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the star number of  sides, respectively, for , the following identity
holds:

n n ∈ �

τ (n) − σ (n) = n − 1.

Proof: The proof is demonstrated for .n = 6

n n−1

FIGURE 2

In general, where  and  are expressed in terms of
triangular numbers  via  and

 respectively, we simply deduce

p (n, k) c (n, k)
Tn = 1

2n (n + 1) p (n, k) = n + (k − 2) Tn − 1
c (n, k) = 1 + kTn − 1

p(n, k) − c(n, k − 2) = n + (k − 2)Tn− 1 − [1 + (k − 2)Tn− 1] = n − 1.
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107.27 The discrete renewal theorem with bounded inter-
event times

Probabilistic Sequence
The purpose of this Note is to prove the celebrated Discrete Renewal

Theorem in a common special case, using only very elementary methods.
To introduce the problem, consider a class of board games in which a

player's counter makes a sequence of moves in a fixed direction along a line
of squares , . The counter starts from , with the sizes of
successive moves determined by the roll of a die (or multiple dice), which
may be biased.

Sn n ≥ 0 S0
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For the -th square , it is natural to ask for the probability that the
counter ever lands on , denoted by . This is especially valuable where
is a square on which the player gains some reward or pays some penalty.
Note that  and we have allowed the line of squares to be semi-
infinite.

n Sn
Sn un Sn

u0 = 1

By definition, the length  of any jump of the counter is independent of
all other jumps, and we denote its probability distribution by

X

f j = P (X = j) ,  j ≥ 1

with the sum of  being 1. For example, if jumps are given by a fair cubical
die, then

f j

f j = 1
6,  1 ≤ j ≤ 6.

We require the following assumption:

Assumption 1: For some finite ,  for .S f j = 0 j > S
Under Assumption 1, we shall prove by elementary methods, in

Theorem 2 below, that

lim
n → ∞

un =
1

E (X)
(1)

where  is the expected value of any jump . That is to say, for all
practical purposes, sufficiently distant points are all equally likely to be
visited by the counter with probability . First we give this
preliminary result:

E (X) X

1 / E (X)

Theorem 1. 
For all n ≥ 1

un = f nu0 + f n − 1u1 +  …  + f 1un − 1, (a)
and

1 = P(X > n) + P(X > n − 1)u1 +  …  + P(X > 1)un− 1 + un. (b)

Proof:
(a)  For , the counter leaves , lands first on , and then
subsequently lands on  with probability . Summing these
probabilities yields our result, using the partition theorem (the law of total
probability) [1].

1 ≤ j ≤ n S0 Sn − j
Sn f jun − j

(b)   There are 3 cases to consider

• The counter ‘visits’  with probability Sn un

• For some , the counter first visits  and then makes a
jump greater than  with probability 

j < n Sj
n − j uj P (X > n − j)

• The counter jumps from  directly ‘over’ , with probability
.

S0 Sn
P (X > n)
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Summing all of these probabilities, the partition theorem [1] is again used to
yield our result.

We make the following observations.
1. A positive sequence  defined by (a) is called a renewal sequence with

respect to the distribution .
un

f n

2. The sum on the right-hand-side of (a) is called the convolution of the
sequences  and  [2].un f n

3. Under Assumption 1, there are at most  and  terms in the right-
hand-sides of (a) and (b) respectively.

S S + 1

Convergence of Sequence
To justifiably use the limit formula in (1), we need to establish that

converges as .
un

n → ∞

Theorem 2.
The sequence  has a finite limit as , this beingun n → ∞

lim
n → ∞

un =
1

E (X)
where  is the expected value of any jump .E (X) X

Proof: From Assumption 1, for some finite ,  for . For .
Theorem 1(a) then reduces to

S f j = 0 j > S n > S

un = f Sun − S + f S − 1un − S + 1 +  …  + f 2un − 2 + f 1un − 1.
Letting the maximum of the terms  be denoted by , all of
these terms are clearly less than or equal to . As the sum of  is 1,
must be less than or equal to . Avoiding the trivial case where  is
constant, it can be proved by induction that at least one of  is
not  and the inequality becomes strict,

un − S, … , un − 1 Mn
Mn f j un

Mn un
un − S, … , un − 1

Mn

un < Mn (2)
and so all terms  are all less than or equal to  such thatun − S + 1, … , un Mn

Mn + 1 ≤ Mn

and hence  is a monotonically decreasing sequence. Similarly denoting
by , the minimum of , with precisely the same logic,  is
a monotonically increasing sequence. Clearly with the context of
probability, both sequences are bounded. By the Monotone Convergence
Theorem [3],  and  both converge to finite limits as . We wish
to prove that these limits are the same.

