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Abstract

This paper analyses the steady-state operation of a generalized bioreactor model that
encompasses a continuous-flow bioreactor and an idealized continuous-flow membrane
bioreactor as limiting cases. A biodegradation of organic materials is modelled using
Contois growth kinetics. The bioreactor performance is analysed by finding the
steady-state solutions of the model and determining their stability as a function of the
dimensionless residence time. We show that an effective recycle parameter improves
the performance of the bioreactor at moderate values of the dimensionless residence
time. However, at sufficiently large values of the dimensionless residence time, the
performance of the bioreactor is independent of the recycle ratio.

2010 Mathematics subject classification: primary 65P40; secondary 92B0S5.

Keywords and phrases: bioreactor, chemostat, Contois growth kinetics, stirred tank,
water treatment.

1. Introduction

A byproduct of many industrial processes is wastewater that is heavily contaminated
by biodegradable organic matter whose concentration must be greatly reduced prior to
its discharge into the water supply. A common method of achieving this is to pass the
wastewater through a bioreactor containing micro-organisms (biomass) that use the
biodegradable organic matter as a food (substrate) source. This results in additional
micro-organisms and a variety of products, which may include biological compounds,
carbon dioxide, methane and water. The presence of these products is unimportant for
the purposes of the present study and, therefore, they are ignored.

After passing through a bioreactor, the effluent stream may enter a settling unit.
Some of the micro-organisms in it settle to the bottom of this unit from which they are
recycled back into the bioreactor. The settling unit increases the concentration of the
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FiGure 1. Schematic diagram for a bioreactor with recycle.

micro-organisms inside the bioreactor, thereby increasing the efficiency of the process.
This reactor configuration is illustrated schematically in Figure 1. An alternative to
the settling unit is a permeable membrane, such as a micro-filtration membrane which
physically retains micro-organisms inside the bioreactor. In this article, a membrane
is thought of as a filter through which the effluent stream must pass.

In our model, the bioreactor configuration employed is determined by the value
assigned to the reactor parameter § with 0 <8 < 1, which appears in equation (2.2).
The extremity, 8 = 0, corresponds to an idealized membrane bioreactor, where all the
micro-organisms in the fluid stream are retained in the bioreactor. The extremity, 8 = 1,
represents a continuously stirred bioreactor, where no micro-organism in the fluid
stream is retained in the bioreactor. A variety of additional bioreactor configurations
are modelled by allowing the reactor parameter to vary between these values [15].
Intermediate values of the parameter 8 can be viewed as a fraction of the micro-
organisms in the fluid stream leaving the bioreactor that are retained in the reactor.

A specific growth rate of the micro-organisms is modelled using Contois kinetics
[4]. As outlined in Section 1.1, this gives a better fit to data for some wastewater than
alternative expressions. The biological treatment of wastewater using Contois kinetics
was investigated previously by Nelson et al. [16]. The difference between their model
and ours is in the placement of the membrane. We assume that the membrane is
located after the bioreactor but before the settling unit, whereas in their study [16] the
membrane is placed after the settling unit, which is a much less common configuration.
For the extreme cases, 8 = 0 or 8 = 1, the models are identical. However, they differ in
the intermediate values.

The objective of this paper is to investigate the performance of the generalized
reactor configuration shown in Figure 1 for all possible values of the reactor
configuration parameter 8. In doing so, we establish some new results for the limiting
casesf=0and 8= 1.

1.1. Contois growth kinetics The Contois growth rate expression given by
equation (2.3) has been shown to be applicable to the degradation of a range of
industrial wastewaters. Table 1 shows some applications in which the Contois model
provides a good fit for the experimental data. The second column lists, where
applicable, other specific growth rate expressions that have been examined.
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TaBLE 1. A summary of experimental work on industrial wastewaters where the specific growth was found
to be accurately described by Contois kinetics. CH: Chen and Hashimoto model [1].

