
Ergod. Th. & Dynam. Sys., page 1 of 29 © The Author(s), 2024. Published by Cambridge University
Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution
licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and
reproduction, provided the original article is properly cited.
doi:10.1017/etds.2024.31

1

Poissonian pair correlation for directions in
multi-dimensional affine lattices and escape
of mass estimates for embedded horospheres

WOOYEON KIM† and JENS MARKLOF ‡

† Department of Mathematics, ETH Zurich, Zurich, Switzerland
‡ School of Mathematics, University of Bristol, Bristol BS8 1QU, UK

(e-mail: j.marklof@bristol.ac.uk)

(Received 19 May 2023 and accepted in revised form 15 March 2024)

Abstract. We prove the convergence of moments of the number of directions of affine
lattice vectors that fall into a small disc, under natural Diophantine conditions on the shift.
Furthermore, we show that the pair correlation function is Poissonian for any irrational
shift in dimension 3 and higher, including well-approximable vectors. Convergence in
distribution was already proved in the work of Strömbergsson and the second author
[The distribution of free path lengths in the periodic Lorentz gas and related lattice point
problems. Ann. of Math. (2) 172 (2010), 1949–2033], and the principal step in the extension
to convergence of moments is an escape of mass estimate for averages over embedded
SL(d, R)-horospheres in the space of affine lattices.
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1. Introduction
It is often difficult to rigorously determine the pseudorandom properties of a given
sequence of real numbers modulo one, including even the simplest second-order corre-
lation functions. In the present paper, we consider the problem in higher dimension and
construct an explicit sequence of points υ1, υ2, υ3, . . . on the unit sphere Sd−1 whose
two-point statistics converge to that of a Poisson point process. This sequence is given by
the unit vectors υj = ‖yj‖−1yj representing the directions of vectors yj in a fixed affine
lattice in Rd of unit covolume. Here the yj are listed in increasing length ‖yj‖, where
‖ · ‖ denotes the Euclidean norm. If there are two or more vectors of the same length, we
take them in arbitrary order (our results will not depend on the choice made). If there are
several lattice points with the same direction, they will appear repeatedly in the sequence.
Our approach extends the results of [EMV15], which in turn builds on [MS10], from
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d = 2 to higher dimensions. We are furthermore able to relax the Diophantine hypotheses
imposed in [EMV15].

A sequence (υj )∞j=1 on Sd−1 is called uniformly distributed if for any set D ⊆ Sd−1

with volSd−1(∂D) = 0, we have that

lim
N→∞

1
N

#{j ≤ N : υj ∈ D} = volSd−1(D)
VSd−1

,

where VSd−1 = volSd−1(Sd−1). The pair correlation function of the partial sequence
(υj )

N
j=1 is defined as

R2
N(s) = 1

N
#{(j1, j2) : j1, j2 ≤ N , j1 �= j2, cdN1/(d−1)dSd−1(υj1 , υj2) ≤ s},

where cd = V
−1/(d−1)
Sd−1 and dSd−1 is the standard geodesic distance for the unit sphere Sd−1.

The scaling by cdN1/(d−1) ensures we are measuring correlations in units where the mean
density of points is one (note that the scaled sphere cdN1/(d−1)Sd−1 has volume N). The
function R2

N(s) is known as Ripley’s K-function in the statistical literature.
We say the pair correlation of the sequence (υj )∞j=1 is Poissonian if for any s > 0,

lim
N→∞ R2

N(s) = π(d−1)/2sd−1

�((d + 1)/2)
, (1.1)

which is the volume of a ball in Rd−1 of radius s. This limit holds for example almost
surely for a sequence of independent and uniformly distributed random points on Sd−1. It
coincides with the pair correlation function of a Poisson point process in Rd−1 of intensity
one; hence the term ‘Poissoninan’.

Every affine lattice of unit covolume can be explicitly written as Lξ = (Zd + ξ)M0,
where ξ ∈ Rd andM0 ∈ G = SL(d, R). For integer shift ξ ∈ Zd , we obtain the underlying
lattice L = ZdM0. It follows from classical asymptotics for the number of affine lattice
points in expanding sectors with a fixed opening angle that the sequence of directions is
uniformly distributed on Sd−1 for any shift ξ ∈ Rd .

It is an interesting observation that a Poissonian pair correlation implies uniform
distribution on general compact manifolds [M20]. This fact was first proved in the case of
S1 by Aistleitner, Lachmann and Pausinger [ALP18], and independently by Larcher and
Stockinger [LS20]. For the convergence of the pair correlation function, we will however,
unlike the case of uniform distribution, require Diophantine conditions on the lattice shift ξ .
For κ ≥ d , we say that ξ ∈ Rd is Diophantine of type κ if there exists Cκ > 0 such that

|ξ · m|Z > Cκ |m|−κ

for any m ∈ Zd \ {0}, where | · | denotes the supremum norm of Rd and | · |Z denotes the
supremum distance from 0 ∈ Td . It is known that Lebesgue-almost all ξ ∈ Rd are of type
κ for any κ > d. We will in fact only require a milder Diophantine condition. Define the
function ζ : Rd × R>0 → N by

ζ(ξ , T ) := min
{
N ∈ N : min

m∈Zd\{0}
0<|m|≤N

|ξ · m|Z ≤ 1
T

}
. (1.2)
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Multi-dimensional affine lattices 3

In view of Dirichlet’s pigeon hole principle, we have that ζ(ξ , T ) ≤ T 1/d and, if ξ is of
Diophantine type κ ≥ d , then ζ(ξ , T ) > (CκT )

1/κ .
We say ξ ∈ Rd is (ρ, μ, ν)-vaguely Diophantine if

∞∑
l=1

lρ 2μζ(ξ , 2l−1)−ν < ∞.

Thus, if ξ is Diophantine type κ , then it is also (ρ, μ, ν)-vaguely Diophantine for
κμ < ν. If ξ satisfies the weaker Brjuno Diophantine condition [BF19, LDG19], then
it is (ρ, 0, ν)-vaguely Diophantine for 0 ≤ ρ < ν − 1 (see Appendix A).

THEOREM 1.1. Let d ≥ 2 and ξ ∈ Rd \ Qd ; furthermore, if d = 2, assume that ξ is
(0, 0, 2)-vaguely Diophantine. Then the pair correlation function of the sequence (υj )∞j=1
of directions is Poissonian.

We note that the hypothesis on ξ (in the case d = 2) is satisfied for all Brjuno vectors
and, thus, in particular for Diophantine vectors of any type. In Appendix B, we prove
that there is a set of second Baire category of ξ ∈ R2 \ Q2 for which the pair correlation
function diverges. This shows that the Diophantine condition is indeed required.

The pair correlation function also exists for ξ ∈ Qd if d ≥ 3 and is closely related to
the two-point statistics of multi-dimensional Farey sequences [BZ05, M13] and visible
lattice points [BCZ00, MS10]. The deeper reason why we see a Poisson pair correlation
for ξ /∈ Qd is that the limit distribution is expressed through the Haar measure on the
semi-direct product group SL(d, R)�Rd , where the averages over double-lattice sums
reduce to Siegel’s mean value formula; cf. Proposition 7.1 and [EMV15, Proposition 14]. In
the case of ξ ∈ Qd , we need to apply Rogers’ formulae that exhibit non-trivial correlations
in the lattice sums, which explains the non-Poissonian correlations in this case. This is also
the reason why three-point and higher-order correlation functions for directions in affine
lattices with ξ /∈ Qd are non-Poissonian. Fine-scale statistics of directions have also been
studied in the context of quasicrystals [BGHJ14, H22, MS15].

It is worth highlighting that in the analogous problem of directions in hyperbolic
lattices, the pair correlation statistics are not Poissonian; see [MV18] and references
therein.

Theorem 1.1 provides an example of a deterministic sequence in higher dimension
whose pair correlation density is Poissonian. Other local statistics, however, deviate from
the Poisson distribution in other statistical tests, as shown in [MS10]. By deterministic,
we mean here that convergence is proved not just almost surely or in probability, but for a
fixed, explicit sequence. An interesting non-Poisson random point process with Poissonian
pair correlation is discussed in [BS84].

Theorem 1.1 generalizes results of [EMV15] for two-dimensional affine lattices and
under a stronger Diophantine condition on ξ , as well as earlier work by Boca and Zaharescu
[BZ06] that was limited to almost every ξ ∈ R2. Other examples of deterministic
sequences with Poissonian pair correlation in one dimension include

√
n mod 1 (excluding

n that are perfect squares) [EM04, EMV15b] and the recent paper by Lutsko, Sourmelidis
and Technau [LST21] on αnθ mod 1 that holds for every α > 0 and θ ≤ 1/3. Sequences
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such as αn2 mod 1 [RS98] or α2n mod 1 [RZ99] have Poissonian pair correlation for
almost every α, but with no explicit instances of α currently known. For more references on
recent developments on metric pair correlation problems, we refer the reader to [AEM21,
LS20b] and references therein.

Finally, we mention work of Bourgain, Rudnick and Sarnak [BRS16, BRS17], who
considered the fine-scale statistics of lattice points (without a shift) on large spheres, rather
than radially projected points as in our setting. Remarkably, in dimension two, Kurlberg
and Lester have recently been able to prove that all correlation functions converge to
Poisson along density-one subsequences of eligible radii [KL22].

The next section will recall the convergence in distribution for the directions in affine
lattices from [MS10], and then state an extension to convergence of mixed moments
(Theorem 2.2), which is the main result of this paper. An application of the Siegel mean
value formula gives explicit expressions for all second-order statistics and in particular
shows that the pair correlation function is Poissonian (Corollaries 2.3 and 2.4). These
results thus immediately imply Theorem 1.1. Section 3 introduces the space of affine
lattices. In §5, we prove escape-of-mass estimates for spherical averages that allow us
to pass from convergence in distribution to convergence of moments. Sections 6 and 7
supply the proofs of our Main Lemma, which immediately implies Theorem 2.2, and
Corollaries 2.3 and 2.4, respectively.

