the connections between
the fixed mass and the fixed frequency points of view (see also [35] and references
therein).

If 2 + 4
N < p < 2∗, the so called mass-supercritical regime, then E is not bounded

from below on Sρ, as follows by evaluating the functional over the fibres on Sρ of
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Normalized positive solutions for Schrödinger equations with potentials 3

the type ut := tN/2u1(t·), for fixed u1 ∈ Sρ and t > 0. So the problem cannot be
addressed by minimization. Jeanjean in the pioneering paper [25] analysed the
autonomous problem, for more general mass-supercritical nonlinearities, and he
recognized a mountain pass structure, related to the above-introduced fibres. The
method developed in [25] does not work in the non-autonomous case, even if the
potential is radially symmetric. The non-autonomous case in the mass-supercritical
regime has been studied in [6, 34], for not necessarily symmetrical potentials. In
[6], the authors found a mountain-pass solution if V � 0 is suitably small, while
[34] concerns the case V � 0 and the existence of two solutions is proved when V
is suitably small and the operator −Δ + V is not positive-definite.

In the mass-subcritical regime 2 < p < 2 + 4
N , the functional E is bounded from

below on Sρ by the Gagliardo-Nirenberg inequality (see (3.4), (3.5)). Ikoma e
Miyamoto in [24] considered more general non-autonomous problems of the type{−Δu+ λu+ V (x)u = f(x, u) (eq)

u ∈ H1
0 (Ω), u ∈ Sρ, λ ∈ R,

(1.3)

where Ω = R
N , and the nonlinearity f(x, u) = f(u) has sub-linear growth in 0 and

mass-subcritical growth at infinity, that is

lim
s→0

f(s)
s

= lim
|s|→∞

f(s)
|s|1+4/N

= 0.

If the shape of the potential is V � 0 and V (x) → 0 as |x| → ∞, and both f and
V satisfy various technical assumptions, then the authors prove, by concentration-
compactness arguments, that there exists ρ0 > 0 such that the energy functional
related to (1.3) has a global minimum in Sρ for ρ > ρ0, and the global minimum
is not attained if 0 < ρ < ρ0. Moreover, some sufficient conditions on f and V are
provided to get ρ0 = 0.

In the more recent paper [1], Alves and Ji considered in problem (P) some classes
of potentials V where a global minimum for E on Sρ exists, for suitable ρ. Namely,
in [1] the authors work on potentials V , not required vanishing at infinity, that
verify one of these assumptions: (V1) infRN V < lim inf |x|→∞ V (x), (V2) there exists
μ0 > 0 such that meas{V > μ0} <∞ and int(V −1(0)) �= ∅, (V3) V is 1-periodic in
each variable, (V4) V is asymptotically 1-periodic, that is there exists a 1-periodic
function Vp : R

N → R such that

V (x) � Vp(x), ∀x ∈ R
N , and lim

|x|→∞
|Vp(x) − V (x)| = 0.

After submitting this paper, the interesting works [37, 40] have been brought
to our attention. In those papers, non homogeneous nonlinearities as in (1.3) are
studied.

Yang, Qi and Zou in [40] improve the result of [24]. They consider problem (1.3)
with Ω = R

N , V (x) � lim|x|→∞ V (x) =: V∞ ∈ (−∞,+∞] and f ∈ C(Ω × R,R) sat-
isfies Berestycki-Lions type conditions with mass-subcritical growth. Moreover,
some technical assumptions used in [24] are removed. In the coercive case V∞ =
+∞, the existence of a ground state solution is proved for every ρ > 0, while for
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4 S. Lancelotti and R. Molle

V∞ < +∞ the authors show that still ρ0 � 0 exists such that there is a ground
state solution for ρ > ρ0 and it does not exist for 0 < ρ < ρ0.

Some results in [37] concern symmetric exterior domains in some mass-
supercritical regimes. Therein, Song studies (1.3) when Ω is a bounded starshaped
domain or the complementary of a ball in R

N with N � 2, V ≡ 0 and f ∈
C1(Ω × R,R) is a superlinear and mass-supercritical nonlinearity. When Ω is the
complementary of a ball and f(·, u) is radially symmetric, the author proves that
there exists a sequence ((λk, uk))k in H1

0 (Ω) × R of solutions of (1.3)(eq) such that
λk → 0 and |uk|2 → ∞, while there exists no sequence ((λk, uk))k in H1

0 (Ω) × R of
solutions of (1.3)(eq) such that λk → 0 and |uk|2 → 0. Moreover, if (1.3)(eq) has at
most one positive radial solution in H1

0 (Ω) for every λ > 0, then (1.3) has a positive
radial solution for large ρ.

Here, we are concerned with the mass-subcritical case when V � 0 so no minimum
solution exists, up to the autonomous case V ≡ 0 and Ω = R

N (see proposition 1.4).
Moreover, we focus on domains that can be not only R

N but also general exterior
domains, answering the question raised in [34] for mass-supercritical problems,
whether the existence of bound state solutions can be treated in exterior domains
as in the whole space. To the best of our knowledge, these issues are only partially
addressed in previous papers. About exterior domains in the mass-subcritical case,
it is worth mentioning [41], where the authors consider the autonomous problem
V ≡ 0 in dimension N � 3 and they found the existence of a bound state solution
if the size of ‘hole’ R

N \ Ω is small.
The main results are the following:

Theorem 1.1. Let N � 2, Ω = R
N or R

N \ Ω compact, ρ > 0. If V satisfies (1.1)
and ∫

RN

V (x) |x|N−1edρ|x| dx <∞, (Dρ)

where

dρ =
[
2(1− p−2

4−N(p−2) )
√
λ1

]
ρ

p−2
4−N(p−2) , (1.4)

(see (2.5) for the constant λ1), then there exists a solution (λ, ū) of (P) such that
λ > 0 and ū � 0.

Theorem 1.2. Let N � 2, Ω = R
N or R

N \ Ω compact, ρ > 0. There exists L =
L(q,Ω, ρ) > 0 such that if V satisfies (1.1), with

V (x)−→ 0 as |x| → ∞ if V ∈ L∞(Ω), (1.5)

and ‖V ‖q < L, then problem (P) has a solution (λ, ū), verifying λ > 0 and ū � 0.

The case N = 1 has its own specificity and will be dealt with in § 6.
A priori, a nonnegative solution ū of (P) belongs to H1(Ω), so we cannot say

that ū > 0, ∀x ∈ Ω. Anyway, under mild assumptions, ū turns out to be sufficiently
regular to apply the Harnack inequality and therefore to be pointwise positive. In
the following proposition, we collect some regularity properties. Its proof is almost
standard, so we only outline it in the appendix.
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Proposition 1.3. Let ū be a solution of (P). If N � 2, then

(a) if V ∈ Lq
loc(Ω) for some q > N

2 , then ū ∈ C0,α
loc (Ω), and if ū is nonnegative

then ū(x) > 0 ∀x ∈ Ω;

(b) if V ∈ Lq
loc(Ω) for some q > N, then ū ∈ C1,α

loc (Ω);

(c) if V ∈ C0,α
loc (Ω), then ū ∈ C2(Ω) and it is a classical solution.

If N = 1, then

(d) if V ∈ L1
loc(Ω), then ū is continuously differentiable and if ū is nonnegative

then ū(x) > 0 ∀x ∈ Ω;

(e) if V ∈ Lq
loc(Ω) for some q > 1, then ū ∈ C1,α

loc (Ω).

By proposition 1.3, the solutions given by theorems 1.1 and 1.2 are positive if
assumption (1.1) holds with q > N

2 .
The solution we find is a bound state solution. Indeed, in § 2 we verify that no

ground state solution can exist:

Proposition 1.4. Assume that V satisfies the assumptions of theorem 1.1 or of
theorem 1.2. If V �≡ 0 or Ω �= R

N , then problem (P) has no ground state solution.

Actually, if V satisfies both the assumptions of theorems 1.1 and 1.2, then the
solutions provided by the theorems are found exploiting the same topological con-
figuration so it is reasonable to expect that they are the same solution. Moreover,
the topological characterization suggests that they have Morse index N .

In (1.1), the assumption that V vanishes at infinity is necessary to get the com-
pactness condition and cannot be dropped, by the following nonexistence result (see
[19], [34, Proposition 1.10], [12, Theorem 1.1]).

Proposition 1.5. Let p ∈ (2, 2∗), V ∈ L∞(RN ) and assume that there exists ∂V
∂ν ∈

L�(RN ) for some ν ∈ R
N \ {0} and � ∈ [max(1, N

2 ),+∞], � �= 1 if N = 2. If ∂V
∂ν � 0

and ∂V
∂ν �≡ 0, then problem

− Δu+ λu− V (x)u = |u|p−2u u ∈ Sρ, λ ∈ R (1.6)

has no solutions in C1(RN ) ∩W 2,2(RN ).

See remark 6.2 and proposition 6.3 for nonexistence results in the 1-dimensional
case.

