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Summary

New paradigms in genetics have increased the chance of finding genes that appear redundant but in
fact may have been preserved due to a small level of positive selection potential acting during each
generation. Monitoring changes in genotypic frequencies within and between generations allows the
dissection of the fertility, viability and meiotic drive selection components acting on such genes in
natural and experimental populations. Here, a formal maximum likelihood procedure is developed
to identify and estimate these selection components in highly selfing populations by fitting the
time-dependent solutions for genotypic frequencies to observed multigenerational counts. With adult
census alone, we can not simultaneously estimate all three selection components considered. In such
cases, we instead consider a hierarchy of 11 models with either fewer selection components, complete
dominance, or multiplicative meiotic drive with a single parameter. We identify the best-fitting of
these models by applying likelihood ratio tests to nested models and Akaike’s Information Criterion
(AIC ) and the Bayesian Information Criterion (BIC ) to non-nested models. With seed census,
fertility and viability selection are not distinguishable and thus can only be estimated jointly. A
combination of joint seed and adult census data allows us to estimate all three selection components
simultaneously. Simulated data validate the estimation procedure and provide some practical
guidelines for experimental design. An application to Arabidopsis data establishes that viability
selection is the major selective force acting on the ACT2 actin gene in laboratory-grown Arabidopsis
populations.

1. Introduction

In the last decade classical searches for mutant
phenotypes in populations have given way to new
sequence-based approaches of gene identification and
characterization (McKinney et al., 1995; Arabidopsis
Genome Initiative, 2000), with phenotypes to be de-
termined later. This new paradigm in genetics has
increased the chance of finding genes that appear re-
dundant but in fact may have been preserved due to
a small level of positive selection potential acting dur-
ing each generation (Gilliland et al., 1998; Krakauer
& Nowak, 1999; Martienssen & Irish, 1999; Tautz,
2000). However, measuring natural selection on
genes is necessarily difficult when they are subject only

to small incremental selection in each generation
(Kimura, 1991; Ohta, 1992). Here, we formalize our
early work (Asmussen et al., 1998; Gilliland et al.,
1998) showing that multigenerational studies of geno-
typic frequencies may be the key to obtaining stat-
istically significant measures of the selection potential
of such genes.

There may be several selection components acting
simultaneously on one genetic marker, such as vi-
ability, fertility and gametic selection. Accurately
estimating the form and strength of these selection
components allows us to understand this evolutionary
process in detail. Several approaches have been used
to estimate selection components in both animal and
plant populations. One approach is to design a series
of essentially separate experiments to estimate indi-
vidual selection components (Prout, 1971; Bundgaard
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& Christiansen, 1972). A second method utilizes
population structure information by taking mother–
offspring combinations in conjunction with male
population samples (Christiansen & Frydenberg,
1973). As a third approach, Clegg et al. (1978) esti-
mated selection components based on multiple census
data within each generation from a population.

Another approach, closely related to ours, was de-
veloped by DuMouchel & Anderson (1968), who set
up a general maximum likelihood method for estimat-
ing selection parameters in experimental, random-
mating populations. This procedure uses numerical
methods to find a set of selection values that maximize
likelihoods, which are functions of observed and ex-
pected genotypic frequencies over multiple, non-
overlapping generations. The expected frequencies are
calculated by iterating their recursion equations from
the initial, known allele frequencies, under random
mating. A chi-square criterion is used to test the
goodness-of-fit of the model. This method was ap-
plied successfully to lethal loci in several Drosophila
melanogaster populations (Anderson, 1969).

In this study, we develop a formal method for
estimating multiple selection components in highly
selfing populations by fitting a mathematical model
with explicit time-dependent solutions to observed
multigenerational genotypic counts. The underlying
model for adult data was derived previously and
provides the expected genotypic frequencies in adults
at a diallelic locus in a selfing, diploid population
under any combination of fertility, viability and ga-
metic selection (Asmussen et al., 1998). As a prelimi-
nary application, this model was applied to an exper-
imental Arabidopsis population, which is ideal for this
kind of study because of its small size, short life cycle,
small genome, and negligible rate of outcrossing
(Meyerowitz, 1989, 1994; Abbott & Games, 1989).
Based on informal, ad hoc methods this model had a
good fit to the first three generations of actin gene
data, assuming either fertility or viability selection
alone.

