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Abstract
We investigate an inverse boundary value problem of determination of a nonlinear law for reaction-diffusion
processes, which are modeled by general form semilinear parabolic equations. We do not assume that any solutions
to these equations are known a priori, in which case the problem has a well-known gauge symmetry. We determine,
under additional assumptions, the semilinear term up to this symmetry in a time-dependent anisotropic case modeled
on Riemannian manifolds, and for partial data measurements on R𝑛.
Moreover, we present cases where it is possible to exploit the nonlinear interaction to break the gauge symmetry.
This leads to full determination results of the nonlinear term. As an application, we show that it is possible to
give a full resolution to classes of inverse source problems of determining a source term and nonlinear terms
simultaneously. This is in strict contrast to inverse source problems for corresponding linear equations, which
always have the gauge symmetry. We also consider a Carleman estimate with boundary terms based on intrinsic
properties of parabolic equations.
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1. Introduction

In this article, we address the following question: Is it possible to determine the non-linear law of a
reaction-diffusion process by applying sources and measuring the corresponding flux on the boundary
of the domain of diffusion? Mathematically, the question can be stated as a problem of determination of
a general semilinear term appearing in a semilinear parabolic equation from boundary measurements.

Let us explain the problem precisely. Let𝑇 > 0 and Ω ⊂ R𝑛, with 𝑛 � 2, be a bounded and connected
domain with a smooth boundary. Let 𝑎 := (𝑎𝑖𝑘 )1�𝑖,𝑘�𝑛 ∈ 𝐶∞([0, 𝑇] × Ω;R𝑛×𝑛) be symmetric matrix
field,

𝑎𝑖𝑘 (𝑡, 𝑥) = 𝑎𝑘𝑖 (𝑡, 𝑥), 𝑥 ∈ Ω, 𝑖, 𝑘 = 1, . . . , 𝑛, (𝑡, 𝑥) ∈ [0, 𝑇] ×Ω,

which fulfills the following ellipticity condition: there exists a constant 𝑐 > 0 such that

𝑛∑
𝑖,𝑘=1

𝑎𝑖𝑘 (𝑡, 𝑥)𝜉𝑖𝜉𝑘 � 𝑐 |𝜉 |2, for each (𝑡, 𝑥) ∈ [0, 𝑇] ×Ω, 𝜉 = (𝜉1, . . . , 𝜉𝑛) ∈ R
𝑛. (1.1)

We define elliptic operators A(𝑡), 𝑡 ∈ [0, 𝑇], in divergence form by

A(𝑡)𝑢(𝑡, 𝑥) := −

𝑛∑
𝑖,𝑘=1

𝜕𝑥𝑖
(
𝑎𝑖𝑘 (𝑡, 𝑥)𝜕𝑥𝑘𝑢(𝑡, 𝑥)

)
, 𝑥 ∈ Ω, 𝑡 ∈ [0, 𝑇] .

Throughout the article, we set

𝑄 := (0, 𝑇) ×Ω, Σ := (0, 𝑇) × 𝜕Ω,

and we refer to Σ as the lateral boundary. Let us also fix 𝜌 ∈ 𝐶∞([0, 𝑇] × Ω;R+) and 𝑏 ∈ 𝐶∞([0, 𝑇] ×
Ω × R). Here, R+ = (0, +∞). Then, we consider the following initial boundary value problem (IBVP in
short): ⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜌(𝑡, 𝑥)𝜕𝑡𝑢(𝑡, 𝑥) +A(𝑡)𝑢(𝑡, 𝑥) + 𝑏(𝑡, 𝑥, 𝑢(𝑡, 𝑥)) = 0, (𝑡, 𝑥) ∈ 𝑄,

𝑢(𝑡, 𝑥) = 𝑓 (𝑡, 𝑥), (𝑡, 𝑥) ∈ Σ,

𝑢(0, 𝑥) = 0, 𝑥 ∈ Ω.

(1.2)

The parabolic Dirichlet-to-Neumann map (DN map in short) is formally defined by

N𝑏 : 𝑓 ↦→ 𝜕𝜈 (𝑎)𝑢
		Σ,

where u is the solution to (1.2). Here, the conormal derivative 𝜕𝜈 (𝑎) associated to the coefficient a is
defined by

𝜕𝜈 (𝑎)𝑣(𝑡, 𝑥) :=
𝑛∑

𝑖,𝑘=1
𝑎𝑖𝑘 (𝑡, 𝑥)𝜕𝑥𝑘 𝑣(𝑡, 𝑥)𝜈𝑖 (𝑥), (𝑡, 𝑥) ∈ Σ,

where 𝜈 = (𝜈1, . . . , 𝜈𝑛) denotes the outward unit normal vector of 𝜕Ω with respect to the Euclidean R𝑛

metric. The solution u used in the definition of the DN map N𝑏 is unique in a specific sense so that
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there is no ambiguity in the definition of N𝑏 . For this fact and a rigorous definition of the DN map, we
refer to to Section 2.1. We write simply 𝜕𝜈 = 𝜕𝜈 (𝑎) in the case a is the 𝑛 × 𝑛 identity matrix IdR𝑛×𝑛 . The
inverse problem we study is the following.

◦ Inverse problem (IP): Can we recover the semilinear term b from the knowledge of the parabolic
Dirichlet-to-Neumann map N𝑏?

Physically, reaction diffusion equations of the form (1.2) describe several classes of diffusion pro-
cesses with applications in chemistry, biology, geology, physics and ecology. This includes the spread-
ing of biological populations [Fis37], the Rayleigh-Bénard convection [NW87] or models appearing
in combustion theory [Vol14, ZFK38]. The inverse problem (IP) is equivalent to the determination of
an underlying physical law of a diffusion process, described by the nonlinear expression b in (1.2),
by applying different sources (e.g., heat sources) and measuring the corresponding flux at the lateral
boundary Σ. The information extracted from this way is encoded into the DN map N𝑏 .

These last decades, problems of parameter identification in nonlinear partial differential equations
have generated a large interest in the mathematical community. Among the different formulation of
these inverse problems, the determination of a nonlinear law is one of the most challenging from the
severe ill-posedness and nonlinearity of the problem. For diffusion equations, one of the first results in
that direction can be found in [Isa93]. Later on, this result was improved by [CK18b], where the stability
issue was also considered. To the best of our knowledge, the most general and complete result known
so far about the determination of a semilinear term of the form 𝑏(𝑡, 𝑥, 𝑢) depending simultaneously
on the time variable t, the space variable x and the solution of the equation u from knowledge of
the parabolic DN map N𝑏 can be found in [KU23]. Without being exhaustive, we mention the works
of [Isa01, CY88, COY06] devoted to the determination of semilinear terms depending only on the
solution and the determination of quasilinear terms addressed in [CK18a, EPS17, FKU22]. Finally, we
mention the works of [FO20, KLU18, LLLS21, LLLS20, LLST22, KU20b, KU20a, FLL23, HL23,
KKU23, CFK+21, FKU22, LL22a, Lin22, KU23, LL23, LL19] devoted to similar problems for elliptic
and hyperbolic equations. Moreover, in the recent works [LLLZ22, LLL21], the authors investigated
simultaneous determination problems of coefficients and initial data for both parabolic and hyperbolic
equations.

Most of the above mentioned results concern the inverse problem (IP) under the assumption that the
semilinear term b in (1.2) satisfies the condition

𝑏(𝑡, 𝑥, 0) = 0, (𝑡, 𝑥) ∈ 𝑄. (1.3)

This condition implies that (1.2) has at least one known solution, the trivial solution. In the same spirit,
for any constant 𝜆 ∈ R, the condition 𝑏(𝑡, 𝑥, 𝜆) = 0 for (𝑡, 𝑥) ∈ 𝑄 implies that the constant function
(𝑡, 𝑥) ↦→ 𝜆 is a solution of the equation 𝜌(𝑡, 𝑥)𝜕𝑡𝑢 +A(𝑡)𝑢 + 𝑏(𝑡, 𝑥, 𝑢) = 0 in Q. In the present article, we
treat the determination of general class of semilinear terms that might not satisfy the condition (1.3). In
this case, the inverse problem (IP) is even more challenging since no solutions of (1.2) may be known a
priori. In fact, as observed in [Sun10] for elliptic equations, there is an obstruction to the determination
of b from the knowledge of N𝑏 in the form of a gauge symmetry. We demonstrate the gauge symmetry
first in the form of an example.

Example 1.1. Let us consider the inverse problem (IP) for the simplest linear case⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕𝑡𝑢 − Δ𝑢 = 𝑏0 in 𝑄,
𝑢 = 𝑓 on Σ,

𝑢(0, 𝑥) = 0 in Ω,

(1.4)

where the aim is to recover an unknown source term 𝑏0 = 𝑏0 (𝑥, 𝑡). Here, Δ is the Laplacian, but it could
also be replaced by a more general second-order elliptic operator whose coefficients are known. Let us
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consider a function 𝜑 ∈ 𝐶∞([0, 𝑇] ×Ω), which satisfies 𝜑 � 0, 𝜑(0, 𝑥) = 0 for 𝑥 ∈ Ω and 𝜑 = 𝜕𝜈𝜑 = 0
on Σ, where 𝜕𝜈𝜑 denotes the Neumann derivative of 𝜑 on Σ.

Then the function 𝑢̃ := 𝑢 + 𝜑 satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕𝑡 𝑢̃ − Δ 𝑢̃ = 𝑏0 + (𝜕𝑡 − Δ)𝜑 in 𝑄,
𝑢̃ = 𝑓 on Σ,

𝑢̃(0, 𝑥) = 0 in Ω.

(1.5)

Since u and 𝑢̃ have the same initial data at 𝑡 = 0 and boundary data on Σ, we see that the DN maps of
(1.4) and (1.5) are the same. However, by unique continuation properties for parabolic equations (see, for
example, [SS87, Theorem 1.1]), the conditions 𝜑 = 𝜕𝜈𝜑 = 0 on Σ and 𝜑 � 0 imply that (𝜕𝑡 − Δ)𝜑 � 0,
and it follows that 𝑏0+(𝜕𝑡−Δ)𝜑 ≠ 𝑏0. Consequently, the inverse problem (IP) cannot be uniquely solved.

In what follows, we assume that 𝛼 ∈ (0, 1) and refer to Section 2.1 for the definitions of various
function spaces that will show up. Let us describe the gauge symmetry, or gauge invariance, of the
inverse problem (IP) in detail. For this, let a function 𝜑 ∈ 𝐶1+ 𝛼

2 ,2+𝛼 ([0, 𝑇] ×Ω) again satisfy

𝜑(0, 𝑥) = 0, 𝑥 ∈ Ω, 𝜑(𝑡, 𝑥) = 𝜕𝜈 (𝑎)𝜑(𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ Σ, (1.6)

and consider the mapping 𝑆𝜑 from 𝐶∞(R;𝐶 𝛼
2 ,𝛼 ([0, 𝑇] ×Ω)) into itself defined by

𝑆𝜑𝑏(𝑡, 𝑥, 𝜇) = 𝑏(𝑡, 𝑥, 𝜇 + 𝜑(𝑡, 𝑥)) + 𝜌(𝑡, 𝑥)𝜕𝑡𝜑(𝑡, 𝑥) +A(𝑡)𝜑(𝑡, 𝑥), (𝑡, 𝑥, 𝜇) ∈ 𝑄 × R. (1.7)

As in the example above, one can easily check that N𝑏 = N𝑆𝜑𝑏 .
In view of this obstruction, the inverse problem (IP) should be reformulated as a problem about

determining the semilinear term up to the gauge symmetry described by (1.7). We note that (1.7)
implies an equivalence relation for functions in 𝐶∞(R;𝐶 𝛼

2 ,𝛼 ([0, 𝑇] ×Ω)). Corresponding equivalence
classes will be called gauge classes:

Definition 1.1 (Gauge class). We say that two nonlinearities 𝑏1, 𝑏2 ∈ 𝐶∞(R;𝐶 𝛼
2 ,𝛼 ([0, 𝑇] × Ω) are in

the same gauge class, or equivalent up to a gauge, if there is 𝜑 ∈ 𝐶1+ 𝛼
2 ,2+𝛼 ([0, 𝑇] ×Ω) satisfying (1.6)

such that

𝑏1 = 𝑆𝜑𝑏2. (1.8)

Here, 𝑆𝜑 is as in (1.7). In the case we consider a partial data inverse problem, where the normal derivative
of solutions is assumed to be known only on (0, 𝑇) × Γ̃, with Γ̃ open in 𝜕Ω, we assume 𝜕𝜈 (𝑎)𝜑 = 0 only
on (0, 𝑇) × Γ̃ in (1.6).

Using the above definition of the gauge class and taking into account the obstruction described above,
we reformulate the inverse problem (IP) as follows.

◦ Inverse problem (IP1): Can we determine the gauge class of the semilinear term b from the full or
a partial knowledge of the parabolic DN map N𝑏?

There is a natural additional question raised by (IP1) – namely,

◦ Inverse problem (IP2): When does the gauge invariance break leading to a full resolution of the
inverse problem (IP)?

One can easily check that it is possible to give a positive answer to problem (IP2) when (1.3) is fulfilled.
Nevertheless, as observed in the recent work [LL22b], the resolution of problem (IP2) is not restricted
to such situations. The work [LL22b] provided the first examples (in an elliptic setting) how to use
nonlinearity as a tool to break the gauge invariance of (IP).

Let us also remark that, following Example 1.1, when 𝑢 ↦→ 𝑏( · , 𝑢) is affine, corresponding to the
case where the equation (1.2) is linear and has a source term, there is no hope to break the gauge
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invariance (1.7) and the answer to (IP2) is, in general, negative. As will be observed in this article,
this is no longer the case for various classes of nonlinear terms b. We will present cases where we will
be able to solve (IP) uniquely. These cases present new instances where nonlinear interaction can be
helpful in inverse problems. Nonlinearity has earlier been observed to be a helpful tool by many authors
in different situations such as in partial data inverse problems and in anisotropic inverse problems on
manifolds; see, for example, [KLU18, FO20, LLLS21, LLLS20, LLST22, KU20a, KU20b, FLL23].

In the present article, we will address both problems (IP1) and (IP2). We will start by considering
the problem (IP1) for nonlinear terms, which are quite general. Then, we will exhibit several general
situations where the gauge invariance breaks and give an answer to (IP2).

We mainly restrict our analysis to semilinear terms b subjected to the condition that the map
𝑢 ↦→ 𝑏( · , 𝑢) is analytic (the (𝑡, 𝑥) dependence is of 𝑏(𝑡, 𝑥, 𝜇) will not be assumed to be analytic). The
restriction to this class of nonlinear terms is motivated by the study of the challenging problems (IP1)
and (IP2) in this article. Indeed, even when condition (1.3) is fulfilled, the problem (IP) is still open, in
general, for semilinear terms that are not subjected to our analyticity condition (see [KU23] for the most
complete results known so far for this problem). Results for semilinear elliptic equations have also been
proven for cases when the nonlinear terms are, roughly speaking, globally Lipschitz (see, for example,
[IN95, IS94]). For this reason, our assumptions seem reasonable for tackling problems (IP1) and (IP2)
and giving the first answers to these challenging problems. Note also that the linear part of (1.2) will be
associated with a general class of linear parabolic equations with variable time-dependent coefficients.
Consequently, we will present results also for linear equations with full and partial data measurements.

2. Main results

In this section, we will first introduce some preliminary definitions and results required for the rigorous
formulation of our problem (IP). Then, we will state our main results for problems (IP1) and (IP2).

2.1. Preliminary properties

From now on, we fix 𝛼 ∈ (0, 1), and we denote by 𝐶 𝛼
2 ,𝛼 ([0, 𝑇] × 𝑋), with 𝑋 = Ω or 𝑋 = 𝜕Ω, the set

of functions h lying in 𝐶 ([0, 𝑇] × 𝑋) satisfying

[ℎ] 𝛼
2 ,𝛼 = sup

{
|ℎ(𝑡, 𝑥) − ℎ(𝑠, 𝑦) |

( |𝑥 − 𝑦 |2 + |𝑡 − 𝑠 |)
𝛼
2

: (𝑡, 𝑥), (𝑠, 𝑦) ∈ [0, 𝑇] × 𝑋, (𝑡, 𝑥) ≠ (𝑠, 𝑦)

}
< ∞.