Some remarks are in order, concerning the decay assumption (Dρ) in theorem 1.1.
It does not require any smallness assumption on V and moreover does not depend
on the domain, hence if it is verified then problem (P) has a solution for every
exterior domain Ω.

On the other hand, (Dρ) depends on ρ by (1.4), where dρ → ∞ as ρ→ ∞ because
p < 2 + 4

N . As a consequence, a potential that verifies (Dρ) for every ρ > 0 has to
decay faster than any exponential.
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6 S. Lancelotti and R. Molle

Remark 1.6. By the proof of theorem 1.2 we verify the existence of a constant
L̄ = L̄(N) > 0 such that

L(N/2,RN , ρ) = L̄ ∀ρ > 0. (1.7)

Instead, for q > N
2 ,

lim
ρ→0

L(q,RN , ρ) = 0, lim
ρ→∞L(q,RN , ρ) = ∞. (1.8)

As a consequence, if ‖V ‖N/2 is suitably small, then problem (P) in R
N has a

solution for every ρ > 0, while if V ∈ Lq(RN ), for q > N/2, then there exists ρ̄ =
ρ̄(‖V ‖q) � 0 such that problem (P) has a solution for every ρ > ρ̄ (see (5.14)).

In Theorems 1.1 and 1.2 of [34] a mountain pass solution is found in the mass-
supercritical case with negative potential, under smallness assumptions on V similar
to the ones considered here. In that case, if q = N/2 there is a uniform bound as
in (1.7) while for q > N/2 the limits in (1.8) are reversed.

If ρ is fixed, we will observe that

lim
r(Ω)→∞

L(q,Ω, ρ) = 0,

where

r(Ω) = sup{r ∈ R
+ : Br(y) ⊂ R

N \ Ω for some y ∈ R
N} (1.9)

(see remark 5.1). Hence, there is no potential V �≡ 0 such that theorem 1.2 applies
for every exterior domain Ω, for ρ > 0 fixed.

If we consider V ≡ 0, then both theorems 1.1 and 1.2 apply and provide the
following result.

Corollary 1.7. Let N � 2, R
N \ Ω compact and ρ > 0, then there exist λ > 0 and

ū ∈ C2(Ω), ū(x) > 0, ∀x ∈ Ω, such that⎧⎪⎨⎪⎩
−Δū+ λū = ūp−1 in Ω,

λ ∈ R, ū ∈ H1
0 (Ω),

∫
Ω

ū2 dx = ρ2.

Corollary 1.7 extends the result of [41] to the dimension 2 and to every exterior
domains. The proof in [41] cannot be extended to this more general framework
because it does not work in dimension 2 and when the size of R

N \ Ω is large.
We prove theorems 1.1 and 1.2 by variational methods, looking for bound state

solutions. The analysis of the compactness presents a lot of difficulties related to
the unboundedness of the domain, that is not assumed to be symmetric. In order
to recover a local compactness condition, we first see that the Lagrange multiplier
λ related to a Palais-Smale sequence in a negative range is positive, and then we
employ a splitting Lemma from [7] for PS-sequences of Eλ. With this decompo-
sition in hands, we perform in proposition 3.1 a sharp fine estimate of the first
energy interval I above the infimum where the compactness condition holds (see
remark 3.4).
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Normalized positive solutions for Schrödinger equations with potentials 7

The topological argument relies on min-max techniques that make use of a
barycentric map and the Brouwer degree. Since we have no smallness assumption
on R

N \ Ω, and in theorem 1.1 we have no bound on any Lebesgue norm of the
potential, a major difficulty is to work in the compactness interval I, in the min-
max procedure. To overcome this problem, we will proceed by analysing the energy
interaction of positive solutions w1 and w2 of some suitable ‘problems at infinity’,
such that ‖w1‖2

L2 + ‖w2‖2
L2 = ρ2. This idea is inspired by the unconstrained case

(see [14, 28]), where the problem at infinity is univocally determined by the choice
of λ. Here, the need to choose different functions w1, w2 prevents the use of the
arguments developed in [14, 28]) and requires the introduction of different and
more refined estimates.

To verify that the solutions we find do not change sign, we prove in proposition 2.2
that the energy of every solution that changes sign is not in the energy interval we
are working in. In particular, proposition 2.2 and corollary 2.3 give information also
on changing sign solutions of the autonomous problem in R

N . We point out that
to get nonnegative solutions here we could exploit the symmetry of the functional
and work near the cone of the positive functions, by using [21, Theorem 4.5] and
proceeding as in [6]. The advantage of this other approach is a simplification of the
proof of the compactness condition, because the lack of compactness in such a case
comes only from the positive solution of the problem at infinity. On the other hand,
the approach we employ here allows us both to bound from below the energy of
the changing sign solutions and to gain a more general analysis of the Palais-Smale
sequences.

The paper is organized as follows: in § 2 we introduce some preliminary results, in
§ 3 we prove the local compactness condition and § 4 is devoted to the sharp energy
estimates that are necessary in § 5 to prove theorems 1.1 and 1.2, § 6 concerns
the case N = 1 and in the appendix we give a sketch of the proof of the regularity
proposition, with some references for detailed proofs.

2. Notations, variational framework and preliminary results

Throughout the paper we make use of the following notation:

• 2c := 2 + 4
N , s = 2

N
p−2
2c−p .

• Lq(O), 1 � q � ∞, O ⊆ R
N a measurable set, denotes the Lebesgue space, the

norm in Lq(O) is denoted by | · |q if there is no ambiguity.

• For u ∈ H1
0 (Ω) we denote by u also the function in H1(RN ) obtained setting

u ≡ 0 in R
N \ Ω.

• For any R > 0 and for any z ∈ R
N , BR(z) denotes the closed ball of radius R

centred at z, and for any measurable set O ⊂ R
N , |O| denotes its Lebesgue

measure.

• H1(RN ) is the usual Sobolev space endowed with the standard norm

‖u‖ :=
[∫

RN

(|∇u|2 + u2
)
dx
] 1

2

.
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8 S. Lancelotti and R. Molle

• c, c′, C, C ′, Ci, . . . denote various positive constants that can also vary from one
line to another.

• o(f) and O(f) denote the usual Landau notations: o(f)
f → 0 as f → 0 and

|O(f)| � C|f | for some positive constant C.

We will find solutions ū of problem (P ) as critical points of the functional E
constrained on Sρ. If λ is the Lagrange multiplier related to ū, then ū is also a free
critical point of the related free functional Eλ.

Let us assume λ > 0 and recall some well-known properties of the limit problem,
for V ≡ 0 and Ω = R

N , {−Δu+ λ∞u = |u|p−2u in R
N ,

λ∞ ∈ R, u ∈ Sρ.
(P∞)

(P∞) has a unique positive solution w ∈ H1(RN ), up to translations, which is
radial, radially decreasing, and belongs to C2(RN ). The function w verifies the
minimality property

m := E∞(w) = min
u∈Sρ

E∞(u), (2.1)

where

E∞(u) =
1
2

∫
RN

|∇u|2 dx− 1
p

∫
RN

|u|p dx.

Correspondingly, the solutions of (P∞) are also free critical points of the limit
functional

Eλ,∞(u) = E∞(u) +
λ

2

∫
RN

u2dx u ∈ H1(RN ).

Moreover,

m < 0 and λ∞ > 0 (2.2)

and there exists c1 > 0 such that

w(|x|) e
√

λ∞|x| |x|N−1
2 → c1 as |x| → ∞, (2.3)

w′(|x|) e
√

λ∞|x| |x|N−1
2 → −c1

√
λ∞ as |x| → ∞. (2.4)

Inequality m < 0 in (2.2) follows choosing u1 ∈ Sρ and testing (2.1) on ut :=
tN/2u1(t·) ∈ Sρ, t > 0, taking into account p < 2c. The positivity of λ∞ comes from
Pohozaev and Nehari identities (see also proposition 2.1). For the properties of w
we refer the reader to [4, 8, 22, 27, 38].
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Normalized positive solutions for Schrödinger equations with potentials 9

For any k > 0, let us denote by wkρ2 the positive solution of{−Δu+ λkρ2 u = |u|p−2u in R
N ,

λkρ2 ∈ R, u ∈ S√
k ρ,

(2.5)

where wkρ2 verifies

mkρ2 := E∞(wkρ2) = inf
u∈S√

k ρ

E∞(u). (2.6)

It turns out that

wkρ2(x) = k
s

p−2w
(
k

s
2x
)
, mkρ2 = k1+sm < 0, λkρ2 = ks λ∞ > 0 (2.7)

where

s :=
2
N

p− 2
2c − p

(see notations). From p < 2c it follows s > 0. By (2.7), in particular we have:

λρ2 = λ∞ = ρsλ1. (2.8)

For k = 0 we set w0 = 0 and for k = 1 we simply write wρ2 = w.
Moreover, for any k > 0, by (2.3), (2.4) and (2.7) we have

wkρ2(|x|) e
√

ksλ∞|x| |x|N−1
2 → ck as |x| → +∞, (2.9)

w′
kρ2(|x|) e

√
ksλ∞|x| |x|N−1

2 → −ck
√
ks λ∞ as |x| → +∞ (2.10)

where

ck = c1 k
s( 1

p−2−N−1
4 ).