2. Limit distribution and higher moments
We consider the set PT of affine lattice points y ∈ Lξ inside the ball of radius BdT or, more
generally, Pc,T the lattice points in the spherical shell

Bdc,T := {x ∈ Rd : cT ≤ ‖x‖ ≤ T }, 0 ≤ c < 1.

The well-known asymptotics for the number of lattice points in a large ball yields for
T → ∞,

#Pc,T ∼ volRd (Bdc,1)T d = 1 − cd

d
VSd−1T

d .

For σ > 0 and υ ∈ Sd−1, we define Dc,T (σ , υ) ⊆ Sd−1 to be the open disc with centre υ

and volume

volSd−1(Dc,T (σ , υ)) = σd

1 − cd
T −d .

Then the radius of Dc,T (σ , υ) is � T −d/(d−1), and for T → ∞,

volSd−1(Dc,T (σ , υ))

VSd−1
∼ σ

#Pc,T
.

Thus, σ measures the disc’s volume in terms of the average density of points on the sphere;
this scale is compatible with the one introduced above for the pair correlation function.

We define the counting function

Nc,T (σ , υ) := #{y ∈ Pc,T : ‖y‖−1y ∈ Dc,T (σ , υ)}
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for the number of affine lattice points whose direction is contained in Dc,T (σ , υ). Note
that on average over υ, uniform distribution implies (cf. [MS10, §2.3]) that for any Borel
probability measure λ on Sd−1 with continuous density, we have

lim
T→∞

∫
Sd−1

Nc,T (σ , υ)λ(dυ) = σ . (2.1)

This says that the expected number of affine lattice points, with direction contained in
Dc,T (σ , υ) for random υ, is σ .

We recall the following result from [MS10], which provides the full limit distribution of
Nc,T (σ , υ) with random υ distributed according to a general Borel probability measure λ.

THEOREM 2.1. [MS10] For σ = (σ1, . . . , σm) ∈ Rm>0, there is a probability distribution
Ec,ξ (·, σ) on Zm≥0 such that, for any r = (r1, . . . , rm) ∈ Zm≥0 and any Borel probability
measure λ on Sd−1, absolutely continuous with respect to Lebesgue,

lim
T→∞ λ(υ ∈ Sd−1 : Nc,T (σ1, υ) = r1, . . . , Nc,T (σm, υ) = rm) = Ec,ξ (r , σ).

The limit distribution satisfies the following properties, cf. §4:
(a) Ec,ξ (r , σ) is independent of λ and L;
(b)

∑
r∈Zm≥0

rjEc,ξ (r , σ) = ∑∞
r=0 rEc,ξ (r , σj ) = σj for any j ≤ m;

(c) for ξ ∈ Qd ,
∑
r∈Zm≥0

‖r‖sEc,ξ (r , σ) < ∞ for 0 ≤ s < d and = ∞ for s ≥ d .

(d) for ξ /∈ Qd , Ec,ξ (r , σ) =: Ec(r , σ) is independent of ξ ;
(e) for ξ /∈ Qd ,

∑
r∈Zm≥0

‖r‖sEc(r , σ) < ∞ for 0 ≤ s < d + 1 and = ∞ for s ≥ d + 1.

A key ingredient of the proof of Theorem 2.1 is Ratner’s measure classification theorem,
which allows one to prove equidistribution of horospheres embedded in the space of affine
lattices. An effective version of this statement was established only recently [K21].

Let us now turn to the main outcome of the present investigation, which extends the
results of [EMV15] to arbitrary dimension. For σ1, . . . , σm > 0, λ a Borel probability
measure on Sd−1 and z = (z1, . . . , zm) ∈ Cm, let

Mλ(T , z) :=
∫
Sd−1

(Nc,T (σ1, υ)+ 1)z1 · · · (Nc,T (σm, υ)+ 1)zmλ(dυ). (2.2)

We denote the positive real part of z ∈ C by Re+(z) := max{Re(z), 0}.
The following is the principal theorem of this paper.

THEOREM 2.2. Let σ1, . . . , σm > 0 and λ a Borel probability measure on Sd−1 with
continuous density. Choose ξ ∈ Rd and z = (z1, . . . , zm) ∈ Cm, such that one of the
following hypotheses holds:
(A1) Re+(z1)+ · · · + Re+(zm) < d;
(A2) η := Re+(z1)+ · · · + Re+(zm) < d + 1 and ξ is (0, η − 2, 2)-vaguely Diophan-

tine if d = 2 and (d − 1, η − d , 1)-vaguely Diophantine if d ≥ 3.
Then

lim
T→∞ Mλ(T , z) =

∑
r∈Zm≥0

(r1 + 1)z1 · · · (rm + 1)zmEc,ξ (r , σ). (2.3)
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We note that if ξ is Diophantine of type κ then under hypothesis (A2), we have
η < 2 + (2/κ) if d = 2 and η < d + (1/κ) if d ≥ 3. Thus, in particular for badly
approximable ξ (where κ = d), we have η < 3 if d = 2 and η < d + (1/d) if d ≥ 3.

We define the restricted moments to explain the key step of the proof of Theorem 2.2:

M
(K)
λ (T , z) :=

∫
maxj Nc,T (σj ,υ)≤K

(Nc,T (σ1, υ)+ 1)z1 · · · (Nc,T (σm, υ)+ 1)zmλ(dυ).

(2.4)

Then Theorem 2.1 implies that for any K > 0,

lim
T→∞ M

(K)
λ (T , z) =

∑
r∈Zm≥0,|r|≤K

(r1 + 1)z1 · · · (rm + 1)zmEc,ξ (r , σ), (2.5)

where |r| := max1≤j≤m rm. Thus, for the proof of Theorem 2.2 it remains to show that
under hypotheses (A1)–(A2),

lim
K→∞ lim sup

T→∞
|Mλ(T , z)− M

(K)
λ (T , z)| = 0. (2.6)

We will prove this in §6.
The following corollaries of Theorem 2.2 state that, in particular, the second moment

and pair correlation converge and are Poisonnian.

COROLLARY 2.3. Let λ be as in Theorem 2.2. Let d ≥ 2 and ξ ∈ Rd \ Qd ; furthermore,
if d = 2, assume that ξ is (0, 0, 2)-vaguely Diophantine. Then, for any σ1, σ2 > 0,

lim
T→∞

∫
Sd−1

Nc,T (σ1, υ)Nc,T (σ2, υ)λ(dυ) = σ1σ2 + min{σ1, σ2}. (2.7)

Let N = Nc(T ) be the number of points in Pc,T and let υj = ‖yj‖−1yj ∈
Sd−1 be the directions of the vectors yj ∈ Pc,T , with j = 1, . . . , Nc(T ). For
f ∈ C0(S

d−1 × Sd−1 × R) (continuous, real-valued and with compact support), we define
the two-point correlation function

R2
N(f ) = 1

N

N∑
j1,j2=1
j1 �=j2

f (υj1 , υj2 , cdN1/(d−1)dSd−1(υj1 , υj2)). (2.8)

COROLLARY 2.4. Let d ≥ 2, 0 ≤ c < 1 and ξ ∈ Rd \ Qd ; furthermore, if d = 2, assume
that ξ is (0, 0, 2)-vaguely Diophantine. Then for any f ∈ C0(S

d−1 × Sd−1 × R),

lim
T→∞ R2

Nc(T )
(f ) = VSd−2

VSd−1

∫
Sd−1×R≥0

f (υ, υ, s) dυ sd−2 ds. (2.9)

Corollary 2.4 implies Theorem 1.1 by approximating the characteristic function
from above/below by C0 functions. The additional dependence of f (υ1, υ2, s) on
υ1, υ2 ∈ Sd−1 can be used to generalize Theorem 1.1 to pair counting where υj1 and
υj2 are restricted to different subsets of D1, D2 ⊆ Sd−1. Set
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R2
N(D1, D2, s) = 1

N
#{(j1, j2) : j1, j2 ≤ N , j1 �= j2,

υj1 ∈ D1, υj2 ∈ D2, cdN
1/(d−1)dSd−1(υj1 , υj2) ≤ s}.

We then have the following corollary.

COROLLARY 2.5. Let d ≥ 2, 0 ≤ c < 1 and ξ ∈ Rd \ Qd ; furthermore, if d = 2, assume
that ξ is (0, 0, 2)-vaguely Diophantine. Then for any D1, D2 ⊆ Sd−1 with volSd−1(∂D1) =
volSd−1(∂D2) = 0 and s > 0, we have that

lim
T→∞ R2

Nc(T )
(D1, D2, s) = π(d−1)/2sd−1

�((d + 1)/2)
volSd−1(D1 ∩ D2)

VSd−1
. (2.10)

3. The space of affine lattices
Let G = SL(d, R) and � = SL(d, Z). Define G′ = G�Rd by

(M , b)(M ′, b′) = (MM ′, bM ′ + b′),

and let �′ = � � Zd denote the corresponding arithmetic subgroup. The right action
of g = (M , b) ∈ G′ on Rd is defined by xg := xM + b. We embed G in G′ via the
homomorphismM �→ (M , 0). In the following, we will identify G with the corresponding
subgroup in G′ and use the shorthand M for (M , 0).

Given σ > 0 and 0 ≤ c < 1, define the cone

Cc(σ ) := {(x1, x′) ∈ R × Rd−1 : c < x < 1, ‖(1 − cd)x′‖ < σ }. (3.1)

For g ∈ G′ and any bounded set C ⊂ Rd ,

N (g, C) := #(C ∩ Zdg). (3.2)

By construction, we can view N (·, C) as a function on the space of affine lattices, �′\G′.
For y = (y2, . . . , yd) ∈ Rd−1 and t ≥ 0, let

ñ(y) :=

⎛⎜⎜⎜⎝
1 y2 · · · yd

1
. . .

