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Endogenous oestrogens regulate essential functions to include menstrual cycles, energy
balance, adipose tissue distribution, pancreatic β-cell function, insulin sensitivity and lipid
homeostasis. Oestrogens are a family of hormones which include oestradiol (E2), oestrone
(E1) and oestriol (E3). Oestrogens function by binding and activating oestrogen receptors
(ERs). Phytoestrogens are plant-derived compounds which exhibit oestrogenic-like activity
and can bind to ERs. Phytoestrogens exert potential oestrogenic-like benefits; however, their
effects are context-dependent and require cautious consideration regarding generalised health
benefits. Xenoestrogens are synthetic compounds which have been determined to disrupt
endocrine function through binding to ERs. Xenoestrogens enter the body through various
routes and given their chemical structure they can accumulate, posing long-term health risks.
Xenoestrogens interfere with endogenous oestrogens and their functions contributing to
conditions like cancer, infertility, and metabolic disorders. Understanding the interplay
between endogenous and exogenous oestrogens is critical in order to determine their potential
health consequences and requires further investigation. This manuscript provides a summary
of the role endogenous oestrogens have in regulating metabolic functions. Additionally, we
discuss the impact phytoestrogens and synthetic xenoestrogens have on biological systems
across various life stages. We highlight their mechanisms of action, potential benefits, risks
and discuss the need for further research to bridge gaps in understanding and mitigate
exposure-related health risks.
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Overview

Functions of endogenous oestrogens

Sex steroids, including testosterone and oestrogens, are
present in both males and females, and their biological
functions and production undergoes changes across the
life cycle. We will focus our article on the role of

oestrogens in mediating metabolic functions. In females,
certain oestrogens surge during puberty and pregnancy
but decline during menopause. Oestrogens are pivotal
for growth, development, sexual differentiation and
reproduction. Oestrogens have diverse roles throughout
the body, and they regulate functions to include menstrual
cycles(1), energy balance(2), adipose tissue distribution
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andwell-being(3,4), pancreatic β-cell function and viability(5),
skeletal muscle insulin sensitivity(6), liver lipid balance(7)

and macrophage function and polarisation(8). Importantly,
any disruption to the function of oestrogens can
potentially lead to conditions such as obesity(9), adipose
tissue inflammation(4), atherosclerosis(10), changes in adi-
pose tissue distribution and function(4), pancreatic β-cell
dysfunction(11,12), fatty liver(13), impaired peripheral tissue
glucose regulation(14) and systemic inflammation(15). The
goal of this review is to explore how natural oestrogens
affect metabolic function and discuss how plant-based and
artificial oestrogens also impact metabolism across the life
cycle. We conclude by emphasising the need for further
research to fill knowledge gaps.

Endogenous oestrogens

Endogenous oestrogens – a ‘family’ of oestrogens.
Oestrogens are a cohort of sex steroid hormones derived
from cholesterol. Among the endogenous physiological
oestrogens, three primary forms exist: oestrone (E1),
oestradiol (E2) and oestriol (E3). E2 holds prominence
as the primary oestrogenic compound circulating during
a woman’s reproductive years, and it remains dominant
until menopause. Following menopause, E1 gains
significance as a key oestrogenic compound, while E3
assumes a major role during pregnancy, even though
it’s considered the least potent oestrogen(16).

The synthesis of oestrogens in ovarian granulosa cells
hinges on the activation of an enzyme named aromatase
(CYP19A1), which belongs to the cytochrome P450
superfamily. This enzyme facilitates the aromatisation
process, wherein androgens, particularly testosterone and
androstenedione, are transformed into oestradiol and
oestrone. Notably, studies on animals lacking this enzyme
have revealed an inability to produce oestrogens(17,18).
In women during their reproductive years, the ovaries,
corpus luteum and placenta serve as primary sites for
oestrogen production. Additionally, smaller amounts of
oestrogens are synthesised by non-gonadal organs such
as the liver, heart, skin, brain, adipose tissues, intestines
and adrenal glands(19). In prepubescent females and
males, oestrogens are produced in non-gonadal locations,
where their functional effects are typically exerted locally
through paracrine and/or intracrine mechanisms(16).

Following the onset of menopause, adipose tissue
stromal cells and preadipocytes exhibit high expression
levels of aromatase, 17b-hydroxysteroid dehydrogenases
(17bHSD) and CYP1B1. Among these, 17bHSD plays a
role in converting weak androgens and/or oestrogens into
their more potent counterparts to include the conversion
of androstenedione into testosterone and oestrone into
oestradiol(20). Due to the substantial mass of adipose
tissue, its contribution to whole-body steroid metabolism
is notably significant.