From p < 2c there follows 1
p−2 − N−1

4 > 0, so that

ck → 0 as k → 0, ck → c1 as k → 1.

Proof of proposition 1.4. Let us prove that

inf
Sρ

E = m (2.11)

and the infimum is not achieved.
Obviously we have that infSρ

E � m. To show that the equality holds, let us
consider the sequence (un)n defined by un = w(x− yn), where (yn)n is a sequence
in R

N such that |yn| → +∞. By (1.1) and (2.3), and taking into account (Dρ) or
(1.5), we have that

lim
n→+∞

∫
RN

V (x)u2
n(x) dx = 0,

which implies lim
n→+∞E(un) = m.
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10 S. Lancelotti and R. Molle

Now, assume by contradiction that the infimum infSρ
E is achieved by a function

ū. Then, by

m � E∞(ū) � E(ū) = m, ū ∈ Sρ, (2.12)

and by the uniqueness of the minimizers of (2.1), we should have ū = ±w(x− ȳ)
for a suitable ȳ ∈ R

N . Since w(x− ȳ) > 0 for all x ∈ R
N , we can deduce that Ω

must be the entire space R
N and by (2.12) we get:∫

RN

V (x)ū2(x) dx = 0,

that implies V ≡ 0 because V � 0. So we are in contradiction with Ω �= R
N or

V �≡ 0. �

Next proposition states the positivity of the Lagrange multipliers in (P).

Proposition 2.1. Assume that u ∈ Sρ and λ ∈ R solve (P). If E(u) < 0, then
λ > 0.

Proof. We have∫
Ω

∇u · ∇v dx+ λ

∫
Ω

uv dx+
∫

Ω

V (x)uv dx−
∫

Ω

|u|p−2uv dx = 0 ∀v ∈ H1
0 (Ω).

Then,

λρ2 = |u|pp − |∇u|22 −
∫

Ω

V (x)u2dx

= −pE(u) +
p− 2

2
|∇u|22 +

p− 2
2

∫
Ω

V (x)u2dx > 0. (2.13)

�

Before concluding this section, let us find out some features of the changing sign
solutions.

Proposition 2.2. Let u ∈ Sρ be a solution of (P) ((P∞)). If u changes sign, then
E(u) > 2−sm (E∞(u) > 2−sm).

Proof. Since m < 0, we can assume E(u) < 0. According to proposition 2.1, let λ >
0 be the Lagrange multiplier corresponding to the solution u and let w∞ ∈ H1(RN )
be the positive solution of −Δv + λv = vp−1. By (2.7),

E∞(w∞) = min
S|w∞|2

E∞ =
( |w∞|22

ρ2

)1+s

m. (2.14)

Let us write u = u+ − u−, where u± = max{±u, 0}, ρ2 = |u+|22 + |u−|22. Since
u+ and u− are on the Nehari manifold N corresponding to Eλ, then (Eλ)|N (u±) >
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Eλ,∞(w∞) (see [7] and [31, Proposition 2.1]). Namely, by (2.14),

E(u±) >
( |w∞|22

ρ2

)1+s

m+
λ

2
(|w∞|22 − |u±|22).

Hence, the claim read as

E(u) = E(u+) + E(u−) > 2
( |w∞|22

ρ2

)1+s

m+
λ

2
(2|w∞|22 − ρ2) � 2−sm,

and, equivalently, as[(
2|w∞|22
ρ2

)1+s

− 1

]
2−sm+

λ

2
ρ2

[(
2|w∞|22
ρ2

)
− 1

]
� 0. (2.15)

Since (λ,w∞) solves (2.5) for k = |w∞|22
ρ2 , the following system is fulfilled⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2
|∇w∞|22 −

1
p
|w∞|pp = m|w∞|22 Energy of w∞

|∇w∞|22 + λ|w∞|22 − |w∞|pp = 0 Nehari
N − 2

2
|∇w∞|22 +

N

2
λ|w∞|22 −

N

p
|w∞|pp = 0 Pohozaev.

(2.16)

Solving (2.16) and taking into account (2.7) we get

λ

2
ρ2 = −2p−N(p− 2)

4 −N(p− 2)

( |w∞|22
ρ2

)s

m. (2.17)

Putting (2.17) in (2.15), we have to verify[(
2|w∞|22
ρ2

)1+s

− 1

]
− 2p−N(p− 2)

4 −N(p− 2)

(
2|w∞|22
ρ2

)s [(2|w∞|22
ρ2

)
− 1

]
� 0.

Then the assertion is proved because 2p−N(p−2)
4−N(p−2) = 1 + s and

[t1+s − 1] − (1 + s) ts[t− 1] � 0 ∀t � 0.

�

Corollary 2.3. If u is a changing sign solution of

− Δv + λv = |v|p−2v v ∈ H1(RN ), (2.18)

then |u|22 > 2|w∞|22, where w∞ denotes the positive solution of (2.18).

Clearly, here λ > 0 by Pohozaev identity.
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Proof. Let us call E(u) = M . From system (2.16) applied to u and w∞ it follows

|u|22 = 2
1 + s

λ
(−M), |w∞|22 = 2

1 + s

λ

(
−m|w∞|22

)
. (2.19)

By proposition 2.2, M > 2−sm|u|22 , then, by (2.7) and (2.19),

|u|22 < 2
1 + s

λ
2−s

(
−m|u|22

)
= 2

1 + s

λ
2−s

( |u|22
|w∞|22

)1+s (
−m|w∞|22

)
= 2−s|w∞|22

( |u|22
|w∞|22

)1+s

,

that completes the proof. �

3. The compactness condition

Proposition 3.1. Let (un)n be a Palais-Smale sequence at the level c for E con-
strained on Sρ. If c ∈ (m, 2−sm) then there exists a critical point u0 ∈ Sρ such that
un → u0, as n→ ∞.

To prove proposition 3.1, we will use the well known splitting lemma of Benci
and Cerami for the unconstrained problem ([7, Lemma 3.1]).

Lemma 3.2. Let λ > 0 and let (un)n in H1(RN ) be a Palais-Smale sequence for Eλ.
Then there exist a critical point u0 of Eλ, an integer h � 0, h non-trivial solutions
w1, . . . , wh ∈ H1(RN ) to the limit equation

−Δv + λv = |v|p−2v

and h sequences (yj
n)n ⊂ R

N , 1 � j � h, such that |yj
n| → ∞ as n→ ∞, and

un = u0 +
h∑

j=1

wj(· −yj
n) + o(1) strongly in H1(RN ), (3.1)

up to a subsequence. Moreover, we have:

Eλ(un) → Eλ(u0) +
h∑

j=1

Eλ,∞(wj) as n→ ∞, (3.2)

and

|un|22 = |u0|22 +
h∑

j=1

|wj |22 + o(1). (3.3)
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Proof of proposition 3.1. We claim that (un)n is bounded in H1
0 (Ω). Indeed, un ∈

Sρ, ∀n ∈ N, and by the Gagliardo-Nirenberg inequality

|u|pp � CGN |u|p−
N(p−2)

2
2 |∇u|

N(p−2)
2

2 (3.4)

(see [29, Theorem 12.83]) we have:

c+ o(1) = E(un) � 1
2
|∇un|22 − C|∇un|

N(p−2)
2

2 , (3.5)

with N(p−2)
2 < 2 because p < 2c.

Since (un)n is a constrained PS-sequence, there exists a sequence (λn)n in R such
that ∫

Ω

∇un · ∇v dx+ λn

∫
Ω

unv dx+
∫

Ω

V (x)unv dx

−
∫

Ω

|un|p−2unv dx = o(1)‖v‖ ∀v ∈ H1
0 (Ω). (3.6)

Setting v = un in (3.6), and taking into account that (un)n is bounded in H1, we
can argue as in (2.13) obtaining

λnρ
2 = −pE(un) +

p− 2
2

|∇un|22 +
p− 2

2

∫
Ω

V (x)u2
ndx+ o(1) � −p c+ o(1) > 0,

(3.7)
for large n. Since (un)n is bounded in H1

0 (Ω), the first relation in (3.7) implies that
the sequence (λn)n is bounded. Moreover, from (3.7) we infer also that λn � c > 0,
for a suitable constant c. Then we can assume that λn → λ > 0. Hence, by (3.6) we
are in position to apply lemma 3.2 and we can decompose un according to (3.1).

(I) If h = 0, we are done.
So, we assume by contradiction h � 1 and we are going to show that then

E(u0) +
h∑

j=1

E∞(wj) � 2−sm, (3.8)

up to the case u0 = 0, h = 1 and w1 > 0, that arises for

lim
n→∞E(un) = m. (3.9)

Once (3.8) is proved, the contradiction comes out, because (3.2) and (3.3) provide
c = E(u0) +

∑h
j=1E∞(wj), and c ∈ (m, 2−sm) by assumption.