1

⎞⎟⎟⎟⎠, �t :=

⎛⎜⎜⎜⎝
e−((d−1)/d)t

et/d

. . .
et/d

⎞⎟⎟⎟⎠. (3.3)

Set e1 = (1, 0, . . . , 0). As in [MS10, p. 1968], we define a smooth map k : Sd−1 \
{−e1} → SO(d) by

k(υ) := exp
(

0 −y(υ)
ty(υ) 0d−1

)
∈ SO(d) (3.4)

with y(e1) = 0 and, for υ = (υ1, . . . , υd) ∈ Sd−1 \ {e1, −e1},
y(υ) = arc cos v1√

1 − υ2
1

(υ2, . . . , υd) ∈ Rd−1.

Note that ‖y(υ)‖ < π . By construction, υ = (cos ‖y(υ)‖, sin ‖y(υ)‖(y(υ)/‖y(υ)‖)), and
hence e1 = υk(υ) for all υ ∈ Sd−1 \ {−e1}.
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By an elementary geometric argument, given σ > 0 and ε > 0, there exists T0 > 0 such
that for all υ ∈ Sd−1 \ {−e1}, ξ ∈ Rd , M0 ∈ G and T = et/d ≥ T0,

Nc,T (σ , υ) ≤ N ((1, ξ)M0k(υ)�t , C0(σ + ε)). (3.5)

The argument is the same as in the two-dimensional case discussed in [EMV15]; see in
particular Fig. 3 (the yellow and red domains should now be viewed as higher-dimensional
cones with symmetry axis along e1).

For

u = (u12, . . . , u1d , u23, . . . , u(d−1)d ) ∈ Rd(d−1)/2

and

v = (v1, v2, . . . , vd) ∈ T := {(v1, . . . , vd) ∈ Rd>0, v1 · · · vd = 1},
let

n(u) :=

⎛⎜⎜⎜⎝
1 u12 · · · u1d

. . .
...

1 u(d−1)d

1

⎞⎟⎟⎟⎠, a(v) :=

⎛⎜⎜⎜⎝
v1

v2
. . .

vd

⎞⎟⎟⎟⎠. (3.6)

The Iwasawa decomposition of M ∈ G is given by

M = n(u)a(v)k, (3.7)

where u ∈ Rd(d−1)/2, v ∈ T and k ∈ SO(d).
Consider the Siegel set

S :=
{
n(u)a(v)k : k ∈ SO(d), 0 < vj+1 ≤ 2√

3
vj , u ∈

[
− 1

2
,

1
2

]d(d−1)/2}
. (3.8)

This set has the property that it contains a fundamental domain of G and can be covered
with a finite number of fundamental domains. Throughout this paper, we fix a fundamental
domain of G contained in S and denote it by F . For x ∈ �\G, there exists a uniqueM ∈ F
such that x = �M . Define ι : �\G → F so that ι(�M) = M .

We extend the above to define a fundamental domain F ′ and Siegel set S ′ of the �′
action on G′ by

F ′ = {(1, b)(M , 0) : b ∈ [− 1
2 , 1

2 )
d , M ∈ F},

S ′ = {(1, b)(M , 0) : b ∈ [− 1
2 , 1

2 ]d , M ∈ S}.
As before, we define the map ι : �′\G′ → F ′ by ι(�′g) = g.

Given M ∈ G, we define v(M) as the v coordinate of the Iwasawa decomposition

ι(�M) = n(u)a(v)k. (3.9)

Similarly, for g ∈ G′, we define v(g) and b(g) as the v and b coordinates in

ι(�′g) = (1, b)(n(u)a(v)k, 0). (3.10)
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We also define

r(C) := max{δd , sup{‖x‖ : x ∈ C}}, δd = d4d (3.11)

and

sr (g) := max{1 ≤ i ≤ d − 1 : vi(g) > 2cdr}, (3.12)

where cd = d(2/
√

3)d .

LEMMA 3.1. For any bounded C ⊂ Rd , g ∈ G′, η > 0,

N (g, C)η ≤ (Cdr
d)η

s∏
i=1

(v
η
i #([−cdrv−1

i , cdrv−1
i ] ∩ (Z + bi))), (3.13)

where v = v(g) = (v1, . . . , vd), b = b(g) = (b1, . . . , bd), r = r(C), s = sr (g) and
Cd = 4cd .

Proof. Let Dr be the smallest closed ball of radius r centred at 0 which contains C. Then

N (g, C) ≤ N (g, Dr ) = N (ι(�g), Dr )

= #(Dr ∩ (Zd + b)n(u)a(v))

≤ #([−r , r]d ∩ (Zd + b)n(u)a(v))

= #
( d∏
i=1

[−rv−1
i , rv−1

i ] ∩ (Zd + b)n(u)
)

. (3.14)

Since 0 < vi+1 ≤ (2/
√

3)vi for 1 ≤ i ≤ d − 1, we have v−1
j ≤ (2/

√
3)j−iv−1

i for any
1 ≤ i < j ≤ d . It follows that

N (g, C) ≤ #
( d∏
i=1

[−cdrv−1
i , cdrv−1

i ] ∩ (Zd + b)
)

≤
d∏
i=1

#([−cdrv−1
i , cdrv−1

i ] ∩ (Z + bi))

≤
d∏

i=s+1

(2cdrv−1
i + 1)×

s∏
i=1

#([−cdrv−1
i , cdrv−1

i ] ∩ (Z + bi)). (3.15)

For i ≥ s + 1, we have v−1
i ≥ 1/2cdr by definition of s. It follows that

d∏
i=s+1

(2cdrv−1
i + 1) ≤ (4cdr)d−s

d∏
i=s+1

v−1
i = (4cdr)d−s

s∏
i=1

vi ,

and hence

N (g, C) ≤ Cdr
d

s∏
i=1

(vi#([−cdrv−1
i , cdrv−1

i ] ∩ (Z + bi))).
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From the fact that

#([−cdrv−1
i , cdrv−1

i ] ∩ (Z + bi)) ∈ {0, 1} (3.16)

for any 1 ≤ i ≤ s, equation (3.13) follows.

The case of mixed moment will be dealt with by the inequality

|N (g, C1)
z1 · · · N (g, Cm)zm | ≤ |N (g, C1 ∪ · · · ∪ Cm)

z1+···+zm |. (3.17)

4. Properties of the limiting distribution
In this section, we prove the properties (a)–(e) of the limiting distribution in Theorem 2.1.
We denote by mX′ , mX1 and mXq the Haar probability measures on the homogeneous
spaces

X′ = �′\G′, X1 = �\G, Xq = �q\G,

respectively. Here, �q denotes the congruence subgroup

�q := {γ ∈ �q : γ ≡ id (mod q)}
for q ≥ 2. According to [MS10, Theorems 6.3, 6.5 and subsequent remarks, and Lemma
9.5], the limiting distribution Ec,ξ (·, σ) in Theorem 2.1 is given as follows:

Ec,ξ (r , σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mX1({�M ∈ X1 : for all j , #(ZdM ∩ Cc(σj )) = rj })
if ξ ∈ Zd ,

mXq

({
�qM ∈ Xq : for all j , #

((
Zd + p

q

)
M ∩ Cc(σj )

)
= rj

})
if ξ = p

q
∈ Qd \ Zd ,

mXq ({�′g ∈ X′ : for all j , #(Zdg ∩ Cc(σj )) = rj })
if ξ ∈ Rd \ Qd ,

(4.1)

where Cc(σ ) is as in equation (3.1).
Property (a) follows from the observation that the distribution described in equation

(4.1) is independent of λ and L.
For ξ ∈ Rd \ Qd , the distribution is also independent of ξ , so property (d) follows.
Property (b) follows from equation (2.1).
Properties (c) and (e) follow from calculations of [M00]. We write g= (1, b)(M , 0)∈G′

with M = n(u)a(v)k ∈ S as in equations (3.7) and (3.8). For s ∈ {1, . . . , d − 1}, put

Ss :=
{
M = n(u)a(v)k ∈ S : vs+1 ≤ 1 ≤ 2√

3
vs

}
,

and for s = 0, d ,

S0 := {M = n(u)a(v)k ∈ S : v1 ≤ 1},

Sd :=
{
M = n(u)a(v)k ∈ S : vd ≥

√
3

2

}
,
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then the sets S0 and Sd are clearly compact, and we also have S = ⋃d
s=0 Ss (see [M00,

Lemma 3.12]). For k ∈ SO(d), we denote by χk the characteristic function of the set
Cc(σ )k

−1 and define

φs(k, w1, . . . , ws) :=
∫
Rd−s

χk(w1, . . . , ws , ts+1, . . . , td ) dts+1 · · · dtd ,

φs,max(w1, . . . , ws) := max
k∈SO(d)

φs(k, w1, . . . , ws).

We have

N (g, Cc(σ )) =
∑

m∈Zd
χk(v1w1(m), . . . , vdwd(m)),

where wi(m) = (mi + bi)+ ∑i−1
j=1 uji(mj + bj ). Without loss of generality, we may

assume b1, . . . , bd ∈ [− 1
2 , 1

2 ]. For M ∈ Ss with sufficiently large v1 · · · vs ,
N (g, Cc(σ )) =

∑
m∈{0}×Zd−s

χk(v1w1(m), . . . , vdwd(m))

= v−1
s+1 · · · v−1

d φs(k, v1x1, . . . , vsxs)+O(1),

where xi = bi + ∑i−1
j=1 ujibj for i = 1, . . . , s.

We first consider the case of Ec,ξ for ξ ∈ Zd . For r0 → ∞ and mG denoting the Haar
measure of G (with arbitrary normalization),

∞∑
r=r0

Ec,ξ (r , σ) = mX1({M ∈ X1 : N (g, Cc(σ )) ≥ r0})

�
d∑
s=0

mG({M ∈ Ss : v1 · · · vsφs(k, 0, . . . , 0) ≥ r0 +O(1)})

�
d∑
s=0

mG

({
M ∈ Ss : v1 · · · vs ≥ r0 +O(1)

φs,max(0, . . . , 0)

})
.

In the last line, we are using the continuity of φs,max with respect to k ∈ SO(d). According
to the calculation of [M00, Proof of Theorem 3.11] with n = 2, the sum in the last line is
� r−d0 . This proves property (c) for ξ ∈ Zd . The case of other ξ ∈ Qd is analogous.