The present paper extends the previous study in five
critical ways. First, a formal maximum likelihood
procedure is developed and used to estimate selection
parameters by fitting the explicit time-dependent sol-
utions for genotypic frequencies to observed multi-
generational data. Second, we use the simulated an-
nealing algorithm to find the estimates for the
parameters, and the profile likelihood method to ob-
tain their confidence intervals. Third, two additional
generations of data are used in the current estimation
procedure for greater accuracy. Fourth, in addition to
the adult census scheme considered before, we derive
the genotypic frequency dynamics and estimation
procedures for selection components under both a
seed census and a joint adult/seed census. Fifth, simu-
lated data are used to test the estimation procedure

and deduce practical guidelines for experimental
design.

2. The selfing model with adult census

The underlying selection model for an adult census
was developed by Asmussen et al. (1998). This frame-
work assumes two alleles, A1 and A2, at a diallelic,
autosomal nuclear locus in a purely selfing, diploid
population with discrete, non-overlapping gener-
ations, no mutation, gene flow, or seed dormancy, and
large enough to preclude the effects of random genetic
drift. The genotypes are subject to constant fertility
selection, viability selection, and gametic selection via
meiotic drive. Adult and seed frequencies and selec-
tion parameters for the three possible genotypes are as
shown in Table 1. Following the notation of Asmus-
sen et al. (1998), uij is the frequency and Nij the count,
of genotype AiAj in adults for ifj=1, 2. The corre-
sponding seed frequency and count are denoted by sij
and nij, respectively. The fertility parameter fij rep-
resents the average number of offspring produced
by an AiAj adult, whereas the viability parameter vij
is the probability that an AiAj zygote survives to re-
produce. The final selection parameter mij, for meiotic
drive, is the average proportion of offspring that are
AiAj when an A1A2 heterozygote selfs. The three mei-
otic drive parameters are non-negative numbers that
sum to 1 (m11+m12+m22=1).

Under these conditions the time-dependent sol-
utions for the adult genotypic frequencies in each
generation to1 are:

u(t)11=
x(t)
1

1+x(t)
1 +x(t)

2

, (1)

u(t)12=
1

1+x(t)
1 +x(t)

2

, (2)

u(t)22=
x(t)
2

1+x(t)
1 +x(t)

2

, (3)

where for i=1, 2, x(t)
i =

u(t)ii

u(t)12
is the ratio of the frequency

Table 1. Genotypic frequencies, counts and selection
parameters

Genotype

A1A1 A1A2 A2A2 Total

Adult frequencies u11 u12 u22 1
Seed frequencies s11 s12 s22 1
Adult counts N11 N12 N22 N
Seed counts n11 n12 n22 n
Fertility parameters f11 f12 f22 N/A
Viability parameters v11 v12 v22 N/A
Meiotic drive parameters m11 m12 m22 1
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of AiAi to A1A2 adults in generation t, and

x(t)
i =

(ai)
t(x(0)

i xxi*)+xi* if ail1

x(0)
i +tbi if ai=1,

(
(4)

ai=
fiivii

m12 f12v12
, (5)

bi=
miivii
m12v12

, (6)

xi*=
bi

1xai
=

f12miivii
m12 f12v12xfiivii

: (7)

The derivation details are shown in Asmussen et al.
(1998), which also pointed out that this selfing model
can also be applied with reasonable accuracy to
partially random-mating populations in which the
outcrossing rate is negligible.

3. Parameter estimation with adult census

(i) The selection parameters to be estimated

With the three selection components in our model,
there are six independent parameters to be estimated:
two for each component. This is because the three
meiotic drive parameters sum to 1, and the frequency
dynamics are identical whether the absolute or rela-
tive values are used for the fertility and viability
components. Here, the relative fertility Fi and relative
viability Vi for AiAi homozygotes are normalized with
respect to a value of 1 for heterozygotes, i.e.

Fi=
fii
f12

(8)

and

Vi=
vii
v12

, (9)

for i=1, 2.
Ideally, we could estimate all six independent

selection parameters simultaneously. However, since
the dynamics of the adult genotypic frequencies in
equations (1)–(7) are totally determined by four
composite parameters (a1, a2, b1 and b2), we can esti-
mate at most four selection parameters at a time
if only adults are censused. Subject to this con-
straint, we instead determine the best-fitting model
among 11 cases with either fewer selection compo-
nents, complete dominance, or multiplicative gametic
selection with a single meiotic drive parameter (m)
(Table 2).