Then we define the space 𝐶1+ 𝛼
2 ,2+𝛼 ([0, 𝑇] × 𝑋) as the set of functions h lying in

𝐶 ([0, 𝑇];𝐶2 (𝑋)) ∩ 𝐶1([0, 𝑇];𝐶 (𝑋))

such that

𝜕𝑡ℎ, 𝜕
𝛽
𝑥 ℎ ∈ 𝐶

𝛼
2 ,𝛼 ([0, 𝑇] × 𝑋), 𝛽 ∈ (N ∪ {0})𝑛, |𝛽 | = 2.

We consider these spaces with their usual norms, and we refer to [Cho09, pp. 4] for more details. Let us
also introduce the space

K0 :=
{
ℎ ∈ 𝐶1+ 𝛼

2 ,2+𝛼 ([0, 𝑇] × 𝜕Ω) : ℎ(0, · ) = 𝜕𝑡ℎ(0, · ) = 0
}
.

If 𝑟 > 0 and ℎ ∈ K0, we denote by

B(ℎ, 𝑟) :=
{
𝑔 ∈ K0 : ‖𝑔 − ℎ‖

𝐶1+ 𝛼
2 ,2+𝛼

( [0,𝑇 ]×𝜕Ω)
< 𝑟

}
(2.1)
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the ball centered at h and of radius r in the space K0. We assume also that b fulfills the following
condition:

𝑏(0, 𝑥, 0) = 0, 𝑥 ∈ 𝜕Ω. (2.2)

In this article, we assume that there exists 𝑓0 ∈ K0 such that (1.2) admits a unique solution u lying in
𝐶1+ 𝛼

2 ,2+𝛼 ([0, 𝑇] ×Ω) when 𝑓 = 𝑓0. We note that the existence of u requires the condition (2.2) in order
to have compatibility with the initial data at time 𝑡 = 0 and the Dirichlet data on the lateral boundary Σ
(see [LSU88, pp. 319 and pp. 449] for more details).

According to [LSU88, Theorem 6.1, pp. 452], [LSU88, Theorem 2.2, pp. 429], [LSU88, Theorem
4.1, pp. 443], [LSU88, Lemma 3.1, pp. 535] and [LSU88, Theorem 5.4, pp. 448], the problem (1.2) is
well-posed for any 𝑓 = 𝑓0 ∈ K0 if, for instance, there exist 𝑐1, 𝑐2 � 0 such that the semilinear term b
satisfies the following sign condition

𝑏(𝑡, 𝑥, 𝜇)𝜇 � −𝑐1𝜇
2 − 𝑐2, 𝑡 ∈ [0, 𝑇], 𝑥 ∈ Ω, 𝜇 ∈ R.

The unique existence of solutions of (1.2) for some 𝑓 ∈ K0 is not restricted to such a situation.
Indeed, assume that there exists 𝜓 ∈ 𝐶1+ 𝛼

2 ,2+𝛼 ([0, 𝑇] ×Ω) satisfying{
𝜌(𝑡, 𝑥)𝜕𝑡𝜓(𝑡, 𝑥) +A(𝑡)𝜓(𝑡, 𝑥) = 0 in 𝑄,
𝜓(0, 𝑥) = 0 for 𝑥 ∈ Ω,

such that 𝑏(𝑡, 𝑥, 𝜓(𝑡, 𝑥)) = 0 for (𝑡, 𝑥) ∈ [0, 𝑇] ×Ω. Then, one can easily check that (1.2) admits a unique
solution when 𝑓 = 𝜓 |Σ. Moreover, applying Proposition 3.1, we deduce that (1.2) will be well-posed
when 𝑓 ∈ K0 is sufficiently close to 𝜓 |Σ in the sense of 𝐶1+ 𝛼

2 ,2+𝛼 ([0, 𝑇] × 𝜕Ω).
As will be shown in Proposition 3.1, the existence of 𝑓0 ∈ K0 such that (1.2) admits a solution when

𝑓 = 𝑓0 implies that there exists 𝜖 > 0, depending on a, 𝜌, b, 𝑓0, Ω, T, such that, for all 𝑓 ∈ B( 𝑓0, 𝜖),
the problem (1.2) admits a solution 𝑢 𝑓 ∈ 𝐶1+ 𝛼

2 ,2+𝛼 ([0, 𝑇] ×Ω), which is unique in a sufficiently small
neighborhood of the solution of (1.2) with boundary value 𝑓 = 𝑓0. Using these properties, we can define
the parabolic DN map

N𝑏 : B( 𝑓0, 𝜖) 
 𝑓 ↦→ 𝜕𝜈 (𝑎)𝑢 𝑓 (𝑡, 𝑥), (𝑡, 𝑥) ∈ Σ. (2.3)

2.2. Resolution of (IP1)

We present our first main results about recovering the gauge class of a semilinear term from the
corresponding DN map.

We consider Ω1 to be an open bounded, smooth and connected subset of R𝑛 such that Ω ⊂ Ω1. We
extend a and 𝜌 into functions defined smoothly on [0, 𝑇] ×Ω1 satisfying 𝜌 > 0 and condition (1.1) with
Ω replaced by Ω1. For all 𝑡 ∈ [0, 𝑇], we set also

𝑔(𝑡) := 𝜌(𝑡, · )𝑎(𝑡, · )−1,

and we consider the compact Riemannian manifold with boundary (Ω1, 𝑔(𝑡)).

Assumption 2.1. Throughout this article, we assume that (Ω1, 𝑔(𝑡)) is a simple Riemannian manifold
for all 𝑡 ∈ [0, 𝑇]. That is, we assume that for any point 𝑥 ∈ Ω1, the exponential map exp𝑥 is a
diffeomorphism from some closed neighborhood of 0 in 𝑇𝑥Ω1 onto Ω1 and 𝜕Ω1 is strictly convex.

From now on, for any Banach space X, we denote by A(R; 𝑋) the set of analytic functions on R as
maps taking values in X. That is, for any 𝑏 ∈ A(R; 𝑋) and 𝜇 ∈ R, b has convergent X-valued Taylor
series on a neighborhood of 𝜇.
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Theorem 2.1. Let 𝑎 := (𝑎𝑖𝑘 )1�𝑖,𝑘�𝑛 ∈ 𝐶∞([0, 𝑇] ×Ω;R𝑛×𝑛) satisfy (1.1) and 𝜌 ∈ 𝐶∞([0, 𝑇] ×Ω;R+).
Let 𝑏 𝑗 ∈ A(R;𝐶 𝛼

2 ,𝛼 ([0, 𝑇] × Ω)), which satisfies (2.2) as 𝑏 = 𝑏 𝑗 , for 𝑗 = 1, 2. We also assume that
there exists 𝑓0 ∈ K0 such that problem (1.2), with 𝑓 = 𝑓0 and 𝑏 = 𝑏 𝑗 , admits a unique solution for
𝑗 = 1, 2. Then, the condition

N𝑏1 ( 𝑓 ) = N𝑏2 ( 𝑓 ), 𝑓 ∈ B( 𝑓0, 𝜖) (2.4)

implies that there exists 𝜑 ∈ 𝐶1+ 𝛼
2 ,2+𝛼 ([0, 𝑇] ×Ω) satisfying (1.6) such that

𝑏1 = 𝑆𝜑𝑏2 (2.5)

with 𝑆𝜑 the map defined by (1.7).

Remark 2.1. Let us list the data that can be recovered by our methods without the assumption of
analyticity of b in the 𝜇-variable. In this case, we can only recover the Taylor series of b in 𝜇-variable
at shifted points. Indeed, assume as in Theorem 2.1 with the exception that the nonlinearities 𝑏1 and 𝑏2
are not analytic in the 𝜇-variable, and fix (𝑡, 𝑥). In this case, by inspecting the proof of Theorem 2.1(see
Section 4), we can show that

𝜕𝑘
𝜇 𝑏1

(
𝑡, 𝑥, 𝑢1,0 (𝑡, 𝑥)

)
= 𝜕𝑘

𝜇 𝑏2
(
𝑡, 𝑥, 𝑢2,0 (𝑡, 𝑥)

)
, for any 𝑘 ∈ N,

where 𝑢 𝑗 ,0 (𝑡, 𝑥), for 𝑗 = 1, 2, is the solution to (1.2) with coefficient 𝑏 = 𝑏 𝑗 and boundary value
𝑓 = 𝑓0 ∈ K0. Thus, we see that the formal Taylor series of 𝑏1 (𝑡, 𝑥, · ) at 𝑢1,0(𝑡, 𝑥) is that of 𝑏2(𝑡, 𝑥, · )
shifted by 𝑢2,0 (𝑡, 𝑥) − 𝑢1,0 (𝑡, 𝑥), which is typically nonzero as we do not assume that we know any
solutions to (1.2) a priori.

By assuming analyticity in Theorem 2.1, we are able to connect the Taylor series of 𝑏1 and 𝑏2 in the
𝜇-variable at different points, which leads to (2.5) in the end. This is one motivation for the analyticity
assumption. Note that we do not assume analyticity in the other variables.

For our second result, let us consider a partial data result when A(𝑡) = −Δ (that is, 𝑎 = IdR𝑛×𝑛 is an
𝑛 × 𝑛 identity matrix) and 𝜌 ≡ 1. More precisely, consider the front and back sets of 𝜕Ω

Γ±(𝑥0) := {𝑥 ∈ 𝜕Ω : ±(𝑥 − 𝑥0) · 𝜈(𝑥) � 0}

with respect to a source 𝑥0 ∈ R𝑛 \Ω. Then, our second main result is stated as follows:

Theorem 2.2. For 𝑛 � 3 and Ω simply connected, let 𝑎 = (𝑎𝑖𝑘 )1�𝑖,𝑘�𝑛 = IdR𝑛×𝑛 and 𝜌 ≡ 1. Let
𝑏 𝑗 ∈ A(R;𝐶 𝛼

2 ,𝛼 ([0, 𝑇] × Ω)), which satisfies (2.2) as 𝑏 = 𝑏 𝑗 , for 𝑗 = 1, 2. We also assume that there
exists 𝑓0 ∈ K0 such that problem (1.2), with 𝑓 = 𝑓0 and 𝑏 = 𝑏 𝑗 , admits a unique solution, for 𝑗 = 1, 2.
Fix 𝑥0 ∈ R𝑛 \Ω and consider Γ̃ a neighborhood of Γ−(𝑥0) on 𝜕Ω. Then, the condition

N𝑏1 𝑓 (𝑡, 𝑥) = N𝑏2 𝑓 (𝑡, 𝑥), (𝑡, 𝑥) ∈ (0, 𝑇) × Γ̃, for any 𝑓 ∈ B( 𝑓0, 𝜖) (2.6)

implies that there exists 𝜑 ∈ 𝐶1+ 𝛼
2 ,2+𝛼 ([0, 𝑇] ×Ω) satisfying

𝜑(0, 𝑥) = 0, 𝑥 ∈ Ω, 𝜑(𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ Σ, (2.7)

𝜕𝜈𝜑(𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ (0, 𝑇) × Γ̃ (2.8)

such that

𝑏1 = 𝑆𝜑𝑏2. (2.9)

We will be able to break the gauge condition 𝑏1 = 𝑆𝜑𝑏2 in Theorems 2.1 and 2.2 in various cases.
We present these results separately in the next section.
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2.3. Breaking the gauge in the sense of (IP2)

In several situations, the gauge class (2.9) could be broken, and one can fully determine the semilinear
term b in (1.2) from its parabolic DN map. We will present below classes of nonlinearities when such
phenomenon occurs. We start by considering general elements of 𝑏 ∈ A(R;𝐶 𝛼

2 ,𝛼 ([0, 𝑇] ×Ω)) for which
the gauge invariance (2.9) breaks.

Corollary 2.1. Let the conditions of Theorem 2.1 be fulfilled and assume that there exists 𝜅 ∈

𝐶
𝛼
2 ,𝛼 ([0, 𝑇] ×Ω) such that

𝑏1(𝑡, 𝑥, 𝜅(𝑡, 𝑥)) = 𝑏2 (𝑡, 𝑥, 𝜅(𝑡, 𝑥)), (𝑡, 𝑥) ∈ [0, 𝑇] ×Ω. (2.10)

Then, the condition (2.4) implies that 𝑏1 = 𝑏2. In the same way, assuming that the conditions of Theorem
2.2 are fulfilled, the condition (2.6) implies that 𝑏1 = 𝑏2.

Corollary 2.2. Let the conditions of Theorem 2.1 be fulfilled, and assume that there exists ℎ ∈ 𝐶𝛼 (Ω),
𝐺 ∈ 𝐶

𝛼
2 ,𝛼 ([0, 𝑇] ×Ω) and 𝜃 ∈ (0, 𝑇] satisfying the condition

inf
𝑥 ∈Ω

|𝐺 (𝜃, 𝑥) | > 0, (2.11)

such that

𝑏1(𝑡, 𝑥, 0) − 𝑏2 (𝑡, 𝑥, 0) = ℎ(𝑥)𝐺 (𝑡, 𝑥), (𝑡, 𝑥) ∈ [0, 𝑇] ×Ω. (2.12)

Assume also that the solutions 𝑢 𝑗 ,0 of (1.2), 𝑗 = 1, 2, with 𝑓 = 𝑓0 and 𝑏 = 𝑏 𝑗 , satisfy the condition

𝑢1,0 (𝜃, 𝑥) = 𝑢2,0 (𝜃, 𝑥), 𝑥 ∈ Ω. (2.13)

Then, the condition (2.4) implies that 𝑏1 = 𝑏2. Moreover, by assuming that the conditions of Theorem
2.2 are fulfilled, the condition (2.6) implies that 𝑏1 = 𝑏2.

Now let us consider elements 𝑏 ∈ A(R;𝐶 𝛼
2 ,𝛼 ([0, 𝑇] ×Ω)) which are polynomials of the form

𝑏(𝑡, 𝑥, 𝜇) =
𝑁∑
𝑘=0

𝑏𝑘 (𝑡, 𝑥)𝜇
𝑘 , (𝑡, 𝑥, 𝜇) ∈ [0, 𝑇] ×Ω × R. (2.14)

For this class of nonlinear terms, we can prove the following.

Theorem 2.3. Let the condition of Theorem 2.1 be fulfilled, and assume that, for 𝑗 = 1, 2, there exists
𝑁 𝑗 � 2 such that

𝑏 𝑗 (𝑡, 𝑥, 𝜇) =
𝑁 𝑗∑
𝑘=0

𝑏 𝑗 ,𝑘 (𝑡, 𝑥)𝜇
𝑘 , (𝑡, 𝑥, 𝜇) ∈ [0, 𝑇] ×Ω × R. (2.15)

Let 𝜔 be an open subset of R𝑛 such that 𝜔 ⊂ Ω and J is a dense subset of (0, 𝑇) × 𝜔. We assume also
that, for 𝑁 = min(𝑁1, 𝑁2), the conditions

min���
		(𝑏1,𝑁−1 − 𝑏2,𝑁−1) (𝑡, 𝑥)

		, 2∑
𝑗=1

		(𝑏 𝑗 ,𝑁 − 𝑏 𝑗 ,𝑁−1) (𝑡, 𝑥)
		��� = 0, (𝑡, 𝑥) ∈ 𝐽, (2.16)		𝑏1,𝑁 (𝑡, 𝑥)

		 > 0, (𝑡, 𝑥) ∈ 𝐽 (2.17)

𝑏1,0 (𝑡, 𝑥) = 𝑏2,0 (𝑡, 𝑥), (𝑡, 𝑥) ∈ (0, 𝑇) × (Ω \ 𝜔) (2.18)
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hold true. Then the condition (2.4) implies that 𝑏1 = 𝑏2. In addition, assuming that the conditions of
Theorem 2.2 are fulfilled, condition (2.6) implies that 𝑏1 = 𝑏2.

We make the following remark.
Remark 2.2.
(i) The preceding theorem, in particular, says that the inverse source problem of recovering a source

function F from the DN map of

𝜕𝑡𝑢 − Δ𝑢 + 𝑢2 = 𝐹

is uniquely solvable. This is in strict contrast to the inverse source problem for the linear equation
𝜕𝑡𝑢 − Δ𝑢 = 𝐹 that always has a gauge invariance explained in Example 1.1: the sources F and
𝐹 := 𝐹 + 𝜕𝑡𝜑 − Δ𝜑 in Q have the same DN map. Here, the only restrictions for 𝜑 are given in (1.6)
and thus typically 𝐹 ≠ 𝐹.