(II) If u0 ≡ 0 and h = 1 occurs, then |w1|2 = ρ, by (3.3). Hence, if w1 > 0 then
c = m by (3.2) and (2.1), so (3.9) is proved. We observe that this is the only case
in which (3.9) holds, up to the autonomous case Ω = R

N and V ≡ 0, when also the
case u0 > 0 and h = 1 verifies (3.9). On the other hand, if w1 is a changing sign
solution, then c > 2−sm by proposition 2.2.

(III) If u0 ≡ 0 and h � 2, we proceed by induction. For h = 2, we get (3.8)
arguing exactly as in the proof of proposition 2.2, with w1 in place of u+ and w2 in
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14 S. Lancelotti and R. Molle

place of u−. Observe that the case w1 = w2 > 0 is the only case when the equality
holds in (3.8).

Suppose now h � 3 and (3.8) holds for h− 1, namely for every ρ1 > 0

h−1∑
j=1

E∞(wj) � 2−smρ2
1
, (3.10)

whenever wj �≡ 0, for all j ∈ {1, . . . , h− 1}, and
∑h−1

j=1 |wj |22 = ρ2
1. Then, let us prove

(3.8) for h. We can assume that |wh|22 � ρ2/3. Taking into account (3.10) and (2.7),
we have:

h∑
j=1

E∞(wj) � 2−sm(ρ2−|wh|22) + E∞(wh)

� 2−sm(ρ2−|wh|22) +m|wh|22

= 2−s

(
ρ2 − |wh|22

ρ2

)1+s

m+
( |wh|22

ρ2

)1+s

m.

Hence, it is sufficient to verify that

2−s

(
ρ2 − |wh|22

ρ2

)1+s

m+
( |wh|22

ρ2

)1+s

m � 2−sm. (3.11)

Inequality (3.11) is equivalent to

2st1+s + (1 − t)1+s � 1, (3.12)

where t := |wh|22
ρ2 ∈ (0, 1/3]. Since inequality (3.12) holds for every t ∈ [0, 1/3],

estimate (3.8) is proved for u0 ≡ 0.
(IV ) If u0 �≡ 0, we can proceed as in the previous steps: first by considering the

case h = 1 and arguing as in the proof of proposition 2.2, and then finishing the
proof by induction. �

Corollary 3.3. If (un)n in Sρ satisfies lim
n→∞E(un) = m, then there exists a

sequence (yn)n in R
N such that

un(x) = w(x− yn) + o(1) in H1. (3.13)

If Ω �= R
N or V �≡ 0, then |yn| −→∞, as n→ ∞.

Proof. By the Ekeland variational principle, there exists a PS-sequence (vn)n for E
constrained on Sρ such that lim

n→∞E(vn) = m and un = vn + o(1) in H1 (see ([18,

Proposition 5.1]), then we can assume that (un)n is PS-sequence. Then (3.13) is a
direct consequence of (3.9) and part (II) in the proof of proposition 3.1.
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If yn → ȳ ∈ R
N , up to a subsequence, then un → w(· − ȳ) in H1 and a.e., so that

Ω = R
N because w(x) > 0, ∀x ∈ R

N . Moreover

m = lim
n→∞E(un) =

1
2

∫
RN

|∇w(x− ȳ)|2dx+
1
2

∫
RN

V (x)w(x− ȳ)2dx

− 1
p

∫
RN

wp(x− ȳ) dx

= m+
1
2

∫
RN

V (x)w(x− ȳ)2dx

implies V ≡ 0, again because w(x) > 0, ∀x ∈ R
N .

So the proof is completed. �

Remark 3.4. By (III) in the proof of proposition 3.1 we see that, for every
sequence (yn)n in R

N such that limn→∞ |yn| = ∞,

E
(
wρ2/2(·−yn) + wρ2/2(·+yn)

)
= 2−sm.

Then the sequence (wρ2/2(· − yn) + wρ2/2(· + yn))n turns out to be a not relatively
compact PS-sequence at the level 2−sm, showing that the compactness interval
(m, 2−sm) cannot be extended.

4. Energy estimates

4.1. An upper bound

If R
N \ Ω is a non empty compact set contained in BR−1(0), let us introduce the

cut-off function ϑ, verifying

ϑ ∈ C∞(RN , [0, 1]),
{
ϑ(x) = 1 if |x| � R
ϑ(x) = 0 if x ∈ R

N \ Ω. (4.1)

If Ω = R
N , we agree that ϑ ≡ 1 on R

N . Let us set Σ = ∂B2(e1), where e1 is the
first element of the canonical basis of R

N , and for any r > 0 define the map ψr :
[0, 1] × Σ −→ H1

0 (Ω) by

ψr[t, z](x) = ρ
ϑ(x)

[
wtρ2(x− rz) + w(1−t)ρ2(x− re1)

]∣∣ϑ(·) [wtρ2(·−rz) + w(1−t)ρ2(·−re1)
]∣∣

2

. (4.2)

Proposition 4.1. Suppose that V verifies (1.1) and (Dρ), then

(a) there exist r > 0 such that for any r > r

Ar = max {E (ψr[t, z]) : t ∈ [0, 1], z ∈ Σ} < 2−sm; (4.3)

(b) for every ε > 0 there exists rε > 0 such that for any r > rε

Lr = max {E (ψr[1, z]) : z ∈ Σ} � m+ ε. (4.4)

Remark 4.2. In proposition 4.1, V ≡ 0 is allowed.
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Before proving proposition 4.1, let us recall two technical lemmas. For the proof
of Lemma 4.3 we refer to [14] while the proof of Lemma 4.4 is in [3] (see also
Lemma 2.9 in [13]).

Lemma 4.3. For all a, b � 0, for all p � 2, the following relation holds true

(a+ b)p � ap + bp + (p− 1)(ap−1b+ abp−1).

Lemma 4.4. If g ∈ L∞(RN ) and h ∈ L1(RN ) are such that, for some α � 0, b � 0,
γ ∈ R

lim
|x|→∞

g(x) eα|x||x|b = γ (4.5)

and ∫
RN

|h(x)| eα|x||x|bdx <∞, (4.6)

then, for every z ∈ R
N \ {0},

lim
r→∞

(∫
RN

g(x+ rz)h(x)dx
)
eα|rz||rz|b = γ

∫
RN

h(x)e−α x·z
|z| dx.

Lemma 4.5. Let z ∈ Σ. For every t ∈ [0, 1/2] and r > 0, let us set

δt(r) =
(
r

N−1
2 e2

√
tsλ∞ r

)−1

, (4.7)

τt(r) =
2
ρ2

∫
RN

wtρ2(x− rz)w(1−t)ρ2(x− re1) dx, (4.8)

σt(r) =
∫

RN

[
wp−1

tρ2 (x− rz)w(1−t)ρ2(x− re1) + wtρ2(x− rz)wp−1
(1−t)ρ2(x− re1)

]
dx.

(4.9)

Then the following facts hold:

(1) if t ∈ [0, 1
2 ), then

τt(r)
δt(r)

→ c1,t := ct

∫
RN

w(1−t)ρ2(y) e−
√

tsλ∞
y·(e1−z)

2 dy,
as r → ∞,

(2) if t ∈ [0, 1
2 ], then

σt(r)
δt(r)

→ c2,t := 2ct
∫

RN

wp−1
(1−t)ρ2(y) e−

√
tsλ∞

y·(e1−z)
2 dy,

as r → ∞ where ct = c1t
s( 1

p−2 − N−1
4 ) (see (2.3)). Moreover,

(3) c1,t · ( 1
2 − t) � C for every t ∈ [0, 1

2 ).

Remark 4.6. The definition of τt(r), σt(r) is independent of z, by symmetry.
Moreover, c1,t → ∞ as t→ 1

2 and, clearly, τ0(r) = σ0(r) ≡ 0.

Proof. Assertions (1), (2) easily follow using (2.9) and by lemma 4.4. Let us prove
assertion 3).
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Without loss of generality we may assume z = −e1, so that z−e1
2 = −e1, and to

simplify the notations we consider λ∞ = 1. Moreover, since t �→ c1,t is a continuous
function on [0, 1/2], it is sufficient to prove

lim
t→ 1

2

(
1
2
− t

) ∫
RN

w(1−t)ρ2(y) ets/2 y1 dy <∞,

where y1 is the first component of y ∈ R
N . Moreover, by (2.9) we are left to prove

that(
1
2
− t

)∫
RN\B1(0)

|y|−N−1
2 e−(1−t)s/2|y| ets/2 y1 dy

=
(

1
2
− t

)∫
RN\B1(0)

|y|−N−1
2 e−[(1−t)s/2−ts/2]|y| e−ts/2(|y|−y1) dy � C <∞

as t→ (1/2)−. (4.10)

If we set a = 1
2 − t, then a→ 0+ as t→ (1/2)−, and since [(1 − t)s/2 − ts/2] � ca

as a→ 0, with c > 0, (4.10) can be estimated by

a

∫
RN\B1(0)

|y|−N−1
2 e−ca|y| e−( 1

2−a)s/2
(|y|−y1) dy

� a

∫
RN\B1(0)

|y|−N−1
2 e−ca|y| e−( 1

4 )
s/2

(|y|−y1) dy.

