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1. Introduction

We consider the one-dimensional operator,

on 0<x<oo with y = (y
y
1
2)- The coefficients p, Vu and V2 are assumed to be real, locally

Lebesgue integrable functions; ct and c2 are positive numbers. The operator L acts in
the Hilbert space H of all equivalence classes of complex vector-value functions f=(fy
such that Jo>(|/i|2 + |/2|2)dx<oo. ^ n a s domain D(L) consisting of all yeH such that y
is locally absolutely continuous and Ly e H; thus in the language of differential operators
L is a maximal operator. Associated with L is the minimal operator Lo defined as the
closure of L'o where L'o is the restriction of L to the functions with compact support in
(0,oo).

The singular structure of the coefficients at 0 determine whether L=L0 (and hence L
is selfadjoint—the limit-point case) or L contains Lo properly (the limit-circle case). In
the latter case the selfadjoint operators Lx generated by L satisfy LocL1czL and are
determined by imposing a boundary condition at JC = O on the elements of D(L). The
limit-point and limit-circle terminology arises from the geometric method of Weyl and is
discussed in [18]. We use Lj to denote a selfadjoint extension of Lo in either case. In
any event the essential spectra of Lo, Lu and L coincide. Essential selfadjointness criteria
and construction of selfadjoint extensions of Lo have been discussed in many papers, e.g.
[1,8,9,10,11,12,20,22,23,24].

Under rather general conditions with p, Vu V2 "small" at infinity and sufficiently
"regular" at 0, the essential spectrum of Lt is ( — oo, — c j u f ^ , oo). Results on location
of essential spectra are given in [3,8,9,14,23]. When the gap (—cuc2) contains no
essential spectrum of Lu it can contain only eigenvalues of Lv The purpose of this
paper is to obtain conditions on the coefficients which determine if the gap contains
finitely or infintely many eigenvalues of L1. Since Lt is a finite dimensional extension of
Lo, the finiteness of the gap spectra is independent of Lx. Another problem, also
independent of Lu is to determine when the gap spectrum is infinite which of the
endpoints —ct and c2 are cluster points of eigenvalues. While our theorems do not
assume the existence of a gap, it is the case of primary interest.

367

https://doi.org/10.1017/S0013091500017818 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500017818


368 D. B. HINTON, A. B. MINGARELLI, T. T. READ AND J. K. SHAW

For Vl = V2, equation (1.1) arises from the three-dimensional Dirac equation with a
spherically symmetric potential after a separation of variables. For the choices p(x) = k/x,
Vi(x) = V2(x)=z/x, and c1 = c2 = c, (1.1) is the radial wave equation in relativistic
quantum mechanics for a particle in a field of potential V(x) = z/x. When the anomalous
magnetic moment of the particle is considered, p(x) = k/x is replaced by p(x) = kjx + k2/x

2.
The discreteness of the spectrum of Lt in {—cuc2) was studied by Birman [3, Section

5]. Using the methods of Birman, Kurbenin [15] gave criteria for the spectrum in the
gap to be finite or to be infinite. The work of Kurbenin requires p(x) = k/x and Vl(x) =
V2(x) to be uniformly bounded on (0, oo). The one-dimensional results of Kurbenin
will follow from the results given below. Further discussion is given in [7, Section 62].

In the three-dimensional Dirac equation with gap [ — 1,1] and with a regularly
growing potential that decays like \x\~m, 0<m<2, as |x|-»oo, Tamura [21] has given
asymptotic behavior for the number of eigenvalues in (0,1 — r) as r-*0. Also in the three-
dimensional case with a parameter A multiplying the potential, Klaus [13] has given an
asymptotic formula for the number of eigenvalues in the gap as A->oo.

In Section 2 below we give conditions for gap spectra to be infinite. By means of
oscillation theory we generate a family of second order scalar differential equations for
which the oscillation of one of them at 0 or oo is sufficient to give infinite gap spectra.
Section 3 treats the converse problem and gives a comparison second order vector
equation whose non-oscillation implies a finite gap spectra. Additional results are given
by treating the operator L directly. An interesting corollary of the latter method is a
sufficient condition for the length of the gap to be "infinite", i.e. Lt has empty essential
spectrum. Finally in Section 4, we use a shifting technique which for certain equations
permits one to determine which endpoint of a gap is a cluster point of eigenvalues.

We use the following notation: ( , ) represents the inner product in both H and R"
with corresponding norm || ||, / is an identity operator or matrix, a{A) is the spectrum
of A, and if J is an interval, C0(J) is the set of all continuously differentiable 2-vector-
valued functions with compact support contained in J.