Substrate/Source of wastewater Other models used Reference
Agroindustrial residues 19 kinetic models Mazutti et al. [14]
Caffeic acid Monod Pinna et al. [19]
Hydrolysis of particulate First order, Monod Hidaka et al. [10]
kitchen garbage

Ice-cream Monod Huetal [11]

Mining water, sulfate First order Hemsi et al. [9]
Municipal solid waste Gawande et al. [7]
Paper sludge Monod Zhang et al. [23]
Palm oil mill Monod, CH Abdurahman et al. [1]
Palm oil mill Monod, CH Abdurahman et al. [2]
Palm oil mill CH Poh and Chong [20]
Penicillium brevicompactum Verhulst, Exponential Ardestani [3]
Pharmaceutical Monod, Tessier Sun et al. [22]
Synthesized dairy Monod, Moser, CH Emerald et al. [6]
Synthetic domestic wastewater Guerrero et al. [8]
Textile Monod Isik and Sponza [12]
Waste-activated sludge First order, Monod, Hill Ramirez et al. [21]

2. Model equations and assumptions

2.1. Model assumptions In the process model, we make the standard assumptions
that the substrate is not concentrated in the settling unit, and the substrate utilization
occurs neither in the settling tank nor in the return line but only in the bioreactor.

2.2. The dimensional model The model equations are

v _ pisy -5y - vxtEX) 2.1)
di "
V‘;—f = F(Xo - BX) + RFB(C — DX + VXu(S, X) — K,VX. 2.2)

The parameters in the model are: C, the recycle concentration factor (-); F, the
flow rate through the bioreactor (1 day’l); K, the death coefficient (day’l); K., the
saturation constant (|X||S|™"); R, the recycle ratio based on volumetric flow rates (-); S,
the substrate concentration within the reactor (|S); S, the concentration of substrate
in the feed (|S|); V, the bioreactor volume (1); X, the concentration of micro-organisms
within the bioreactor (|X|); Xo, the concentration of micro-organisms in the feed (|X]); ¢,
time (day); «, the yield factor (|X||S|~!); B, the reactor parameter (0 < 8 < 1,-); u(S, X),
the specific growth rate (day™'); u,, the maximum specific growth rate (day~') and 7,
the residence time (day).
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The first term on the right-hand side of equation (2.1) represents the change in the
substrate concentration due to the wastewater flowing through the reactor, whereas the
second term models the decrease in the substrate concentration due to consumption of
the substrate by micro-organisms.

The first term on the right-hand side of equation (2.2) represents the change in
the micro-organism concentration due to the flow of wastewater through the reactor.
As explained in Section 1, the value of the parameter 8 indicates the particular reactor
configuration used. The second term models the use of a settling unit. A settling unit is
characterized by a concentration factor C and a recycle ratio R. The third term models
the increase in the micro-organism concentration due to consumption of the substrate.
The final term represents removal of the micro-organisms due to a combination of
first-order processes that include endogenous respiration, predation, cell death and
cell breakdown [18].

The specific growth rate given by Contois kinetics is

4(S, X) = um( 2.3)

S
KX+S )
and the residence time is defined by 7 = V/F. In the following, the quantities |S| and
|X| denote concentrations of the substrate S and micro-organisms X, respectively.

For a specific wastewater, a given biological community and a particular set of
environmental conditions, the parameters K,, K;, @ and y,, are fixed. The parameters
that can be varied are C, R, S, X( and 7. The parameters C and R are associated with
the operation of the settling unit, the parameters S and X, characterize the feed and
the parameter 7 characterizes the operation of the bioreactor.

For our numerical simulations, we use parameter values for the anaerobic
digestion of ice-cream wastewater [11]. These are: @ =0.2116(g VSS)(g COD)™!,
U = 0.9297 (day_l), K;=0.0131 (day_l) and K, = 0.4818 (g COD)(g VSS)™!.

2.3. Settling unit model The settling unit is modelled by the values of the
concentration factor C and the recycle ratio R. The concentration factor is defined
as the ratio of the concentration of micro-organisms leaving the settling unit to the
concentration of micro-organisms entering it. As shown in Figure 1, there is a flow
rate F associated with the influent stream. There is a corresponding flow rate F' that
is discharged downstream of the activated sludge process. As also shown in Figure 1,
there is a flow rate associated with the operation of the settling unit, which is denoted
by Fg. By convention, this flow rate is written in the form

Fr =RF,

where the recycle ratio R is defined by R = Fg/F.

The middle term on the right-hand side of equation (2.2) indicates how the rate
of change of the micro-organism concentration inside the bioreactor depends on the
operation of the settling unit.