(ii) Inverse source problems for semilinear elliptic equations were studied in [LL22b]. There it was
shown that if in the notation of the corollary 𝑏1,𝑁−1 = 𝑏2,𝑁−1 and 𝑏1,𝑁 ≠ 0 in Ω (so that (2.16) and
(2.17) hold), then the gauge breaks. With natural replacements, the corollary generalizes [LL22b,
Corollary 1.3] in the elliptic setting. This can be seen by inspecting its proof.

Let us then consider nonlinear terms 𝑏 ∈ A(R;𝐶 𝛼
2 ,𝛼 ([0, 𝑇] ×Ω)) of the form

𝑏(𝑡, 𝑥, 𝜇) = 𝑏1(𝑡, 𝑥)ℎ(𝑡, 𝑏2(𝑡, 𝑥)𝜇) + 𝑏0(𝑡, 𝑥), (𝑡, 𝑥, 𝜇) ∈ [0, 𝑇] ×Ω × R. (2.19)

We start by considering nonlinear terms of the form (2.19) with 𝑏2 ≡ 1.
Theorem 2.4. Let the conditions of Theorem 2.1 be fulfilled, and assume that, for 𝑗 = 1, 2, there exists
ℎ 𝑗 ∈ A(R;𝐶 𝛼

2 ([0, 𝑇])) such that

𝑏 𝑗 (𝑡, 𝑥, 𝜇) = 𝑏 𝑗 ,1 (𝑡, 𝑥)ℎ 𝑗 (𝑡, 𝜇) + 𝑏 𝑗 ,0 (𝑡, 𝑥), (𝑡, 𝑥, 𝜇) ∈ [0, 𝑇] ×Ω × R. (2.20)

Assume also that, for all 𝑡 ∈ (0, 𝑇), there exist 𝜇𝑡 ∈ R and 𝑛𝑡 ∈ N such that

𝜕𝑛𝑡
𝜇 ℎ1 (𝑡, · ) � 0 and 𝜕𝑛𝑡

𝜇 ℎ1 (𝑡, 𝜇𝑡 ) = 0, 𝑡 ∈ (0, 𝑇). (2.21)

Moreover, we assume that

𝑏1,1 (𝑡, 𝑥) ≠ 0, (𝑡, 𝑥) ∈ 𝑄, (2.22)

and that for all 𝑡 ∈ (0, 𝑇), there exists 𝑥𝑡 ∈ 𝜕Ω such that

𝑏1,1 (𝑡, 𝑥𝑡 ) = 𝑏2,1(𝑡, 𝑥𝑡 ) ≠ 0, 𝑡 ∈ (0, 𝑇). (2.23)

Then, the condition (2.4) implies that 𝑏1 = 𝑏2. Moreover, assuming that the conditions of Theorem 2.2
are fulfilled, the condition (2.6) implies that 𝑏1 = 𝑏2.

Under a stronger assumption imposed on the expression h, we can also consider nonlinear terms of
the form (2.19) with 𝑏2 � 1.
Theorem 2.5. Let the conditions of Theorem 2.1 be fulfilled, and assume that, for 𝑗 = 1, 2, there exists
ℎ 𝑗 ∈ A(R;𝐶 𝛼

2 ([0, 𝑇])) such that

𝑏 𝑗 (𝑡, 𝑥, 𝜇) = 𝑏 𝑗 ,1 (𝑡, 𝑥)ℎ 𝑗 (𝑡, 𝑏 𝑗 ,2 (𝑡, 𝑥)𝜇) + 𝑏 𝑗 ,0 (𝑡, 𝑥), (𝑡, 𝑥, 𝜇) ∈ [0, 𝑇] ×Ω × R. (2.24)

Assume also that, for all 𝑡 ∈ (0, 𝑇), there exists 𝑛𝑡 ∈ N such that

𝜕𝑛𝑡
𝜇 ℎ1 (𝑡, · ) � 0 and 𝜕𝑛𝑡

𝜇 ℎ1 (𝑡, 0) = 0, 𝑡 ∈ (0, 𝑇). (2.25)
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Moreover, we assume that

𝑏1,1 (𝑡, 𝑥) ≠ 0 and 𝑏1,2 (𝑡, 𝑥) ≠ 0, (𝑡, 𝑥) ∈ 𝑄, (2.26)

and that for all 𝑡 ∈ (0, 𝑇), there exists 𝑥𝑡 ∈ 𝜕Ω such that

𝑏1,1 (𝑡, 𝑥𝑡 ) = 𝑏2,1(𝑡, 𝑥𝑡 ) ≠ 0 and 𝑏1,2 (𝑡, 𝑥𝑡 ) = 𝑏2,2 (𝑡, 𝑥𝑡 ) ≠ 0 𝑡 ∈ (0, 𝑇). (2.27)

Then, the condition (2.4) implies that 𝑏1 = 𝑏2. Moreover, assuming that the conditions of Theorem 2.2
are fulfilled, the condition (2.6) implies that 𝑏1 = 𝑏2.

Finally, we consider nonlinear terms 𝑏 ∈ A(R;𝐶 𝛼
2 ,𝛼 ([0, 𝑇] ×Ω)) satisfying

𝑏(𝑡, 𝑥, 𝜇) = 𝑏1 (𝑡, 𝑥)𝐺 (𝑥, 𝑏2(𝑡, 𝑥)𝜇) + 𝑏0(𝑡, 𝑥), (𝑡, 𝑥, 𝜇) ∈ [0, 𝑇] ×Ω × R. (2.28)

Corollary 2.3. Let the conditions of Theorem 2.1 be fulfilled, and assume that, for 𝑗 = 1, 2, there exists
𝐺 ∈ A(R;𝐶𝛼 (Ω)) such that

𝑏 𝑗 (𝑡, 𝑥, 𝜇) = 𝑏 𝑗 ,1 (𝑡, 𝑥)𝐺 (𝑥, 𝑏 𝑗 ,2 (𝑡, 𝑥)𝜇) + 𝑏 𝑗 ,0 (𝑡, 𝑥), (𝑡, 𝑥, 𝜇) ∈ [0, 𝑇] ×Ω × R. (2.29)

Assume also that one of the following conditions is fulfilled:

(i) We have 𝑏1,2 = 𝑏2,2, and for all 𝑥 ∈ Ω, there exists 𝑛𝑥 ∈ N and 𝜇𝑥 ∈ R such that

𝜕𝑛𝑥
𝜇 𝐺 (𝑥, · ) � 0 and 𝜕𝑛𝑥

𝜇 𝐺 (𝑥, 𝜇𝑥) = 0, 𝑥 ∈ Ω. (2.30)

(ii) For all 𝑥 ∈ Ω, there exists 𝑛𝑥 ∈ N such that

𝜕𝑛𝑥
𝜇 𝐺 (𝑥, · ) � 0 and 𝜕𝑛𝑥

𝜇 𝐺 (𝑥, 0) = 0, 𝑥 ∈ Ω. (2.31)

Moreover, we assume that condition (2.26) is fulfilled. Then, the condition (2.4) implies that 𝑏1 = 𝑏2.
In addition, by assuming that the conditions of Theorem 2.2 are fulfilled, condition (2.6) implies that
𝑏1 = 𝑏2.

Remark 2.3. Let us observe that the results of Theorems 2.4 and 2.5 and Corollary 2.3 are mostly based
on the conditions (2.21) and (2.26) imposed to nonlinear terms of the form (2.19), and on the conditions
(2.30) and (2.31) imposed to nonlinear terms of the form (2.28). These conditions are rather general,
and they will be fulfilled in various situations for different class of functions. For instance, assuming
that the function ℎ1 takes the form

ℎ1 (𝑡, 𝜇) = 𝑃(𝑡, 𝜇) exp(𝑄(𝑡, 𝜇)), (𝑡, 𝜇) ∈ [0, 𝑇] × R

with 𝑃,𝑄 ∈ A(R;𝐶 𝛼
2 ([0, 𝑇])), condition (2.21) will be fulfilled if we assume that there exists 𝜎 ∈

𝐶𝛼/2([0, 𝑇]) such that (
𝜕𝜇𝑃(𝑡, 𝜇) + 𝑃(𝑡, 𝜇)𝜕𝜇𝑄(𝑡, 𝜇)

) 		
𝜇=𝜎 (𝑡) = 0, 𝑡 ∈ [0, 𝑇] .

Such a condition will, of course, be fulfilled when ℎ1(𝑡, 𝜇) = 𝜇𝑒𝜇, (𝑡, 𝜇) ∈ [0, 𝑇] × R.
More generally, let 𝜎 ∈ 𝐶

𝛼
2 ([0, 𝑇]) be arbitrary chosen, and for each 𝑡 ∈ [0, 𝑇], consider 𝑁𝑡 ∈ N.

Assuming that the function ℎ1 satisfies the following property

ℎ1 (𝑡, 𝜇) =
𝑁𝑡−1∑
𝑘=0

𝑎𝑘 (𝑡) (𝜇 − 𝜎(𝑡))𝑘 + O
𝜇→𝜎 (𝑡)

(
(𝜇 − 𝜎(𝑡))𝑁𝑡+1

)
, 𝑡 ∈ [0, 𝑇], (2.32)
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with 𝑎𝑘 ∈ 𝐶
𝛼
2 ([0, 𝑇]), 𝑘 ∈ N ∪ {0}, one can easily check that condition (2.21) will be fulfilled since

we have

𝜕𝑁𝑡
𝜇 ℎ1(𝑡, 𝜎(𝑡)) = 0, 𝑡 ∈ [0, 𝑇] .

Condition (2.26) will be fulfilled under the same condition provided that ℎ1 satisfies (2.32) with 𝜎 ≡ 0.
Moreover, let 𝑔 ∈ 𝐶𝛼 (Ω), and for each 𝑥 ∈ Ω, consider 𝑁𝑥 ∈ N. Assuming that the function G in (2.30)
satisfies the property

𝐺 (𝑥, 𝜇) =
𝑁𝑥−1∑
𝑘=0

𝛽𝑘 (𝑥) (𝜇 − 𝑔(𝑥))𝑘 + O
𝜇→𝑔 (𝑥)

(
(𝜇 − 𝑔(𝑥))𝑁𝑥+1

)
, 𝑥 ∈ Ω, (2.33)

with functions 𝛽𝑘 ∈ 𝐶𝛼 (Ω), 𝑘 ∈ N∪ {0}, it is clear that condition (2.30) will be fulfilled since we have

𝜕𝑁𝑥
𝜇 𝐺 (𝑥, 𝑔(𝑥)) = 0, 𝑥 ∈ Ω.

The same is true for condition (2.31) when G satisfies (2.33) with 𝑔 ≡ 0.

Finally, via previous observations, we can also determine the order coefficients for linear parabolic
equations.

Corollary 2.4 (Global uniqueness with partial data). Adopting all notations in Theorem 2.2, let 𝑞 𝑗 =
𝑞 𝑗 (𝑡, 𝑥) ∈ 𝐶

∞([0, 𝑇] ×Ω) and 𝑏 𝑗 (𝑡, 𝑥, 𝜇) = 𝑞 𝑗 (𝑡, 𝑥)𝜇 for 𝑗 = 1, 2. Then (2.4) implies 𝑞1 = 𝑞2 in Q.

We mention that we could also prove that the assumptions of Theorem 2.1 and 𝑏 𝑗 (𝑡, 𝑥, 𝜇) = 𝑞 𝑗 (𝑡, 𝑥)𝜇,
𝑗 = 1, 2, imply 𝑞1 = 𝑞2.

2.4. Comments about our results

To the best of our knowledge, Theorems 2.1 and 2.2 give the first positive answer to the inverse problem
(IP1) for semilinear parabolic equations. In addition, the results of Theorem 2.1 and 2.2 extend the
analysis of [LL22b] that considered a problem similar to (IP1) for elliptic equations, but which did not
fully answer the question raised by (IP1). In that sense, Theorems 2.1 and 2.2 give the first positive answer
to (IP1) for a class of elliptic PDEs as well. While Theorem 2.1 is stated for general class of parabolic
equations, Theorem 2.2 gives a result with measurements restricted to a neighborhood of the back set
with respect to a source 𝑥0 ∈ R𝑛 \Ω in the spirit of the most precise partial data results stated for linear
elliptic equations such as [KSU07]. Note that in contrast to [KSU07], the source 𝑥0 is not necessary
outside the convex hull of Ω and, as observed in [KSU07], when Ω is convex, the measurements of
Theorem 2.2 can be restricted to any open set of 𝜕Ω. Even for linear equations, Theorems 2.1 and 2.2
improve in precision and generality the earlier works of [CK18b, Isa91] dealing with determination of
time dependent coefficients appearing in linear parabolic equations.

We gave a positive answer to the problem (IP2) and show that the gauge breaks for three different
classes of semilinear terms:

1) Semilinear terms with prescribed information in Corollaries 2.1 and 2.2,
2) Polynomial semilinear terms in Theorem 2.3,
3) Semilinear terms with separated variables of the form (2.19) or (2.28) in Theorems 2.4 and 2.5 and

in Corollary 2.3.

This seems to be the most complete overview of situations where one can give a positive answer to
problem (IP2). While [LL22b] considered also such phenomena for polynomial nonlinear terms and
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some specific examples, the conditions of Corollary 2.1 and 2.2, Theorems 2.4 and 2.5 and Corollary
2.3, leading to a positive answer for (IP2), seem to be new. In Remark 2.3, we gave several concrete and
general examples of semilinear terms satisfying the conditions of Theorems 2.4, 2.5 and Corollary 2.3.

The proof of our results is based on a combination of the higher-order linearization technique,
application of suitable class of geometric optics solutions for parabolic equations, Carleman estimates,
properties of holomorphic functions and different properties of parabolic equations. Theorem 2.1 is
deduced from the linearized result of Proposition 4.1 that we prove by using geometric optics solutions
for parabolic equations. These solutions are built by using the energy estimate approach introduced in
the recent work of [Fei23].

We mention that Assumption 2.1 is used in this work mainly for two purposes. Our construction
of geometric optics solutions is based on the use of global polar normal coordinates on the manifolds
(Ω1, 𝑔(𝑡)), 𝑡 ∈ [0, 𝑇]. In addition, Assumption 2.1 guarantees the injectivity of the geodesic ray
transform on the manifolds (Ω1, 𝑔(𝑡)), 𝑡 ∈ [0, 𝑇], which is required in our proofs of Theorems 2.1 and
2.2. It is not clear at the moment how Assumption 2.1 can be relaxed in the construction of geometric
optics solutions for parabolic equations of the form considered in this paper.

This allows us to consider problem (IP1) for general class of semilinear parabolic equations with
variable coefficients. In Theorem 2.2, we combine this class of geometric optics solutions with a Carle-
man estimate with boundary terms stated in Lemma 6.1 in order to restrict the boundary measurements
to a part of the boundary. Note that the weight under consideration in Lemma 6.1 is not a limiting Car-
leman weight for parabolic equations. This is one reason why we cannot apply such Carleman estimates
for making also a restriction on the support of the Dirichlet input in Theorem 2.2.

It is worth mentioning that our results for problem (IP1) and (IP2) can be applied to inverse source
problems for nonlinear parabolic equations. This important application is discussed in Section 8. There
we show how the nonlinear interaction allows to solve this problem for general classes of source terms,
depending simultaneously on the time and space variables. Corresponding problems for linear equations
cannot be solved uniquely (see Example 1.1 or, for example, [KSXY22, Appendix A]). In that sense,
our analysis exhibits a new consequence of the nonlinear interaction, already considered for examples in
[FO20, KLU18, LLLS21, LLLS20, LLST22, KU20b, KU20a, FLL23]), by showing how nonlinearity
can help for the resolution of inverse source problems for parabolic equations.