2. Infinite gap spectra

First we consider the square of L given by

L2y = - (/+JPy)' - P(Jy' - Py) (2.1)

where

o

The gap spectrum of L1 has a close connection with L2 which we now describe. For
d>0, set Md(y) = L2y — d2y; we say Md is non-oscillatory at oo(0) provided that there is a
number b>0 such that on {b, oo) ((0,b)) no nontrivial solution y of Mdy=0 vanishes
twice, i.e., satisfies y(bl) = 0=y(b2) for b<bi<b2. Let K0 be the minimal operator
associated with L2. By the spectral theorem for self-adjoint operators, the spectrum of a
self-adjoint extension K of Ko has infinitely many points in ( — co,d2) if, and only if,
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there is an infinite dimensional subspace GcD(K) such that (Ky,y)<d2(y,y) for all
yeG [7, Section 3]. By standard arguments (cf. [7, Sections 10, 12, 13]) this is
equivalent to Md being oscillatory at either 0 or oo. Note that L\ is a self-adjoint
extension of Ko. By the spectral mapping theorem [5, p. 604], a(L\) = {?.2:Xea(L1)};
hence ff(L1)n(—d,d) is finite if, and only if, <r(Li)n( — co,d2) is finite. Thus we have the
criterion:

Theorem 2.1. For d>0, a(Ll)n( — d,d) is finite if, and only if, Md is nonoscillatory at
both 0 and oo.

A further useful object is the quadratic form Qd of Md given by

(2.2)
0

where the domain of Qd is all y which have compact support in (0, oo), are absolutely
continuous, and satisfy $(y')*y'dx<co. The basic connection between the oscillatory
properties of Md and Qd is (cf. [4, 7]):

Theorem 2.2. Md is nonoscillatory at oo(0) if, and only if, there is a number b>Q such
that Qd(y)>0for all nontrivial y in domain Qd with support in (b, oo) ((0,b)).

To establish oscillation criteria for Md we use positive linear functionals. These were
first introduced in oscillation theory by Etgen and Pawlowski [6]. A nontrivial linear
functional g defined on the real nxn matrices is said to be positive if g(B)^0 whenever
B is symmetric and positive semidefinite (B^O). All such g have the representation
g(B) = £ J = j (Bu;, U;) where ut are non-zero n-vectors [cf. 17]. Recall a second-order scalar
differential operator / is said to be oscillatory at oo(0) if all solutions of /(z) = 0 have
infinitely many zeros in a neighborhood of oo(0).

Theorem 2.3. Let d>0, g be a nontrivial positive linear functional and assume P of
(2.1) is locally absolutely continuous. Then o(Lx)r\( — d,d) is infinite if the scalar
differential equation,

= 0 (2.3)

is oscillatory either at 0 or at oo.

Proof. Suppose to the contrary that ^ ( L J r ^ —d,d) is finite. Let (2.3) be oscillatory
say at co. Then by Theorems 2.1 and 2.2 there is a number b such that Qd(y)>0 for all
nontrivial y in domain Qd with support in (b, oo). Since (2.3) is oscillatory at oo there is
a real nontrivial solution z such that z(bl) = z(b2) = 0 with b<bx<b2- Thus multiplying
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(2.3) by z and integrating by parts yields

$ [g(I)\zf +g(P2-d2l + [P'J-JP'y2)z2]dx = 0.

Thus by the above representation for g there is a non-zero vector uf such that

\{{ui,ui)\z'\2 + {\_P2-d2I+{P'J-JP')l2~\ui,ui)z
2}dx^. (2.4)

bi

Set y(x) = z(x)Ui on \jbl,b2~l and zero elsewhere. Then y is in domain Qd with support in
(b, oo). Further, an integration by parts in (2.2) gives that

which is the same as (2.4). Thus Q,i(y)^0 contrary to Q<i(y)>0; hence ^(LJr^ —d,d) is
infinite.

For g(B)=(Bu,u), « = (£)#(<>), equation (2.3) reduces to

z = 0 (2.5)

with

For V1 = V2 = V, we note the following cases of (2.5) by taking (a,/?) equal to (1,0),
(0,1), (1, ± 1) respectively and also of (2.3) with g(B) = trace B.