In the case of ξ ∈ Rd \ Qd , we get
∞∑
r=r0

Ec,ξ (r , σ) = mX′({g ∈ X′ : N (g, Cc(σ )) ≥ r0})

�
d∑
s=0

mG({M ∈ Ss : v1 · · · vsφs(k, v1x1, . . . , vsxs) ≥ r0 +O(1)})

�
d∑
s=0

mG

({
M ∈ Ss : v1 · · · vs ≥ r0 +O(1)

φs,max(v1x1, . . . , vsxs)

})
.

In this case, we use the calculation of [M00, Proof of Theorem 4.3] which implies that
the sum in the last line is � r−d−1

0 . This proves property (e).
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5. Escape of mass
Denote by χI the characteristic function of a subset I ⊆ R. For R ≥ 1 and η, r > 0, define
the �′-invariant function FR,η,r : G′ → R by

FR,η,r (g) := χ[R,∞)

( sr (g)∏
i=1

vi(g)

) sr (g)∏
i=1

vi(g)
ηχ[−cd r ,cd r](vi(g)bi(g)). (5.1)

In view of Lemma 3.1, and equations (3.16) and (3.17), we note that for

η = Re(z1)+ · · · + Re(zm), r = r(C1 ∪ · · · ∪ Cm), (5.2)

and all g ∈ G such that
∏sr (g)

i=1 vi(g) ≥ R with R sufficiently large, we have that

|N (g, C1)
z1 · · · N (g, Cm)zm | ≤ (Cdr

d)ηFR,η,r (g). (5.3)

The following proposition establishes under which conditions there is no escape of mass
in the equidistribution of horospheres with respect to the function FR,η,r and thus also for
N (g, C1)

z1 · · · N (g, Cm)zm .

PROPOSITION 5.1. Let ξ ∈ Rd , M0 ∈ G, η, r > 0 and ψ ∈ C0(R
d−1). Assume that one

of the following hypotheses hold:
(B1) η < d;
(B2) η < d + 1 and ξ is (0, η − 2, 2)-vaguely Diophantine if d = 2 and (d − 1,

η − d , 1)-vaguely Diophantine if d ≥ 3.
Then

lim
R→∞ lim sup

t→∞

∣∣∣∣∫
y∈Rd−1

FR,η,r (�
′(1, ξ)M0ñ(y)�t )ψ(y) dy

∣∣∣∣ = 0. (5.4)

To prepare for the proof of this statement, put K := supp ψ . Without loss of
generality, we may assume K ⊂ [−1, 1]d−1. Indeed, there exists s0 ≥ 0 such that
e−s0K ⊂ [−1, 1]d−1, so we may replace M0, y and �t in equation (5.4) by M0�−s0 , es0 y
and �t+s0 , respectively, and reduce it to the case K ⊂ [−1, 1]d−1.

Next we define two maps γ = γt : Rd−1 → � and h = ht : Rd−1 → F as follows. For
y ∈ Rd−1, t ∈ R, there exist unique γ (y) = γt (y) ∈ � and h(y) = ht (y) ∈ F such that

M0ñ(y)�t = γ (y)h(y).

Note that �′(1, ξ)M0ñ(y)�t in equation (5.4) can now be expressed as

�′(1, ξ)M0ñ(y)�t = �′(1, ξγ (y))(h(y), 0).

For 1 ≤ s ≤ d − 1 and l = (l1, . . . , ls) ∈ Zs≥0, we let

�sl := {g ∈ F : sr (g) = s, δd2li < vi(g) ≤ δd2li+1(i = 1, . . . , s)} (5.5)

with δd = d4d . Then for g = (1, ξγ (y))h(y) with h(y) ∈ �sl , we have

FR,η,r (�
′(1, ξ)M0ñ(y)�t ) = FR,η,r (�

′(1, ξγ (y))h(y)) ≤ δ
η
d2ηlχ[R,∞)(δ

η
d2ηl),
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where l = l1 + · · · + ls . It follows that the integral in equation (5.4) is bounded by∣∣∣∣∫
y∈K

FR,η,r (�
′(1, ξ)M0ñ(y)�t ) dy

∣∣∣∣
�

d−1∑
s=1

∞∑
l=�log2 R�

2ηl
∑

l=(l1,...,ls )∈Zs≥0,
l1+···+ls=l

volRd−1({y ∈ K : h(y) ∈ �sl }). (5.6)

This will be sufficient for proving case (B1). For hypothesis (B2), we need a refinement
that also considers the size of ξγ (y); see equation (5.23) below.

Let us write β i (y) := ei th(y)−1 for 1 ≤ i ≤ d and y ∈ Rd−1, and consider the Iwasawa
decomposition of h(y),

h(y) = n(u(y))a(v(y))k(y).

LEMMA 5.2. If h(y) ∈ �sl for l ∈ Zs≥0, then |βi (y)| < 2−li for all 1 ≤ i ≤ s.

Proof. For the sake of simplicity, we write vi = vi(h(y)) for 1 ≤ i ≤ d and uij = uij (h(y))
for 1 ≤ i < j ≤ d . We also define ũ(y)= (̃uij )1≤i<j≤d by n(̃u(y)) = n(u(y))−1. Note
that each ũij can be expressed in terms of at most 2d monomials of u12, . . . , u(d−1)d with
coefficients ±1, and hence |̃uij | ≤ 2d for any 1 ≤ i < j ≤ d .

If h(y) ∈ �sl , then we have

βi (y) = ei tn(u(y))−1 ta(v(y))−1tk−1

=
(

ei −
i−1∑
j=1

ũj iej
)
a(v(y))−1k

=
(
v−1
i ei −

i−1∑
j=1

v−1
j ũj iej

)
k

for 1 ≤ i ≤ d . Since v−1
j ≤ (2/

√
3)i−j v−1

i ≤ 2dv−1
i for any 1 ≤ j < i ≤ d ,

|βi (y)| =
∣∣∣∣v−1
i ei −

i−1∑
j=1

v−1
j ũj iej

∣∣∣∣ ≤ d4dv−1
i = δdv

−1
i < 2−li

for all 1 ≤ i ≤ s.

Denote by π1 : Rd → R and the orthogonal projection to the first coordinate and
π ′ : Rd → Rd−1 the orthogonal projection to the remaining (d − 1) coordinates. Let
� = Zd tM−1

0 and, for k ∈ Z, let

Rk := {x ∈ Rd : |π1x| < 2k+2, 2k ≤ |π ′x| < 2k+1}, �k := Rk ∩�. (5.7)

Then for sufficiently large k,

#�k � 2kd , (5.8)
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where the implied constants are independent of k but depend on the fixed M0 ∈ G.
Throughout this section, let K0 ∈ Z be the largest integer such that

{x ∈ � : |π1x| < 2k+1, |π ′x| < 2k} = ∅

for all k ≤ K0. Note that K0 only depends on the choice of �.
We define the norm ‖ · ‖ for the wedge product by

‖x1 ∧ · · · ∧ xn‖2 = det[(xi txj )ij ].

For k = (k1, . . . , ks) ∈ Zs≥K0
and p = (p1, . . . , ps) ∈ Zs≥0, we denote by �k(p) the set

of (x1, . . . , xs) ∈ �k1 × · · · ×�ks such that

0 < 2−pj−1‖xj‖
∥∥∥∥ j−1∧
i=1

xi
∥∥∥∥ < ∥∥∥∥ j∧

i=1

xi
∥∥∥∥ ≤ 2−pj ‖xj‖

∥∥∥∥ j−1∧
i=1

xi
∥∥∥∥ (5.9)

for j = 1, . . . , s. Then any (x1, . . . , xs) ∈ �k1 × · · · ×�ks such that x1, . . . , xs are
R-linearly independent is contained in

⋃
p∈Zs≥0

�k(p).

LEMMA 5.3. For any k ∈ Zs≥K0
and p ∈ Zs≥0,

#�k(p) �
s∏
j=1

2ωs(kj ,pj ),

where

ωs(k, p) =
{
dk − (d + 1 − s)p if p ≤ k,

sk − p if p > k.

Moreover, if there exists 1 ≤ j ≤ s such that pj ≥ jkj +K , then #�k(p) = 0, where K is
a sufficiently large constant depending only on the choice of lattice �.

Proof. Given x1, . . . , xj−1, let V be the subspace spanned by x1, . . . , xj−1 and denote
by ϒ the region of xj satisfying∥∥∥∥ j∧

i=1

xi
∥∥∥∥ ≤ 2−pj ‖xj‖

∥∥∥∥ j−1∧
i=1

xi
∥∥∥∥.

Note that ϒ ∩ Rk has width � 2kj along the directions in V, and width � 2kj−pj along
the directions perpendicular to V.

If pj ≤ kj , then the number of possible xj ∈ �kj satisfying equation (5.9) is therefore
at most � (2kj )j−1(2kj−pj )d−(j−1) = 2dkj−(d+1−j)pj .

In the case pj > kj , let j ′ be the maximal number of R-linearly independent vectors in
ϒ ∩�kj . We may assume j ≤ j ′ ≤ d since there is no xj satisfying equation (5.9) in ϒ
otherwise. Then we can take a j ′-dimensional parallelepiped Q generated by x̄1, . . . , x̄j ′ ∈
ϒ ∩�kj such that there is no element of ϒ ∩�kj inside Q. Since x̄1, . . . , x̄j ′ are
R-linearly independent and contained in � = Zd tM−1

0 , the j ′-dimensional volume of
QtM0 is ≥ 1. Hence, the j ′-dimensional volume of Q is � 1 independently of pj and
x1, . . . , xj−1. Also, the interior of the sets xj + Q with xj ∈ �kj are pairwise disjoint.
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Note that Q is contained in j ′(ϒ ∩ Rkj ) since the generators are inϒ ∩ Rkj . Thus, for any
xj ∈ ϒ ∩�kj , the set xj + Q is contained in (j ′ + 1)(ϒ ∩ Rkj ) and the j ′-dimensional
volume of this region is

� (j ′ + 1)j
′
(2kj )j−1(2kj−pj )j ′−(j−1) � 2jkj−pj .