The value of C depends on the design and operation of the settling unit and
sludge properties such as settling, thickening and compressibility behaviour. The
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concentration of micro-organisms recycled from the settling unit back into the reactor
is given by the term CX in equation (2.2).
By taking a mass balance over the settling unit, it can be shown that the maximum
value of the concentrating factor is
1
Chax = 1+ r 2.4)
Note that the settling unit does not concentrate the (soluble) substrate. Thus, the
value of the concentrating factor for the substrate is 1. Consequently, equation (2.1) is
independent of the operation of the settling unit.

2.4. The dimensionless model Equations (2.1) and (2.2) are written in dimension-
less form by introducing dimensionless variables for the substrate concentration
S* =S5/S0, the micro-organism concentration X* = K, X/S and the time t* = y,,,¢. The
dimensionless equations are

ds* 1 S X"
- (-8 - — 25
dre 1 ( ) a*(S* + X*) 23)
X, X BR - 1) .
-2 X = K X", 2.
ar o STexy . (2.6)

In these equations, the effective recycle parameter R* = (C — 1)R, the dimensionless
death rate K; = K4/uy, the dimensionless micro-organism concentration in the feed
X, = Xo/(a"Kj), the dimensionless yield coeflicient @* = K@ and the dimensionless
residence time 7° = Vi, /F.

The effective recycle parameter R* indicates the efficiency of the settling unit at
retaining micro-organisms within the bioreactor. When R* = 0, none of the micro-
organisms in the feed stream leaving the bioreactor are returned to the reactor. It
follows from equation (2.4) that the maximum value of the effective recycle parameter
is given by R}, = 1. When R* =1, all of the micro-organisms in the feed stream
leaving the bioreactor are returned to it. From equation (2.6), it follows that a flow
reactor with idealized recycle (R* = 8 = 1) is identical to an idealized membrane
reactor (8 = 0). (In both cases, the effluent stream contains no micro-organisms.)

Using the parameter values given in Section 2.2, we have a* = 0.1019 and
K{’; = 0.0141. Henceforth, we use a standard assumption that the concentration of
micro-organisms flowing into the reactor is zero (that is, Xo = X;j = 0). All other
parameters in the model are strictly positive.

Since all the terms in equations (2.5) and (2.6) are dimensionless, we typically
refer from now on, for example, to the residence time rather than the dimensionless
residence time.

In Section 3, we need the Jacobian matrix

-1 X2 -s"
% " _* - * * *\2 * % 12
st xy=| TS - R*)g_()%{;f " @.7)
—_ +
(X* +S*)2 T (X* + S*)2

of systems (2.5) and (2.6).
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3. Results

In Section 3.1, we establish some global properties of the systems (2.5) and (2.6).
In particular, we show that if K} > 1, then lim; o, X* = 0. Physically, this means that
no micro-organism is present in the reactor and process failure has occurred. Hence,
subsequent to this section, we assume that 0 < K} < 1.

In Section 3.2, we show that there are two steady-state solution branches
corresponding to a washout branch and a no-washout branch. Along the former the
steady-state micro-organism concentration is zero, and along the latter the steady-state
micro-organism concentration is nonzero, except at one point. The point at which these
two branches intersect and exchange stability is the washout point. We further state the
conditions for the latter branch to be physically meaningful. The local stability of the
steady-state solutions is determined in Section 3.3. The results obtained in Section 3.1
imply that when a steady-state solution is locally stable, it is, in fact, globally stable.

In Section 3.4, asymptotic solutions are presented for residence times a little higher
than the washout point (that is, 7 — 7%, < 1) and for large residence times (7* > 1). In
Section 3.5, we find the value of the residence time at which the biomass concentration
is maximized. In Section 3.6, we draw upon the findings of the earlier sections to
discuss steady-state diagrams for the effluent and micro-organism concentrations.

3.1. Global behaviour In this section, we establish some global results regarding
the systems (2.5) and (2.6), which are new for the limiting cases § =0 and 8 = 1.
In Appendix A, the region R defined by

*

[0

<§*<1

a* + T ’

*

0<X* < “M—a*s*,
M= min[1,8(1 - R*) + K]

is shown to be positively invariant. This means that if an initial condition is either
inside or on the boundary of the region R, then the corresponding solution of the
system cannot leave this region for all values of time with * > 0. Furthermore, we
show that the invariant region is exponentially attracting for physically meaningful
solutions starting outside the invariant region. Thus, from now on we are free to
consider only initial conditions within the invariant region. Note that the invariant
region R is the phase plane of the two concentrations S and X.