(ii) The log-likelihood function

Under the assumption that the genotypic counts in
each generation have a trinomial distribution (Weir,

1996) and the sampling for each generation is inde-
pendent, the overall log-likelihood function L for g
consecutive generations of sampling is the sum of
the log-likelihoods for each generation, and can be
written as

L=C+
Xg
t=1

X2
i=1

X2
j=i

(N(t)
ij ln u(t)ij ), (10)

where C is a constant depending on the observed
counts, the genotypic frequencies uij

(t) at time t are
functions of the selection parameters and the initial
genotypic frequencies given by equations (1)–(7), and
Nij

(t) are the observed adult counts of type Aij, for
if j=1, 2 (Table 1). The maximum likelihood esti-
mates are those selection parameters that maximize L.

(iii) The estimation procedure

The maximum likelihood estimation (MLE) pro-
cedure is applied after verifying that the multi-
generational frequency data significantly deviate from
selective neutrality with a G-test (Sokal & Rohlf,
1995). Since analytical solutions for the MLE esti-
mates are not possible, we instead use numerical
methods. For each model in Table 2, the estimation
procedure consists of three steps.

First, the four composite parameters (a1, a2, b1
and b2) are calculated and used to express the log-
likelihood function L in equation (10) in terms of
the selection parameters to be estimated (Table 2,
column 4).

Second, simulated annealing (SA) is used to find
the set of parameter values that maximize L. SA is an
algorithm that optimizes multidimensional functions
efficiently. The basic idea is as follows. SA searches
the whole parameter space for each parameter and
tries to find the global optimum of the objective
function. It moves both up and downhill as the opti-
mization process proceeds, and it focuses on the most
promising area of the parameter space. The computer
code and full description of SA are provided by Goffe
et al. (1994). The parameter spaces for Fi and Vi are
both taken to be (0, 1.0r1025), where the upper
bound, 1.0r1025, is simply an arbitrarily large num-
ber chosen to include virtually all possible relative
viabilities and fertilities for the two homozygotes; for
mij and m we use (0, 1).

Third, we use the profile likelihood method to
obtain approximate 95% confidence intervals for
the estimated parameters. The results are similar to
those from a bootstrap with the advantage of being
computationally more efficient (Lowther & Skalski,
1996).

(iv) Identifying the best-fitting model

As shown in Fig. 1, the 11 models considered (Table
2) have four levels of complexity, based on the

Estimating selection components 43

https://doi.org/10.1017/S0016672303006311 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672303006311


Table 2. Selection parameters to be estimated in the 11 models with only adults censused

Selection componentsa Parameters estimated Parameter conditions Composite parametersb

Fertility and meiotic drive F1, F2, m11, m22 V1=V2=1 ai=Fi/(1xm11xm22), bi=mii/(1xm11xm22), i=1, 2
Viability and meiotic drive V1, V2, m11, m12 F1=F2=1 ai=Vi/(1xm11xm22), bi=miiVi/(1xm11xm22), i=1, 2
Fertility and viability F1, F2, V1, V2 m11=m22=1/4, m12=1/2 ai=2FiVi, bi=Vi/2 , i=1, 2
Fertility and multiplicative
meiotic drive

F1, F2, m V1=V2=1, m11=m2,
m12=2m(1xm), m22=(1xm)2

ai=Fi/[2m(1xm)], i=1, 2
b1=m/[2(1xm)], b2=(1xm)/(2m)

Viability and multiplicative
meiotic drive

V1, V2, m F1=F2=1, m11=m2,
m12=2m(1xm), m22=(1xm)2

ai=Vi/[2m(1xm)], i=1, 2
b1=mV1/[2(1xm)], b2=(1xm)V2/(2m)

Fertility F1, F2 V1=V2=1,
m11=m22=1/4, m12=1/2

ai=2Fi, bi=1/2, i=1, 2

Viability V1, V2 F1=F2=1,
m11=m22=1/4, m12=1/2

ai=2Vi, bi=Vi/2, i=1, 2

Meiotic drive m11, m12 F1=F2=1, V1=V2=1 ai =1/(1xm11xm22), bi=mii/(1xm11xm22), i=1, 2
Multiplicative meiotic drive m F1=F2=1, V1=V2=1,

m11=m2, m12=2m(1xm),
m22=(1xm)2

ai=1/[2m(1 – m)], i=1, 2
b1=m/[2(1xm)], b2=(1xm)/(2m)

Fertility and viability with A1

dominant and meiotic drive
f22, v22, m11, m22 f11=f12 =1

v11=v12=1
a1=1/(1xm11xm22), a2=f22v22/(1xm11xm22)
b1=m11/(1xm11xm22), b2=m22v22/(1xm11xm22)