We remark that while Theorem 2.1 is true for 𝑛 � 2, we can only prove Theorem 2.2 for dimension
𝑛 � 3. The fact that we cannot prove Theorem 2.2 for 𝑛 = 2 is related to the Carleman estimate of
Lemma 6.1 that we can only derive for 𝑛 � 3. Since this Carleman estimate is a key ingredient in the
proof of Theorem 2.2, we need to exclude the case 𝑛 = 2 in the statement of this result.

Finally, let us observed that, under the suitable assumption of simplicity stated in Assumption 2.1,
the result of Theorem 2.1 can be applied to the determination of a semilinear term for reaction diffusion
equations on a Riemannian manifold with boundary equipped with a time-dependent metric.

2.5. Outline of the paper

This article is organized as follows. In Section 3, we consider the forward problem by proving the
well-posedness of (1.2) under suitable conditions, and we recall some properties of the higher-order
linearization method for parabolic equations. Section 4 is devoted to the proof of Theorem 2.1, while in
Section 5, we prove Proposition 4.1. In Section 6, we prove Theorem 2.2, and in Section 7, we consider
our results related to problem (IP2). Finally, in Section 8, we discuss the applications of our results
to inverse source problems for parabolic equations. In the Appendix A, the outline of the proof of the
Carleman estimates of Lemma 6.1 is presented.

3. The forward problem and higher-order linearization

Recall that in this article we assume that there is a solution 𝑢0 to (1.2) corresponding to a lateral boundary
data 𝑓0.
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3.1. Well-posedness for Dirichlet data close to 𝑓0

In this subsection, we consider the well-posedness for the problem (1.2), whenever the boundary datum
f is sufficiently close to 𝑓0 with respect to 𝐶1+ 𝛼

2 ,2+𝛼 ([0, 𝑇] × 𝜕Ω). For this purpose, we consider the
Banach space K0 with the norm of the space 𝐶1+ 𝛼

2 ,2+𝛼 ([0, 𝑇] × 𝜕Ω). Our local well-posedness result is
stated as follows.

Proposition 3.1. Let 𝑎 := (𝑎𝑖𝑘 )1�𝑖,𝑘�𝑛 ∈ 𝐶∞([0, 𝑇] × Ω;R𝑛×𝑛) satisfy (1.1), 𝜌 ∈ 𝐶∞([0, 𝑇] × Ω;R+)
and 𝑏 ∈ 𝐶∞(R;𝐶 𝛼

2 ,𝛼 ([0, 𝑇] × Ω)). We assume also that there exists a boundary value 𝑓0 ∈ K0 such
that the problem (1.2) with 𝑓 = 𝑓0 admits a unique solution 𝑢0 ∈ 𝐶1+ 𝛼

2 ,2+𝛼 ([0, 𝑇] × Ω)). Then there
exists 𝜖 > 0 depending on a, 𝜌, b, 𝑓0, Ω, T, such that, for all 𝑓 ∈ B( 𝑓0, 𝜖), the problem (1.2) admits a
unique solution 𝑢 𝑓 ∈ 𝐶1+ 𝛼

2 ,2+𝛼 ([0, 𝑇] ×Ω)) satisfying��𝑢 𝑓 − 𝑢0
��
𝐶1+ 𝛼

2 ,2+𝛼
( [0,𝑇 ]×Ω))

� 𝐶‖ 𝑓 − 𝑓0‖𝐶1+ 𝛼
2 ,2+𝛼

( [0,𝑇 ]×𝜕Ω)
. (3.1)

Moreover, the map B( 𝑓0, 𝜖) 
 𝑓 ↦→ 𝑢 𝑓 ∈ 𝐶1+ 𝛼
2 ,2+𝛼 ([0, 𝑇] ×Ω)) is 𝐶∞ in the Fréchet sense.

Proof. Let us first observe that we may look for a solution 𝑢 𝑓 by splitting it into two terms by 𝑢 𝑓 = 𝑢0+𝑣,
where v solves

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜌𝜕𝑡𝑣 +A(𝑡)𝑣 + 𝑏(𝑡, 𝑥, 𝑣 + 𝑢0) − 𝑏(𝑡, 𝑥, 𝑢0) = 0 in (0, 𝑇) ×Ω,

𝑣 = ℎ on (0, 𝑇) × 𝜕Ω,
𝑣(0, 𝑥) = 0 for 𝑥 ∈ Ω,

(3.2)

with ℎ := 𝑓 − 𝑓0. Therefore, it is enough for our purpose to show that there exists 𝜖 > 0 depending
on a, 𝜌, b, 𝑓0, Ω, T, such that for ℎ ∈ B(0, 𝜖), the problem (3.2) admits a unique solution 𝑣ℎ ∈

𝐶1+ 𝛼
2 ,2+𝛼 ([0, 𝑇] ×Ω) satisfying

‖𝑣ℎ ‖𝐶1+ 𝛼
2 ,2+𝛼

( [0,𝑇 ]×Ω)
� 𝐶‖ℎ‖

𝐶1+ 𝛼
2 ,2+𝛼

( [0,𝑇 ]×𝜕Ω)
. (3.3)

We introduce the spaces

H0 :=
{
𝑢 ∈ 𝐶1+ 𝛼

2 ,2+𝛼 ([0, 𝑇] ×Ω) : 𝑢 |
{0}×Ω ≡ 0, 𝜕𝑡𝑢 | {0}×𝜕Ω ≡ 0

}
,

L0 :=
{
𝐹 ∈ 𝐶

𝛼
2 ,𝛼 ([0, 𝑇] ×Ω) : 𝐹 |{0}×𝜕Ω ≡ 0

}
.

Then, let us introduce the map G defined by

G : K0 ×H0 → L0 ×K0,

(ℎ, 𝑣) ↦→ (𝜌𝜕𝑡𝑣 +A(𝑡)𝑣 + 𝑏(𝑡, 𝑥, 𝑣 + 𝑢0) − 𝑏(𝑡, 𝑥, 𝑢0), 𝑣 |Σ − ℎ).

We will find a solution to (1.2) by applying the implicit function theorem to the map G. Using the
fact that 𝑏 ∈ 𝐶∞(R;𝐶 𝛼

2 ,𝛼 ([0, 𝑇] ×Ω)), it follows that the map G is𝐶∞ on K0 ×H0 in the Fréchet sense.
Moreover, we have G (0, 0) = (0, 0) and

𝜕𝑣G (0, 0)𝑤 =
(
𝜌𝜕𝑡𝑤 +A(𝑡)𝑤 + 𝜕𝜇𝑏(𝑡, 𝑥, 𝑢0)𝑤, 𝑤 |Σ

)
.
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In order to apply the implicit function theorem, we will prove that the map 𝜕𝑣G (0, 0) is an isomorphism
from H0 to L0×K0. For this purpose, let us fix (𝐹, ℎ) ∈ L0×K0, and let us consider the linear parabolic
problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜌𝜕𝑡𝑤 +A(𝑡)𝑤 + 𝜕𝜇𝑏(𝑡, 𝑥, 𝑢0)𝑤 = 𝐹 (𝑡, 𝑥) in 𝑄,
𝑤 = ℎ on Σ,

𝑤(0, 𝑥) = 0 𝑥 ∈ Ω.

(3.4)

Applying [LSU88, Theorem 5.2, Chapter IV, page 320], we deduce that problem (3.4) admits a unique
solution 𝑤 ∈ H0 satisfying

‖𝑤‖
𝐶1+ 𝛼

2 ,2+𝛼
( [0,𝑇 ]×Ω)

� 𝐶
(
‖𝐹‖

𝐶
𝛼
2 ,𝛼

( [0,𝑇 ]×Ω)
+ ‖ℎ‖

𝐶1+ 𝛼
2 ,2+𝛼

( [0,𝑇 ]×𝜕Ω)

)
,

for some constant 𝐶 > 0 independent of w, F and h. From this result, we deduce that 𝜕𝑣G (0, 0) is an
isomorphism from H0 to L0 ×K0.

Therefore, applying the implicit function theorem (see, for example, [RR06, Theorem 10.6]), we
deduce that there exists 𝜖 > 0 depending on a, b, 𝜌, 𝑓0, Ω, T, and a smooth map 𝜓 from B(0, 𝜖) to H0,
such that, for all ℎ ∈ B(0, 𝜖), we have G (ℎ, 𝜓(ℎ)) = (0, 0). This proves that 𝑣 = 𝜓(ℎ) is a solution of
(3.2) for all ℎ ∈ B(0, 𝜖).

For the uniqueness of the solution of (3.2), let us consider 𝑣1 ∈ 𝐶1+ 𝛼
2 ,2+𝛼 ([0, 𝑇] ×Ω) to be a solution

of (3.2), and let us show that 𝑣1 = 𝑣. For this purpose, we fix 𝑤 = 𝑣1 − 𝑣 and notice that w solves the
following initial boundary value problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜌𝜕𝑡𝑤 +A(𝑡)𝑤 + 𝑞(𝑡, 𝑥)𝑤 = 0 in 𝑄,
𝑤 = 0 on Σ,

𝑤(0, 𝑥) = 0 for 𝑥 ∈ Ω,

(3.5)

with

𝑞(𝑡, 𝑥) =
∫ 1

0
𝜕𝜇𝑏(𝑡, 𝑥, 𝑠𝑣1(𝑡, 𝑥) + (1 − 𝑠)𝑣(𝑡, 𝑥) + 𝑢0(𝑡, 𝑥)) 𝑑𝑠, (𝑡, 𝑥) ∈ 𝑄.

Then the uniqueness of the solutions of (3.5) implies that 𝑤 ≡ 0, and by the same way that 𝑣 = 𝑣1.
Therefore, 𝑣 = 𝜓(ℎ) is the unique solution of (3.2). Combining this with the fact that 𝜓 is smooth
from B(0, 𝜖) to H0 and 𝜓(0) = 0, we obtain (3.1). Finally, recalling that, for all 𝑓 ∈ B( 𝑓0, 𝜖),
𝑢 𝑓 = 𝑢0 + 𝜓( 𝑓 − 𝑓0) with 𝜓 a 𝐶∞ map from B(0, 𝜖) to 𝐶1+ 𝛼

2 ,2+𝛼 ([0, 𝑇] ×Ω)), we deduce that the map
B( 𝑓0, 𝜖) 
 𝑓 ↦→ 𝑢 𝑓 ∈ 𝐶1+ 𝛼

2 ,2+𝛼 ([0, 𝑇] ×Ω)) is 𝐶∞. This completes the proof of the proposition. �

3.2. Linearizations of the problem

In this subsection, we assume that the conditions of Proposition 3.1 are fulfilled. Let us introduce 𝑚 ∈

N∪ {0} and consider the parameter 𝑠 = (𝑠1, . . . , 𝑠𝑚+1) ∈ (−1, 1)𝑚+1. Fixing ℎ1, . . . , ℎ𝑚+1 ∈ B(0, 𝜖
𝑚+1 ),

we consider 𝑢 = 𝑢𝑠 the solution of⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝜌(𝑡, 𝑥)𝜕𝑡𝑢(𝑡, 𝑥) +A(𝑡)𝑢(𝑡, 𝑥) + 𝑏(𝑡, 𝑥, 𝑢(𝑡, 𝑥)) = 0 in 𝑄,

𝑢 = 𝑓0 +
𝑚+1∑
𝑖=1

𝑠𝑖ℎ𝑖 on Σ,

𝑢(0, 𝑥) = 0 for 𝑥 ∈ Ω.

(3.6)
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Following the proof of Proposition 3.1, we know that the map 𝑠 ↦→ 𝑢𝑠 is lying in

𝐶∞
(
(−1, 1)𝑚+1;𝐶1+ 𝛼

2 ,2+𝛼 ([0, 𝑇] ×Ω)
)
.

Then we are able to differentiate (3.6) with respect to the s parameter.
Let us introduce the solution of the first linearized problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜌(𝑡, 𝑥)𝜕𝑡𝑣 +A(𝑡)𝑣 + 𝜕𝜇𝑏(𝑡, 𝑥, 𝑢0)𝑣 = 0 in 𝑄,
𝑣 = ℎ on Σ,

𝑣(0, 𝑥) = 0 for 𝑥 ∈ Ω.

(3.7)

Using the facts that 𝑢𝑠 |𝑠=0 = 𝑢0 and that the map 𝑠 ↦→ 𝑢𝑠 is smooth, we see that if 𝑣ℓ is the solution of
(3.7) with ℎ = ℎℓ , ℓ = 1, . . . , 𝑚 + 1, then we have

𝜕𝑠ℓ𝑢𝑠
		
𝑠=0 = 𝑣ℓ , ℓ = 1, . . . , 𝑚 + 1, (3.8)

in the sense of functions taking values in 𝐶1+ 𝛼
2 ,2+𝛼 ([0, 𝑇] ×Ω).

Now let us turn to the expression 𝜕𝑠ℓ1
𝜕𝑠ℓ2

𝑢𝑠
		
𝑠=0, ℓ1, ℓ2 = 1, . . . , 𝑚 + 1. For this purpose, we introduce

the function 𝑤ℓ1 ,ℓ2 ∈ 𝐶1+ 𝛼
2 ,2+𝛼 ([0, 𝑇] ×Ω) solving the second linearized problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜌(𝑡, 𝑥)𝜕𝑡𝑤ℓ1 ,ℓ2 +A(𝑡)𝑤ℓ1 ,ℓ2 + 𝜕𝜇𝑏(𝑡, 𝑥, 𝑢0)𝑤ℓ1 ,ℓ2 = −𝜕2

𝜇𝑏(𝑡, 𝑥, 𝑢0)𝑣ℓ1𝑣ℓ2 in 𝑄,
𝑤ℓ1 ,ℓ2 = 0 on Σ,

𝑤ℓ1 ,ℓ2 (0, 𝑥) = 0 for 𝑥 ∈ Ω.

(3.9)

Repeating the above arguments, we obtain that

𝜕𝑠ℓ1
𝜕𝑠ℓ2

𝑢𝑠

			𝑠=0 = 𝑤ℓ1 ,ℓ2 (3.10)

is the solution to (3.9). Then, by iterating the above arguments, one has the following result.

Lemma 3.1 (Higher-order linearizations). Let 𝑚 ∈ N. The function

𝑤 (𝑚+1) = 𝜕𝑠1𝜕𝑠2 · · · 𝜕𝑠𝑚+1𝑢𝑠
		
𝑠=0 (3.11)

is well defined in the sense of functions taking values in 𝐶1+ 𝛼
2 ,2+𝛼 ([0, 𝑇] ×Ω). Moreover, 𝑤 (𝑚+1) solves

the (𝑚 + 1)-th order linearized problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜌(𝑡, 𝑥)𝜕𝑡𝑤

(𝑚+1) +A(𝑡)𝑤 (𝑚+1) + 𝜕𝜇𝑏(𝑡, 𝑥, 𝑢0)𝑤
(𝑚+1) = 𝐻 (𝑚+1) in 𝑄,

𝑤 (𝑚+1) = 0 on Σ,

𝑤 (𝑚+1) (0, 𝑥) = 0 for 𝑥 ∈ Ω.

(3.12)

Here, we have

𝐻 (𝑚+1) = −𝜕𝑚+1
𝜇 𝑏(𝑡, 𝑥, 𝑢0)𝑣1 · · · 𝑣𝑚+1 + 𝐾

(𝑚+1) , (3.13)

where all the functions are evaluated at the point (𝑡, 𝑥) and 𝐾 (𝑚+1) (𝑡, 𝑥) depends only on a, 𝜌, Ω, T,
𝜕𝑘
𝜇𝑏(𝑡, 𝑥, 𝑢0), 𝑘 = 0, . . . , 𝑚, 𝑣1, . . . , 𝑣𝑚+1, and 𝑤 (𝑘+1) , for 𝑘 = 1, . . . , 𝑚 − 1. Here, 𝑣1, . . . , 𝑣𝑚+1 are the

solutions of (3.7) with ℎ = ℎℓ , ℓ = 1, . . . , 𝑚 + 1.
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4. Proof of Theorem 2.1

In this section, we will prove Theorem 2.1 by admitting the proof of the following denseness result.