In Appendix B, we show that the systems (2.5) and (2.6) cannot have limit cycle
solutions. In Appendix C, we establish conditions that ensure that process failure
occurs, that is, the biomass dies out or, more formally, lims_. X*(#*) = 0. These
conditions are as follows.

(1) If K, > 1, then process failure occurs for all values of the residence time (7%).
(2) It K, < 1, then process failure occurs when
1-R

* *
T <71 =
cr 1 K*

B. 3.1)
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Later, we show that the critical value of the residence time 77, corresponds to a
transcritical bifurcation. Equation (3.1) shows that process failure cannot occur if
there is perfect recycle, that is, R* = 1.

3.2. Steady state solution branches In this section, we find the steady-state
solutions of the systems (2.5) and (2.6) and characterize when they are physically
meaningful. The steady-state solutions are given by:

(1) washout branch, ($*, X*) = (1,0);
(2) no-washout branch,

(3.2)

)

* 1-K)m™-(1-FR"
50y = © {1, LK R OBy
a (1-R)B+ K7
wherea = (1 - K))v" = (1 -R")B +a".
The no-washout branch (3.2) is physically meaningful only when the substrate and

micro-organism concentrations are positive, that is, when S* > 0 and X* > 0. Upon
analysing both components of (3.2), we find that this happens when

1-R*
* o= . 33
e (33)

Differentiating equation (3.2) with respect to R*,
ds* a’p

AR~ ca+(I-RB-(-KprP 0- S
The denominator in equation (3.4) is zero when
. I_R*,B— a* - 1-R* B=1.
1-K; 1-K; (1-K) o

From inequality (3.3), we deduce that the no-washout solution is not physically
meaningful when the denominator is equal to zero. Hence, for physically meaningful
solutions the substrate concentration is a decreasing function of the effective
recycle parameter R*. Consequently, at a fixed residence time, the lowest effluent
concentration is achieved when the effective recycle parameter takes its maximum
value, that is, R* = 1.

Differentiating equation (3.2) with respect to 77,

ds* (1-K)a*
dv* ~ [—a*+(1-R)B-(1-K)r*]?

<0 forO0<K;<1.

Hence, the substrate concentration is a decreasing function of the residence time along
the no-washout branch.

At the washout point, T* = 77,, given by equation (3.3), the washout and no-washout
solution branches intersect at a transcritical bifurcation. The washout value, 7 = 77,
represents the maximum residence time at which the treatment process fails. At lower
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residence times micro-organisms are removed from the reactor at a rate greater than
their maximum growth rate, resulting in process failure. In Section 3.3, we show that
at residence times lower (respectively, higher) than the critical value that the washout
(respectively, no-washout) solution is the only stable steady-state solution.

The critical value of the residence time is zero when either R* =1 or 8 =0.
Increasing the effective recycle parameter R* or decreasing the reactor parameter 3
allows the reactor to operate at lower residence times.

3.3. Stability of the steady-state solutions In Section 3.3.1, the local stability of
the washout solution branch is determined. In Section 3.3.2, the no-washout solution
is shown to be locally stable whenever it is physically meaningful. The results of
Section 3.1 establish that when either steady-state solution is locally stable, it is, in
fact, globally stable.

3.3.1. Stability of the washout solution. The Jacobian matrix (2.7) evaluated at the
washout steady-state solution is given by
-1 1

J.0=T gyl |
0 ( )f 441

-
which has the eigenvalues
1
A1=—<0 and
T
~(1-R)B- K"
-
T
Hence, the washout branch is stable when A, < 0, which occurs when

(1- K" < (1-R)B.

Ay = + 1.

Note that if:

K} > 1, then A, <0 for all 7*;
K} =1, then A, <0 provided that neither R* = 1 nor g = 0;
0< K} <1, then A, <0 for 7" <7 =B(1 — R)/(1 = K);
K}, = 1 and either R* = 1 or 8 = 0, then A, = 0;
0<K;<land7" =7 =B(1-R")/(1-K}),then 1, =0.
It follows from the results stated in Section 3.1 that in all five of these cases the washout

solution is globally stable.