E2 levels in humans and rodents. In pre-menopausal
individuals, the levels of E2, or oestradiol, exhibit a
range of 15–400 pg/ml, a variance largely contingent on
the phase of the menstrual cycle. Conversely, E2 levels

plummet to less than 10 pg/ml during menopause.
Rodents have been used to study and learn more about
the physiological functions of oestrogens. Rodents
undergo a reproductive cycle, termed the oestrous cycle,
divided into four distinct phases—proestrus, oestrus, met-
estrus and diestrus—spanning about 4–5 d. Throughout
this cycle, the concentration of circulating E2 within
rodents displays significant fluctuations. Among these
phases, proestrus showcases the highest E2 concentra-
tion, roughly ranging between 30–60 pg/ml. Even during
diestrus and metestrus, E2 remains detectable with the
use of sensitive instrumentation, albeit at levels not sur-
passing 5 pg/ml. Remarkably, during the oestrus stage,
E2 has been found to be undetectable(21–24).

Oestrogens modulate homeostasis through binding and
activation of oestrogen receptors. Oestrogens exert their
effects through the mediation of oestrogen receptors
(ERs), which comprise nuclear receptors, surface mem-
brane receptors, and are found in various forms such as
ERα (ESR1), ERβ (ESR2), G protein-coupled receptors
(GRP30 and Gq-mER) and ER-X. Nuclear ERs func-
tion as transcription factors, overseeing the modulation
of specific gene transcription. On the other hand, sur-
face membrane ERs, once activated by oestrogens, insti-
gate rapid intracellular signalling pathways(16). Beyond
their interaction with ERs, oestrogens can also regulate
enzymatic activities and engage with non-steroid-
hormone-nuclear receptors, consequently initiating sig-
nalling pathways that are independent of ERs(16).

Effects of endogenous oestrogens on obesity, diabetes and
the metabolic syndrome. Many women exhibit features
of the metabolic syndrome (abdominal adiposity, insu-
lin resistance and dyslipidemia) with the onset of oestro-
gen deficiency at menopause. There are direct effects of
oestrogen deficiency on body fat distribution, insulin
action, effect on arterial wall and fibrinolysis that may
contribute to an increased prevalence of the metabolic
syndrome in post-menopausal women compared to
pre-menopausal women(25). Fabre et al., postulated that
membrane-initiated ERα extra-nuclear signalling con-
tributes to female, but not to male, protection against
high-fat-diet-induced obesity and associated metabolic
disorders in mouse(26).

Exogenous oestrogens

Exogenous oestrogens obtained through the
diet. Oestrogens can also be introduced into the body
from external sources, either through the consumption
of certain foods or exposure to various environmental
factors. These exogenous oestrogen exposures are
capable of exhibiting oestrogen-like activities, which
involve binding to ERs and other nuclear hormone
receptors. There are two distinct categories of exog-
enous oestrogens: xenoestrogens, which are synthetic
oestrogens, and phytoestrogens, which are phytochemi-
cals derived naturally from plants. Phytoestrogens pos-
sess the potential to exert both beneficial effects and
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function as endocrine disruptors(27). The roles and
effects of phytoestrogens will be explored in greater
detail further below. Xenoestrogens also bind to and
activate ERs and currently data suggests these exert
endocrine disruption and may have long-term negative
effects as will also be discussed below.

Phytoestrogens

Phytoestrogens, compounds resembling oestrogens and
sourced fromplants, are commonly found in soy products,
grains, peas, beans, as well as in specific fruits and
vegetables(28,29). Phytoestrogens can be classified into
three main categories based on their chemical structures:
(1) Flavonoids, such as genistein, daidzein, glycitein
and biochanin, and they are frequently present in soy
products and are often marketed as dietary supplements;
(2) Coumestans, represented by compounds like coumes-
trol, wedelolactone and plicadin, can be found in foods
like broccoli and sprouts, with their oestrogenic activity
significantly surpassing that of isoflavones; (3) Lignans,
originate from plant cell walls and are polyphenolic
components present in plants, seeds, whole grains and
certain vegetables. This category also encompasses
compounds like enterodiol, enterolactone, pinoresinol,
matairesinol and sesamin, some of which are produced by
intestinal bacteria and exert relatively mild oestrogenic
effects(28–30).

