
Canad. Math. Bull. Vol. 21 (1), 1979 

ON A THEOREM OF NIVEN 

BY 

R. SITA RAMA CHANDRA RAO AND G. SRI RAMA CHANDRA MURTY 

In [4], Niven proved that the set A of integers Ds(n) for all s > l and all 
n ^ 1 has density zero, Ds(n) being the sum of the sth powers of all positive 
divisors of n. However his argument contains a mistake (see Remark 1). In this 
paper we give a proof of Niven's result and establish several related results, 
one of which generalizes a result of Dressier (See Theorem 3 and Remark 2). 

THEOREM 1. The set A of integers ©s(n) for all s>\ and all n>\ has 
density zero. That is, if A(n) is the number of positive integers not exceeding n 
that belong to A, then 

hm = 0. 
n—*<» n 

Proof. We use the following result of Niven (cf. [4] corollary 2). (1) For any 
fixed positive integer fc, if pt is a set of primes for which Y,P71==co and if A is 
any sequence whose members are divisible by atmost k of these primes only to 
the first degree, then d(A) = 0 (where d(A) is the density of A). 

Let B denote the set of all integers €)s(n) for all s > 2 and for all n ̂  1. Since 
©s(m)>ms, for fixed s, the number of ©s(m) counted by B(n) is not more 
than n1/s and hence 

B(n)<n1/2 + n1/3 + - + n 1 / r , pgr, 

where r<log2n because for any larger value of r, ©r(2)>n. Thus B(n)^ 
n1/2log2n so that d(B) = 0. Let C denote the set of integers ©i(n) for all 
n ^ 1. Given e >0, choose a positive integer k such that l/2k <e/2 and separate 
C into two disjoint sets Cx and C2 where Cx consists of those elements of C 
that are divisible by 2 \ Hence for all n, C1{n)<nl2k <en/2. Also C2(n) = The 
number of £)1(m)<n such that 2kH'©1(m) and this does not exceed the 
number of positive integers m^n which are divisible by atmost k distinct 
primes to the first degree. Hence by (1), d(C2) = 0 so that for all large n, 
C(n) = Cx(n) + C2(n) < en. This proves that d{C) = 0 and since A = B U C, the 
theorem follows. 

REMARK 1. Niven separates A into two possibly overlapping sets B and 
C, €)s(n) being put in B if n has more than k distinct prime factors, otherwise, 
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in C. In specifying the choice of fc, he says "Any member of the set B satisfies 
the inequality 

£)s(n)>nsf[(l + pis) = nscs, 

Pj being the jth prime. The last equality defines cs, a function of s and k, and we 
choose k so that e c 1 >4" . We note that the above inequality is true only if p, 
is the jth prime dividing n but not the /th prime in the sequence of all rational 
primes. Thus cs also depends on n and hence the choice of k mentioned above 
can not be done. 

THEOREM 2. The set B of all integers Js(n), for all s > l and all n>l has 

density zero, where Js(n) denotes the Jordan totient function of order s (cf. [1], 
Page 147). 

Proof. If Bx is the set of all integers Ji(rc), for all n > 1, then it is well known 
that d(B1) = 0 (cf. [5], Theorem 11.9, pp. 249). Let B2 denote the set of all 
integers Js(n) for all s > 2 and n > l . Since 

Js(m) = msïï(l-p-s)>msïï(l-p-s)>msl\(l--p-2\ 
p|m p p 

the product ranging over all primes p, repeating the arguments in the first part 
of the proof of Theorem 1, we get d(B2) = 0. Since B = B1UB2, the result 
follows. 

THEOREM 3. Let r, s be fixed non-negative integers and t, u, k be fixed positive 
integers. Further let 

Xs,t={n\(Os(n),Jt(n))<k}, 

Yr,={n\(€r(n\€)s(n))^k}, 

Zt,u={n\(Jt(n\Ju(n))<k}. 

Then 

d(XJ = d(Yr,s) = d(ZUu) = 0. 

Proof. We prove d(Xst) = 0 and the rest are similar. If for an n, 
(Os(n), J t(n))<k, then n is divisible by atmost k distinct primes only to the 
first degree. Hence by (1), d(Xst) = 0. 

REMARK 2. Taking t = 1 in Theorem 3, we see that d(Xsl) = 0, where 5 is a 
positive integer, which is a recent result due to Dressier (cf. [2], Theorem 2). 
We note that in addition to (1) mentioned in the proof of Theorem 1 above, 
Dressier uses the results of Hardy and Ramanujan on the normal order of 
SB(n) and fl(n) (cf. [3], Theorem 431) which were avoided in our proof. 
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