3.3.2. Stability of the no-washout solution. The Jacobian matrix (2.7) along the
no-washout branch can be written as

-1 x+2 -s”
« * . . * )2 * s *)2
J§ X =| T O EIESDT X E S,
(X" +5)? (X" + 5
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This solution branch is stable if det(J) > 0 and trace(J) < 0. Since

X*S* 1 X*Z
wm:————[—+————ﬁ
(X* +S*)2 * CL’*(X* +S*)2
. X*Z « S;Z
X+ 5927 (X5 + S
trace(J) = [ XS + ! + X ]
- (X*+S*)2 T (X +S*)2 ’

it follows that det(J) > 0 and trace(J) < 0 whenever S* > 0 and X* > 0. Thus, the
no-washout branch is stable whenever it is physically meaningful.

From Section 3.1, we know that all solutions with physically meaningful
initial conditions are attracted into a closed and bounded (positively) invariant set.
Furthermore, there are no periodic solutions within this set. From Sections 3.2 and
3.3, for any value of the residence time there is only one stable steady-state solution.
It follows from the Poincaré—Bendixon theorem [13, page 294] that this steady-state
solution must be globally asymptotically stable. This observation is new for the
limiting cases S =0 and 5 = 1.

Note that when the washout solution is stable, the no-washout solution is not
located within the invariant region, since it is not physically meaningful. When the
no-washout solution is stable, the unstable washout solution has a one-dimensional
stable manifold. This manifold is the line X* = 0. Any initial condition not on this
manifold is attracted to the no-washout steady-state solution.

3.4. Asymptotic solutions In Section 3.4.1, asymptotic solutions are presented
for residence times just higher than the washout point (7" — 77, < 1), whilst in
Section 3.4.2 they are presented for large residence times (7 > 1).

3.4.1. Residence time approximations near the washout point (t* — 15, < 1). When
the residence time is slightly higher than the critical value, and provided that 8 # 0, we
have the following approximations to the stable steady-state solution 8 # 0:

1-K3
S*=1—¥E+0(62), 0<Kj;<l,
@

* (I_K:;)z 2 *
—m6+0(6), 0<Kd<1,
where .
e=T1" - — B < L.
1-K,

When g = 0, corresponding to 7, = 0, the expression for the substrate concentration
remains the same, but the expression for the micro-organism concentration becomes

*

1-K: (1-K)
~ - €

* % 7%
Kd a/Kd

+ (€2).
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3.4.2. Large residence times (" > 1). At large residence times, we have the
following approximations to the stable steady-state solution:

a* 1 1
S* ~ -—+0(—), 0<K' <1, 3.5
l_K; T* T*Z d ( )
A | 1
X" = -—+0(—), 0<K;<l. 3.6
K: T T2 d (3.6)

Equation (3.5) shows that the substrate concentration decreases to zero in the limit
of infinite residence time. Thus, the effluent concentration can be decreased to any
desired level by operating the reactor at a sufficiently large residence time. This is not
the case for processes controlled by Monod kinetics, where the substrate concentration
has a limiting value K;/(1 + K}) [17], or Tessier kinetics, where the limiting value is
In[1/(1 = K})] [15]. Equation (3.6) shows that large values of biomass concentration
decrease to zero in the limit of infinite residence time.

These equations show that both the substrate concentration S* and the biomass
concentration are to leading order independent of both the effective recycle parameter
R* and the reactor parameter £.

3.5. Maximizing the micro-organism concentration The emphasis of this paper
is on the biological treatment of wastewaters. Consequently, our primary focus is
on minimizing the value of the substrate concentration leaving the reactor. In some
bioreactor processes it is important to maximize the micro-organism concentration, for
instance when the bioreactor is being used to grow the micro-organism. The micro-
organism concentration is zero, that is, X* = 0, along the washout solution and in the
limit when the residence time increases to infinity. Thus, when the residence time is
greater than zero, there is a maximum value for the micro-organism concentration.
Differentiating the steady-state expression for the micro-organism concentration
from equation (3.2) with respect to the residence time, we find that the maximum

value occurs when
1-R* VKia*B(1 — R¥)
* % _ ( )ﬁ"l' d )