Because of this and the uniform lower bound on the volume of Q, it follows that the number
of possible xj ∈ �kj satisfying equation (5.9) is at most � 2jkj−pj . In particular, there is
no such xj ∈ �kj if pj ≥ jkj +K .

We have shown that for fixed x1, . . . , xj−1, the number of possible xj ∈ �kj satisfying
equation (5.9) is � 2ωj (kj ,pj ) ≤ 2ωs(kj ,pj ). Hence, the desired estimate follows.

For l = (l1, . . . , ls) ∈ Zs≥0 and (x1, . . . , xs) ∈ �s , let �l(x1, . . . , xs) be the set of
y ∈ K = supp ψ ⊂ [−1, 1]d−1 satisfying the following two conditions:
• ei tγ (y)tM−1

0 = xi for i = 1, . . . , s;
• |βi (y)| < 2−li for i = 1, . . . , s.

LEMMA 5.4. There exists T0 ≥ 0 such that the following holds for any t > T0. For l ∈ Zs≥0
and (x1, . . . , xs) ∈ �s , the set �l(x1, . . . , xs) is the empty set if there exists 1 ≤ i ≤ s

such that

xi /∈
�(t/d log 2)−li�⋃

k=K0

�k .

If K0 ≤ki ≤ �(t/d log 2)− li� for all 1 ≤ i ≤ s and (x1, . . . , xs) ∈ �k(p), then

volRd−1(�l(x1, . . . , xs)) � e−((d−1)s/d)t
s∏
i=1

2pi−li−ki . (5.10)

Proof. For y ∈ �l(x1, . . . , xs), by definition of β i (y), we have

|xi t̃n(−y)�−t | < 2−li

for i = 1, . . . , s. By a straightforward computation with xi = (π1xi , π ′xi ) ∈ R × Rd−1,
it implies that

|π1xi − π ′xi · y| < 2−li e−((d−1)/d)t , (5.11)

|π ′xi | < 2−li et/d (5.12)

for i = 1, . . . , s.
If there exists i such that xi ∈ �ki with ki > (t/d log 2)− li , then it contradicts

equation (5.12). If there exists i such that xi /∈ ⋃∞
k=K0

�k , then we have |π1xi | > 2|π ′xi |,
which also contradicts equations (5.11) and (5.12) since they imply

|π1xi | ≤ |π ′xi ||y| + 2−li e−((d−1)/d)t < |π ′xi | + 2K0−1.

This proves the first claim of the lemma.

https://doi.org/10.1017/etds.2024.31 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.31


16 W. Kim and J. Marklof

Suppose now that ki ≤ (t/d log 2)− li for all i = 1, . . . , s and (x1, . . . , xs) ∈ �k(p).
To prove the estimate in equation (5.10), we may assume�l(x1, . . . , xs) �= ∅ and pick any
y ∈ �l(x1, . . . , xs). Let p′

1, . . . , p′
s ∈ Z≥0 be the integers such that

2−p′
j−1

∥∥∥∥ j−1∧
i=1

π ′xi
‖π ′xi‖

∥∥∥∥ < ∥∥∥∥ j∧
i=1

π ′xi
‖π ′xi‖

∥∥∥∥ ≤ 2−p′
j

∥∥∥∥ j−1∧
i=1

π ′xi
‖π ′xi‖

∥∥∥∥
for j = 1, . . . , s.

We will prove that p′
j ≤ pj +O(1) for all 1 ≤ j ≤ s. Since π ′xi/‖π ′xi‖ terms are unit

vectors, for each j, we can find c1, . . . , cj−1 � 1 such that∥∥∥∥ π ′xj
‖π ′xj‖ −

j−1∑
i=1

ci
π ′xi

‖π ′xi‖
∥∥∥∥ � 2−p′

j . (5.13)

This in turn implies that for any choice of y,∣∣∣∣π ′xj · y
‖π ′xj‖ −

j−1∑
i=1

ci
π ′xi · y
‖π ′xi‖

∣∣∣∣ � 2−p′
j ‖y‖. (5.14)

Now, if y ∈ �l(x1, . . . , xs), then we have equation (5.11), and using the triangle inequality
and ‖π ′xi‖ � 2ki , it follows that∣∣∣∣ π1xj

‖π ′xj‖ −
j−1∑
i=1

ci
π1xi

‖π ′xi‖
∣∣∣∣ � 2−p′

j +
j∑
i=1

2−li−ki e−((d−1)/d)t . (5.15)

Combining equations (5.13) and (5.15), we get∥∥∥∥ xj
‖π ′xj‖ −

j−1∑
i=1

ci
xi

‖π ′xi‖
∥∥∥∥ � 2−p′

j +
j∑
i=1

2−li−ki e−((d−1)/d)t , (5.16)

and hence∥∥∥∥ j∧
i=1

xi
‖π ′xi‖

∥∥∥∥ �
(

2−p′
j +

j∑
i=1

2−li−ki e−((d−1)/d)t
)∥∥∥∥ j−1∧

i=1

xi
‖π ′xi‖

∥∥∥∥ (5.17)

for j = 1, . . . , s. Since ‖π ′xi‖ � ‖xi‖ for all i = 1, . . . , s by definition of �ki terms,
we can replace the ‖π ′xi‖ terms in equation (5.17) with ‖xi‖ terms for i = 1, . . . , j . By
equation (5.9), it implies that

2−pj ≤ C

(
2−p′

j +
j∑
i=1

2−li−ki e−((d−1)/d)t
)

(5.18)

for some constant C > 0.
However, we have

j∏
i=1

2ki−pi �
j∏
i=1

2−pi
j∏
i=1

‖xj‖ �
∥∥∥∥ j∧
i=1

xi
∥∥∥∥ ≥ 1,
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and hence pj ≤ ∑j

i=1 pi ≤ ∑j

i=1 ki +O(1) for any 1 ≤ j ≤ s. It follows that
2−pj � 2−ki e−((j−1)/d)t ≥ 2−ki e−((d−2)/d)t for all 1 ≤ i ≤ j , so for C as above,

2−pj ≥ 2C
j∑
i=1

2−li−ki e−((d−1)/d)t (5.19)

holds for sufficiently large t. Combining with equation (5.18), we have p′
j ≤ pj +O(1)

for all 1 ≤ j ≤ s.
For each i, the set of y ∈ K satisfying equation (5.11) is a 2−li e−((d−1)/d)t‖π ′xi‖−1-

thickened hyperplane in Rd−1 which is perpendicular to π ′xi . Therefore, volRd−1(�l(x1,
. . . , xs)) is the volume of the intersection of such s-number of hyperplanes and the
compact set K. The intersection has width � 2−li e−((d−1)/d)t‖π ′xi‖−1 along the direction
of π ′xi for 1 ≤ i ≤ s. It follows that the volume of the intersection is bounded above by

�
∥∥∥∥ s∧
i=1

π ′xi
‖π ′xi‖

∥∥∥∥−1 s∏
i=1

(2−li e−((d−1)/d)t‖π ′xi‖−1)

�
( s∏
i=1

2−p′
i

)−1 s∏
i=1

(2−li e−((d−1)/d)t‖xi‖−1) � e−((d−1)s/d)t
s∏
i=1

2pi−li−ki .

Proof of Proposition 5.1 under hypothesis (B1). By Lemma 5.2,

volRd−1({y ∈ K : h(y) ∈ �sl }) ≤ volRd−1({y ∈ K : |βi (y)| < 2−li (i = 1, . . . , s)}).
(5.20)

For l = (l1, . . . , ls) ∈ Zs≥0, by Lemma 5.4, we have

volRd−1({y ∈ K : |β i (y)| < 2−li (i = 1, . . . , s)})
=

∑
(x1,...,xs )∈�s

volRd−1(�l(x1, . . . , xs))

=
�(t/d log 2)−l1�∑

k1=K0

· · ·
�(t/d log 2)−ls�∑

ks=K0

∑
p∈Zs≥0

∑
(x1,...,xs )∈�k(p)

volRd−1(�l(x1, . . . , xs))

�
�(t/d log 2)−l1�∑

k1=K0

· · ·
�(t/d log 2)−ls�∑

ks=K0

∑
p∈Zs≥0

#�k(p)e−((d−1)s/d)t
s∏
i=1

2pi−li−ki .

Using the estimate of #�k(p) in Lemma 5.3, we get

� e−((d−1)s/d)t
s∏
i=1

(�(t/d log 2)−li�∑
ki=K0

( ki∑
pi=0

2dki−(d−s+1)pi2pi−li−ki +
ski+K∑
pi=ki+1

2ski−pi2pi−li−ki
))

� e−((d−1)s/d)t
s∏
i=1

( �(t/d log 2)−li�∑
ki=K0

(2(d−1)ki−li + (ski +K)2(s−1)ki−li )
)

� e−((d−1)s/d)t
s∏
i=1

( �(t/d log 2)−li�∑
ki=K0

2(d−1)ki−li
)

� 2−d ∑
li .
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Hence, combining with equation (5.6), for any t , R > 0 and η < d, we obtain∣∣∣∣∫
y∈K

FR,η,r (�
′(1, ξ)M0ñ(y)�t ) dy

∣∣∣∣
�

d−1∑
s=1

∞∑
l=�log2 R�

ls−12−(d−η)l � R−(d−η+o(1)),
(5.21)

which completes the proof.

Proof of Proposition 5.1 under hypothesis (B2). Recall that �′(1, ξ)M0ñ(y)�t in equation
(5.4) is expressed as

�′(1, ξ)M0ñ(y)�t = �′(1, ξγ (y)) h(y).