Phytoestrogens have the ability to bind to and activate
oestrogen receptors. Phytoestrogens exhibit the ability
to bind to and activate ERs. Interestingly, data suggest
phytoestrogens demonstrate a preference for oestrogen
receptor beta activation (ERβ), as evidenced by the
ratios of binding affinity of these compounds relative
to binding to ERα v. ERβ: Genistein β/α= 20, Daidzein
β/α= 7, S-Equol β/α= 32, Coumestrol β/α= 7, Naringenin
β/α= 11, Apigenin β/α= 20(31,32). Moreover, phytoestro-
gens are known to also bind to serotonergic receptors and
insulin-like growth factor receptors exerting biological
effects which are impacted by the duration and age for
which exposure has occurred. Phytoestrogens possess the
capability to enhance the binding of free radicals and can
directly or indirectly influence the activation of tyrosine
kinases, cyclic adenosine monophosphate pathways, phos-
phatidylinositol-3 kinase (PI3K), DNA methylation, as
well as histone and RNA expression(28).

Detrimental or beneficial phytoestrogen function(s)?
The discussion surrounding whether phytoestrogens
yield positive or negative effects is ongoing. Crucially,
it is important to recognise that the timing, type, dura-
tion and level of exposure plays pivotal roles in deter-
mining whether these oestrogenic compounds offer
advantages or pose risks. Moreover, the context matters
significantly as to whether phytoestrogens are therapeu-
tic for conditions like alleviating menopausal symptoms,
reducing osteoporosis, or potentially exerting anti-
tumorigenic properties. When low endogenous levels of
oestrogens exist, there are data suggesting phytoestro-
genic benefits; however, the potential for off-target or

side effects post-consumption/exposure remains less
understood(33). Moreover, when phytoestrogens are con-
sumed in combination with drugs, phytoestrogens can
interfere with the drug efficacy and function, implying
that additional data and caution may be necessary to
ascertain if phytoestrogen intake affects the safety of
other medications. It is worth noting that the beneficial
effects of phytoestrogens could differ in pre-menopausal
women with higher endogenous oestrogen levels(33) when
compared to post-menopausal women. Additionally,
the impact of phytoestrogens on men, who naturally
have lower circulating levels of oestrogens, is also less
understood.

The timing of phytoestrogen exposure emerges as
a critical factor influencing their potential positive
or negative effects. Exposure can occur during foetal
development, adulthood, in the presence or absence of
endogenous oestrogens, and in both females and males.
However, establishing an association between dietary
phytoestrogens and endocrine biomarkers remains
inconclusive, partly due to variations in the type
and concentration of compounds, the bioavailability
of phytoestrogens, and whether they affect circulating v.
urinary excretion of metabolites(33,34).

Xenoestrogens

Xenoestrogens are compounds which mimic oestrogenic
functions and are not produced within the body.
Xenoestrogens are synthetic in origin and include
chemicals used as solvents/lubricants. Xenoestrogens, like
phytoestrogens, are structurally and functionally similar
to oestrogens and they bind to the ERs producing
biological effects some of which might be beneficial;
however, in most cases they have been shown to be
detrimental. In fact, xenoestrogens and their byproducts
such as plastics like bisphenol A (BPA), plasticisers
(phthalates), pesticides (DDT), pharmaceutical agents,
are considered to be environmental hazards due to
their hormone-disruptive effects(27) and xenoestrogens
are classified as endocrine disrupting chemicals (EDCs)
because they: ‘interfere with the synthesis, secretion, trans-
port, binding, action, or elimination of natural hormones in
the body that are responsible for development, behaviour,
fertility and maintenance of homeostasis’(35).

Xenoestrogens enter the body through various routes,
including ingestion and absorption from foods, exposure
to dust and water, inhalation of airborne gases and
particles, and direct contact with the skin(36). Moreover,
they can be transmitted to developing foetuses through
maternal transfer and to infants via breast milk or formula
prepared with water containing xenoestrogens. Once
inside the body, xenoestrogens engage with endogenous
oestrogens and oestrogen receptors (both membrane and
nuclear receptors), leading to disruption of oestrogenic
signalling(37–39).

Xenoestrogens, akin to other endocrine disrupting
substances (EDCs), can interfere with the synthesis,
secretion, transport, metabolism, binding, action, or
elimination of oestrogens(40,41). Their relatively low water
solubility and high lipid solubility contribute to a lengthy
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environmental half-life. Additionally, due to their chemical
makeup, xenoestrogens are widely distributed in the
environment and tend to accumulate in wastewater,
consequently impacting marine animal reproduction(42).