Proposition 4.1. Adopting all the conditions of Theorem 2.1, consider 𝐹 ∈ 𝐶 ([0, 𝑇] × Ω), 𝑚 ∈ N and
𝑞0, . . . , 𝑞𝑚 ∈ 𝐶

𝛼
2 ,𝛼 ([0, 𝑇] ×Ω). Assume that the identity∫ 𝑇

0

∫
Ω
𝐹𝑣1 · · · 𝑣𝑚𝑤 𝑑𝑥𝑑𝑡 = 0 (4.1)

holds true for all 𝑣 𝑗 ∈ 𝐶1+ 𝛼
2 ,2+𝛼 ([0, 𝑇] × Ω)) and 𝑤 ∈ 𝐶1+ 𝛼

2 ,2+𝛼 ([0, 𝑇] × Ω)) solving the following
equations {

𝜌(𝑡, 𝑥)𝜕𝑡𝑣 𝑗 +A(𝑡)𝑣 𝑗 + 𝑞 𝑗𝑣 𝑗 = 0, in 𝑄,
𝑣 𝑗 (0, 𝑥) = 0 for 𝑥 ∈ Ω,

(4.2)

for 𝑗 = 1, . . . , 𝑚, and {
−𝜕𝑡 (𝜌(𝑡, 𝑥)𝑤) +A(𝑡)𝑤 + 𝑞0𝑤 = 0, in 𝑄,
𝑤(𝑇, 𝑥) = 0 for 𝑥 ∈ Ω,

(4.3)

respectively. Then 𝐹 ≡ 0.

We next use the above proposition to show Theorem 2.1. The proof of the proposition will be
postponed to Section 5.

Proof of Theorem 2.1. We will prove this theorem in two steps. We will start by proving that the
assumption

N𝑏1 ( 𝑓 ) = N𝑏2 ( 𝑓 ), for all 𝑓 ∈ B( 𝑓0, 𝜖)

implies that

𝜕𝑘
𝜇𝑏1

(
𝑡, 𝑥, 𝑢1,0(𝑡, 𝑥)

)
= 𝜕𝑘

𝜇𝑏2
(
𝑡, 𝑥, 𝑢2,0 (𝑡, 𝑥)

)
, (𝑡, 𝑥) ∈ [0, 𝑇] ×Ω (4.4)

holds true for all 𝑘 ∈ N, with 𝑢 𝑗 ,0 being the solution of (1.2) with 𝑏 = 𝑏 𝑗 and 𝑓 = 𝑓0, for 𝑗 = 1, 2. Then
we will complete the proof by showing that (4.4) implies the claim

𝑏1 = 𝑆𝜑𝑏2

for some 𝜑 ∈ 𝐶1+ 𝛼
2 ,2+𝛼 ([0, 𝑇] ×Ω) satisfying the condition (1.6).

Step 1. Determination of the Taylor coefficients
We will show (4.4) holds true, for all 𝑘 ∈ N, by recursion. Note first that, for 𝑗 = 1, 2, the

function (𝑡, 𝑥) ↦→ 𝜕𝜇𝑏 𝑗 (𝑡, 𝑥, 𝑢 𝑗 ,0 (𝑡, 𝑥)) belongs to 𝐶
𝛼
2 ,𝛼 ([0, 𝑇] × Ω). Thus, for 𝑗 = 1, 2, we can

consider 𝑣 𝑗 ,1 ∈ 𝐶1+ 𝛼
2 ,2+𝛼 ([0, 𝑇] × Ω)) satisfying (4.2) with 𝑞 𝑗 (𝑡, 𝑥) = 𝜕𝜇𝑏 𝑗 (𝑡, 𝑥, 𝑢 𝑗 ,0 (𝑡, 𝑥)) and 𝑤 ∈

𝐶1+ 𝛼
2 ,2+𝛼 ([0, 𝑇] × Ω)) satisfying (4.3) with 𝑞0 (𝑡, 𝑥) = 𝜕𝜇𝑏1(𝑡, 𝑥, 𝑢1,0(𝑡, 𝑥)). We assume here that

𝑣1,1
		Σ = ℎ = 𝑣2,1

		Σ for some ℎ ∈ B(0, 1). Applying the first-order linearization, we find

𝜕𝜈 (𝑎)𝑣1,1
		Σ = 𝜕𝑠N𝑏1 ( 𝑓0 + 𝑠ℎ) = 𝜕𝑠N𝑏2 ( 𝑓0 + 𝑠ℎ) = 𝜕𝜈 (𝑎)𝑣2,1

		Σ .
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Thus, fixing 𝑣1 = 𝑣1,1 − 𝑣2,1, we deduce that 𝑣1 satisfies the conditions⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜌(𝑡, 𝑥)𝜕𝑡𝑣1 +A(𝑡)𝑣1 + 𝜕𝜇𝑏1(𝑡, 𝑥, 𝑢1,0 (𝑡, 𝑥))𝑣1 = 𝐺 (𝑡, 𝑥) in 𝑄,
𝑣1 = 𝜕𝜈𝑎𝑣1 = 0 on Σ,

𝑣(0, 𝑥) = 0 for 𝑥 ∈ Ω,

(4.5)

where

𝐺 (𝑡, 𝑥) =
(
𝜕𝜇𝑏2(𝑡, 𝑥, 𝑢2,0 (𝑡, 𝑥)) − 𝜕𝜇𝑏1(𝑡, 𝑥, 𝑢1,0 (𝑡, 𝑥))

)
𝑣2,1 (𝑡, 𝑥), (𝑡, 𝑥) ∈ 𝑄.

Multiplying the equation (4.5) by w and integrating by parts, we obtain the identity∫ 𝑇

0

∫
Ω

(
𝜕𝜇𝑏2 (𝑡, 𝑥, 𝑢2,0) − 𝜕𝜇𝑏1(𝑡, 𝑥, 𝑢1,0)

)
𝑣2,1𝑤 𝑑𝑥𝑑𝑡

=
∫ 𝑇

0

∫
Ω

(
𝜌(𝑡, 𝑥)𝜕𝑡𝑣1 +A(𝑡)𝑣1 + 𝜕𝜇𝑏1 (𝑡, 𝑥, 𝑢1,0(𝑡, 𝑥))𝑣1

)
𝑤 𝑑𝑥𝑑𝑡

=
∫ 𝑇

0

∫
Ω

(
−𝜕𝑡 (𝜌𝑤) +A(𝑡)𝑤 + 𝜕𝜇𝑏1 (𝑡, 𝑥, 𝑢1,0(𝑡, 𝑥))𝑤

)
𝑣1 𝑑𝑥𝑑𝑡︸���������������������������������������������������������������������������︷︷���������������������������������������������������������������������������︸

Since 𝑣1=𝜕𝜈 (𝑎) 𝑣1=0 on Σ, 𝑣1 (0,𝑥)=0 and 𝑤 (𝑇 ,𝑥)=0 in Ω.

= 0.

Using the the fact that 𝑣2,1 can be seen as an arbitrary chosen element of𝐶1+ 𝛼
2 ,2+𝛼 ([0, 𝑇]×Ω)) satisfying

(4.2) and applying Proposition 4.1, we deduce that (4.4) holds true for 𝑘 = 1. Moreover, by the unique
solvability of (3.7), we deduce that 𝑣1,1 = 𝑣2,1 in Q.

Now, let us fix 𝑚 ∈ N and assume that, for 𝑘 = 1, . . . , 𝑚, (4.4) holds true and

𝑤 (𝑘)
1 = 𝑤 (𝑘)

2 in 𝑄. (4.6)

Consider 𝑣 𝑗 ∈ 𝐶1+ 𝛼
2 ,2+𝛼 ([0, 𝑇] × Ω)) satisfying (4.2) with 𝑞 𝑗 (𝑡, 𝑥) = 𝜕𝜇𝑏1 (𝑡, 𝑥, 𝑢1,0 (𝑡, 𝑥)) for 𝑗 =

1, . . . , 𝑚 + 1, and 𝑤 ∈ 𝐶1+ 𝛼
2 ,2+𝛼 ([0, 𝑇] × Ω)) satisfying (4.2) with 𝑞0 (𝑡, 𝑥) = 𝜕𝜇𝑏1 (𝑡, 𝑥, 𝑢1,0(𝑡, 𝑥)). We

fix ℎ 𝑗 = 𝑣 𝑗

		Σ, 𝑗 = 1, . . . , 𝑚 + 1, and proceeding to the higher-order linearization described in Lemma
3.1, we obtain

𝜕𝜈 (𝑎)𝑤
(𝑚+1)
𝑗

			Σ = 𝜕𝑠1 . . . 𝜕𝑠𝑚+1N𝑏 𝑗 ( 𝑓0 + 𝑠1ℎ1 + . . . + 𝑠𝑚+1ℎ𝑚+1)
		
𝑠=0,

with 𝑠 = (𝑠1, . . . , 𝑠𝑚+1) and 𝑤 (𝑚+1)
𝑗 solving (3.12) as 𝑏 = 𝑏 𝑗 , for 𝑗 = 1, 2. Then the condition (2.4)

implies

𝜕𝜈 (𝑎)𝑤
(𝑚+1)
1

			Σ = 𝜕𝜈 (𝑎)𝑤
(𝑚+1)
2

			Σ .
Fixing𝑤 (𝑚+1) = 𝑤 (𝑚+1)

1 −𝑤 (𝑚+1)
2 and applying Lemma 3.1, we deduce that𝑤 (𝑚+1) satisfies the condition⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜌(𝑡, 𝑥)𝜕𝑡𝑤
(𝑚+1) +A(𝑡)𝑤 (𝑚+1) + 𝜕𝜇𝑏1(𝑡, 𝑥, 𝑢1,0 (𝑡, 𝑥))𝑤

(𝑚+1) = K in 𝑄,
𝑤 (𝑚+1) = 𝜕𝜈𝑎𝑤

(𝑚+1) = 0 on Σ,

𝑤 (𝑚+1) (0, 𝑥) = 0 for 𝑥 ∈ Ω,

(4.7)

where K = (𝜕𝑚+1
𝜇 𝑏2 (𝑡, 𝑥, 𝑢2,0) − 𝜕𝑚+1

𝜇 𝑏1(𝑡, 𝑥, 𝑢1,0))𝑣1 · · · 𝑣𝑚+1. Here, we used the assumption for this
recursion argument that (4.4) and (4.6) hold true for 𝑘 = 1, . . . , 𝑚. Multiplying the equation (4.7) by w
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and integrating by parts, we obtain∫ 𝑇

0

∫
Ω

(
𝜕𝑚+1
𝜇 𝑏2(𝑡, 𝑥, 𝑢2,0) − 𝜕

𝑚+1
𝜇 𝑏1(𝑡, 𝑥, 𝑢1,0)

)
𝑣1 · · · 𝑣𝑚+1𝑤 𝑑𝑥𝑑𝑡 = 0.

Applying again Proposition 4.1, we find that (4.4) holds true for 𝑘 = 1, . . . , 𝑚 + 1. By unique solvability
of (3.7), we also have 𝑤 (𝑚+1)

1 = 𝑤 (𝑚+1)
2 in Q. It follows that (4.4) holds true for all 𝑘 ∈ N.

Step 2. Gauge invariance.
In this step, we will show that (2.5) holds with some 𝜑 ∈ 𝐶1+ 𝛼

2 ,2+𝛼 ([0, 𝑇] ×Ω) satisfying (1.6). We
will choose here 𝜑 = 𝑢2,0 − 𝑢1,0 and, thanks to (2.4), we know that 𝜑 fulfills condition (1.6). We fix
(𝑡, 𝑥) ∈ [0, 𝑇] ×Ω and consider the map

𝐺 𝑗 : R 
 𝜇 ↦→ 𝑏 𝑗 (𝑡, 𝑥, 𝑢 𝑗 ,0 (𝑡, 𝑥) + 𝜇) − 𝑏 𝑗 (𝑡, 𝑥, 𝑢 𝑗 ,0 (𝑡, 𝑥)), 𝑗 = 1, 2.

For 𝑗 = 1, 2, using the fact that 𝑏 𝑗 ∈ A(R;𝐶 𝛼
2 ,𝛼 ([0, 𝑇] ×Ω)), we deduce that the map 𝐺 = 𝐺1 −𝐺2 is

analytic with respect to 𝜇 ∈ R. It is clear that

𝐺 (0) = 𝐺1 (0) − 𝐺2 (0) = 0 − 0 = 0.

Moreover, (4.4) implies that

𝐺 (𝑘) (0) = 𝜕𝑘
𝜇𝑏1 (𝑡, 𝑥, 𝑢1,0 (𝑡, 𝑥)) − 𝜕

𝑘
𝜇𝑏2(𝑡, 𝑥, 𝑢2,0(𝑡, 𝑥)) = 0, 𝑘 ∈ N.

Combining this with the fact that G is analytic with respect to 𝜇 ∈ R, we deduce that there must exist
𝛿 > 0 such that

𝐺 (𝜇) = 0, 𝜇 ∈ (−𝛿, 𝛿).

Then, the unique continuation of analytic functions implies that 𝐺 ≡ 0. It follows that, for all 𝜇 ∈ R, we
have

𝑏1(𝑡, 𝑥, 𝑢1,0(𝑡, 𝑥) + 𝜇) − 𝑏1(𝑡, 𝑥, 𝑢1,0 (𝑡, 𝑥)) = 𝑏2(𝑡, 𝑥, 𝑢2,0 (𝑡, 𝑥) + 𝜇) − 𝑏2 (𝑡, 𝑥, 𝑢2,0 (𝑡, 𝑥)).

Recalling that

−𝑏 𝑗 (𝑡, 𝑥, 𝑢 𝑗 ,0 (𝑡, 𝑥)) = 𝜌(𝑡, 𝑥)𝜕𝑡𝑢 𝑗 ,0 (𝑡, 𝑥) +A(𝑡)𝑢 𝑗 ,0(𝑡, 𝑥), 𝑗 = 1, 2,

we deduce that

𝑏1 (𝑡, 𝑥, 𝑢1,0(𝑡, 𝑥) + 𝜇)

= 𝑏2 (𝑡, 𝑥, 𝑢2,0 (𝑡, 𝑥) + 𝜇) + 𝑏1(𝑡, 𝑥, 𝑢1,0(𝑡, 𝑥)) − 𝑏2(𝑡, 𝑥, 𝑢2,0(𝑡, 𝑥))

= 𝑏2 (𝑡, 𝑥, 𝑢2,0 (𝑡, 𝑥) + 𝜇) + 𝜌(𝑡, 𝑥)𝜕𝑡 (𝑢2,0 − 𝑢1,0) (𝑡, 𝑥) +A(𝑡) (𝑢2,0 − 𝑢1,0) (𝑡, 𝑥)

= 𝑏2 (𝑡, 𝑥, 𝑢2,0 (𝑡, 𝑥) + 𝜇) + 𝜌(𝑡, 𝑥)𝜕𝑡𝜑(𝑡, 𝑥) +A(𝑡)𝜑(𝑡, 𝑥), 𝜇 ∈ R.

(4.8)

Considering (4.8) with 𝜇1 = 𝑢1,0 (𝑡, 𝑥) + 𝜇, we obtain

𝑏1(𝑡, 𝑥, 𝜇1) = 𝑏2 (𝑡, 𝑥, 𝑢2,0 (𝑡, 𝑥) − 𝑢1,0 (𝑡, 𝑥) + 𝜇1) + 𝜌(𝑡, 𝑥)𝜕𝑡𝜑(𝑡, 𝑥) +A(𝑡)𝜑(𝑡, 𝑥)

= 𝑏2 (𝑡, 𝑥, 𝜑(𝑡, 𝑥) + 𝜇1) + 𝜌(𝑡, 𝑥)𝜕𝑡𝜑(𝑡, 𝑥) +A(𝑡)𝜑(𝑡, 𝑥), 𝜇1 ∈ R.

Using the fact that here (𝑡, 𝑥) ∈ [0, 𝑇] × Ω is arbitrary chosen, we deduce that (2.5) holds true with
𝜑 = 𝑢2,0 − 𝑢1,0. This completes the proof of the theorem. �
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5. Proof of Proposition 4.1

In order to prove Proposition 4.1, we need to construct special solutions, which helps us to prove the
completeness of products of solutions.