Fertility and viability with A2

dominant and meiotic drive
f11, v11, m11, m22 f22=f12=1

v22=v12=1
a1=f11v11/(1xm11xm22), a2=1/(1xm11xm22)
b1=m11v11/(1xm11xm22), b2=m22/(1xm11xm22)

a Meiotic drive denotes the general case with arbitrary values for m11, m12 and m22 ; multiplicative meiotic drive denotes the special case where m11=m2, m12=2m(1xm) and
m22=(1xm)2.
b Defined in equations (5) and (6).
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number of parameters estimated and degrees of free-
dom, and have some nested structure (nested models
are connected by lines). To identify the best-fitting
model, we first use a G-test to eliminate the models
which do not fit the data, i.e. those for which the
observed multigenerational genotypic counts signifi-
cantly deviate from those expected under their MLE
selection parameter estimates. Here the G-statistic is

G=2
Xg
t=1

X2
i=1

X2
j=i

N (t)
ij ln

N (t)
ij

E (t)
ij

 !" #
, (11)

where N (t)
ij and E (t)

ij are the observed and expected
genotypic counts of AiAj individuals in generation t,
respectively. This test has a chi-square distribution
with 2g-k degrees of freedom, where g is the number
of generations analysed from the population and k is
the number of parameters that have been estimated.

Second, we find the better-fitting model within each
nested pair in the remaining models. To compare two
nested models M1 and M2 with r1>r2 parameters, re-
spectively, we use the likelihood ratio test (Wahrendorf
et al., 1987). The likelihood ratio statistic

LR(M1,M2)=2[L(M1)xL(M2)], (12)

here follows a central chi-square distribution with
r1–r2 degrees of freedom under the null hypothesis
that the fit of the two models is not significantly

different, where L(M1) and L(M2) are the maximum
log-likelihoods of the nested models M1 and M2, re-
spectively. A significant P-value for this statistic in-
dicates that model M1 has a significantly improved fit
to the observed data compared with the nested model
M2 and thus is the better-fitting model. Otherwise,M2

is taken to be the better-fitting model, by parsimony.
If a model is retained in one nested pairwise com-
parison but rejected in another, it is removed from
further consideration.

Finally, we identify the overall best-fitting model
from those still remaining via Akaike’s Information
Criterion (AIC ) (Akaike, 1973) and the Bayesian
Information Criterion (BIC ) (Schwarz, 1978). The
AIC and BIC for model Mi are

AICMi
=x2[L(Mi)xki] (13)

and

BICMi
=x2L(Mi)+ki ln(N), (14)

where L(Mi) is the log-likelihood and ki the number of
parameters for model Mi, and N is the sample size.
The only difference between the two indices is that
BIC takes account of the sample size. The model that
gives the minimum AIC and BIC is considered the
best-fitting model. In most cases, especially when the
sample size is large, the two indices will give a con-
sistent result, i.e. favour the same model. Should an
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Fig. 1. Hierarchical display of the 11 models considered under an adult census with nested models connected by lines.
Selection components are defined in Table 2 and equations (8) and (9). Selection components without parameters listed
are assumed to be selectively neutral. The lowest tier with no parameters is the null model of selective neutrality.
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inconsistent result occur, some other method(s) of
model selection, such as bootstrapping and cross-
validation, could instead be applied (Forster, 2000).
If no model is retained before the last step, it suggests
that selection alone cannot account for the observed
genotypic frequency dynamics and it is necessary to
consider other possible evolutionary forces.

This best model identification process is fully auto-
mated with Perl scripts and is available from the
authors upon request along with the estimation pro-
grams.

4. Estimation with seed or joint adult/seed census

Our selfing model and estimation procedure assume
only adults are censused. However, in some cases,
a seed census may be taken, either alone or jointly
with an adult census. With seed census alone, the dy-
namics of the genotypic frequencies (Appendix) are
again determined by four composite parameters (a1,
a2, c1 and c2), where ai is a function of the joint fer-
tility/viability effect Ji=FiVi, and ci only involves the
meiotic drive parameters. Therefore, the model has
only four parameters (J1, J2, m11 and m22), which can
be estimated simultaneously. The log-likelihood
function is analogous to equation (10), with adult
frequencies uij