Among the most hazardous classes of xenoestrogens is
bisphenol-A (BPA). BPA is extensively used in the
production of plastics, thermal paper, can linings and
dental sealants(43). Exposure to BPA has been associated
with various hormone-related cancers(44). Moreover, data
suggest that BPA can interfere with neuronal develop-
ment, leading to physiological and behavioural effects(45).
Another perilous group is halogenated bisphenols A
(H-BPAs), including tetrachlorobisphenol A (TCBPA).
These compounds are employed in manufacturing
and present in different environmental contexts, demon-
strating greater toxicity than BPA(46). Diethylstilbestrol
(DES), another xenoestrogen, was administered to
women from the 1940s to the 1970s to lower the risk of
miscarriages(36,47–49); tragically, it resulted in birth defects
and has since been banned.

BPA enhances the pathogenesis processes of type 2
diabetes mellitus which includes insulin resistance,
impaired glucagon secretion and pancreatic β-cell
dysfunction(50–52). BPA accelerates the cellular senescence
and apoptosis by increasing the metabolic stress of
high glucose(53). BPA exposure is also associated with
promoting disturbances in lipid metabolism and insulin
resistance(54). Many studies in the past were able to
identify a possible link between the BPA-induced organ
damage mechanisms and pathogenesis of diabetic
complications(55,56).

Xenoestrogen’s ‘estrogen-like’ activity. Xenoestrogens
not only engage with and activate ERs and oestrogen-
related receptors, but they also interact with androgen
receptors and retinoid receptors. Moreover, xenoestro-
gens can directly or indirectly bind to non-steroid
receptors, including neurotransmitter receptors like
serotonin, dopamine and norepinephrine receptors.
They can also interact with orphan receptors, such
as the aryl hydrocarbon receptor (AhR), triggering
enzymatic pathways that influence steroid biosynthesis
and metabolism(56). Many xenoestrogens possess a
phenolic structure resembling that of E2, allowing them
to interact with ERs as either agonists or antagonists(57).
Their binding affinities for ERs span from sub-nanomo-
lar to micromolar values, and once bound, they can func-
tion as full agonists or partial agonists/antagonists(42).
Xenoestrogens can also serve as hormone precursors,
thereby impacting steroid metabolism and functioning as
steroid-sensitive substrates(58). However, the relationship
between BPA and metabolic outcomes is complicated
by a non-monotonic dose response curve. Various
epidemiological studies assumed a linear relationship
between BPA exposure and diabetes risk but lately it has
been postulated by the regulatory agencies that BPA
can mitigate adverse effects at much lower doses than the
calculated safe dose(59,60).

Xenoestrogens may negatively influence various
health conditions, including breast and prostate cancer,

endometriosis, infertility, diabetes, metabolic syndrome,
early puberty and obesity. Xenoestrogens can interfere
with the development of the female reproductive tract by
competitively inhibiting endogenous oestrogens and
selectively binding to ERs. Specific substances, such as
nine PCBs, three pesticides, a furan, and two phthalates,
have been linked to gradual damage to the follicular pool
and associated with earlier onset of menopause(61).
Xenoestrogens can also contribute to the formation of
ovarian cysts, leading to a condition known as polycystic
ovary syndrome(62). Adolescents residing in areas with
significant industrial development and PCB exposure
experienced earlier menarche and thelarche compared
to their unexposed peers(63). A National Health and
Nutrition Examination study showed higher BPA expo-
sure is associated with obesity in the adult population of
the United States(64). Riffee et al., explored the relation-
ship between bisphenol exposure and lipid profile
parameters and exercise-induced glucose uptake mecha-
nisms and indicated that BPA and bisphenol S are highly
correlated with oxidative stress generation and impaired
lipid metabolism(65).

Foetal development. Xenoestrogens have been demon-
strated to provide detrimental effects on foetal develop-
ment, with evidence indicating negative impacts on
neuronal and endocrine function(66). These compounds
have also been associated with cancer-promoting
mutations within cells during foetal development(67).
Furthermore, exposure to xenoestrogens during preg-
nancy has been linked to alterations in the genetic
sequence within the placenta, thereby adversely affect-
ing foetal growth and overall development(68,69). A study
by Garcia-Arvelo et al., exposed mice to BPA subcuta-
neously and fed a high-fat diet and the authors found
the male offspring had fasting hyperglycaemia, glucose
intolerance and high levels of NEFA in the plasma
compared with the controls(69). An epigenomic-wide
analysis of cord blood DNA methylation indicated that
there may be sex specific epigenomic responses to BPA
exposure in offspring as well(70).