5.1. Constructions of geometric optics solutions

For the proof of Proposition 4.1, we will need to consider the construction of geometrical optics (GO
in short) solutions. More precisely, fixing 𝑞 ∈ 𝐶

𝛼
2 ,𝛼 ([0, 𝑇] × Ω), we will consider GO solutions to the

equation {
𝜌(𝑡, 𝑥)𝜕𝑡𝑣 +A(𝑡)𝑣 + 𝑞𝑣 = 0 in 𝑄,
𝑣(0, 𝑥) = 0 for 𝑥 ∈ Ω,

(5.1)

as well as GO solutions for the formal adjoint equation{
−𝜌(𝑡, 𝑥)𝜕𝑡𝑤 +A(𝑡)𝑤 − 𝜕𝑡 𝜌(𝑡, 𝑥)𝑤 + 𝑞𝑤 = 0 in 𝑄,
𝑤(𝑇, 𝑥) = 0 for 𝑥 ∈ Ω,

(5.2)

belonging to the space 𝐶1+ 𝛼
2 ,2+𝛼 ([0, 𝑇] × Ω). Following the recent construction of [Fei23], in this

section, we give a construction of these GO solutions that will depend on a large asymptotic positive
parameter 𝜏 with 𝜏 � 1 and concentrate on geodesics with respect to the metric 𝑔(𝑡) = 𝜌(𝑡, · )𝑎(𝑡, · )−1

in Ω1 that passes through a point 𝑥0 ∈ 𝜕Ω1, whenever Assumption 2.1 holds. Here, Ω1 is a domain
satisfying Assumption 2.1 containing Ω. Let us construct the GO solution as follows.

First, we consider solutions of the form

𝑣(𝑡, 𝑥) = 𝑒𝜏
2𝑡+𝜏𝜓 (𝑡 ,𝑥)

[
𝑐+(𝑡, 𝑥) + 𝑅+,𝜏 (𝑡, 𝑥)

]
, (𝑡, 𝑥) ∈ 𝑄, (5.3)

and

𝑤(𝑡, 𝑥) = 𝑒−𝜏2𝑡−𝜏𝜓 (𝑡 ,𝑥)
[
𝑐−(𝑡, 𝑥) + 𝑅−,𝜏 (𝑡, 𝑥)

]
, (𝑡, 𝑥) ∈ 𝑄, (5.4)

to equations (5.1) and (5.2), respectively. The phase functions and principal terms 𝑐± of the GOs will
be constructed by using polar normal coordinate on the manifold (Ω1, 𝑔(𝑡)), for 𝑡 ∈ [0, 𝑇].

Let us define the differential operators 𝐿±, 𝑃𝜏,± on Ω1 by

𝐿+ = 𝜌(𝑡, 𝑥)𝜕𝑡 +A(𝑡) + 𝑞(𝑡, 𝑥),

𝐿− = −𝜌(𝑡, 𝑥)𝜕𝑡 +A(𝑡) − 𝜕𝑡 𝜌(𝑡, 𝑥) + 𝑞(𝑡, 𝑥),
(5.5)

and

𝑃𝜏,± = 𝑒∓(𝜏
2𝑡+𝜏𝜓 (𝑡 ,𝑥))𝐿±

(
𝑒±(𝜏

2𝑡+𝜏𝜓 (𝑡 ,𝑥))
)
. (5.6)

Via a straightforward computation, we can write

𝑃𝜏,±𝑣 = 𝜏
2 I𝑣 + 𝜏J±𝑣 + 𝐿±𝑣,

where

I = 𝜌(𝑡, 𝑥) −
𝑛∑

𝑖,𝑘=1
𝑎𝑖𝑘 (𝑡, 𝑥)𝜕𝑥𝑖𝜓𝜕𝑥𝑘𝜓, (5.7)
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and

J±𝑣 := ∓2
𝑛∑

𝑖,𝑘=1
𝑎𝑖𝑘 (𝑡, 𝑥)𝜕𝑥𝑖𝜓𝜕𝑥𝑘 𝑣 + [𝜌(𝑡, 𝑥)𝜕𝑡𝜓 ±A(𝑡)𝜓]𝑣. (5.8)

Next, we want to choose 𝜓 in such a way that the eikonal equation I = 0 is satisfied in Q. Hence,
after choosing 𝜓, we seek for 𝑐± solving the transport equations

J+𝑐+ = 0 and J−𝑐− = 0. (5.9)

Since for all 𝑡 ∈ [0, 𝑇], the Riemannian manifold (Ω1, 𝑔(𝑡)) is assumed to be simple, the eikonal
equation I = 0 can be solved globally on 𝑄. This is known, but let us show how it is done. For this, let
us fix 𝑥0 ∈ 𝜕Ω1 and consider the polar normal coordinates (𝑟, 𝜃) on (Ω1, 𝑔(𝑡)) given by 𝑥 = exp𝑥0

(𝑟 𝜃),
where 𝑟 > 0 and

𝜃 ∈ 𝑆𝑥0 ,𝑡 (Ω1) :=
{
𝑣 ∈ R𝑛 : |𝑣 |𝑔 (𝑡) [𝑥0 ] = 1

}
.

According to the Gauss lemma, in these coordinates, the metric takes the form

𝑑𝑟2 + 𝑔0 (𝑡, 𝑟, 𝜃),

where 𝑔0 (𝑡, 𝑟, 𝜃) is a metric defined on 𝑆𝑥0 ,𝑡 (Ω1), which depends smoothly on t and r. In fact, we choose

𝜓(𝑡, 𝑥) = dist𝑔 (𝑡) (𝑥0, 𝑥), (𝑡, 𝑥) ∈ [0, 𝑇] ×Ω, (5.10)

where dist𝑔 (𝑡) (·, ·) is the Riemannian distance function associated with the metric 𝑔(𝑡), for 𝑡 ∈ [0, 𝑇].
As 𝜓 is given by r in the polar normal coordinates, one can easily check that 𝜓 solves I = 0.

Let us now turn to the transport equations (5.9). We write 𝑐±(𝑡, 𝑟, 𝜃) = 𝑐±(𝑡, exp𝑥0 (𝑟 𝜃)) and use
this notation to indicate the representation in the polar normal coordinates also for other functions.
Then, using this notation and following [Fei23, Section 5.1.2], we deduce that, in these polar normal
coordinates with respect to 𝑥0 ∈ 𝜕Ω1, the equations in (5.9) become

𝜕𝑟 𝑐± +

(
𝜕𝑟 𝛽

4𝛽

)
𝑐± ∓

𝜕𝑡𝜓(𝑡, 𝑟, 𝜃)

2
𝑐± = 0 (5.11)

with 𝛽(𝑡, 𝑟, 𝜃) = det(𝑔0 (𝑡, 𝑟, 𝜃)). Note that in this equation, there is no differentiation in the 𝜃-variable.
This fact will allow us to localize GO solutions near geodesics. We fix

𝑟0 = inf
𝑡 ∈[0,𝑇 ]

dist𝑔 (𝑡) (𝜕Ω1,Ω)

and recall that 𝑟0 > 0. For any ℎ ∈ 𝐶∞(𝑆𝑥0 ,𝑡 (Ω1)) and 𝜒 ∈ 𝐶∞
0 (0, 𝑇), the functions

𝑐+(𝑡, 𝑟, 𝜃) = 𝜒(𝑡)ℎ(𝜃)𝛽(𝑡, 𝑟, 𝜃)−1/4 exp
(∫ 𝑟

𝑟0

𝜕𝑡𝜓(𝑡, 𝑠, 𝜃)

2
𝑑𝑠

)
, (5.12)

𝑐−(𝑡, 𝑟, 𝜃) = 𝜒(𝑡)𝛽(𝑡, 𝑟, 𝜃)−1/4 exp
(
−

∫ 𝑟

𝑟0

𝜕𝑡𝜓(𝑡, 𝑠, 𝜃)

2
𝑑𝑠

)
(5.13)

are respectively solutions of the transport equations (5.9). Moreover, the regularity of the coefficients
𝜌, a and the simplicity of the manifold (Ω1, 𝑔(𝑡)) implies that solutions of the transport equation (5.11)
𝑐± ∈ 𝐶∞([0, 𝑇] ×Ω).
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In order to complete our construction of GO solutions, we need to show that it is possible to construct
the remainder terms 𝑅±,𝜏 ∈ 𝐶1+ 𝛼

2 ,2+𝛼 ([0, 𝑇] ×Ω) satisfying the decay property��𝑅±,𝜏

��
𝐿2 (𝑄)

� 𝐶 |𝜏 |−1, (5.14)

for some constant 𝐶 > 0 independent of 𝜏, positive and large enough, as well as the initial and final
condition

𝑅+,𝜏 (0, 𝑥) = 𝑅−,𝜏 (𝑇, 𝑥) = 0, 𝑥 ∈ Ω.

For this purpose, we recall that for 𝜓 given by (5.10), we have 𝑃𝜏,± = 𝐿± + 𝜏J± with 𝐿± and J± defined
by (5.5)–(5.8). Then, according to (5.9), we have

𝐿±

[
𝑒𝜏

2𝑡+𝜏𝜓 (𝑡 ,𝑥)𝑐±(𝑡, 𝑥)
]
= 𝑒𝜏

2𝑡+𝜏𝜓 (𝑡 ,𝑥)𝑃𝜏,±𝑐±(𝑡, 𝑥)

= 𝑒𝜏
2𝑡+𝜏𝜓 (𝑡 ,𝑥)𝐿±𝑐±.

Therefore, the conditions 𝐿+𝑣 = 0 and 𝐿−𝑤 = 0 are fulfilled if and only if 𝑅±,𝜏 solves

𝑃𝜏,±𝑅±,𝜏 (𝑡, 𝑥) = −𝐿±𝑐±(𝑡, 𝑥), (𝑡, 𝑥) ∈ (0, 𝑇) ×Ω.

We will choose 𝑅±,𝜏 to be the solution of the IBVP

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑃𝜏,+𝑅+,𝜏 (𝑡, 𝑥) = −𝐿+𝑐+(𝑡, 𝑥) in 𝑄,
𝑅+,𝜏 (𝑡, 𝑥) = 0 on Σ,

𝑅+,𝜏 (0, 𝑥) = 0 for 𝑥 ∈ Ω

(5.15)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑃𝜏,−𝑅−,𝜏 (𝑡, 𝑥) = −𝐿−𝑐−(𝑡, 𝑥) in 𝑄,
𝑅−,𝜏 (𝑡, 𝑥) = 0 on Σ,

𝑅−,𝜏 (𝑇, 𝑥) = 0 for 𝑥 ∈ Ω.

(5.16)

Note that 𝐿±𝑐± is independent of 𝜏. We give the following extension of the energy estimate approach
under consideration [Fei23] for problem (5.15)–(5.16).

Proposition 5.1. There exists 𝜏0 > 0, depending only on Ω, T, a, 𝜌, q, such that problem (5.15)–(5.16)
admits a unique solution 𝑅±,𝜏 ∈ 𝐶1+ 𝛼

2 ,2+𝛼 ([0, 𝑇] ×Ω) satisfying the estimate

𝜏
��𝑅±,𝜏

��
𝐿2 (𝑄)

+ 𝜏
1
2
��𝑅±,𝜏

��
𝐿2 (0,𝑇 ;𝐻 1 (Ω)) � 𝐶‖𝐿±𝑐±‖𝐿2 (𝑄) , 𝜏 > 𝜏0. (5.17)

Proof. The proof of this proposition is based on arguments similar to [Fei23, Proposition 4.1] that we
adapt to problem (5.15)–(5.16) whose equations are more general than the ones under consideration in
[Fei23]. For this reason and for sake of completeness, we give the full proof of this proposition. We only
show the result for 𝑅+,𝜏 , the same property for 𝑅−,𝜏 can be deduced by applying similar arguments. Let
us first observe that

𝑃𝜏,+ = 𝜌(𝑡, 𝑥)𝜕𝑡 +A(𝑡) + 𝐵(𝑡, 𝑥) · ∇𝑥 +𝑉 (𝑡, 𝑥)
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with

𝐵(𝑡, 𝑥) · ∇𝑥𝑣(𝑡, 𝑥) = −2𝜏
𝑛∑

𝑖,𝑘=1
𝑎𝑖𝑘 (𝑡, 𝑥)𝜕𝑥𝑖𝜓𝜕𝑥𝑘 𝑣(𝑡, 𝑥),

𝑉 (𝑡, 𝑥) = 𝑞(𝑡, 𝑥) + 𝜏𝜌(𝑡, 𝑥)𝜕𝑡𝜓 + 𝜏A(𝑡)𝜓.

Thus, observing that 𝐵 ∈ 𝐶∞([0, 𝑇] × Ω)𝑛, 𝑉 ∈ 𝐶
𝛼
2 ,𝛼 ([0, 𝑇] × Ω), 𝐿+𝑐+ ∈ 𝐶∞

0 (0, 𝑇 ;𝐶∞(Ω)) and
applying [LSU88, Theorem 5.2, Chapter IV, page 320], we deduce that (5.15) admits a unique solution
𝑅+,𝜏 ∈ 𝐶1+ 𝛼

2 ,2+𝛼 ([0, 𝑇] ×Ω), and we only need to check estimate (5.17).
In this proof, we set

𝑣 = 𝑅+,𝜏 , 𝐾 = −𝐿+𝑐+,

and without loss of generality, we assume that both v and K are real valued. We fix 𝜆 > 0, and we
multiply (5.15) by 𝑣𝑒𝜆𝜓 in order to get∫

𝑄
(−𝐿+𝑐+)𝑒

𝜆𝜓 𝑑𝑥𝑑𝑡 =
∫
𝑄
𝐾𝑣𝑒𝜆𝜓 𝑑𝑥𝑑𝑡 =

∫
𝑄
(𝜌𝜕𝑡𝑣 +A(𝑡)𝑣 + 𝜏J+𝑣 + 𝑞𝑣)𝑣𝑒

𝜆𝜓 𝑑𝑥𝑑𝑡

:= 𝐼 + 𝐼 𝐼 + 𝐼 𝐼 𝐼,

where

𝐼 =
∫
𝑄
(𝜌𝜕𝑡𝑣 + 𝑞𝑣 + 𝜏𝜌(𝑡, 𝑥)𝜕𝑡𝜓𝑣)𝑣𝑒

𝜆𝜓 𝑑𝑥𝑑𝑡,

𝐼 𝐼 =
∫
𝑄
(A(𝑡)𝑣)𝑣𝑒𝜆𝜓 𝑑𝑥𝑑𝑡,

𝐼 𝐼 𝐼 = 𝜏
∫
𝑄

(
−2

𝑛∑
𝑖,𝑘=1

𝑎𝑖 𝑗 (𝑡, 𝑥)𝜕𝑥𝑖𝜓𝜕𝑥𝑘 𝑣 +A(𝑡)𝜓𝑣

)
𝑣𝑒𝜆𝜓 𝑑𝑥𝑑𝑡.