(t) and counts Nij
(t) replaced by seed fre-

quencies sij
(t) and counts nij

(t), respectively.
The ultimate goal of estimating all six selection

parameters (and all three selection components) sim-
ultaneously can be achieved with joint adult/seed
censuses, however, because the joint dynamics of seed
and adult genotypic frequencies are determined by six
independent composite parameters (a1, a2, b1, b2, c1
and c2). The log-likelihood function for g consecutive
generations of joint adult/seed data is

Lk=Ck+
Xg
t=1

X2
i=1

X2
j=i

(N(t)
ij ln u(t)ij )

+
Xg
t=1

X2
i=1

X2
j=i

(n(t)ij ln s(t)ij ), (15)

where Ck is a constant, Nij
(t) and uij

(t) are the genotypic
count and frequency for AiAj adults, respectively, and
nij
(t) and sij

(t) are the corresponding values in seeds in
each generation t (Table 1).

This same formulation can be used with joint adult/
seed data whichever life stage is censused first. If the
census starts from an adult census with frequencies
uij
(0), then the seeds in generation to1 are produced by

the adults in generation tx1. Under this convention,
adult frequencies in each subsequent generation to1,
uij
(t), can be calculated as before from equations (1)–

(7), and the seed frequencies can be calculated from
equations (A4)–(A6), using the relation

y(t)i =
fii

m12 f12

� �
x(tx1)
i +

mii

m12
, (16)

for i=1, 2. Alternatively, if censusing starts from a
seed census, the seed frequencies sij

(t) in each generation
can be calculated from the initial seed frequencies,
sij
(0), using equations (A4)–(A10). Assuming the adults
in generation to1 are those which survive from the
seeds in generation tx1, the subsequent adult fre-
quencies can be calculated via equations (1)–(3), using
the relation

x(t)
i =

vii
v12

y(tx1)
i , (17)

for i=1, 2.

5. Simulation study

We tested this estimation procedure with simulated
data, using the initial conditions and parameter values
from the experimental Arabidopsis study below
wherever possible. Expected genotypic frequencies
were calculated under specified selection parameters
for five consecutive generations and the population
initiated with only heterozygotes at generation 0. The
multigenerational counts for the three genotypes in
consecutive generations were generated as random
samples from these expected frequencies with sample
sizes of 50, 75, 100, 300 and 500 each generation. The
performance of the method was evaluated by the
average normalized deviation of each estimated par-
ameter ẑz from its true value z,

Dz=
ẑzxz

z

����
����, (18)

and the average width of the confidence intervals with
100 runs.

With adult census, we considered two cases where
populations are subject to either fertility (F1=1.2,
F2=0.8) or viability selection (V1=1.2, V2=0.8). The
selection form appears to have a significant effect on
the accuracy of estimation. For example, the prob-
ability that the best-fitting model correctly identifies
the selection form improves much faster with in-
creasing sample size under viability selection. To
achieve a probability of 80%, 100 individuals need be
sampled in each generation in the viability case,
whereas more than 300 are needed when genotypes
differ in fertility (Fig. 2). As shown in Fig. 3, the fer-
tility case also produces larger normalized deviations
and wider confidence intervals, which were calculated
over the runs with the selection form correctly ident-
ified. A similar simulation study validated the esti-
mation procedure with seed and joint adult/seed cen-
sus under two parameter sets (J1=1.2, J2=0.8, m11=
0.2,m22=0.3) and (F1=1.0, F2=0.8,V1=0.7,V2=1.3,
m11=0.2, m22=0.3) (data not shown).
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Further simulations with joint adult/seed census
revealed that the estimation accuracy improves
quickly with the number of sample generations g and
sample size per generation N (Fig. 4). An interesting
observation is that with a fixed total sample size, a
greater accuracy is achieved by sampling more gen-
erations (g) rather than more individuals per gener-
ation (N). For example, the two sample schemes with
100 individuals sampled in each of two generations
(g=2, N=100) versus 50 sampled in each of three
generations (g=3, N=50) produce similar accuracy,
but this required more individuals to be sampled in
the former case (400 vs 300).

Our model and estimation procedure assume that
the population is sufficiently large for the effect of
genetic drift to be ignored. However, in some empiri-
cal studies the population size could be limited. One
example is our case study, where adult population size
is limited to 100 although each adult produces a large
number of progeny (more than 10 000). In such cases,
the population dynamics could be skewed by the
limited adult population size. We simulated this
scenario by using the genotypic frequencies in our
adult samples as the basis to predict the genotypic
frequencies in each seed population, which is assumed
to be of unlimited size. As shown in Figs 2 and 5,
genetic drift makes it more difficult to identify the
selection form and decreases the estimation accuracy.
With a sample size of 100 from a population subject
only to fertility selection (F1=1.2, F2=0.8), the
probability of correctly identifying the form of selec-
tion is 48% and the normalized deviation is around

0.25; these two numbers are 73% and 0.13, respect-
ively, if selection is on viability (V1=1.2, V2=0.8). We
can thus apply our procedure to our Arabidopsis case
study below and achieve a reasonable accuracy with-
out considering genetic drift.