Making use of spherical coordinates in the subspace e⊥1 =
{
v ∈ R

N : v · e1 = 0
}
,

denoting by b = (1
4 )s/2 and R

2
+ = R × [0,+∞), we have to analyse

a

∫
R

2
+\B1(0)

rN−2

(r2 + y2
1)

N−1
4 eca(r2+y2

1)
1/2

e
b
[
(r2+y2

1)
1/2−y1

] dr dy1

= a

∫ π

0

(∫ +∞

1

ρ(N−1)/2

e[ca+b(1−cos ϑ)]ρ
dρ
)

(sinϑ)N−2 dϑ.

Setting k = ca+ b(1 − cosϑ), we can estimate∫ +∞

1

ρ(N−1)/2

e[ca+b(1−cos ϑ)]ρ
dρ =

1
k(N−1)/2

∫ +∞

1

(kρ)(N−1)/2

ekρ
dρ

� 1
k(N+1)/2

∫ +∞

0

μ(N−1)/2

eμ
dμ.

Then,

a

∫ π

0

(∫ +∞

1

ρ(N−1)/2

e[ca+b(1−cos ϑ)]ρ
dρ
)

(sinϑ)N−2 dϑ

� Ca

∫ π

0

(sinϑ)N−2

[ca+ b(1 − cosϑ)](N+1)/2
dϑ.

https://doi.org/10.1017/prm.2023.78 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.78


18 S. Lancelotti and R. Molle

Since 1 − cosϑ � 1
4 sin2 ϑ for small ϑ, if we set u = sinϑ and β = b/(4c), then it is

sufficient to evaluate

a

∫ 1
2

0

uN−2

[a+ βu2](N+1)/2
· 1
(1 − u2)1/2

du

� Ĉa−1/2

∫ 1
2

0

(√
β/a u

)N−2

[
1 +

(√
β/a u

)2
](N+1)/2

du

= C̃

∫ 1
2

√
β
a

0

tN−2

(1 + t2)(N+1)/2
dt→ C as a→ 0,

and the assertion follows. �

Proof of proposition 4.1. In this proof we shall consider R > 1 fixed such that R
N \

Ω ⊂ BR−1(0).
In order to simplify the notations, we often omit t, z and write ψr = ψr[t, z],

δ(r) = δt(r), σ(r) = σt(r), τ(r) = τt(r) (see (4.2), (4.7), (4.8), (4.9)).
We have that

E(ψr) =
1
2

∫
RN

[|∇ψr|2 + V (x)ψ2
r

]
dx− 1

p

∫
RN

|ψr|pdx.

So, to get the statement of the proposition, we need to estimate these two integrals.
Let us consider 0 � t � 1/2. In an entirely analogous way we may treat also the

case 1/2 < t � 1.
Let us set:

w1 = wtρ2 , w2 = w(1−t)ρ2 , λ1 = λtρ2 = tsλ∞, λ2 = λ(1−t)ρ2 = (1 − t)sλ∞,

and for any i = 1, 2

Ai = |∇wi|22, Bi = |wi|pp.
Recall that

−Δwi + λiwi = wp−1
i ,

namely∫
RN

∇wi(x) · ∇v(x) dx+ λi

∫
RN

wi(x) v(x) dx

=
∫

RN

wp−1
i (x) v(x) dx, ∀v ∈ H1(RN ), (4.11)

and so

Ai −Bi = −λi|wi|22. (4.12)
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Evidently for t = 1
2 we have w1 = w2, λ1 = λ2, A1 = A2, B1 = B2. Moreover, we

recall that

1
2
A1 − 1

p
B1 = mtρ2 = t1+sm,

1
2
A2 − 1

p
B2 = m(1−t)ρ2 = (1 − t)1+sm. (4.13)

With these notations,

ψr(x) = ρ
ϑ(x) [w1(x− rz) + w2(x− re1)]
|ϑ(·) [w1(·−rz) + w2(·−re1)]|2

.

Estimate of |ϑ(·)[w1(· − rz) + w2(· − re1)]|2.
From above

|ϑ(·) [w1(·−rz) + w2(·−re1)]|22 � |w1(·−rz) + w2(·−re1)|22
= |w1|22 + |w2|22 + 2

∫
RN

w1(x− rz)w2(x− re1) dx

= ρ2 + 2
∫

RN

w1(x− rz)w2(x− re1) dx

= ρ2(1 + τ(r)).
(4.14)

From below,

|ϑ(·) [w1(·−rz) + w2(·−re1)]|22 =
∫

RN

|ϑ(x) [w1(x− rz) + w2(x− re1)]|2 dx

�
∫

RN

∣∣∣w1(x− rz) + w2(x− re1)
∣∣∣2 dx

−
∫

BR(0)

∣∣∣w1(x− rz) + w2(x− re1)
∣∣∣2 dx.

(4.15)
By the asymptotic behaviour of w1 and w2 (see (2.9)), for any q � 2 we have∫

BR(0)

∣∣∣w1(x− rz) + w2(x− re1)
∣∣∣q dx

� 2q−1

∫
BR(0)

[|w1(x− rz)|q + |w2(x− re1|q] dx = o(δ(r)). (4.16)

Therefore, by (4.14), (4.15) and (4.16) we get

|ϑ(·) [w1(·−rz) + w2(·−re1)]|22 � ρ2(1 + τ(r)) + o(δ(r)). (4.17)

Estimate of
∫

RN

[|∇ψr|2 + V (x)ψ2
r ] dx.
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Now, let us estimate∫
RN

∣∣∣∇(ϑ(x) [w1(x− rz) + w2(x− re1)]
)∣∣∣2 dx

�
∫

RN

(
|∇ [w1(x− rz) + w2(x− re1)]|2

+ 2
∫

RN

[
ϑ(x)∇ϑ(x)

]
·
(

[w1(x− rz) + w2(x− re1)]∇[w1(x− rz)

+ w2(x− re1)]
)

dx

+
∫

RN

|∇ϑ(x)|2 [w1(x− rz) + w2(x− re1)]
2 dx. (4.18)

By direct computation, (4.11) and (4.12), we obtain∫
RN

|∇ [w1(x− rz) + w2(x− re1)]|2 dx

= |∇w1|22 + |∇w2|22 + 2
∫

RN

∇w1(x− rz) · ∇w2(x− re1) dx

= |∇w1|22 + |∇w2|22 − (λ1 + λ2)
∫

RN

w1(x− rz)w2(x− re1) dx

+
∫

RN

[
wp−1

1 (x− rz)w2(x− re1) + w1(x− rz)wp−1
2 (x− re1)

]
dx

= A1 +A2 − (λ1 + λ2)
ρ2

2
τ(r) + σ(r). (4.19)

Since ∇ϑ ≡ 0 on R
N \BR(0), by using (2.9) (2.10) we get∫

RN

|∇ϑ(x)|2 [w1(x− rz) + w2(x− re1)]
2 dx

� c

∫
BR(0)

[w1(x− rz) + w2(x− re1)]
2 dx

= o(δ(r)) (4.20)

and∣∣∣∣∫
RN

[
ϑ(x)∇ϑ(x)

]
·
(
[w1(x− rz) + w2(x− re1)]∇[w1(x− rz) + w2(x− re1)]

)
dx

∣∣∣∣
� c

∫
BR(0)

∣∣∣ [w1(x− rz) + w2(x− re1)]∇ [w1(x− rz) + w2(x− re1)]
∣∣∣ dx

= o(δ(r)). (4.21)
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According to the contribution of the potential, by (Dρ), (2.9) and by lemma 4.4
we have ∫

RN

V (x) |ϑ(x) [w1(x− rz) + w2(x− re1)]|2 dx

�
∫

RN

V (x)
[
w1(x− rz) + w2(x− re1)

]2
dx = o(δ(r)). (4.22)

By (4.17)–(4.22) we deduce∫
RN

[|∇ψr|2 + V (x)ψ2
r

]
dx

� 1
1 + τ(r) + o(δ(r))

[
A1 +A2 − (λ1 + λ2)

ρ2

2
τ(r) + σ(r) + o(δ(r))

]
. (4.23)

Estimate of
∫

RN |ψr|pdx.
Since 0 � ϑ(x) � 1 in R

N and ϑ ≡ 1 in R
N \BR(0), by (4.16) and by lemma 4.3,

we get

|ϑ(·) [w1(·−rz) + w2(·−re1)]|pp =
∫

RN

∣∣∣ϑ(x) [w1(x− rz) + w2(x− re1)]
∣∣∣p dx

�
∫

RN

∣∣∣w1(x− rz) + w2(x− re1)
∣∣∣p dx−

∫
BR(0)

∣∣∣w1(x− rz) + w2(x− re1)
∣∣∣p dx

� |w1|pp + |w2|pp
+ (p− 1)

∫
RN

[
wp−1

1 (x− rz)w2(x− re1) + w1(x− rz)wp−1
2 (x− re1)

]
dx

−
∫

BR(0)

∣∣∣w1(x− rz) + w2(x− re1)
∣∣∣p dx

= B1 +B2 + (p− 1)σ(r) −
∫

BR(0)

∣∣∣w1(x− rz) + w2(x− re1)
∣∣∣p dx

� B1 +B2 + (p− 1)σ(r) + o(δ(r)).
(4.24)

Taking into account (4.14) and (4.24) we have that

|ψr|pp �
(

1
1 + τ(r)

)p/2

[B1 +B2 + (p− 1)σ(r) + o(δ(r))] . (4.25)

Estimate of E(ψr).