T e = g K(1-K))

3.6. Steady-state diagrams The physically meaningful solutions for the variation
of the substrate concentration S* and the micro-organism concentration X* as a
function of the residence time 7" are shown in Figures 2—4. The steady-state solutions
are only physically meaningful for 0 < S* <1 and X* > 0; as in Section 3.2, this
requires that 7 > 77,

Figure 2 shows the steady-state diagrams for the case of a flow reactor (8 = 1)
without a settling unit (R* = 0). Observe that when the residence time is lower than
the critical value (7% < 77.), the stable solution is the washout solution (given by the
solid lines S* = 1 and X* = 0); the no-washout solution is not physically meaningful
for these values of the residence time and is, therefore, not shown. When the residence
time is larger than the critical value (r* > 77,), the no-washout solution is stable
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FiGure 2. Steady-state diagrams showing the variation of the dimensionless substrate and micro-
organism concentrations with dimensionless residence time. Parameter values: dimensionless decay rate
K, =0.014091, dimensionless yield coefficient & = 0.10194 and (1 — R")B = 1.

o1 \ f

0 2 4 6 8 10

Dimensionless residence time (t*)

Dimensionless substrate
concentration (S¥)

FiGure 3. Steady-state diagram showing the variation of the dimensionless substrate concentration with
dimensionless residence time. Parameter values: (1 — R*)8 = 0 (a), 0.25 (b), 0.5 (c), 0.75 (d), 1 (e). Other
parameter values as in Figure 2. Line (f) shows the washout solution. (Colour available online.)

(as indicated by a solid curve) whilst the washout solution is unstable (indicated by
a dotted line). As noted in Section 3.5, there is a value of the residence time at which
the biomass concentration is maximized.

Figures 3 and 4 show how the steady-state diagrams for the substrate and micro-
organism concentrations change as the reactor configuration is changed through
reduction of the value of the parameter group (1 — R*)8. In these figures, observe
that as the value of this parameter decreases, the critical value of the residence time 7,
also decreases.

In the following section, we assume that the residence time is sufficiently high (that
is, 7 > 17.) so that the no-washout solution branch is a stable solution.

Figure 3 shows that for a fixed residence time 7*, the effluent concentration
decreases as the value of the reactor parameter (1 — R*)B decreases (from curves
(a)—(e)). It also shows that if the value of this group is fixed, then the effluent
concentration decreases as the residence time increases. Figure 4 shows that for a
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FiGURE 4. Steady-state diagram showing the variation of the dimensionless micro-organism concentration
with dimensionless residence time. Parameter values: (1 — R*)8* = 0 (a), 0.25 (b), 0.5 (¢), 0.75 (d), 1 (e).
Other parameter values as in Figure 2. Line (f) shows the washout solution. (Colour available online.)

fixed residence time the micro-organism concentration X* decreases as the value of
the group (1 — R*)B increases (as illustrated in curves (a)—(e)).

4. Discussion

The steady-state performance of a bioreactor processing industrial wastewaters may
be characterized by its treatment efficiency along the no-washout branch, that is, when
7" > 77,. The treatment efficiency

EleO(SO_S)
0

=100(1 - S%) 4.1)

is the percentage of substrate that has been removed by the reactor. From
equation (4.1), it is clear that along the no-washout branch where 0 < S* < 1, the
efficiency is positive (E > 0). Substituting for the substrate concentration from
equation (3.2), we obtain the efficiency along the no-washout branch as

a*
k= 100(1 TBR -D+T(1-K)+ a*)

%
- 100(1 - —) 4.2)
@y + (7" =T,
where @, = @*/(1 — K})). The efliciency increases when either the residence time
becomes large (7" > 1) or the critical value of the residence time 7, becomes small.
The latter is when the group (1 — R*)g is small.
The efficiency equation (4.2) is shown as a function of the residence time 7* in
Figure 5. This figure shows that at fixed values for the residence time, the efficiency of
the reactor increases as the value of the parameter group (1 — R*)8 decreases. It also
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Ficure 5. The efficiency (E) as a function of the dimensionless residence time. Parameter values:
(1 -=R*)B=0 (e), 0.25 (d), 0.5 (c), 0.75 (b), 1 (a). Other parameter values as in Figure 2. (Colour
available online.)

demonstrates that for a fixed value of the parameter group (1 — R*)B, the efficiency
increases as the residence time increases.