6. Case study

Here we illustrate our estimation procedure by using
it to estimate selection components from actin gene
data from an experimental Arabidopsis population.
Arabidopsis has five ancient subclasses of actin with
distinct patterns of spatial and temporal expression,
which are involved in many cytoskeletal processes
affecting plant development. As a test of our method
for estimating selection components from multi-
generational data, we focused on the ACT2 genotypic
frequencies. ACT2 is one of three vegetative actin
genes that are all highly expressed in root, shoots,
stems and most floral organs, but ACT2 is not ex-
pressed in pollen or ovules (An et al., 1996). The act2-1
mutant allele contains a large T-DNA insertion near
the start codon and has the potential to be a null allele
(McKinney et al., 1995).

In our initial study (Gilliland et al., 1998), an ex-
perimental population was initialized with a single
A1A2 heterozygote, where A1 represents the wild-type
allele ACT2, and A2 the mutant allele act2-1. Ap-
proximately 100 adult plants were then randomly
sampled and genotyped in each of the next three
consecutive generations. It was found that although
adult plants homozygous for the act2-1 mutant allele
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Fig. 4. Normalized deviation of estimates from the true values (Dz, defined in equation 18) with a joint adult/seed census
for 2, 3 and 5 generations of data, and sample size N of 50, 100, 300 and 500 each generation. The true values are F1=1.0,
F2=0.8, V1=0.7, V2=1.3, m11=0.2, m22=0.3.
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appeared to be robust, morphologically normal on
soil, and fully fertile, the mutant allele was at ex-
tremely low frequencies relative to the wild-type in the
F2 and F3 generations. Our preliminary ad hoc analy-
sis suggested that the act2-1 allele is under strong
negative selection potential relative to ACT2 due to
loss of either fertility or viability (Asmussen et al.,
1998). Here, to refine these initial results, formally
estimate selection parameters, and test the robustness
of our mathematical projections, this experimental
population was continued for an additional two
generations.

The first step in our analysis revealed a significant
overall deviation from the genotypic frequencies ex-
pected in the absence of selection (G=78.917, df=9,
P50.001) ; the null hypothesis of no selection is thus
rejected. The second level of analysis shows that none
of the 11 models considered deviates significantly
from the observed data at the 0.05 significance level
(P=0.083–0.848). The results from the pairwise com-
parisons of all the nested pairs of models are shown in
Table 3. This leaves us four models as the remaining
candidates for the overall best-fitting model : fertility
selection alone (F1, F2), viability selection alone
(V1, V2), fertility and viability selection with A1 domi-
nant and meiotic drive ( f22, v22, m11, m22), and fertility
and viability selection with A2 dominant and meiotic
drive ( f11, v11, m11, m22).

Finally, as shown in Table 4, the model with vi-
ability selection alone (V1, V2) has the least value for

both AIC and BIC, and is thus considered the best-
fitting model. The best-fitting estimates for the two
parameters are V̂V1=1.176 and V̂V2=0.861, with the
corresponding confidence intervals (1.039, 1.343) and
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Table 3. Pairwise likelihood ratio (LR) test for nested
models for the Arabidopsis data

Model (M1)
Nested model
(M2) LR df P value

f11, v11, m11, m22 m11, m22 8.666 2 0.013*
f22, v22, m11, m22 m11, m22 8.666 2 0.013*
F1, F2, m11, m22 m11, m22 8.666 2 0.013*
V1, V2, m11, m22 m11, m22 8.666 2 0.013*
F1, F2, m11, m22 F1, F2 2.648 2 0.161
F1, F2, V1, V2 F1, F2 2.648 2 0.161
F1, F2, m F1, F2 2.394 1 0.122
F1, F2, V1, V2 V1, V2 0.326 2 0.850
V1, V2, m11, m22 V1, V2 0.326 2 0.850
V1, V2, m V1, V2 0.000 1 1.000
F1, F2, m m 8.63 2 0.013*
V1, V2, m m 8.558 2 0.014*