Therefore

E(ψr) =
1
2

∫
RN

[|∇ψr|2 + V (x)ψ2
r

]
dx− 1

p
|ψr|pp �
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� 1
2

(
1

1 + τ(r) + o(δ(r))

)[
A1 +A2 − (λ1 + λ2)

ρ2

2
τ(r) + σ(r) + o(δ(r))

]

− 1
p

(
1

1 + τ(r)

)p/2

[B1 +B2 + (p− 1)σ(r) + o(δ(r))] .

Observe that for every σ, τ > 0 and δ → 0 we have

1
2

(
1

1 + τ + o(δ)

)[
A1 +A2 − (λ1 + λ2)

ρ2

2
τ + σ + o(δ)

]

− 1
p

(
1

1 + τ

) p
2

[B1 +B2 + (p− 1)σ + o(δ)]

= ϕ(τ, σ) + o(δ),

where

ϕ(τ, σ) =
1
2

(
1

1 + τ

)[
A1 +A2 − (λ1 + λ2)

ρ2

2
τ + σ

]

− 1
p

(
1

1 + τ

) p
2

[B1 +B2 + (p− 1)σ] ,

and we have performed a Taylor expansion with respect to o(δ). We will write ϕt

in place of ϕ when we want to emphasize the role of t.
Now, we are going to consider the Taylor expansion of ϕ. Observe that these

expansions are consistent by (1) and (2) in lemma 4.5.
By (4.13), and taking into account (4.12), we have that

ϕ(0, 0) =
(

1
2
A1 − 1

p
B1

)
+
(

1
2
A2 − 1

p
B2

)
=
[
t1+s + (1 − t)1+s

]
m, (4.26)

∂ϕ

∂τ
(0, 0) = −1

2

[
A1 +A2 + (λ1 + λ2)

ρ2

2
−B1 −B2

]
= −1

2

[
A1 −B1 + λ1

ρ2

2

]
− 1

2

[
A2 −B2 + λ2

ρ2

2

]
= −1

2

[
−λ1tρ

2 + λ1
ρ2

2

]
− 1

2

[
−λ2(1 − t)ρ2 + λ2

ρ2

2

]
= −1

2
λ1ρ

2

(
1
2
− t

)
+

1
2
λ2ρ

2

(
1
2
− t

)
=

1
2

(
1
2
− t

)
(λ2 − λ1) ρ2. (4.27)

∂ϕ

∂σ
(0, 0) = −

(
1
2
− 1
p

)
. (4.28)
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Hence, we obtain

ϕ(τ, σ) = ϕ(0, 0) +
1
2

(
1
2
− t

)
(λ2 − λ1) ρ2τ −

(
1
2
− 1
p

)
σ + o

(√
τ2 + σ2

)
,

as (τ, σ) → (0, 0).

Now, we want to analyse the asymptotic behaviour of ϕ(τ(r), σ(r)) and, as a
consequence, of E(ψr), as r → ∞.

By lemma 4.5, for every t ∈ [0, 1
2 ) we have

ϕ(τt(r), σt(r)) = ϕ(0, 0) +
[
1
2

(
1
2
− t

)
(λ2 − λ1) ρ2c1,t −

(
1
2
− 1
p

)
c2,t

]
δt(r)

+ o(δt(r)), as r → ∞.

Taking into account lemma 4.5 and λ1 → λ2 as t→ 1
2 , we get[

1
2

(
1
2
− t

)
(λ2 − λ1) ρ2c1,t −

(
1
2
− 1
p

)
c2,t

]
−→−

(
1
2
− 1
p

)
C2 < 0,

as t→
(

1
2

)−
.

Then, for suitable constants C > 0 and μ ∈ (0, 1
2 )

E(ψr[t, z]) � [t1+s + (1 − t)1+s]m− Cδt(r) + o(δt(r)) ∀t ∈ [μ, 1/2)

(see (4.26). Since δt(r) → 0 as r → ∞, uniformly in t (see (4.7)), we can conclude
that there exists r1 > 0 such that

E(ψr[t, z]) < max
t∈[0,1]

[t1+s + (1 − t)1+s]m = 2−sm ∀t ∈ [μ, 1/2) , ∀r > r1.

(4.29)
If t = 1

2 , for suitable α, β, γ ∈ R we infer

ϕ(τ, σ) = ϕ(0, 0) −
(

1
2
− 1
p

)
σ + ατ2 + βσ2 + γστ + o

(
τ2 + σ2

)
,

as (τ, σ) → (0, 0). (4.30)

Now, consider that by lemma 4.5

σ1/2(r) = (c2, 1
2

+ o(1))δ1/2(r) (4.31)

and that, fixed η ∈ (0,
√

2−sλ∞/2], by lemma 4.4

τ1/2(r) = o

(
e
−2

(√
2−sλ∞−η

)
r
r−

N−1
2

)
, as r → +∞,

so that (
τ1/2(r)

)2 = o
(
δ1/2(r)

)
. (4.32)
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By (4.30), (4.31), (4.32), we can conclude that there exists r2 > 0 such that

E(ψr[1/2, z]) = ϕ(0, 0) − C

(
1
2
− 1
p

)
δ1/2(r) + o

(
δ1/2(r)

)
< 2−sm ∀r > r2.

(4.33)
If t ∈ [0, μ], then, taking into account that δt(r) � δ0(r) for every t ∈ [0, 1/2], we

get

E(ψr[t, z]) � ϕt(0, 0) +O (δ0(r))

� [t1+s + (1 − t)1+s]m+O (δ0(r))

� [μ1+s + (1 − μ)1+s]m+O (δ0(r)) ∀t ∈ [0, μ].

Since [μ1+s + (1 − μ)1+s]m < 2−sm, there exists r3 > 0 such that

E(ψr[t, z]) < 2−sm ∀t ∈ [0, μ], ∀r > r3. (4.34)

So, assertion (a) follows from (4.29), (4.33), (4.34), for every r > r̄ :=
max{r1, r2, r3}.

The estimates developed above also show that

E(ψr[0, z]) � ϕ0(0, 0) + o (δ0(r)) = m+ o (δ0(r))

so that E(ψr[0, z])−→m, as r → ∞. The same arguments work to evaluate

E(ψr[1, z]) � m+ o (δ0(r)) ,

uniformly in z ∈ Σ. So, also (b) is proved. �

4.2. Other estimates

In this subsection we consider the nonautonomous case Ω �= R
N or V �≡ 0.

The following definition of barycentre of a function u ∈ H1(RN ) \ {0} , has been
introduced in [15]. We set

μ(u)(x) =
1

|B1(0)|
∫

B1(x)

|u(y)|dy (4.35)

and we remark that μ(u) is bounded and continuous, so we can introduce the
function

û(x) =
[
μ(u)(x) − 1

2
maxμ(u)

]+

, (4.36)

that is continuous and has compact support. Thus, we can set β : H1(RN ) \ {0} →
R

N as

β(u) =
1

|û|1

∫
RN

û(x)xdx.
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The map β has the following properties:

β is continuous in H1(RN ) \ {0}; (4.37)

if u is a radial function, then β(u) = 0; (4.38)

β(tu) = β(u) ∀t ∈ R \ {0}, ∀u ∈ H1(RN ) \ {0}; (4.39)

β(u(x− z)) = β(u) + z ∀z ∈ R
N ∀u ∈ H1(RN ) \ {0}. (4.40)

Let us set

C0 = inf{E(u) : u ∈ H1
0 (Ω), |u|2 = ρ, β(u) = 0}.

Lemma 4.7. We have that C0 > m.

Proof. Of course we have that C0 � m. Assume by contradiction that C0 = m.
Then by corollary 3.3 there exists a sequence (yn)n in R

N such that |yn| −→∞, as
n→ ∞, and

un(x) = w(x− yn) + φn(x), φn → 0 strongly in H1(RN ).