For values of the residence time slightly larger than the critical value (7* — 75, < 1),
the efficiency becomes

%

Kd * % \2
E =100 T 1)+ 0" — 1),
17

At large residence times, the efficiency is

a1 1
Ex 100(1 T T*) +0(=)
As the residence time approaches infinity, the efficiency of the process approaches
100% and is independent of the influent pollutant concentration. In contrast with
processes controlled by Monod or Tessier kinetics, the maximum efficiency is bounded
below 100% and depends upon the influent pollutant concentration S [15, 17].
Finally, at high values of the residence time the process efficiency is independent of
both the reactor parameter 8 and the effective recycle parameter R*.

Table 2 shows the residence time required to achieve efficiencies of 99%, 99.9% and
99.99% as a function of the parameter group (1 — R*)B. The residence time required
to achieve a given efficiency increases as the value of this group increases. However,
the percentage increase in going from the minimum value 0 to the maximum value 1 is
very weak. Furthermore, as the efficiency increases the percentage increase decreases.

5. Conclusion

We have investigated a bioreactor model for the interaction between a micro-
organism and a rate-controlling substrate in which the specific growth rate is modelled
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TasLe 2. The dimensionless residence time required to achieve an efficiency of 99%, 99.9% and 99.99%
as a function of the parameter group (1 — R")S.

Efficiency (1-R"B
E* 0 0.25 0.5 0.75 1 Percentage
increase
99% 11.01 11.28 11.55 11.82 12.10 9.90%

99.9% 111.104  111.37 111.64 11192 112.19 0.977%
99.99% 1112.04 111231 111258 1112.86 1113.13 0.098%

using Contois kinetics. We have considered a generalized reactor model in which the
idealized membrane reactor and well-stirred flow reactor with or without recycle are
limiting cases. These limiting cases were considered in an earlier paper [16]. We have
established a number of new results for these limiting cases, in addition to considering
the full range of reactor configurations among them.

The steady-state solutions and the stability were found as a function of the residence
time. A transcritical bifurcation between the washout and no-washout solutions occurs
at the critical residence time 77, given by equation (3.1), when these two solutions
intersect and exchange stability. The washout solution is the only stable solution when
the residence time is lower than the transcritical value and the no-washout solution is
the only stable solution when the residence time is higher than the transcritical value.
From our global analysis, it follows that a locally stable steady-state solution is in
fact globally asymptotically stable. Furthermore, the washout solution is globally
asymptotically stable when the residence time is equal to its critical value (that is,
T =Ty)

We have shown that the substrate concentration decreases when the parameter
group (1 — R*)B decreases. At some large values for the residence time, the substrate
concentration is independent of both the reactor parameter 5 and the effective recycle
parameter R*.

One way to characterize the performance of a bioreactor is the treatment efficiency,
which increases by the increase in residence time. Significantly, for processes
governed by Contois kinetics, the limiting value of the efficiency as the residence time
approaches infinity is independent of the influent concentration.

Appendix A. Invariant region

We show that the region R is both positively invariant and attracting, that is, a
solution starting at any physically meaningful initial condition outside the invariant
region eventually enters the invariant region.

Appendix A.1. Solution components may not become negative The systems (2.5)
and (2.6) are undefined at the origin. We show that if the initial condition is not defined
at the origin, then the solution of the system does not enter this point. Suppose that the
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system exists near this point, but with nonzero substrate concentration. Then

ds* 1 S*X*
=—1-8)Y ———
dar T a*(S* + X*)
l *
s LS
T a
>0

for sufficiently small S *. Thus, the substrate concentration increases away from zero,
making it strictly nonnegative.

Using the classical scalar comparison theorem for ordinary differential equations,
the above inequality shows that the region S* > a*/(a* + 7*) is both positive invariant
and attracting. Since

ax-
dr lx-o

the plane X* = 0 is invariant.