' + (V-c2)
2+p2-d2}z = 0 (2.6)

-z" + {-p' + (V+Cl)
2+p2-d2}z = 0 (2.7)

= 0 (2.8)

(2.9)

Example 1. Let V1(x) = V2(x) = a/x> a^O, ct=c2 = d=c, and p(x) = k/x + r/x2. Then
(2.6) is

- z" + {p'{x) + a2/x2 - 2ac/x + p(x)2 } z = 0

which is oscillatory at oo if a>0. Similarly (2.7) is oscillatory at oo if a<0. Thus
o-(L1)n(—c,c) is infinite.
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For ci=c2 = d, p' and p2 being 0(x'2) as x->oo, and V of constant sign, it follows
that (2.6) or (2.7) will be oscillatory at oo if |F(x)|^s<2c on some [x0, oo) and
| V(x)\x2-+co as x->oo. This gives Theorem 3 of [15].

It is possible to relax the differentiability requirements on p, Vu and V2. For the
functional g(B) = (B(J),(i))(g(B) = (B(?),(?)), equation (2.6) ((2.7)) is obtained without
assuming Vx and V2 differentiable. This is because the middle terms of (2.2) involving V±
and V2 are replaced by zero. For these same two choices of g, the differentiability
requirement on p can also be dropped by avoiding an integration by parts. In this case
we get in place of (2.6) and (2.7) that if either of

-z"-2pz ' + {(F2-c2)2 + p2-d2}z = 0, (2.10)

- z " + 2pz' + {(K1+c1)2+p2-d2}z = 0, (2.11)

is oscillatory at oo or 0, then a(L1)n( —d, d) is infinite. For smooth p, these equations
are less effective than (2.6) and (2.7) as is shown by the oscillation preserving
substitution w = zexp{J+p} for (2.10), (2.11) respectively.

3. Finite gap spectra

The middle two terms of (2.2) may be written

: = ]\_(y')*JPy-y*PJy''\dx

OO

= I {pl-y'iyi +y2y2-y'iyi -^y'2y{\ -M+cl)(y'ly2+y\y2)
0

+ (V2-c2)(y'2y1+y2y1)}dx. (3.1)

We need to distinguish two cases: c1=min(cuc2) and c2 = min(c1,c2). First suppose
c1=min(cuc2). Let c = (cl+c2)/2 and e = c — cl so that c2 = c + e. Using these values in
(3.1) together with

yields after integration by parts that

o

Thus if 0 < /?,- g 1 for i = 1,2, we have that

(3.2)
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where

' - P l 0
Al"V o \-f\y

(3-3)
\ u ~P ~Pi ~V\J

Thus we have

Qaiy) ̂  ] [(/)* Aiy\ + y*A2y-} dx, (3.4)
o

and we have proved the following by Theorem 2.2.

Theorem 3.1. Let d>0, 0 < f t ^ l / o r i = l,2. Then a{Lx)r^{~d,d) is finite if one of the
following holds.

(i) The matrix A2 for /?! = /?2 = 1 is positive definite in a neighbourhood of 0 and in a
neighbourhood of co.

(ii) 0 < Pi < 1 for i = 1,2 and the matrix equation

(3.5)

is nonoscillatory at both 0 and oo.

In a similar manner, we may prove the following when c2 = min(c1;c2). Set c =
(ci + c2)/2, e = c—c2 (so that C1 = C + E) and

P0 Vl -v'-pXv • - » ' • ( 1 6 )

Theorem 3.2. Let d>0, 0<j?jS;i /or i=l,2. T ên ^ L J n t - ^ d ) is finite if one of
the following holds.

(i) The matrix A3 for J?1=)32 = l is positive definite in a neighbourhood ofO and in a
neighbourhood of GO.

(ii) 0<pi< 1 for j = 1,2 and twe matrix equation

(3.7)

is nonoscillatory at both 0 and oo.

Because of the relation (3.4), the nonoscillation of (3.5) at either 0 or oo implies the
nonoscillation of Md at the same endpoint. Similar remarks apply to (3.7).

For the next example recall that the vector equation — y" + F(x)y = 0 is nonoscillatory
at oo if J^r(s)ds exists and || J^r(s)ds| |0^l/4x for all x sufficiently large (cf. [16]). By
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|| ||0 we mean the operator norm on matrices where the Euclidean norm is used for
vectors. We also use that if — / ' + r(x)y = 0 is nonoscillatory and F1(x)^r(x), then — y"
+ r1(x)j;=0 is nonoscillatory.