Mn
mn un − S, … , un − 1 mn

Mn mn n → ∞

Denoting the limits of  and  as  and  respectively, we assume,
for the sake of contradiction, that . There must then exist a
such that

Mn mn M m
m ≠ M δ > 0
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M − m = kδ
where , . As  is monotonically increasing to , for all
 it is less than or equal to . We have

kf j > 1 1 ≤ j ≤ S mn m
n m

mn ≤ M − kδ. (3)
As  is monotonically decreasing to , there must be some  such

that for all ,
Mn M N

t > N

Mt − M < δ. (4)
Now consider equation (a) under Assumption 1. One of

is  and all others are less than or equal to . Let  here have coefficient
, then as the sum of the  is 1,

ut − S, … , ut − 1
mt Mt mt

f ′ f j

ut ≤ f ′mt + (1 − f ′) Mt

and we can substitute equations (3) and (4) into this

ut ≤ M − (kf ′ + f ′ − 1) δ.
With all the above constraints,  is positive such that for all ,(kf ′ + f ′ − 1)δ t > N

ut < M.
But then all the terms  are strictly less than . Setting
we have

ut, … , ut +S −1 M n = t + S

Mn < M,
a clear contradiction of the proven fact that  monotonically decreases to

. The assumption that the sequences have different limits is false, and so
 and  converge to the same limit. From (2),

Mn
M
Mn mn

mn < un < Mn.
As  and  have the same limit, the ‘Squeeze Theorem’ [4] applies and
must have this same limit .

Mn mn un
L

We may now complete the proof of Theorem 2. We have established
that  converges to some limit  as . Allowing  in Theorem
1(b) yields the required result immediately, using the fact that the sum is
finite, noting that  has a proper distribution [so ], and using
the tail sum formula for . That is, for a positive integer-valued ,

un L n → ∞ n → ∞

X P (X > 0) = 1
E (X) X

E (X) = P (X > 0) + P (X > 1) + P (X > 2) +  … .
It follows that

lim
n → ∞

un =
1

E (X)
.

We note, that in contrast to the �������
��
��������� theorem [5]
(described below) which proves the more general renewal theorem, we have
been able to prove this specific result using only very elementary methods.
Background and History

Theorem 2, as given above, is actually true without Assumption 1,
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where the limit becomes zero when  is infinite. This was shown in a
famous paper of 1949 by P. �����������
��
���������������� [5], using the
discrete generating function ‘dgf’, and proving a key property of power
series with positive coefficients to acquire the result. Explicitly, if the
sequences  and  have dgf's  and  respectively, then from
Theorem 1(a), we have

E (X)

un f n U (s) F (s)

U (s) =
1

1 − F (s)
, (5)

as used in the �������
��
��������� theorem. For a simpler proof of this
theorem, a summary of all the standard notation, and its various
applications, one can see chapter XIII of [1]. One can also find the original
proof here (renyi.hu) [5].

Note that under Assumption 1,  is a polynomial, and it
follows from (5), and the theory of partial fractions, that

[1 − F (s)]

lim
n → ∞

un =
1

E (X)
which is our Theorem 2. However, in the special case of Assumption 1, the
elementary proof outlined in our first two sections is sufficient.

Discrete renewal theory is very strongly linked with certain properties
of Markov chains. The discrete renewal theorem can be proved using
suitable Markov chain convergence theorems, and vice versa [6].

In more general renewal processes, the lengths of jumps  are allowed
to have an arbitrary distribution on the positive real line. In such cases, the
Laplace transform may be used in place of the dgf, and a suitably modified
version of the renewal theorem proved. Even more generally, one may allow
counters to jump both forwards and backwards, so that  may also take
negative values with a distribution on the entire real line. Here the Fourier
transform may be used to acquire appropriate results [7].

X

X
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