Appendix A.2. The substrate component is bounded We show that the region
0 <S* <1 is both positively invariant and exponentially attracting. Since X* > 0 and

S*>0,
ds”* 1 S*X*
=—(1-8Y ———
dar T a*(S* + X*)
1
<= -8
T

Let Z; be the solution of the differential equation
dz,
dr*

with initial condition Z;(0) = $*(0). It follows from the classical scalar comparison

theorem for ordinary differential equations that S* < Z;(¢*). Hence,

§' @) <1-[1-870)] GXP[—;—:]-

Thus, the region 0 < §* < 1 is invariant, because if the initial condition is within the
invariant region, that is, S*(0) < 1, then the solution remains within the invariant
region, that is, S* < 1. Furthermore, if the initial condition is outside the invariant
region, S*(0) > 1, then the solution must eventually enter the invariant region in the
limit #* — oo, that is, $*(*) < 1.

1
== =2
T

Appendix A.3. The biomass component is bounded Let Z, = o*S* + X* with
initial condition Z, = @*S *(0) + X*(0). Then, adding equations (2.5) and (2.6),
dz, o ao'S* [B(1-R)+K7]X*

ar v T
a M@ S*+ X

IA

*

T T
at - MZ*
—’

T*
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where M = min[1,5(1 - R*) + K;7*]. Hence,

a” a” Mt
L) =o' S+ X' )V — - |— - *S*O—X*O] [— ]
(1) =a"S7(1") ()MMOZ() (0)[exp -
Combining this result with our earlier bound on the scaled substrate concentration
in Appendix A.2, it follows that the region R* defined by 0 < S* <1 and 0 < X* <
(a*/ M) — a*S* is positively invariant and exponentially attracting.

Appendix B. Periodicity

In this section, we establish the nonexistence of limit cycles. To show the nonexis-
tence of a periodic solution, we use Dulac’s criteria.

TueoreEM B.1 (Dulac’s test [5, 13]). Consider the system

dx dy
5 =~ =gy,
Let D be a simply connected region in R* and { f(x,y), g(x,y)} € C1 (D). If there exists
a function p € C' (D) such that
dpf) | 9(pg)

6x+6y

is not identically zero, and does not change sign in D, then this system does not have
any closed paths lying entirely in D.

We use the test function p = 1/X*, which is acceptable. To see this, note that if a
periodic solution exists, it cannot include any part of the line X* = 0, because this line
is invariant (see Appendix A.1).

Applying Dulac’s test to the systems (2.5) and (2.6) with the specified choice for p,

opf) 0dpg  [a"(X"+ S + X ' (@S + X¥)
as*  oX* X*rra* (X* + §5%)2
This function is strictly negative inside the positive quadrant. Thus, no periodic
solution exists which is entirely contained within the positive quadrant. Since the

positive quadrant is positively invariant, there is no periodic solution only partly
contained within it.

<0.

Appendix C. Global stability of the washout solution

Here we establish conditions that ensure process failure, that is, when the biomass
dies out. From equation (2.6),
_ JBR =D
drr  (§*+X%) T*
B(1—R)

<[r-B=2 -k
T

KiX*
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since S*/(S* + X*) < 1. (The possibility that S*(t*) + X*(0) = O is eliminated by
the observation that at sufficiently large values of time, S*(t*) > a*/(a* + 7%); see
Appendix A.1.) Let

1-R*
ﬁ(—*)+K;:1+e, where € > 0.
T
Then dX*/dt* < —eX*, which shows that lim;_,., X*(#*) = 0. The condition
1-R*
ﬁ(—*) +K;=1+€e>1

.
yields the following three cases.

(1) If either 8 = 0, corresponding to an idealized membrane bioreactor, or R* =1,
corresponding to idealized recycle, then the washout solution is globally stable
when K, > 1.

(2) If neither 8 = 0 nor R* = 1, then the washout solution is globally stable when
K;>1.

(3) If K}, < 1, then the washout solution is globally stable when 7* < 77 = (1 -
RY/(1 - K3)B.

In cases 1 and 3, the inequality can be reduced to an equality by observing that on
the line $* =1,
as* 1-§* 1 §X*
T @ (ST +XY)
1 X
T (1+ X
<0

except when X* = 0. Since the point ($*, X*) = (1,0) is a steady-state solution, we
deduce that a solution curve that touches the line S* = 1 cannot return to it except at
the steady-state solution.
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