Example 2. Let p, V= Vx = V2 be bounded on some (0, e) (hence (3.5) is nonoscillatory
at 0) and for x^e, let V(x) = a sin x/xd with <5>1 and p satisfy ±p'(x)+p(x)2^a/x2 for
some a<l /4 and I J ^ p F ^ o ^ " 1 ) as x->oo. For c1 = c2 = c = d and j91=/?2 = ̂ » A2

 OI"
(3.5) satisfies

A
2~

2pV

2pv

2pV

(l-p~2)V2-2cV+a/x2

2pV

Now each of J™ V2, Jj5 V, J™pF is o(x-1) as x->oo; hence for x sufficiently large,
|| J™ A2(s)ds||0^a1/x for some ax<l/4. Thus /? can be chosen so that (3.5) is non-
oscillatory; hence oiLJni — ̂ c) is finite.

For p(x) = k/x, similar considerations will yield Theorem 1 of [15] except for the case
k=l/2.

We now consider some discrete spectrum results that do not use the operator L2

directly.

Theorem 3.3. Let J be a subinterval of (0, oo), U be an orthogonal matrix, and d a
positive number such that:

(i) either UP + P*U*^2dI on J or UP + P*U*^-2dI on J.
(ii) Re $ [y* UJ/] dx = 0 for all y e C0(J).

Then for all yeC0(J), \\Ly\\Zd\\y\\.

Proof. For y e C0(J), we have

Re][y*U(Jy'-Py)]dx

(1/2) $y*(UP + P*U*)ydx
o

dIy*ydx
0
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Corollary 3.1. Suppose the conditions of Theorem 3.3 hold for J = [b2,co) (J = (0,61]).
Then L2—d2I is nonoscillatory at oo(0). / / the conditions hold for J = (0,oo), then
o{Ll)r\{ — d,d) = § if L0 = L and is either (j) or degenerate otherwise.

Proof. For y e CQ([b2, oo)) with y e D(L2),

or ||L2j>||^d2||)>||. Thus the minimal operator associated with L2 on \_b2,co) is bounded
below by d2. Thus a self-adjoint operator associated with L2 on \b2, oo) has a finite
spectrum on ( — oo,d2) since it is a finite dimensional extension of the minimal operator.
Thus L2 — d2I is nonoscillatory at oo. Similar remarks apply to 0. Note that Lt is a
0-dimensional (1-dimensional) extension of Lo if Lo = L(L o #L) so that cr(L1)n( — d,d) = 0
(contains at most one element).

Two special cases of Theorem 3.3 are of interest.

(A) Suppose U = (~o ?). Then a calculation shows (ii) of Theorem 3.3 holds. Also

-a
Y' civ

This yields the following corollaries.

Corollary 3.2. / / Vl and V2 in (1.1) have compact support, then a^^^—c^c^ is
finite for all p.

Corollary 3.3. / / |J^(x)|-»oo as x->0 and as x->oo for i=l,2 and F 1 (x )F 2 (x )<0 in
both a neighbourhood ofO and of infinity, then «r(L1)n( — d,d) is finite for all d>0, i.e., Lt

has a purely discrete spectrum.

(B) Suppose U = (° o). Again (ii) of Theorem 3.3 holds and

(1/2)(I/P + P* C/*) = (f p, i>:=(1/2X^ + ^ -1 -0 ! -^ ) . (3.9)

The eigenvalues of (3.9) are p±v. This gives

Corollary 3.4. Suppose d>0 and in a neighbourhood o/0(oo), p±v^.d or p + v^—d.
Then L2 — d2I is nonoscillatory at 0(oo).

4. The shifting method

Consider (1.1) with c1 = c2 = c say,

~C
 v

P
+)y,0<x<oo, (4.1)
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and let Sx be a self-adjoint operator determined by S. We assume the essential spectrum
of St is ( —oo, — c]u[c , oo) and that St has infinitely many eigenvalues in the gap
[—c,c]. We wish to determine which of the points ±c is a cluster point of the
eigenvalues. For 0 < s < c , set T1 = S1+£/, T2 = Si-eI. Then spectrum of TX (T2) is the
spectrum of St moved to the right (left) e units. Note that 7\ becomes Lj of Section 2
with C1=C—E, c2 = c + e and T2 becomes Lj with cl=c + e, c2 = c — e.

Consider now Tv By Section 2, — c is not a cluster point of the eigenvalues of Sx if,
and only if, L2 —(c—e)2I with c1=c — e, c2 = c+e is nonoscillatory at both 0 and oo.
Thus to show — c is a cluster point of eigenvalues, it suffices to show L2—(c — e)2I is
oscillatory at one of 0, oo. Similar considerations apply to T2 and c.

The following theorem utilizes these ideas.

Theorem 4.1. Suppose in (4.1) that V1 = V2 = V, p is locally absolutely continuous, and

(i) p(x) = 0(l/x),p'(x)=0(l/x2) as x^oo,

(ii) K(x)->0 and x2K(x)-> — oo as x->oo.