In each pairwise comparison, the model in bold font is
considered the better-fitting model and retained for further
analysis. If a model is retained in one comparison, but re-
jected in another, it is removed from further consideration.
For example, (F1, F2, m11, m22) is retained when compared
with (m11, m22), but rejected when compared with (F1, F2) ; it
is thus removed. This leaves four models – ( f11, v11,m11,m22),
( f22, v22, m11, m22), (F1, F2) and (V1, V2) – as candidates for
the best-fitting model.
* Significant at the 0.05 level.
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(0.744, 0.999). This represents a case of directional
selection against the act2-1 allele, with heterozygous
carriers (A1A2) being 85% (1/1.176) as viable, and
homozygotes for the act2-1 allele (A2A2) being 73%
(0.861/1.176) as viable as wild-type (A1A1). The
excellent fit between the observed and expected
genotypic frequencies under this best-fitting model is
shown in Fig. 6.

7. Discussion

We have developed a formal statistical procedure
to estimate selection components for a diallelic auto-
somal locus in a diploid, selfing population by fitting
time-dependent solutions for genotypic frequencies
to observed multigenerational genotypic counts. The
full model includes three selection components

Table 4. Candidates for the best-fitting model for the Arabidopsis data, with their AIC and BIC indices,
maximum log-likelihood values (L), and parameter estimates with their 95% confidence intervals (CI )

Fertility
selection
alone (F1, F2)

Viability
selection
alone (V1, V2)

Fertility and viability
selection with A1

dominant and
meiotic drive
( f22, v22, m11, m22)

Fertility and viability
selection with A2

dominant and
meiotic drive
( f11, v11, m11, m22)

AIC 821.1 818.779 822.452 822.452
BIC 829.418 827.097 839.088 839.088
L x408.550 x407.389 x407.225 x407.225

Parameter 1 F̂F1=1.288 V̂V1=1.176 f̂f22=1.926 f̂f11=1.254
(CI) (1.050, 1.608) (1.039, 1.343) (0.197, 5.688) (0.000, 4.413)

Parameter 2 F̂F2=0.827 V̂V2=0.861 v̂v22=0.387 v̂v11=1.068
(CI) (0.633, 1.075) (0.744, 0.999) (0.139, 3.855) (0.294, >1000)

Parameter 3 N/A N/A m̂m11=0.212 m̂m11=0.266
(CI) (0.109, 0.408) (0.000, 0.523)

Parameter 4 N/A N/A m̂m22=0.393 m̂m22=0.204
(CI) (0.067, 0.597) (0.198, 0.248)
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of generation (t) for five generations. The expected frequencies are calculated under the best-fitting model, viability
selection alone, with V̂V1=1.176, V̂V2=0.861, F1=F2=1, m11=m22=0.25 and m12=0.5.
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(fertility, viability and gametic selection), each of
which has two independent parameters after the
fertilities and viabilities are normalized with respect to
those of heterozygotes. With adult census, we can
estimate at most four of the six independent selection
parameters simultaneously, because the dynamics of
the genotypic frequencies are determined by four
composite parameters (a1, a2, b1 and b2). Due to this
limitation, a procedure was developed for finding the
best-fitting model out of a hierarchy of 11 models
with either fewer selection components, complete
dominance, or multiplicative gametic selection with a
single meiotic drive parameter. With seed census, the
effects of fertility and viability selection are not dis-
tinguishable and thus can only be estimated jointly, as
their product, along with meiotic drive. Estimation of
all three selection components simultaneously can be
achieved with a joint adult/seed census, which is thus
to be used if at all possible.

Although our theory has so far assumed the data
come from a series of consecutive generations, in fact
this is not a necessity, as long as there are enough
degrees of freedom for estimation. Each adult census
or seed census contributes two degrees of freedom,
corresponding to the two independent genotypic fre-
quencies. With either adult or seed census alone, we
need to sample at least two generations after the in-
itial generation 0 to estimate up to four independent
selection parameters, and one more census point to
test the goodness-of-fit of the models and identify the
best-fitting model. Here a census point means one
generation of either adult or seed census. With joint
adult and seed census, we need only census each life
stage at least once, and at least three census points
altogether, to have enough degrees of freedom to es-
timate all six independent selection parameters. We
thus have enough degrees of freedom to estimate all
three selection components in a highly selfing popu-
lation, and test their goodness-of-fit, as long as there
are at least four census points, with adults and seeds
both sampled at least once.