By (4.37), (4.38) and (4.40) we have

0 = β(un) = β(w(·−yn) + φn) = β(w + φ(·+yn)) + yn = yn + o(1),

contrary to |yn| −→∞, as n→ ∞.
So the proof is completed �

Lemma 4.8. Let Ar and Lr be as in proposition 4.1. Then r̂ > 0 exists such that

Lr < C0 � Ar, for all r � r̂. (4.41)

Proof. Inequality Lr < C0, for large r, follows from (4.4) and lemma 4.7.
To get the second inequality in (4.40), we claim that β(ϑ(·)w(· − rz)) · z > 0 for

all z ∈ Σ, for large r. Indeed, by (4.36),(4.37) and (4.39) we have∣∣∣β(ϑ(·)w(·−rz))− rz
∣∣∣ =

∣∣∣β(ϑ(·+rz)w)∣∣∣ r→∞−−−→ 0,

because ϑ(· + rz)w → w in H1 as r → ∞, by (2.3) and (2.4). Hence

β(ϑ(·)w(·−rz)) = rz + o(1) as r → ∞,

as asserted. So, for r large, the deformation G : [0, 1] × Σ → R
N \ {0} given by

G(s, z) = sβ(ψr[1, z]) + (1 − s) z (4.42)

is well defined. Then we claim that there exists (tr, zr) ∈ [0, 1] × Σ such that

β(ψr[tr, zr]) = 0. (4.43)

Indeed, by the continuity of the maps β and ψr, by G(s, z) �= 0, ∀(s, z) ∈ [0, 1] × Σ,
and by the invariance of the topological degree by homotopy, we have

0 �= d(Id,Σ × [0, 1), 0) = d(β ◦ ψr,Σ × [0, 1), 0).

From (4.43) there follows C0 � E(ψr[tr, zr]) � Ar, that completes the proof. �
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5. Proof of the main results

The existence of a positive solution for the autonomous case Ω = R
N and V ≡ 0 is

well known, so we prove our results when Ω = R
N and V ≡ 0 does not occur.

Proof of Theorem 1.1. Let us recall the values

Ar = max {E (ψr[t, z]) : t ∈ [0, 1], z ∈ Σ} , (5.1)

Lr = max{E (ψr[1, y]) : z ∈ Σ}, (5.2)

C0 = inf{E(u) : u ∈ H1
0 (Ω), |u|2 = ρ, β(u) = 0}. (5.3)

By propositions 4.1 and 1.4 (see (2.11)), and by lemma 4.8, we have that for all
r > max{r̄, r̂}

m < Lr < C0 � Ar < 2−sm. (5.4)

We claim that the functional E has a (PS)-sequence in [C0,Ar]. This done,
the existence of a critical point ū of E on Sρ with E(ū) � Ar follows from
proposition 3.1.

Assume, by contradiction, that no (PS)-sequence exists in [C0,Ar]. Then, usual
deformation arguments imply the existence of η > 0 such that the sublevel EC0−η :=
{u ∈ H1

0 (Ω) : |u|22 = ρ2, E(u) � C0 − η} is a deformation retract of the sublevel
EAr := {u ∈ H1

0 (Ω) : |u|22 = ρ2, E(u) � Ar}, namely there exists a continuous
function ϕ : EAr → EC0−η such that

ϕ(u) = u for any u ∈ EC0−η. (5.5)

Furthermore, by (5.4) we can also assume η so small that

C0 − η > Lr. (5.6)

Let us define the map H : [0, 1] × Σ → R
N by

H(s, y) = β
(
ϕ
(
ψr[t, z]

))
.

By (5.6), (5.5), and by using the map G introduced in (4.42), we deduce that H
maps {1} × Σ in a set homotopically equivalent to Σ in R

N \ {0}. Since H is a
continuous map, and arguing exactly as for (4.43), we get the existence of a point
(t̃, z̃) ∈ [0, 1] × Σ such that

0 = H(t̃, z̃) = β(ϕ(ψr[t̃, z̃])).

Then by the definition of C0 we see E(ϕ(ψr[t̃, z̃])) � C0, contrary to ϕ(ψr[t, z]) ∈
EC0−η for every (t, z) ∈ [0, 1] × Σ, so the claim must be true.

Finally, since E(ū) ∈ (m, 2−sm) then ū has constant sign by proposition 2.2.
Observe that since ū solves (P) if and only if −ū solves (P), then we have a
nonnegative solution. �

Proof of Theorem 1.2. This proof proceed in two different ways, according to Ω �=
R

N or Ω = R
N . In both cases, we identify a topological configuration analogous to

the one employed in the proof of theorem 1.1 to get the solution. We only outline
the procedure, because the argument is the same already developed in details.
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Case Ω �= R
N .

Let us apply proposition 4.1, lemma 4.7 and lemma 4.8 with V ≡ 0. Then for a
fixed r > 0, large enough, we get

m < Lr,0 < C0,0 � Ar,0 < 2−sm, (5.7)

where Lr,0, C0,0, Ar,0 are defined as in (5.1), (5.2), (5.3), with the functional E
replaced by

E0(u) :=
1
2

∫
Ω

|∇u|2dx− 1
p

∫
Ω

|u|pdx, u ∈ H1
0 (Ω).

The configuration in (5.7) depends on Ω and ρ.
Now, observe that Lr,0 � Lr, C0,0 � C0, Ar,0 � Ar, by (1.1). Moreover, by the

Hölder inequality and (2.9), it follows that

lim
|V |q→0

∫
RN

V (x) (ψr[t, z])
2 dx � lim

|V |q→0
|V |q max

t∈[0,1], z∈Σ
|(ψr[t, z])2|q′ = 0,

uniformly in t ∈ [0, 1] and z ∈ Σ, that implies

lim
|V |q→0

Lr = Lr,0, lim
|V |q→0

Ar = Ar,0.

Hence, taking also into account lemma 4.8, we see that there exists L = L(Ω, ρ)
such that if |V |q < L then the configuration (5.4) is restored. In particular,

L <
1

max
t∈[0,1], z∈Σ

|(ψr[t, z])2|q′
(2−sm−Ar,0). (5.8)

As a consequence, if |V |q < L we get a critical value for E constrained on Sρ, in
the energy range (m, 2−sm).

Again, since the solution ū we have found verifies E(ū) ∈ (m, 2−sm), it is a
constant sign solution by proposition 2.2.

Case Ω = R
N .

Let r > 0 and let us introduce the values

Ãr = max {E (w(·−y)) : y ∈ Br(0)} , (5.9)

L̃r = max{E (w(·−y)) : y ∈ ∂Br(0)}. (5.10)

Then it turns out that for every fixed V there exists rV > 0 such that for every
r > rV

m < L̃r < C0 � Ãr. (5.11)

By Hölder inequality, for every y ∈ R
N

E
(
w(·−y)) = m+

1
2

∫
RN

V (x) [w(·−y)]2dx � m+
1
2
|V |q |w2|q′ .
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Hence, Ãr < 2−sm provided

1
2
|V |q |w2|q′ <

(
1 − 1

2s

)
(−m). (5.12)

After some computation, by (2.7) with 1 in place of ρ and ρ2 in place of k, we see
that (5.12) is equivalent to

|V |q ρ− 2s
q (q−N

2 ) < c, (5.13)

for a suitable constant c > 0 depending on N, p and q. Hence, setting for example

L =
1
2
c ρ

2s
q (q−N

2 ), (5.14)

if |V |q < L then the inequalities (5.11) can be completed as

m < L̃r < C0 � Ãr < 2−sm, ∀r > rV . (5.15)

Moreover, by (5.13) we obtain (1.7) and (1.8). Finally, by (5.15) we can argue as
in the proof of theorem 1.1 to get the solution we are looking for. �

Remark 5.1. Let ρ > 0 be fixed. Arguing as in [32, Theorem 3.1], it is possible to
verify that

lim
r(Ω)→∞

C0,0 = 2−sm

(see(1.9)). Then by C0,0 � Ar,0 < 2−sm and (5.8) we obtain

lim
r(Ω)→∞

L = 0.

6. The case N = 1

In this section we consider the 1-dimensional case⎧⎪⎨⎪⎩
−u′′ + λu+ V (x)u = |u|p−2u in I,

λ ∈ R, u ∈ H1
0 (I),

∫
I

u2 dx = ρ2,
(P1)

where we can consider I = R or I = (0,∞), V ∈ Lq(I) for some q ∈ [1,∞], V � 0
and 2 < p < 6.

First, let us consider the entire case. For N = 1, in the asymptotic behaviour of
the limit function w (see (2.3) and (2.4)) we cannot take advantage of the polino-
mial contribution provided by |x|N−1

2 . As a consequence, the key estimate (4.3) in
proposition 4.1 does not hold and theorem 1.1 fails.

On the other hand, theorem 1.2 does not need proposition 4.1 and it can be again
stated:
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Theorem 6.1. Let I = R, ρ > 0, V ∈ Lq(R), for q ∈ [1,+∞], and V � 0 in R, then
there exists a constant L = L(ρ) > 0 such that if |V |q < L then problem (P1) has a
positive solution.