For I, using the fact that 𝑣 |𝑡=0 = 0 and integrating by parts, we get

𝐼 =
1
2

∫
Ω
𝜌(𝑇, 𝑥)𝑣(𝑇, 𝑥)2𝑒𝜆𝜓 (𝑇 ,𝑥) 𝑑𝑥 −

1
2

∫
𝑄
𝜕𝑡 (𝜌𝑒

𝜆𝜓)𝑣2 𝑑𝑥𝑑𝑡 +

∫
𝑄
(𝑞𝑣 + 𝜏𝜌(𝑡, 𝑥)𝜕𝑡𝜓𝑣)𝑣𝑒

𝜆𝜓 𝑑𝑥𝑑𝑡

� −
1
2

∫
𝑄
𝜕𝑡

(
𝜌𝑒𝜆𝜓

)
𝑣2 𝑑𝑥𝑑𝑡 +

∫
𝑄
(𝑞𝑣 + 𝜏𝜌(𝑡, 𝑥)𝜕𝑡𝜓𝑣)𝑣𝑒

𝜆𝜓 𝑑𝑥𝑑𝑡

� −(𝐶1 + 𝐶2𝜏 + 𝐶3𝜆)

∫
𝑄
𝑣2𝑒𝜆𝜓 𝑑𝑥𝑑𝑡,

with 𝐶1, 𝐶2, 𝐶3 three positive constants independent of 𝜆 and 𝜏.
For 𝐼 𝐼, using the fact that 𝑣 |Σ = 0, applying (1.1) and integrating by parts, we find

𝐼 𝐼 =
∫
𝑄

(
𝑛∑

𝑖,𝑘=1
𝑎𝑖𝑘 (𝑡, 𝑥)𝜕𝑥𝑖𝑣𝜕𝑥𝑘 𝑣

)
𝑒𝜆𝜓 𝑑𝑥𝑑𝑡 +

1
2

∫
𝑄

𝑛∑
𝑖,𝑘=1

𝑎𝑖𝑘 (𝑡, 𝑥)𝜕𝑥𝑖 (𝑣
2)𝜕𝑥𝑘

(
𝑒𝜆𝜓

)
𝑑𝑥𝑑𝑡

� 𝑐
∫
𝑄
|∇𝑥𝑣 |

2𝑒𝜆𝜓 𝑑𝑥𝑑𝑡 −
1
2

∫
𝑄
𝑣2A(𝑡)

(
𝑒𝜆𝜓

)
𝑑𝑥𝑑𝑡

� 𝑐
∫
𝑄
|∇𝑥𝑣 |

2𝑒𝜆𝜓 𝑑𝑥𝑑𝑡 −
(
𝐶4𝜆 + 𝐶5𝜆

2
) ∫

𝑄
𝑣2𝑒𝜆𝜓 𝑑𝑥𝑑𝑡,

with constants 𝑐, 𝐶4, 𝐶5 > 0 independent of 𝜆 and 𝜏.
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Finally, for 𝐼 𝐼 𝐼, using the that I = 0, with I defined by (5.7), we find

𝐼 𝐼 𝐼 = −𝜏

∫
𝑄

𝑛∑
𝑖,𝑘=1

𝑎𝑖𝑘 (𝑡, 𝑥)𝜕𝑥𝑖𝜓𝜕𝑥𝑘 (𝑣
2)𝑒𝜆𝜓 𝑑𝑥𝑑𝑡 + 𝜏

∫
𝑄
(A(𝑡)𝜓)𝑣2𝑒𝜆𝜓 𝑑𝑥𝑑𝑡

= 𝜏
∫
𝑄

𝑛∑
𝑖,𝑘=1

𝑎𝑖𝑘 (𝑡, 𝑥)𝜕𝑥𝑖𝜓𝜕𝑥𝑘

(
𝑒𝜆𝜓

)
𝑣2 𝑑𝑥𝑑𝑡

= 𝜏𝜆
∫
𝑄

(
𝑛∑

𝑖,𝑘=1
𝑎𝑖𝑘 (𝑡, 𝑥)𝜕𝑥𝑖𝜓𝜕𝑥𝑘𝜓

)
𝑣2𝑒𝜆𝜓 𝑑𝑥𝑑𝑡

= 𝜏𝜆
∫
𝑄
𝜌(𝑡, 𝑥)𝑣2𝑒𝜆𝜓 𝑑𝑥𝑑𝑡

�
(

inf
(𝑡 ,𝑥) ∈𝑄

𝜌(𝑡, 𝑥)

)
𝜏𝜆

∫
𝑄
𝑣2𝑒𝜆𝜓 𝑑𝑥𝑑𝑡

:= 𝐶6𝜏𝜆

∫
𝑄
𝑣2𝑒𝜆𝜓 𝑑𝑥𝑑𝑡.

Combining these estimates of I, 𝐼 𝐼 and 𝐼 𝐼 𝐼, we find∫
𝑄
𝐾𝑣𝑒𝜆𝜓 𝑑𝑥𝑑𝑡 � 𝑐

∫
𝑄
|∇𝑥𝑣 |

2𝑒𝜆𝜓 𝑑𝑥𝑑𝑡 +
(
−𝐶1 − 𝐶2𝜏 − 𝐶3𝜆 − 𝐶4𝜆 − 𝐶5𝜆

2 + 𝐶6𝜏𝜆
) ∫

𝑄
𝑣2𝑒𝜆𝜓 𝑑𝑥𝑑𝑡.

Choosing 𝜆 � 3𝐶2
𝐶6

and

𝜏0 =
3
(
𝐶1
𝜆 + 𝐶3 + 𝐶4 + 𝐶5𝜆

)
𝐶6

,

we deduce that∫
𝑄
𝐾𝑣𝑒𝜆𝜓 𝑑𝑥𝑑𝑡 � 𝑐

∫
𝑄
|∇𝑥𝑣 |

2𝑒𝜆𝜓 𝑑𝑥𝑑𝑡 +
𝐶6
3
𝜏𝜆

∫
𝑄
𝑣2𝑒𝜆𝜓 𝑑𝑥𝑑𝑡, 𝜏 > 𝜏0.

Applying Cauchy-Schwarz inequality, for 𝜏 > 𝜏0, we get

𝑐

∫
𝑄
|∇𝑥𝑣 |

2𝑒𝜆𝜓 𝑑𝑥𝑑𝑡 +
𝐶6
3
𝜏𝜆

∫
𝑄
𝑣2𝑒𝜆𝜓 𝑑𝑥𝑑𝑡 �

(
𝜏−1

∫
𝑄
𝐾2𝑒𝜆𝜓 𝑑𝑥𝑑𝑡

) 1
2
(
𝜏

∫
𝑄
𝑣2𝑒𝜆𝜓 𝑑𝑥𝑑𝑡

) 1
2

�
𝜏−1

2

∫
𝑄
𝐾2𝑒𝜆𝜓 𝑑𝑥𝑑𝑡 +

𝜏

2

∫
𝑄
𝑣2𝑒𝜆𝜓 𝑑𝑥𝑑𝑡,

which implies that

𝑐

∫
𝑄
|∇𝑥𝑣 |

2𝑒𝜆𝜓 𝑑𝑥𝑑𝑡 + 𝜏

(
𝐶6
3
𝜆 −

1
2

) ∫
𝑄
𝑣2𝑒𝜆𝜓 𝑑𝑥𝑑𝑡 �

𝜏−1

2

∫
𝑄
𝐾2𝑒𝜆𝜓 𝑑𝑥𝑑𝑡.

Fixing 𝜆 = 3(𝐶2+1)
𝐶6

, we obtain

𝜏

∫
𝑄
|∇𝑥𝑣 |

2 𝑑𝑥𝑑𝑡 + 𝜏2
∫
𝑄
𝑣2 𝑑𝑥𝑑𝑡 � 𝐶

∫
𝑄
𝐾2 𝑑𝑥𝑑𝑡, 𝜏 > 𝜏0,

where 𝐶 > 0 is a constant independent of 𝜏. From this last estimate, we deduce (5.17). �
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Note that the the energy estimate (5.17) is only subjected to the requirement that 𝜓 solves the eikonal
equation I = 0 in Q. For this result, the simplicity assumption is not required.

Applying Proposition 5.1, we deduce the existence of 𝑅±,𝜏 fulfilling condition (5.15)–(5.16) and the
decay estimate (5.14). Armed with these class of GO solutions, we are now in position to complete the
proof of Proposition 4.1.

5.2. Completion of the proof of Proposition 4.1

We will show Proposition 4.1 by iteration.

Proof of Proposition 4.1. We start by showing that the claim of Proposition 4.1 holds true for 𝑚 = 1.
We fix 𝑥0 ∈ 𝜕Ω1, 𝑡0 ∈ (0, 𝑇) and for 𝜒∗ ∈ 𝐶∞

0 (−1, 1) satisfying∫
R

𝜒∗(𝑡)
2 𝑑𝑡 = 1,

and we set

𝜒𝛿 (𝑡) = 𝛿
− 1

2 𝜒∗

(
𝛿−1(𝑡 − 𝑡0)

)
, for 𝛿 ∈ (0,min(𝑇 − 𝑡0, 𝑡0)).

We consider 𝑣1 ∈ 𝐶1+ 𝛼
2 ,2+𝛼 ([0, 𝑇] × Ω) (resp. 𝑤 ∈ 𝐶1+ 𝛼

2 ,2+𝛼 ([0, 𝑇] × Ω)) of the form (5.3) (resp.
(5.4)) satisfying (5.1) (resp. (5.2)) with 𝑞 = 𝑞1 (resp. 𝑞 = 𝑞0) and 𝑅+,𝜏 (resp. 𝑅−,𝜏) satisfying the decay
property (5.14). Here, we choose 𝜒 = 𝜒𝛿 in the expression of the function 𝑣1 and w. Then, condition
(4.1) implies that ∫ 𝑇

0

∫
Ω
𝐹 (𝑡, 𝑥)𝑐+,0𝑐−,0 𝑑𝑥𝑑𝑡 = lim

𝜏→+∞

∫ 𝑇

0

∫
Ω
𝐹 (𝑡, 𝑥)𝑣1𝑤 𝑑𝑥𝑑𝑡 = 0. (5.18)

From now on, for 𝑡 ∈ [0, 𝑇], we denote by 𝜕+𝑆𝑡 (Ω1) the unit sphere bundle

𝜕+𝑆𝑡 (Ω1) :=
{
(𝑥, 𝜃) ∈ 𝑆𝑡 (Ω1) : 𝑥 ∈ 𝜕Ω1, 〈𝜃, 𝜈𝑡 (𝑥)〉𝑔 (𝑡) < 0

}
,

where 𝜈𝑡 denotes the outward unit normal vector of 𝜕Ω1 with respect to the metric 𝑔(𝑡). We also denote
for any (𝑦, 𝜃) ∈ 𝜕+𝑆𝑡 (Ω1) by ℓ𝑡 ,+(𝑦, 𝜃) the time of existence in Ω1 of the maximal geodesic 𝛾𝑦, 𝜃 , with
respect to the metric 𝑔(𝑡), satisfying 𝛾𝑦, 𝜃 (0) = 𝑦 and 𝛾′𝑦, 𝜃 (0) = 𝜃.

Consider 𝐹̃ ∈ 𝐿∞((0, 𝑇) ×Ω1) defined by

𝐹̃ (𝑡, 𝑥) =

{
(det(𝑔(𝑡))− 1

2 𝐹 (𝑡, 𝑥), for (𝑡, 𝑥) ∈ 𝑄
0, for (𝑡, 𝑥) ∈ (0, 𝑇) × (Ω1 \Ω)

.

Then we have∫ 𝑇

0

∫
Ω1

𝐹̃ (𝑡, 𝑥)𝑐+,0𝑐−,0 𝑑𝑉𝑔 (𝑡) (𝑥)𝑑𝑡 =
∫ 𝑇

0

∫
Ω1

𝐹̃ (𝑡, 𝑥)𝑐+,0𝑐−,0
√

det(𝑔(𝑡)) 𝑑𝑥𝑑𝑡 = 0,
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where 𝑑𝑉𝑔 (𝑡) is the Riemannian volume of (Ω1, 𝑔(𝑡)). Passing to polar normal coordinates, we obtain∫ 𝑇

0
𝜒𝛿 (𝑡)

2
∫ ℓ𝑡,+ (𝑦, 𝜃)

0

∫
𝑆𝑥0 ,𝑡 (Ω1)

ℎ(𝜃)𝐹̃ (𝑡, 𝑟, 𝜃) 𝑑𝜃𝑑𝑟𝑑𝑡 = 0.

Using the fact that 𝐹 ∈ 𝐶 ([0, 𝑇] × Ω), we deduce that 𝐹̃ ∈ 𝐶 ([0, 𝑇]; 𝐿∞(Ω1)), and letting 𝛿 → 0, we
obtain ∫ ℓ𝑡0 ,+ (𝑥0 , 𝜃)

0

∫
𝑆𝑥0 ,𝑡0 (Ω1)

ℎ(𝜃)𝐹̃ (𝑡0, 𝑟, 𝜃) 𝑑𝜃𝑑𝑟 = 0.

Applying the fact that in this identity ℎ ∈ 𝐶∞(𝑆𝑥0 ,𝑡0 (Ω1)) is arbitrary chosen, we deduce that∫ ℓ𝑡0 ,+ (𝑥0 , 𝜃)

0
𝐹̃ (𝑡0, 𝛾𝑥0 , 𝜃 (𝑠)) 𝑑𝑠 =

∫ ℓ𝑡0 ,+ (𝑥0 , 𝜃)

0
𝐹̃ (𝑡0, 𝑟, 𝜃) 𝑑𝑟 = 0, (𝑥0, 𝜃) ∈ 𝜕+𝑆𝑡0 (Ω1).

Combining this with the facts that in this identity, 𝑥0 ∈ 𝜕Ω1 was arbitrary chosen, that the manifold
(Ω1, 𝑔(𝑡0)) is assumed to be simple and that the geodesic ray transform is injective on simple manifolds,
we deduce that 𝐹̃ (𝑡0, · ) ≡ 0 on Ω1. Thus, 𝐹 (𝑡0, · ) ≡ 0. Combining this with the fact that here 𝑡0 ∈ (0, 𝑇)
is arbitrary chosen and 𝐹 ∈ 𝐶 ([0, 𝑇] ×Ω), we deduce that 𝐹 ≡ 0.

Now let us fix 𝑚 � 1, and assume that (4.1) for this m implies that 𝐹 ≡ 0. Fix 𝐺 ∈ 𝐶 ([0, 𝑇] × Ω),
and assume that ∫ 𝑇

0

∫
Ω
𝐺𝑣1 · · · 𝑣𝑚+1𝑤 𝑑𝑥𝑑𝑡 = 0

for all 𝑣1, . . . , 𝑣𝑚+1 ∈ 𝐶1+ 𝛼
2 ,2+𝛼 ([0, 𝑇] × Ω)) satisfying (4.2) and all 𝑤 ∈ 𝐶1+ 𝛼

2 ,2+𝛼 ([0, 𝑇] × Ω))
satisfying (4.3). Fixing 𝐹 = 𝐺𝑣1, we deduce that 𝐹 ≡ 0, and multiplying F by an arbitrary chosen
𝑤 ∈ 𝐶1+ 𝛼

2 ,2+𝛼 ([0, 𝑇] ×Ω)) satisfying (4.3), and integrating, we deduce that∫ 𝑇

0

∫
Ω
𝐺𝑣1𝑤 𝑑𝑥𝑑𝑡 = 0

for all 𝑣1 ∈ 𝐶1+ 𝛼
2 ,2+𝛼 ([0, 𝑇] ×Ω)) satisfying (4.2) and all 𝑤 ∈ 𝐶1+ 𝛼

2 ,2+𝛼 ([0, 𝑇] ×Ω)) satisfying (4.3).
Then, the above argumentation implies that 𝐺 ≡ 0. This proves the assertion. �

6. Proof of Theorem 2.2

In this section, we assume that 𝑛 � 3 and 𝜓(𝑥) = |𝑥 − 𝑥0 |, 𝑥 ∈ Ω, for 𝑥0 ∈ R𝑛 \Ω. Note that the function
𝜓 satisfies the eikonal equation

|∇𝑥𝜓(𝑥) | = 1, for 𝑥 ∈ Ω. (6.1)

We start by considering the following new Carleman estimate whose proof is postponed to Appendix A.

Lemma 6.1. Let 𝑞 ∈ 𝐿∞(𝑄) and 𝑣 ∈ 𝐻1(𝑄) ∩ 𝐿2 (0, 𝑇 ;𝐻2 (Ω)) satisfy the condition

𝑣 |Σ = 0, 𝑣 |𝑡=0 = 0. (6.2)
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Then, there exists 𝜏0 > 0 depending on T,Ω and ‖𝑞‖𝐿∞ (𝑄) such that for all 𝜏 > 𝜏0, the following estimate

𝜏

∫ 𝑇

0

∫
Γ+ (𝑥0)

𝑒−2(𝜏2𝑡+𝜏𝜓 (𝑥)) |𝜕𝜈𝑣 |
2 |𝜕𝜈𝜓(𝑥) |𝑑𝜎(𝑥)𝑑𝑡 + 𝜏

2
∫
𝑄
𝑒−2(𝜏2𝑡+𝜏𝜓 (𝑥)) |𝑣 |2𝑑𝑥𝑑𝑡

� 𝐶
(∫

𝑄
𝑒−2(𝜏2𝑡+𝜏𝜓 (𝑥)) | (𝜕𝑡 − Δ 𝑥 + 𝑞)𝑣 |

2 𝑑𝑥𝑑𝑡

+ 𝜏

∫ 𝑇

0

∫
Γ− (𝑥0)

𝑒−2(𝜏2𝑡+𝜏𝜓 (𝑥)) |𝜕𝜈𝑣 |
2 |𝜕𝜈𝜓(𝑥) |𝑑𝜎(𝑥) 𝑑𝑡

) (6.3)

holds true.