(iii) In a neighbourhood of 0, p(x)^|V(x)| + c or p(x)^—c — \V(x)\. Then — c is a
cluster point of eigenvalues and c is not.

Proof. It follows from the above remarks that — c is a cluster point of eigenvalues if
(2.7), with cl = c — e = d, c2 = c + e (0<e<c) is oscillatory at infinity, i.e., if

-z" + {p' + V2 + 2{c-e)V+p2}z=0 (4.2)

is oscillatory. Now V2 + p'+p2 = V2+O(x~2) is small compared to | F | by (i), (ii). Thus
(4.2) is oscillatory at infinity by comparison with an oscillatory Euler equation, e.g.,
- z " - ( l / x 2 ) z = 0 .

To see that c is not a cluster point of eigenvalues, we need to show L2 — d2I is
nonoscillatory at both 0 and infinity with d — c2 = c — e, cl = c + e. To see that L2—d2I is
nonoscillatory at 0 we apply Corollary 3.4. Then p±v=p±(V+s). Hence by (iii) either
P + v^d or p±v^—d; thus L2 — d2I is nonoscillatory at 0. To show L2 — d2I is
nonoscillatory at infinity we use Corollary 3.1 with U as in (3.8); hence L2 — d2I is
nonoscillatory at infinity if

near infinity. By (ii), — 2e^ F(x)<0 for x sufficiently large thus implying (4.3).
If conditions (iMm) of Theorem 4.1 hold with x2F(x)-> — oo as x->oo replaced by

x2K(x)-»oo as x->oo, then c is a cluster point of eigenvalues and — c is not.

Theorem 4.1 applies to Example 1 if either r / 0 o r | / c | > | a | .

In our final example we show both + c may be cluster points.

Example 3. Suppose on [1,oo), V1(x)=V2(x)=(asinx)/xi, 0<8<l, a # 0 with p',
p=0(x~2) as x-»oo. Suppose also c> 1/2. Then c will be a cluster point of eigenvalues
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if for some £,0<e<c, (2.6) is oscillatory at 00 with ct=c + £, c2 = d = c—e, i.e., if

2 2 i 2 s 2)z = 0 (4.4)

is oscillatory at oo. We analyse (4.4) by means of a result of Read [19] for partial
differential equations which in the one-dimensional case applied to — z" + q(x)z = 0,

>, is:

Theorem [19]. Let h be a positive, locally absolutely continuous function on [b, oo) and
let e0 satisfy 0<eo< 1. For A^O define

(4.5)
b

If there exists an a>0 and a sequence Aj-xx) such that

(4.6)

for each k, then —z" + q(x)z = O is oscillatory at oo.

To apply this theorem to (4.4), we take h(x) = xd + k sin x where k = 4(c—e)asl, e0

1—£, and e< l is chosen so that c>£ +1/2(1— e). Take b^.1 so that h(x)^xde0 for x^.
Then the terms of the integral in (4.5) which are not 0(1) as x->oo are:

j -a2t~ssm2 tdt= -a2x1-d/2{l-5) + 0(l),
b

J -h'(t)2/4eoh(t)dt^ -](4elt?)-1h'(t)2dt= -k2x1-d/8el{l

Since by choice of e,

a{c - e ) k - a2/2 -k2/U2
0 = a2 [ 2 ( c - s)2 eg-1/2] >0,

we see that for each X, £(A) contains an interval [ax, oo). Thus (4.6) holds for any a>.0
and sequence Xk^co. Therefore c is a cluster point. Similar arguments apply to give — c
a cluster point. It is unclear if +c remain cluster points of eigenvalues if c< 1/2.

In the above examples we have that infinitely many eigenvalues are in the gap as a
result of a sufficiently large long range potential V(x). For the physically important case
p(x) — k/x, an examination of (2.5) shows the difficulty of constructing a potential whose
singular behavior at zero produces infintely many eigenvalues in the gap.
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Finally, we make a comment on the more general operator

where L is as in (1.1) and a1;a2 are positive functions. T acts in the Hilbert space of
functions / satisfying J™ |>i | / i | 2 + a2|/2 |2] <oo. If we make the transformation

where >j(x) = [a2(x)/aiM]1 / 4 a n d t = JyJ^iOL2dx, then a calculation shows (• = d/dt) Ty =
reduces to

P + »?'/»?

Since J(<x1|j'1|2-l-a2|)'2|2)^x = j ( | z i | 2 + |z2|2)<^ a n eigenvalue problem Ty = Xy can be
reduced to the type studied here.
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