Sketch of the proof. This theorem can be proved exactly as theorem 1.2-case
Ω = R

N : we introduce Ãr, C0 and L̃r (see (5.9), (5.3) and (5.10)) and then observe
that for |V |q small m < L̃r < C0 � Ãr < 2−sm. So, by proposition 3.1, we can
argue by deformation as in the proof of theorem 1.1, getting the existence of a
nonnegative solution ū. By proposition 1.3, the solution ū is positive.

According to the exterior case, that is I = (0,∞), first let us state some
nonexistence results.

Remark 6.2. If I = (0,+∞) and V (x) ≡ 0, then the autonomous problem (P1)
has no solution.

Indeed, if u is a solution of (P1), then it is a regular free solution of an equation of
the form −u′′ = f(u), u(0) = 0, where f(u) = −λu+ |u|p−2u. Then u ≡ 0 by [20,
Remark I.3], contrary to u ∈ Sρ.

Proposition 6.3. Let I = R or I = (0,∞). If V ∈ L∞(I) is a monotone locally
Lipshitz function such that V ′ �= 0 on a set of positive measure, then problem (P1)
has no solution.

Proposition 6.3 is a simplified version of proposition 1.5 in the 1-dimensional
case, adapted also to half lines.

Proof. We are assuming V non increasing and I = (0,∞).
Suppose by contradiction that there exists a solution u of (P1). Since the solutions

of (P1) are in H2(I), we can consider a sequence (un)n in C∞
0 ((1/n,∞)) such

that un → u in H2(I). For every n ∈ N, the map t �→ un(x+ t), t ∈ (−1/n,∞),
turns out to be a smooth curve in H1(I) and we can consider the regular map
t �→ fn(t) := E(un(x+ t)). Since u is a solution of (P1), we have

f ′n(0) = E′(un)[u′n] = O(1). (6.1)

From the monotonicity of V and Fatou’s lemma we infer

f ′n(0) = lim
t→0

1
t

[
E
(
un(·+t))− E

(
un

)]
= lim

t→0+

1
2t

∫ ∞

1
n

V (x)[u2
n(x+ t) − u2

n(x)] dx

= lim
t→0+

1
2

∫ ∞

1
n

V (x− t) − V (x)
t

u2
n(x) dx

� 1
2

∫ ∞

0

(−V ′(x))u2
n(x) dx

� 0. (6.2)
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Letting n→ ∞ in (6.1) and (6.2), we obtain∫ ∞

0

V ′(x)u2(x) dx = 0,

that is a contradiction. Indeed, by assumption V ′ � 0 a.e. in I and V ′ < 0 on a
set of positive measure, while |{x ∈ I : u(x) = 0}| = 0 because u(x) = 0 implies
u′(x) �= 0 otherwise u ≡ 0 by the Cauchy-Lipschitz theorem.

If I = R we can proceed in a similar way. �

Remark 6.4. In the proof of proposition 6.3, we cannot consider directly the curve
in H1

0 (I) defined by γ(t) := u(· + t), t � 0. Indeed, u′(0) �= 0 prevents u′ ∈ H1
0 (I),

so γ would be not a regular curve in H1
0 (I).

Finally, let us state an existence result on half lines, that inherits the topological
structure of the entire case.

Theorem 6.5. Let I = (0,∞), ρ > 0, V ∈ Lq(R), for some q ∈ [1,+∞] and V � 0.
If |V |q < L, with L as in theorem 6.1, then there exists R̄ = R̄(V, ρ) > 0 such that
problem (P1) with V (x−R) has a positive solution for every R > R̄.

Proof. In order to get a solution, we are going to solve (P1) with V fixed, on
H1

0 ((−R,∞)).
Let us consider (P1) on H1(R), with V fixed, and let us define Ãr, C0 and L̃r as

in the proof of theorem 6.1. Moreover, let us fix a cut-off function ϑ̃ ∈ C∞(R, [0, 1])
such that ϑ̃(x) = 0 ∀x ∈ (−∞, 0), ϑ̃(x) = 1 ∀x ∈ (1,∞) and introduce

Ãr,R = max
{
E
(
ϑ̃(·+R)w(·−y)

)
: y ∈ [−r, r]

}
,

C0,R = inf{E(u) : u ∈ H1(−R,∞), |u|2 = ρ, β(u) = 0},
L̃r,R = max

{
E
(
ϑ̃(·+R)w(·−y)

)
: y ∈ {−r, r}}.

Then,

lim
R→∞

Ãr,R = Ãr, lim
R→∞

C0,R = C0, lim
R→∞

L̃r,R = L̃r.

Hence, for large R, we get

m < L̃r,R < C0,R � Ãr,R < 2−sm

and we can argue as in the proof of theorem 1.1, by proposition 3.1. �
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Appendix

The following proof could be shortened by taking into account, for example, Lemma
B.3 in [39]. We develop some more details on the bootstrap procedure, for the sake
of completeness.

For classical regularity results, we refer the reader for example to [30, §10], and
in particular Theorem 10.2 therein, or to [23, §8].

Proof of proposition 1.3. (a) Once proved ū ∈ C0,α
loc (Ω) we are done. Indeed, when

q > N
2 we can apply the Harnack inequality and conclude that the nonnegative

solutions are actually strictly positive in Ω (see [36, Theorem 7.2.1]).
To verify that ū ∈ C0,α

loc (Ω), we begin by observing that the function ū verifies

− Δū = ψ(x)ū for ψ(x) = −λ− V (x) + |ū|p−2, x ∈ Ω. (A.1)

Since V ∈ Lq
loc(Ω) with q > N/2, we have that ψ ∈ Lq1

loc(Ω) with

q1 = min
{

2N
(N − 2)(p− 2)

, q

}
.

Notice also that q1 > N
2 because p < 2∗. By Hölder inequality, ψū ∈ Lr1

loc(Ω) with
r1 defined by

1
r1

=
1
q1

+
N − 2
2N

.

By regularity results, we have that:

(1) if r1 > N
2 , then ū ∈ C0,α

loc (Ω) with α < 2 − N
r1

;

(2) if r1 = N
2 , then ū ∈ Ls

loc(Ω) ∀s > 1;

(3) if r1 < N
2 , then ū ∈ L

r1N/(N−2r1)
loc (Ω).

In case (1) the assertion is proved.
In case (2) it is readily seen that ψ ū ∈ Ls1

loc(Ω) for every 1 � s1 < q. Hence we
can conclude as in the previous case, choosing N/2 < s1 < q.
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If (3) holds, then ψ ∈ Lq2
loc(Ω), with

q2 = min
{

r1N

(N − 2r1)(p− 2)
, q

}
.

Since q1 > N
2 , we get r1N

N−2r1
> 2N

N−2 and hence q2 � q1.
Now, repeating the same argument of the previous step, by Hölder inequality

ψū ∈ Lr2
loc(R

N ) with r2 defined by

1
r2

=
1
q2

+
N − 2r1
r1N

,

and again we have

(4) if r2 � N
2 , then ū ∈ C0,α

loc (Ω);

(5) if r2 < N
2 , then ū ∈ L

r2N/(N−2r2)
loc (Ω).

Observe that r2 > r1 because q2 � q1 and r1N
N−2r1

> 2N
N−2 .

Iterating this bootstrap argument, we claim that, after k̄ steps, rk̄ � N
2 , so that

we are done. If, by contradiction, the claim is false, then for every integer k we
define

qk = min
{

rk−1N

(N − 2rk−1)(p− 2)
, q

}
,

1
rk

=
1
qk

+
N − 2rk−1

rk−1N
. (A.2)

Inductively, it turns out that qk � qk−1 and rk > rk−1, for any k ∈ N, with qk � q
and rk < N

2 . Let us set

lim
k→+∞

rk = R, lim
k→+∞

qk = Q.

Getting k → ∞ in (A.2) we obtain

1
R

=
1
Q

+
N − 2R
RN

that implies Q = N
2 , contrary to Q � q1 >

N
2 . So, a contradiction arises and (a) is

proved.
(b) The function ū verifies

−Δū = φ for φ(x) = −λū− V (x)ū+ |ū|p−2ū, x ∈ Ω.

If V ∈ Lq
loc(Ω), with q > N , then ū ∈ L∞

loc(Ω), by (a), and so φ ∈ Lq
loc(Ω), that

allows us to deduce ū ∈ C1,α(Ω).
(c) This point follows by classical regularity results.
(d) By classical regularity results, ū is continuously differentiable. If ū is nonneg-

ative, then it turns out to be positive, by the Harnack inequality (see [36, Theorem
7.2.1]).

(e) By a direct verification on (P1), we see that there exists ū′′ in Lq(Ω), in a
weak sense. Hence, if q < 2 then ū′ ∈W 1,q

loc (Ω) and if q � 2 then ū′ ∈ H1
loc(Ω). In

any case, we can conclude that ū′ ∈ C0,α
loc (Ω), so the proof is complete. �
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