For 1 ≤ s ≤ d − 1 and l = (l1, . . . , ls) ∈ Zs≥0 with l1 + · · · + ls = l, we define
�sl ⊆ F as in equation (5.5) and �s,rl ⊆ � by

�
s,r
l := {γ ∈ � : |(ξγ ) · ei |Z ≤ δd,r2−li (i = 1, . . . , s)}, (5.22)

where δd,r = cdr/δd . For g = (1, ξγ (y))h(y) with h(y) ∈ �sl , we have

FR,η,r (�
′(1, ξ)M0ñ(y)�t ) = FR,η,r (�

′(1, ξγ (y))h(y))

≤ δ
η
d2ηlχ[R,∞)(δ

η
d2ηl)

s∏
i=1

χ[−δd,r2−li ,δd,r2−li ](bi(g))

since, by construction, we have vi(g) ≥ δd2li and thus cdr/vi(g) ≤ δd,r2−li . Since
|bi(g)| = |(ξγ ) · ei |Z, the integral in equation (5.4) is bounded by∣∣∣∣∫

y∈K
FR,η,r (�

′(1, ξ)M0ñ(y)�t ) dy
∣∣∣∣

�
d−1∑
s=1

∞∑
l=�log2 R�

2ηl
∑

l=(l1,...,ls )∈Zs≥0
l1+···+ls=l

volRd−1({y ∈ K : h(y) ∈ �sl , γ (y) ∈ �s,rl }). (5.23)

This is the required improvement on equation (5.6).
The remaining task is thus to estimate the measure of the set of y ∈ K such that

h(y) ∈ �sl and γ (y) ∈ �s,rl . Recall that Zd = �tM0. From now on, we fix r > 0 as
in equation (5.2) and no longer record the implicit dependence of constants on this
parameter. For k ∈ Zs≥K0

, l ∈ Zs≥0 and p ∈ Zs≥0, we denote by �lk(p) the set of elements
in (x1, . . . , xs) ∈ �k(p) satisfying

|ξ · (xi tM0)|Z ≤ δd,r2−li (5.24)

for all 1 ≤ i ≤ s. As we counted the number of lattice points of�k(p) in Lemma 5.3, here

we count the number of lattice points of �lk(p) as follows.
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LEMMA 5.5. For ξ ∈ Rd , let

ωs,ξ (k, p, l)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
dk − (d + 1 − s)p − d log2

ζ(ξ , 2l−1)

4‖M0‖ if p ≤ k − log2
ζ(ξ , 2l−1)

4‖M0‖ ,

(s − 1)k − (s − 1) log2
ζ(ξ , 2l−1)

4‖M0‖ if 0 ≤ k − log2
ζ(ξ , 2l−1)

4‖M0‖ < p ≤ k,

sk − p if p > k.

For any k ∈ Zs≥K0
, l ∈ Zs≥0 and p ∈ Zs≥0,

#�lk(p) �
s∏
j=1

2ωs,ξ (kj ,pj ,lj ).

Moreover, if there exists 1 ≤ j ≤ s such that pj ≥ jkj +K or kj < log2(ζ(ξ , 2l−1)/

4‖M0‖), then #�k(p) = 0. Here, K is a sufficiently large constant depending on the choice
of lattice �.

Proof. For (x1, . . . , xs) ∈ �lk(p) ⊆ �k(p), recall that

∥∥∥∥ j∧
i=1

xi
∥∥∥∥ ≤ 2−pj ‖xj‖

∥∥∥∥ j−1∧
i=1

xi
∥∥∥∥ (5.25)

for j = 1, . . . , s. Given x1, . . . , xj−1, in the proof of Lemma 5.3, we already showed that
the possible number of xj ∈ �kj is � 2ωs(kj ,pj ) = 2skj−pj if pj > kj . Hence, it is enough
to show that this bound can be improved under the assumption pj ≤ kj .

We first consider the case pj ≤ kj − log2(ζ(ξ , 2l−1)/4‖M0‖). In this case, if xj ∈ �kj
satisfies equation (5.25), then xj must be � 2kj−pj -close to the subspace V spanned by
x1, . . . , xj−1. Hence, the region of xj satisfying equation (5.25) has width 2kj−pj along
the directions perpendicular to V and width 2kj along the directions of V. This region can
be covered with at most

� 2dkj−(d+1−j)pj ζ(ξ , δ−1
d,r2

lj−1)−d � 2dkj−(d+1−j)pj ζ(ξ , 2lj−1)−d

cubes with sidelength ‖M0‖−1ζ(ξ , δ−1
d,r2

lj−1).
We claim that there is at most one point of �kj satisfying equation (5.24) in each

cube with sidelength ‖M0‖−1ζ(ξ , δ−1
d,r2

lj−1). To see this, suppose that there are two
distinct points x, x′ ∈ �kj with distance < ‖M0‖−1ζ(ξ , δ−1

d,r2
lj−1) satisfying equation

(5.24). Then we have |ξ · (xtM0 − x′tM0)|Z ≤ δd,r2−lj+1 and

0 < |xtM0 − x′ tM0| ≤ ‖M0‖|x − x′| < ζ(ξ , δ−1
d,r2

lj−1).

However, by the definition in equation (1.2), there is no m ∈ Zd \ {0} with |m| < ζ(ξ ,
δ−1
d,r2

lj−1) and |ξ · m|Z ≤ δd,r2−lj+1. Hence, the claim is proved. It follows from the claim
that the number of possible xj ∈ �kj satisfying equations (5.24) and (5.25) is at most
� 2dkj−(d+1−j)pj (ζ(ξ , 2lj−1)/4‖M0‖)−d = 2ωs,ξ (kj ,pj ,lj ).
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We now consider the case kj − log2(ζ(ξ , 2l−1)/4‖M0‖) < pj ≤ kj . In this case, the
region of xj satisfying equation (5.25) can be covered with at most

� 2(j−1)kj ζ(ξ , δ−1
d,r2

lj−1)−(j−1) � 2(j−1)kj ζ(ξ , 2lj−1)−(j−1)

cubes with sidelength ‖M0‖−1ζ(ξ , δ−1
d,r2

lj−1) since this region has width 2kj−pj <
ζ(ξ , δ−1

d,r2
lj−1)/4‖M0‖ along the directions perpendicular to V and width 2kj along the

directions of V. Similar to the previous case, the number of possible xj ∈ �kj satisfying
equations (5.24) and (5.25) is at most

�
(

2kj
(
ζ(ξ , 2lj−1)

4‖M0‖
)−1)j−1

≤
(

2kj
(
ζ(ξ , 2lj−1)

4‖M0‖
)−1)s−1

= 2ωs,ξ (kj ,pj ,lj ).

We have shown that for fixed x1, . . . , xj−1, the number of possible xj ∈ �kj satisfying
equations (5.24) and (5.25) is � 2ωs,ξ (kj ,pj ,lj ). Hence, we obtain the desired estimate.

As we have shown in Lemma 5.3, #�k(p) = 0 if there exists 1 ≤ j ≤ s such that
pj ≥ jkj +K . However, if there exists 1 ≤ j ≤ s such that kj < log2(ζ(ξ , 2l−1)/4‖M0‖),
then we have |xj tM0| ≤ ‖M0‖2kj+2 < ζ(ξ , 2l−1) since xj ∈ �kj . It follows that
|ξ · (xj tM0)| > 2−l+1 by definition of ζ(ξ , T ). In other words, there is no xj ∈ �kj
satisfying equation (5.24), and hence #�k(p) = 0.

The rest of the argument is similar to the case (B1). By Lemmas 5.2 and 5.4, we have

volRd−1({y ∈ K : h(y) ∈ �sl , γ (y) ∈ �s,rl })
≤ volRd−1({y ∈ K : |βi (y)| < 2−li , |ξ · ei tγ (y)|Z < δd,r2−li (i = 1, . . . , s)})

≤
�(t/d log 2)−l1�∑

k1=K0

· · ·
�(t/d log 2)−ls�∑

ks=K0

∑
p∈Zs≥0

∑
(x1,...,xs )∈�lk(p)

volRd−1(�l(x1, . . . , xs))

�
�(t/d log 2)−l1�∑

k1=K0

· · ·
�(t/d log 2)−ls�∑

ks=K0

∑
p∈Zs≥0

#�lk(p)e
−((d−1)s/d)t

s∏
i=1

2pi−li−ki

for l = (l1, . . . , ls) ∈ Zs≥0. Using the estimate of #�lk(p) in Lemma 5.5, we obtain

volRd−1({y ∈ K : h(y) ∈ �sl , γ (y) ∈ �s,rl })

� e−((d−1)s/d)t
s∏
i=1

( �(t/d log 2)−li�∑
ki=K0

ski+K∑
pi=0

2ωs,ξ (ki ,pi ,li )2pi−li−ki
)

= e−((d−1)s/d)t
s∏
i=1

( �(t/d log 2)−li�∑
ki=�log2(ζ(ξ ,2li−1)/4‖M0‖)�

ski+K∑
pi=0

2ωs,ξ (ki ,pi ,li )2pi−li−ki
)

. (5.26)
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We may assume

t

d log 2
− li > log2

ζ(ξ , 2li−1)

4‖M0‖ (5.27)

for all i since otherwise, the product over i is zero.
We split the double sum in the last line of equation (5.26) as follows:

�(t/d log 2)−li�∑
ki=�log2(ζ(ξ ,2li−1)/4‖M0‖)�

ski+K∑
pi=0

2ωs,ξ (ki ,pi ,li )2pi−li−ki =
�(t/d log 2)−li�∑

ki=�log2(ζ(ξ ,2li−1)/4‖M0‖)�

×
( ki−�log2(ζ(ξ ,2li−1)/4‖M0‖)�−1∑

pi=0

2(d−1)ki−(d−s)pi−li−d log2(ζ(ξ ,2li−1)/4‖M0‖)

+
ki∑

pi=ki−�log2(ζ(ξ ,2li−1)/4‖M0‖)�
2(s−2)ki+pi−li−(s−1) log2(ζ(ξ ,2li−1)/4‖M0‖)+

ski+K∑
pi=ki+1

2(s−1)ki−li
)

.