The term used to define the timing for which an
individual is exposed to xenoestrogens is referred to as
the ‘term window’(40). Determining the ‘term window’
is extremely challenging and yet may be critical in
determining if and when the impact of the exposure is
manifested and to what harm the organism may
experience due to the exposure. The ‘term window’ is
the period of developmental susceptibility during which
the developing organism can be altered by environmental
factors resulting in structural, functional and/or cellular
changes(40).

Limitations and gaps in knowledge

Two recent Scientific Statements from The Endocrine
Society have highlighted the urgent necessity to delve into
the fundamental mechanisms of action xenoestrogens
exert and the subsequent physiological impacts of
endocrine disruptors they impart(40,41). It cannot be
understated that there is of utmost importance to conduct
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foundational in vitro molecular investigations to uncover
the pathways through which xenoestrogens exert their
influence on endocrine tissues(40,41).

How to minimise exposure. Given the documented
adverse effects of xenoestrogen exposure, one effective
strategy to minimise risk is to reduce the use of
cosmetic products that contain parabens and phthalates.
Additionally, using glass or ceramic containers for
storing food, as opposed to plastic, is recommended due
to the heightened presence of xenoestrogens in plastics.
It’s advisable to avoid using plastic containers in the
microwave to prevent potential leaching of BPA into
microwaved products. Additionally, refraining from
heating plastics, even in direct sunlight, is recommended
to mitigate exposure(71,72).

Moreover, adjusting dietary consumption of foods
which contain high levels of xenoestrogens can aid in
decreasing exposure. Specifically, restricting the intake of
canned fish which can contain elevated levels of mercury
and PCBs, would be prudent(73,74). Health professionals
and nutrition experts advocate for consumption of
fresh fish which is high in n-3 long-chain PUFA(75,76).
Additionally, various studies indicate that consuming fish
might protect against the effects of methyl mercury(77–79).
For instance, research conducted in the Seychelles
Child Development Study suggests a positive correlation
between fish consumption and cognition(78,79). Moreover,
opting for pesticide-free fruits and vegetables is advisable
whenever possible. If this is not feasible, then ensuring that
fruit and vegetables are washed thoroughly prior to
consumption could minimise exposure(80–82).

Inability to conduct research on xenoestrogens

Research on xenoestrogens is constrained by ethical
considerations because conducting studies to explore the
harmful effects of these substances on humans can pose
moral challenges. Many studies available in the literature
are observational or conducted on animals, thereby
limiting the direct applicability of their findings to
humans. The scarcity of randomised controlled trials
in the realm of xenoestrogen exploration is notable.
As previously indicated, potential detrimental effects of
xenoestrogens occur as they accumulate within organisms
and are contingent on factors such as dosage and exposure
duration, which may not be discernible within shorter
timeframes. A deeper understanding necessitates further
experiments involving the examination of the impact of
xenoestrogens both in their environmental context and in
isolation.

Conclusion

Oestrogens exert many critical functions throughout
the body. Endogenous oestrogens, particularly oestradiol,
have vital roles in growth, development and reproduction.
Additionally, oestrogens function beyond reproduction
and include regulating energy balance, adipose tissue
distribution and insulin sensitivity. Because of the
vital biological function oestrogens have, exposure to

exogenous oestrogens, like phytoestrogens from plants
and synthetic xenoestrogens, can have profound effects
which may be both beneficial and harmful.

Phytoestrogens, found in foods, can bind to oestrogen
receptors, potentially offering benefits for various
conditions. However, their effects depend on timing
and exposure levels, raising questions about safety and
interactions withmedications. Xenoestrogens on the other
hand, are synthetic compounds derived from various
sources and they mimic oestrogens and can disrupt
endocrine function, affecting health outcomes, including
cancer and reproductive disorders. Avoiding certain
products containing xenoestrogens and making dietary
choices can help reduce exposure risks.

Clearly understanding the impact xenoestrogens have
on biological systems is critical yet research on xenoes-
trogens faces ethical and complexity challenges, limiting
our understanding. Many studies are observational or
conducted in animal models which do not completely
replicate human physiological function therefore requir-
ing further investigation to bridge gaps between animal
and human responses. Variability in doses and exposure
durations underscores the need for more extensive
experiments to comprehend their impacts accurately.
Understanding the interplay between endogenous and
exogenous oestrogens is crucial for health. Ongoing
research guided by ethical considerations is essential to
unravel complexities, inform strategies to minimise
exposures and mitigate potential health risks.
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