We validated the applicability of our procedure
with simulated data. The results also provide two
other useful guidelines for the experimental design of
such selection component estimation studies. First,
with adult census, a larger sample size is needed when
the population is subject to viability rather than fer-
tility selection to achieve similar accuracy. Second,
with joint adult/seed census, estimation accuracy is
best improved by increasing the number of generations
sampled rather than the number of individuals sam-
pled per generation. More precise information on the
optimal sampling scheme and the applicability of the
procedure can be deduced by performing such simu-
lations for the case at hand.

We illustrated our estimation procedure by apply-
ing it to multigenerational genotypic frequency data

from the act2-1 actin mutant and ACT2 wild-type
alleles segregating in an experimental Arabidopsis
population. Our finding that viability selection
alone is the best-fitting model is consistent with the
previous ad hoc result (Asmussen et al., 1998) and
suggests that the ACT2 actin allele is preserved in
laboratory-grown Arabidopsis populations over the
act2-1 allele, because it is under strong viability
selection but not subject to significant selection via
fertility or meiotic drive. This result is consistent with
gene and protein expression data suggesting that
ACT2 is primarily expressed in vegetative tissues of
Arabidopsis.

The possibility that some or all of the frequency
change may be due to selection on linked genes in
linkage disequilibrium with the ACT2 locus is un-
likely based on the following reasons : (1) The ecotype
WS Arabidopsis thaliana that was used to create
the act2-1 mutant by T-DNA insertion was collected
in 1943 and has gone through a large number of gen-
erations of inbreeding, and should be highly homo-
zygous at any loci linked to ACT2. (2) After T-DNA
insertion, measures were taken to ensure the T-DNA
insertion on the ACT2 locus was the only disruption
in the selected plant (Gilliland et al., 1998). (3) Our
multigenerational study was initiated with a single
plant heterozygous at the ACT2 locus, so that all
linked loci should remain genetically homogeneous in
subsequent generations. (4) A follow-up study shows
that the root hair elongation defects of the act2-1
mutant can be fully rescued by an ACT2 genomic
transgene, and impairment of root hair functions such
as nutrient mining, water uptake and physical an-
choring are the likely cause of the reduced fitness seen
for act2-1 mutants in this multigenerational study
(Gilliland et al., 2002).

Our model and estimation procedure assume that
the population is sufficiently large for genetic drift
effect to be ignored. This assumption could be viol-
ated in empirical studies. One example is our Arabi-
dopsis case study, where adult population size is
limited to 100 although each adult produces a
large number of progeny. In other cases, the seed
population could also be small. To estimate selec-
tion components in small (e.g. <30) populations,
a Monte Carlo simulation-based method similar to
the one developed by Keightley et al. (1996) can be
used.

In conclusion, monitoring changes in genotypic
frequencies over multiple generations allows the for-
mal dissection of the fertility, viability, and meiotic
drive selection components present in highly selfing
populations such as those of the model plant Arabi-
dopsis thaliana. Dynamical data from multiple time
points in this and other biological contexts represent a
valuable and under-utilized tool for studying natural
and experimental populations.
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Appendix. Time-dependent solutions for seed

genotypic frequencies

The recursions for seed frequencies are

sk11=
( f11v11)s11+( f12m11v12)s12

�ww
, (A1)

sk12=
( f12m12v12)s12

�ww
, (A2)

sk22=
( f22v22)s22+( f12m22v12)s12

�ww
, (A3)

where �ww=f11v11s11+f12v12s12+f22v22s22 is the normal-
ization factor, corresponding to the net mean fitness
in the population.

A direct adaptation of the procedure and technique
used in Asmussen et al. (1998) for adults shows that
the time-dependent solutions for the seed genotypic
frequencies in each generation to1 are

s(t)11=
y(t)1

1+y(t)1 +y(t)2
, (A4)

s(t)12=
1

1+y(t)1 +y(t)2
, (A5)

s(t)22=
y(t)2

1+y(t)1 +y(t)2
, (A6)

where for i=1, 2, y(t)i =
s(t)ii

s(t)12
is the ratio of the frequency

of AiAi to A1A2 seeds in generation t, and

y(t)i =
(ai)

t(y(0)i xyi*)+yi* if ail1

y(0)i +tci if ai=1,

8<
: (A7)

ai=
fiivii

m12 f12v12
, (A8)

ci=
mii

m12
, (A9)

yi*=
ci

1xai
=

mii f12v12
m12 f12v12xfiivii

: (A10)
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