This is bounded above by

�
�(t/d log 2)−li�∑

ki=�log2(ζ(ξ ,2li−1)/4‖M0‖)�
(2(d−1)ki−li ζ(ξ , 2li−1)−d

+ 2(s−1)ki−li ζ(ξ , 2li−1)−(s−1) + (ski +K)2(s−1)ki−li )

�
�(t/d log 2)−li�∑

ki=�log2(ζ(ξ ,2li−1)/4‖M0‖)�
(2(d−1)ki−li ζ(ξ , 2li−1)−d

+ 2(s−1)ki−li ζ(ξ , 2li−1)−(s−1) + ki2(d−2)ki−li )
� e((d−1)/d)t2−dli ζ(ξ , 2li−1)−d + e((s−1)/d)t2−sli ζ(ξ , 2li−1)−(s−1) + te((d−2)/d)t2−(d−1)li .

In summary, we have established that

e−((d−1)/d)t
�(t/d log 2)−li�∑

ki=�log2(ζ(ξ ,2li−1)/4‖M0‖)�

ski+K∑
pi=0

2ωs,ξ (ki ,pi ,li )2pi−li−ki

� 2−dli ζ(ξ , 2li−1)−d + e−((d−s)/d)t2−sli ζ(ξ , 2li−1)−(s−1) + te−t/d2−(d−1)li

� 2−dli ζ(ξ , 2li−1)−d +2−dli ζ(ξ , 2li−1)−(d−1)+ (li+ log2 ζ(ξ , 2li−1))2−dli ζ(ξ , 2li−1)−1

� (li + log2 ζ(ξ , 2li−1))2−dli ζ(ξ , 2li−1)−1 � li2−dli ζ(ξ , 2li−1)−1. (5.28)

Here we have used that e−t/d < 2−li4‖M0‖ζ(ξ , 2li−1)−1 and

t

d
e−t/d <

(
li + log2

ζ(ξ , 2li−1)

4‖M0‖
)

2−li4‖M0‖ζ(ξ , 2li−1)−1

for t > d, both of which follow from equation (5.27). (Note that x �→ x2−x is strictly
decreasing for x > 1/log 2.)
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Combining equations (5.26) and (5.28), we have

volRd−1

({
y ∈ K : h(y) ∈ �sl , γ (y) ∈ �s,rl

})
� ls2−dl

s∏
i=1

ζ(ξ , 2li−1)−1 (5.29)

for any l = (l1, . . . , ls) ∈ Zs≥0 with l1 + · · · + ls = l.
For any t , R > 0, it follows from equations (5.23) and (5.29) that∣∣∣∣∫

y∈[−1,1]d−1
FR,η,r (�

′(1, ξ)M0ñ(y)�t ) dy
∣∣∣∣

�
d−1∑
s=1

s�(t/d log 2)�∑
l=�log2 R�

∑
l=(l1,...,ls )∈Zs≥0
l1+···+ls=l

ls2(η−d)l
s∏
i=1

ζ(ξ , 2li−1)−1

�
d−1∑
s=1

∑
l=(l1,...,ls )∈Zs≥0
l1+···+ls≥�log2 R�

s∏
i=1

(li + 1)s2(η−d)li ζ(ξ , 2li−1)−1. (5.30)

Since the final bound of equation (5.30) is independent of t and∑
(l1,...,ls )∈Zs≥0

s∏
i=0

(li + 1)s2(η−d)li ζ(ξ , 2li−1)−1 =
( ∞∑
l=0

(l + 1)s2(η−d)lζ(ξ , 2l−1)−1
)s
<∞

converges by assumption (B2) (note s ≤ d − 1), we can conclude that

lim
R→∞ lim sup

t→∞

∣∣∣∣∫
y∈[−1,1]d−1

FR,η,r

(
�′(1, ξ)M0ñ(y)�t

)
dy

∣∣∣∣ = 0,

as required.
We now discuss the case where d = 2 and ξ is (0, η − 2, 2)-vaguely Diophantine. If

d = 2, then s = 1, and in view of the definition in equation (5.9), the set �k(p) is the
empty set unless p = 0. Hence, the double sum in the last line of equation (5.26) is
written as

�(t/2 log 2)−l�∑
k=�log2(ζ(ξ ,2l )/4‖M0‖)�

2ωs,ξ (k,0,l)2−l−k =
�(t/2 log 2)−l�∑

k=�log2(ζ(ξ ,2l )/4‖M0‖)�
2k−lζ(ξ , 2l−1)−2

and bounded above by � et/22−2lζ(ξ , 2l−1)−2. Plugging this in equation (5.26), we get

volR({y ∈ K : h(y) ∈ �1
l , γ (y) ∈ �1,r

l }) � 2−2lζ(ξ , 2l−1)−2.

Note that here we gained additional decay of ζ(ξ , 2l−1)−1 in comparison to equation
(5.29). It follows that∣∣∣∣∫

y∈[−1,1]
FR,η,r (�

′(1, ξ)M0ñ(y)�t ) dy
∣∣∣∣ �

�t/2 log 2�∑
l=�log2 R�

2(η−2)lζ(ξ , 2l−1)−2 < ∞.

LEMMA 5.6. For any compact set C ⊂ G, there exists C = C(C) > 1 such that
FR,η,r (g(h, 0)) ≤ C(d−1)ηFC−(d−1)R,η,Cr(g) for any h ∈ C and g ∈ G′.
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Proof. Let g = (1, b)(M , 0) with M ∈ G and b ∈ Rd . For each 1 ≤ i ≤ d , we have
vi(g) = ‖eiv(M)‖ = ‖eiM‖ and vi(g(h, 0)) = ‖eiv(Mh)‖ = ‖eiMh‖, and hence there
exists C = C(C) > 1 such that C−1vi(g(h, 0)) ≤ vi(g) ≤ Cvi(g(h, 0)) for any h ∈ C. We
also have bi(g) = bi(g(h, 0)) for all i since bi is invariant under SL(d, R)-action. Let
g′ = g(h, 0). It follows that

FR,η,r (g
′) = χ[R,∞)

( sr (g
′)∏

i=1

vi(g
′)
) sr (g

′)∏
i=1

vi(g
′)ηχ[−cd r ,cd r](vi(g′)bi(g′))

≤ C(d−1)ηχ[C−(d−1)R,∞)

( sr (g)∏
i=1

vi(g)

) sr (g)∏
i=1

vi(g)
ηχ[−cdCr ,cdCr](vi(g)bi(g))

= C(d−1)ηFC−(d−1)R,η,Cr(g).

Let us denote by Sd−1+ and Sd−1− the upper hemisphere and the lower hemisphere,
respectively, that is,

Sd−1+ = {(υ1, . . . , υd) ∈ Sd−1 : υ1 ≥ 0},
Sd−1− = {(υ1, . . . , υd) ∈ Sd−1 : υ1 ≤ 0}.

By the construction of the map in equation (3.4), k is smooth, and its differential is
non-singular and bounded on Sd−1+ . For υ ∈ Sd−1+ , we may write

k(υ) = ñ(y(υ))
(
c(υ) 0

tw(υ) A(υ)

)
(5.31)

for c(υ) > 0, w(υ) ∈ Rd−1 and A(υ) ∈ Matd−1,d−1(R). Note that y, c, w and A are
smooth and bounded on Sd−1+ .

PROPOSITION 5.7. Let λ be a Borel probability measure on Sd−1 with continuous density,
ξ ∈ Rd and η > 0 so that hypothesis (B1) or (B2) holds. Then

lim
R→∞ lim sup

t→∞

∣∣∣∣∫
υ∈Sd−1+

FR,η,r (�
′(1, ξ)M0k(υ)�t ) dλ(υ)

∣∣∣∣ = 0. (5.32)

Proof. This follows from Proposition 5.1 by the same argument as in the proof of [MS10,
Corollary 5.4]. We first observe that

�′(1, ξ)M0k(υ)�t = �′(1, ξ)M0ñ(y(υ))
(
c(υ) 0

tw(υ) A(υ)

)
�t

= �′(1, ξ)M0ñ(y(υ))�t
(

c(υ) 0
e−t tw(υ) A(υ)

)
.

Since c, w and A are bounded on Sd−1+ , we may choose a compact set C ⊂ G so that( c(υ) 0

e−t tw(υ) A(υ)

) ∈ C for any υ ∈ Sd−1+ . It follows from Lemma 5.6 that there exists C > 1
such that

FR,η,r (�
′(1, ξ)M0k(υ)�t ) ≤ C(d−1)ηFC−(d−1)R,η,Cr(�

′(1, ξ)M0ñ(y(υ))�t )

for any υ ∈ Sd−1+ . As y is smooth, equation (5.32) follows from Proposition 5.1.
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6. The main lemma
LEMMA 6.1. Under the assumptions of Theorem 2.2,

lim
K→∞ lim sup

T→∞
|Mλ(T , z)− M

(K)
λ (T , z)| = 0. (6.1)

Proof. We have

|Mλ(T , z)− M
(K)
λ (T , z)| ≤

∫
Nc,T (σ ∗,υ)≥K

(Nc,T (σ
∗, υ)+ 1)Re(z1)+···+Re(zm)λ(dυ),

where σ ∗ = max1≤j≤m σj . We now split the integral over the upper and lower hemi-
spheres. The integral over the upper hemisphere Sd−1+ vanishes in the limit in view
of Proposition 5.7, and the upper bounds in equations (3.5) and (5.3). The analogous
statement for Sd−1− follows by symmetry, since the quantity Nc,T (σ

∗, υ) for a given ξ

has the same value as Nc,T (σ
∗, −υ) for −ξ , with everything else (including M0) being

fixed.

This completes the proof of Theorem 2.2.

7. Proof of Corollaries 2.3 and 2.4
7.1. Proof of Corollary 2.3. We will need the following variant of Siegel’s formula.

PROPOSITION 7.1. [EMV15, Proposition 14] If F ∈ L1(Rd × Rd), then∫
�′\G′

∑
m1 �=m2∈Zd

F (m1g, m2g) dm�′\G′(g) =
∫
Rd×Rd

F (x, y) dx dy.

Here (and below), we view g = ι(�′g) ∈ G′ as the representative of the coset �′g in
the fundamental domain F ′.

For the proof of Corollary 2.3, we first prove∑
r=(r1,r2)∈Z2≥0

r1r2Ec(r , σ) = σ1σ2 + min{σ1, σ2} (7.1)

for σ = (σ1, σ2). To deduce equation (7.1), note that

∑
(r1,r2)∈Z2≥0

r1r2Ec(r , σ) =
∫
�′\G′

∑
m1,m2∈Zd

χCc(σ1)(m1g)χCc(σ2)(m2g) dm�′\G′(g).

Recall that for σ > 0, the area of Cc(σ ) is precisely σ . Applying Proposition 7.1, the
off-diagonal part of the right-hand side is equal to∫

Rd×Rd
χCc(σ1)(x)χCc(σ2)(y) dx dy = σ1σ2.

https://doi.org/10.1017/etds.2024.31 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.31


Multi-dimensional affine lattices 25

For the diagonal part, let C = Cc(σ1) ∩ Cc(σ2) and note that C = Cc(min{σ1, σ2}). Then
the diagonal part is evaluated as follows:∫

�′\G′

∑
m∈Zd

χC(mg) dm�′\G′(g)

=
∫
�\G

∑
m∈Zd

∫
Zd\Rd

χC((m + ξ)M) dξ dm�\G(M)

=
∫
�\G

∫
Rd
χC(xM) dx dm�\G(M) =

∫
Rd
χC(x) dx = min{σ1, σ2}.

This completes the proof of equation (7.1).
For the proof of Corollary 2.3, observe that for z1 = z2 = 1, one of the hypotheses of

Theorem 2.2 holds under the assumption of Corollary 2.3. Combining equation (7.1) with
property (b) above, Corollary 2.3 then follows from Theorem 2.2.

7.2. Proof of Corollary 2.4. In this section, we show that Corollary 2.3 implies
Corollary 2.4. Throughout this section, we assume that the statement of Corollary 2.3
holds.

LEMMA 7.2. Let h ∈ C(Sd−1) and σ1, σ2 > 0. Then

lim
N→∞

∫
Sd−1

N∑
j1,j2=1
j1 �=j2

χ[0,σ1](N
1/(d−1)d(αj1 , α))χ[0,σ2](N

1/(d−1)d(αj2 , α))h(α) dα

= σ1σ2

∫
Sd−1

h(α) dα. (7.2)

Proof. By Corollary 2.3, the left-hand side of equation (7.2) without the restriction
j1 �= j2 converges to

min{σ1, σ2}
∫
Sd−1

h(α) dα + σ1σ2

∫
Sd−1

h(α) dα. (7.3)

However, the diagonal part j1 = j2 of the left-hand side of equation (7.2) is∫
Sd−1

N∑
j=1

χ[0,min{σ1,σ2}](N1/(d−1)d(αj , α))h(α) dα. (7.4)

Since h is continuous and d(αj , α) �σ1,σ2 N
−1/(d−1) for any 1 ≤ j ≤ N , for any ε > 0,

there exists N0 such that for all N ≥ N0, we have |h(αj )− h(α)| < ε for any α ∈ Sd−1

and 1 ≤ j ≤ N . It follows that the integral in equation (7.4) is approximated by∫
Sd−1

N∑
j=1

χ[0,min{σ1,σ2}](N1/(d−1)d(αj , α))h(αj ) dα (7.5)
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up to error < ε min{σ1, σ2}. Hence, equation (7.4) converges to

lim
N→∞

∫
Sd−1

N∑
j=1

χ[0,min{σ1,σ2}](N1/(d−1)d(αj , α))h(α) dα

= lim
N→∞ min{σ1, σ2}N−1

N∑
j=1

h(αj )

= min{σ1, σ2}
∫
Sd−1

h(α) dα,

(7.6)

since the αj terms are uniformly distributed over Sd−1. Therefore, the second summand of
equation (7.3) is the off-diagonal contribution appearing in equation (7.2), as desired.

LEMMA 7.3. Let g ∈ C(Sd−1 × Sd−1) and σ1, σ2 > 0. Then

lim
N→∞

N∑
j1,j2=1
j1 �=j2

g(αj1 , αj2)

∫
Sd−1

χ[0,σ1](N
1/(d−1)d(αj1 , α))χ[0,σ2](N

1/(d−1)d(αj2 , α)) dα

= σ1σ2

∫
Sd−1

g(α, α) dα. (7.7)

Proof. Since g is continuous and d(αj , α) �σ1,σ2 N
−1/(d−1) for any 1 ≤ j ≤ N , for any

ε > 0, there exists N0 such that for all N ≥ N0, we have |g(α, α)− g(αj1 , αj2)| < ε for
any α ∈ Sd−1 and 1 ≤ j1, j2 ≤ N . It follows that the left-hand side of equation (7.7) is
approximated by

N∑
j1,j2=1
j1 �=j2

∫
Sd−1

g(α, α)χ[0,σ1](N
1/(d−1)d(αj1 , α))χ[0,σ2](N

1/(d−1)d(αj2 , α)) dα (7.8)

up to error

< ε

∫
Sd−1

N∑
j1,j2=1
j1 �=j2

χ[0,σ1](N
1/(d−1)d(αj1 , α))χ[0,σ2](N

1/(d−1)d(αj2 , α)) dα � εσ1σ2,

(7.9)

where the last inequality follows from Lemma 7.2 with the choice h = 1. Applying
Lemma 7.2 again for equation (7.8) with the choice h(α) = g(α, α), we conclude the
proof.

Corollary 2.4 now follows from Lemma 7.3 by approximating f ∈ C0(S
d−1 ×Sd−1 ×R)

from above and below by finite linear combinations of functions of the form

f̃ (x, y, z) = g(x, y)
∫
Rd−1

χBd−1
σ1
(w)χBd−1

σ2
(w + ze1) dw (7.10)

for suitable choices of g ∈ C(Sd−1 × Sd−1) and σ1, σ2 > 0.
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A. Appendix. Brjuno-type condition
Following [LDG19] (cf. also [BF19]), we say that ξ ∈ Rd is a s-Brjuno vector if

∞∑
n=0

2−n/s max
m∈Zd\{0}
0<|m|≤2n

log
1

|ξ · m|Z < ∞.

The classical Brjuno condition corresponds to s = 1.
In this section, we prove that for s > (ρ + 1)/ν, every s-Brjuno vector is (ρ, 0, ν)-

vaguely Diophantine. Given ξ ∈ Rd , let us define φ : N → R>0 by

φ(N) := max
m∈Zd\{0}
0<|m|≤N

log
1

|ξ · m|Z .

Then the definition of ζ(ξ , T ) can be written in terms of φ(N) as follows:

ζ(ξ , T ) = min{N ∈ N : e−φ(N) ≤ T −1}
= min{N ∈ N : φ(N) ≥ log T }.

Suppose that ξ is s-Brjuno type for some s > (ρ + 1)/ν. Then we have∑
n 2−n/sφ(2n) < ∞, and hence φ(t) ≤ t1/s log 2 for sufficiently large t. It follows that

ζ(ξ , 2l−1) = min{N ∈ N : φ(N) ≥ (l − 1) log 2} ≥ (l − 1)s

for sufficiently large l. Thus, it implies that ξ is (ρ, 0, ν)-vaguely Diophantine since
∞∑
l=1

lρ ζ(ξ , 2l−1)−ν �
∞∑
l=1

lρ−sν < ∞.

B. Appendix. Counterexamples
The following theorem establishes that for d = 2, there exist uncountably many
ξ ∈ R2 \ Q2 such that the pair correlation function of the directions of the affine lattice
Z2 + ξ diverges, whilst converging to the Poisson limit along a subsequence.

THEOREM B.1. Fix s > 0. Then there exists a set C ⊂ R2 of second Baire category with
the property that for ξ ∈ C, there are sequences (Mj )j∈N, (Nj )j∈N with Mj , Nj → ∞
such that

R2
Mj
(s) ≥ log Mj

log log log Mj

(B.1)

and

lim
j→∞ R2

Nj
(s) = π(d−1)/2sd−1

�((d + 1)/2)
. (B.2)
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The proof of this statement follows from Theorem 1.1 and the next lemma by a Baire
category argument identical to that used in [Sa97]; see also [M03, §9].

LEMMA B.2. Let ξ ∈ Q2. Then there exists a constant Cξ such that for any s > 0 and
T > 0, we have

R2
N0(T )

(s) ≥ Cξ log N0(T ). (B.3)

Proof. We first observe that for any s > 0 and N ∈ N,

R2
N(s) ≥ 1

N
#{(j1, j2) : j1, j2 ≤ N , j1 �= j2, υj1 = υj2}.

Let us first consider the case ξ = (0, 0). We denote the set of primitive lattice points by
Z2

prim. Then

R2
N0(T )

(s) ≥ 1
N0(T )

∑
v∈Z2

prim

∑
k,l �=0, k �=l,

‖kv‖,‖lv‖≤T

1

� 1
T 2

∑
0≤m<n≤T/2,
gcd(m,n)=1

(
T

n

)(
T

n
− 1

)

�
∑

1≤n≤T/2

ϕ(n)

n2 � log T � log N0(T ),

where ϕ denotes Euler’s totient function. The above lower bound for the sum over
the totient functions follows (via diadic decomposition) from the classic asymptotics∑

1≤n≤x ϕ(n) ∼ (3/π2)x2.
The case ξ ∈ Q2 \ {0} is similar to the above. Let ξ = (1/q)p for some p = (p1, p2) ∈

Z2 \ {0} and q ∈ N. Then we have

R2
N0(T )

(s) ≥ 1
N0(T )

∑
v∈Z2

prim

∑
k,l �=0, k �=l,

‖kv‖≤qT , kv≡p (mod q),
‖lv‖≤qT , lv≡p (mod q)

1

� 1
T 2

∑
0≤m<n≤T/2q,

gcd(m,n)=1

(
T

n

)(
T

n
− 1

)

�
∑

1≤n≤T/2q

ϕ(n)

n2 � log T � log N0(T ).

This completes the proof of the lemma.
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