Remark 6.1. The weight function 𝜓 under consideration in the Carleman estimates (6.3) is chosen in
accordance with the construction of geometric optics solutions of the form (5.3)–(5.4) introduced in
Section 5.1. Namely, we need to consider weight functions 𝜓 that can be the phase of such geometric
optics solutions. For this reason, we need to consider weight functions that satisfy the eikonal equation
I = 0 which takes the form (6.1) in the context of Theorem 2.2.

Armed with these results, we are now in a position to complete the proof of Theorem 2.2.

Proof of Theorem 2.2. Following the proof of Theorem 2.1, we only need to prove that (4.4) holds true.
We will prove this by a recursion argument. Let us first observe that since Γ̃ is a neighborhood of Γ−(𝑥0),
there exists 𝜖 > 0 such that 𝐵(𝑥0, 𝜖) ∩Ω = ∅, and for all 𝑦 ∈ 𝐵(𝑥0, 𝜖), we have

Γ−(𝑦, 𝜖) := {𝑥 ∈ 𝜕Ω : (𝑥 − 𝑦) · 𝜈(𝑥) � 𝜖} ⊂ Γ̃.

We start by considering (4.4) for 𝑘 = 1. For 𝑗 = 1, 2, consider 𝑣 𝑗 ,1 ∈ 𝐶1+ 𝛼
2 ,2+𝛼 ([0, 𝑇] × Ω)) satisfying

(4.2) with 𝑏 = 𝑏 𝑗 and 𝑤 ∈ 𝐶1+ 𝛼
2 ,2+𝛼 ([0, 𝑇] × Ω)) satisfying (4.3) with 𝑏 = 𝑏1. We assume here that

𝑣1,1 |Σ = ℎ = 𝑣2,1 |Σ for some ℎ ∈ K0. Fixing 𝑣1 = 𝑣1,1 − 𝑣2,1, we deduce that 𝑣1 satisfies the conditions

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜕𝑡𝑣1 − Δ𝑣1 + 𝜕𝜇𝑏1(𝑡, 𝑥, 𝑢1,0)𝑣1 = 𝐹 (𝑡, 𝑥) in 𝑄,
𝑣1 = 0 on Σ,

𝜕𝜈𝑣1 = 0 on (0, 𝑇) × Γ̃,

𝑣(0, 𝑥) = 0 for 𝑥 ∈ Ω,

with

𝐹 (𝑡, 𝑥) =
(
𝜕𝜇𝑏2 (𝑡, 𝑥, 𝑢2,0 (𝑡, 𝑥)) − 𝜕𝜇𝑏1(𝑡, 𝑥, 𝑢1,0 (𝑡, 𝑥))

)
𝑣2,1 (𝑡, 𝑥), (𝑡, 𝑥) ∈ 𝑄.

Multiplying the above equation by w and integrating by parts, we obtain∫ 𝑇

0

∫
Ω

(
𝜕𝜇𝑏2(𝑡, 𝑥, 𝑢2,0) − 𝜕𝜇𝑏1(𝑡, 𝑥, 𝑢1,0)

)
𝑣2,1𝑤 𝑑𝑥𝑑𝑡 −

∫
Σ
𝜕𝜈𝑣1 (𝑡, 𝑥)𝑤(𝑡, 𝑥) 𝑑𝜎(𝑥)𝑑𝑡 = 0.

Moreover, applying the first-order linearization, we find

𝜕𝜈𝑣1,1
		
(0,𝑇 )×Γ− (𝑦,𝜖 ) = 𝜕𝑠N𝑏1 ( 𝑓0 + 𝑠ℎ)

		
(0,𝑇 )×Γ− (𝑦,𝜖 )

= 𝜕𝑠N𝑏2 ( 𝑓0 + 𝑠ℎ)
		
(0,𝑇 )×Γ− (𝑦,𝜖 )

= 𝜕𝜈𝑣2,1
		
(0,𝑇 )×Γ− (𝑦,𝜖 ) ,
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and it follows that ∫ 𝑇

0

∫
Ω
(𝜕𝜇𝑏2 (𝑡, 𝑥, 𝑢2,0) − 𝜕𝜇𝑏1(𝑡, 𝑥, 𝑢1,0))𝑣2,1𝑤 𝑑𝑥𝑑𝑡

=
∫ 𝑇

0

∫
𝜕Ω\Γ− (𝑦,𝜖 )

𝜕𝜈𝑣1(𝑡, 𝑥)𝑤(𝑡, 𝑥) 𝑑𝜎(𝑥)𝑑𝑡,

(6.4)

with 𝑣2,1 (resp. w) an arbitrary chosen element of 𝐶1+ 𝛼
2 ,2+𝛼 ([0, 𝑇] × Ω)) satisfying (4.2) (resp. (4.3)).

In particular, we can apply this identity to 𝑣2,1 and w two GO solutions of the form (5.3) and (5.4) with
𝜓(𝑥) = |𝑥 − 𝑦 | and 𝑐± given by

𝑐+(𝑡, 𝑥) = 𝜒𝛿 (𝑡)ℎ

(
𝑥 − 𝑦

|𝑥 − 𝑦 |

)
|𝑥 − 𝑦 |−(𝑛−1)/2,

𝑐−(𝑡, 𝑥) = 𝜒𝛿 (𝑡) |𝑥 − 𝑦 |−(𝑛−1)/2,

for (𝑡, 𝑥) ∈ [0, 𝑇] × (R𝑛 \ {𝑦}) with ℎ ∈ 𝐶∞(S𝑛−1) and

𝜒𝛿 (𝑡) = 𝛿
− 1

2 𝜒∗(𝛿
−1 (𝑡 − 𝑡0)), for 𝛿 ∈ (0,min(𝑇 − 𝑡0, 𝑡0)),

where 𝜒∗ ∈ 𝐶∞
0 (−1, 1) satisfies ∫

R

𝜒∗(𝑡)
2 𝑑𝑡 = 1.

Note that the construction of such GO solutions is a consequence of the fact that we can find Ω2 an open
neighborhood of Ω such that 𝜓 ∈ 𝐶∞(Ω2) solves the eikonal equation

|∇𝑥𝜓(𝑥) |
2 = 1, 𝑥 ∈ Ω2,

as well as an application of Proposition 5.1. In addition, we built this class of GO solutions by following
the arguments used in Section 5.1 where the polar normal coordinates will be replaced by polar
coordinates centered at y. Note that in such coordinates, 𝜓 = 𝑟 and the transport equations (5.11) are just

𝜕𝑟 𝑐± +

(
𝜕𝑟 𝛽

4𝛽

)
𝑐± = 0,

where 𝛽 is an angle dependent multiple of 𝑟2(𝑛−1) .
With this choice of the functions 𝑣2,1 and w, we obtain by Cauchy-Schwarz inequality that				∫ 𝑇

0

∫
𝜕Ω\Γ− (𝑦,𝜖 )

𝜕𝜈𝑣1 (𝑡, 𝑥)𝑤(𝑡, 𝑥) 𝑑𝜎(𝑥)𝑑𝑡

				
� 𝐶

(∫ 𝑇

0

∫
𝜕Ω\Γ− (𝑦,𝜖 )

|𝜕𝜈𝑣1(𝑡, 𝑥) |
2𝑒−2(𝜏2𝑡+𝜏𝜓 (𝑥))𝑑𝜎(𝑥)𝑑𝑡

) 1
2

.

(6.5)

In addition, the Carleman estimate (6.3) and the fact that 𝜕𝜈𝑣1 | (0,𝑇 )×Γ− (𝑦) = 0 imply that, for 𝜏 > 0
sufficiently large, we have
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0

∫
𝜕Ω\Γ− (𝑦,𝜖 )

|𝜕𝜈𝑣1 (𝑡, 𝑥) |
2𝑒−2(𝜏2𝑡+𝜏𝜓 (𝑥)) 𝑑𝜎(𝑥)𝑑𝑡

� 𝐶𝜖−1
∫ 𝑇

0

∫
𝜕Ω\Γ− (𝑦,𝜖 )

|𝜕𝜈𝑣1(𝑡, 𝑥) |
2𝑒−2(𝜏2𝑡+𝜏𝜓 (𝑥))𝜕𝜈𝜓(𝑥) 𝑑𝜎(𝑥)𝑑𝑡

� 𝐶𝜖−1
∫ 𝑇

0

∫
Γ+ (𝑦)

|𝜕𝜈𝑣1(𝑡, 𝑥) |
2𝑒−2(𝜏2𝑡+𝜏𝜓 (𝑥))𝜕𝜈𝜓(𝑥) 𝑑𝜎(𝑥)𝑑𝑡

� 𝐶𝜏−1
∫
𝑄

		𝜕𝑡𝑣1 − Δ𝑣1 + 𝜕𝜇𝑏1 (𝑡, 𝑥, 𝑢0)𝑣1
		2𝑒−2(𝜏2𝑡+𝜏𝜓 (𝑥)) 𝑑𝑥𝑑𝑡︸���������������������������������������������������������������������������︷︷���������������������������������������������������������������������������︸

Here we use the Carleman estimate (6.3) with 𝜕𝜈𝑣1 | (0,𝑇 )×Γ− (𝑦)=0.

� 𝐶𝜏−1
∫
𝑄

		(𝜕𝜇𝑏2(𝑡, 𝑥, 𝑢0) − 𝜕𝜇𝑏1(𝑡, 𝑥, 𝑢0))𝑣2,1
		2𝑒−2(𝜏2𝑡+𝜏𝜓 (𝑥)) 𝑑𝑥𝑑𝑡

� 𝐶𝜏−1
∫
𝑄

		𝜕𝜇𝑏2 (𝑡, 𝑥, 𝑢0) − 𝜕𝜇𝑏1(𝑡, 𝑥, 𝑢0)
		2 |𝑐+|2 𝑑𝑥𝑑𝑡

� 𝐶𝜏−1,

where 𝐶 > 0 is a constant independent of 𝜏. Therefore, for 𝜏 > 0 sufficiently large, we obtain				∫ 𝑇

0

∫
𝜕Ω\Γ− (𝑦,𝜖 )

𝜕𝜈𝑣1 (𝑡, 𝑥)𝑤(𝑡, 𝑥) 𝑑𝜎(𝑥)𝑑𝑡

				 � 𝐶𝜏− 1
2 ,

and in a similar way to Proposition 4.1, sending 𝜏 → +∞, we find∫
𝑄
(𝜕𝜇𝑏2(𝑡, 𝑥, 𝑢0) − 𝜕𝜇𝑏1(𝑡, 𝑥, 𝑢0))𝑐+𝑐− 𝑑𝑥𝑑𝑡 = 0.

By using the polar coordinates, sending 𝛿 → 0 and repeating the arguments of Proposition 4.1, one can
get ∫ +∞

0

∫
S𝑛−1

𝐺 (𝑡, 𝑦 + 𝑟𝜃)ℎ(𝜃) 𝑑𝜃𝑑𝑟 = 0, 𝑡 ∈ (0, 𝑇),

where 𝐺 := 𝜕𝜇𝑏2(𝑡, 𝑥, 𝑢2,0) − 𝜕𝜇𝑏1 (𝑡, 𝑥, 𝑢1,0) in Q extended to (0, 𝑇) × R𝑛 by zero.
Using the fact that ℎ ∈ 𝐶∞(S𝑛−1) is arbitrary chosen, we get∫ +∞

0
𝐺 (𝑡, 𝑦 + 𝑟𝜃) 𝑑𝑟 = 0, 𝑡 ∈ (0, 𝑇), 𝜃 ∈ S𝑛−1,

and the condition on the support of G implies that∫
R

𝐺 (𝑡, 𝑦 + 𝑠𝜃) 𝑑𝑠 = 0, 𝑡 ∈ (0, 𝑇), 𝜃 ∈ S𝑛−1.

Since this last identity holds true for all 𝑦 ∈ 𝐵(𝑥0, 𝜖), we obtain∫
R

𝐺 (𝑡, 𝑦 + 𝑠𝜃) 𝑑𝑠 = 0, 𝑡 ∈ (0, 𝑇), 𝜃 ∈ S𝑛−1, 𝑦 ∈ 𝐵(𝑥0, 𝜖). (6.6)

In addition, since 𝐺 = 0 on (0, 𝑇) × R𝑛 \𝑄, we know that

𝐺 (𝑡, 𝑥) = 0, 𝑡 ∈ (0, 𝑇), 𝑥 ∈ 𝐵(𝑥0, 𝜖)
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and, combining this with (6.6), we are in position to apply [IM20, Theorem 1.2] in order to deduce that,
for all 𝑡 ∈ (0, 𝑇), 𝐺 (𝑡, ·) ≡ 0. It follows that 𝐺 ≡ 0 and (4.4) holds true for 𝑘 = 1.

Now, let us fix 𝑚 ∈ N and assume that (4.4) holds true for 𝑘 = 1, . . . , 𝑚. Consider 𝑣1, . . . , 𝑣𝑚+1 ∈

𝐶1+ 𝛼
2 ,2+𝛼 ([0, 𝑇] ×Ω)) satisfying (4.2) with 𝑏 = 𝑏1 and 𝑤 ∈ 𝐶1+ 𝛼

2 ,2+𝛼 ([0, 𝑇] ×Ω)) satisfying (4.2) with
𝑏 = 𝑏1. We fix ℎ 𝑗 = 𝑣 𝑗 |Σ, 𝑗 = 1, . . . , 𝑚 + 1, and proceeding to the higher-order linearization described
in Lemma 3.1, we obtain

𝜕𝜈 (𝑎)𝑤
(𝑚+1)
𝑗

			Σ = 𝜕𝑠1 . . . 𝜕𝑠𝑚+1N𝑏 𝑗 ( 𝑓0 + 𝑠1ℎ1 + . . . + 𝑠𝑚+1ℎ𝑚+1)
		
𝑠=0,

with 𝑠 = (𝑠1, . . . , 𝑠𝑚+1) and 𝑤 (𝑚+1)
𝑗 solving (3.9) with 𝑏 = 𝑏 𝑗 for 𝑗 = 1, 2. Then, (2.6) implies

𝜕𝜈 (𝑎)𝑤
(𝑚+1)
1

			(0,𝑇 )×Γ̃ = 𝜕𝜈 (𝑎)𝑤
(𝑚+1)
2

			(0,𝑇 )×Γ̃

and, fixing 𝑤 (𝑚+1) = 𝑤 (𝑚+1)
1 − 𝑤 (𝑚+1)

2 in Q, and applying Lemma 3.1, we deduce that 𝑤 (𝑚+1) satisfies
the condition

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜕𝑡𝑤

(𝑚+1) − Δ𝑤 (𝑚+1) + 𝜕𝜇𝑏1(𝑡, 𝑥, 𝑢0)𝑤
(𝑚+1) = K in 𝑄,

𝑤 (𝑚+1) = 0 on Σ,

𝜕𝜈𝑤
(𝑚+1) = 0 on (0, 𝑇) × Γ̃,

𝑤 (𝑚+1) (0, 𝑥) = 0 for 𝑥 ∈ Ω,

where K = (𝜕𝑚+1
𝜇 𝑏2(𝑡, 𝑥, 𝑢2,0) − 𝜕𝑚+1

𝜇 𝑏1(𝑡, 𝑥, 𝑢1,0))𝑣1 · . . . · 𝑣𝑚+1. Multiplying this equation by w and
integrating by parts, we obtain

∫ 𝑇

0

∫
Ω
(𝜕𝑚+1

𝜇 𝑏2(𝑡, 𝑥, 𝑢2,0) − 𝜕
𝑚+1
𝜇 𝑏1(𝑡, 𝑥, 𝑢1,0))𝑣1 · . . . · 𝑣𝑚+1 · 𝑤 𝑑𝑥𝑑𝑡

−

∫ 𝑇

0

∫
𝜕Ω\Γ̃

𝜕𝜈𝑤
(𝑚+1)𝑤(𝑡, 𝑥)𝑑𝜎(𝑥) 𝑑𝑡 = 0.

We choose 𝑣𝑚+1 and w two GO solutions of the form (5.3) and (5.4) with 𝜓(𝑥) = |𝑥 − 𝑦 |, 𝑦 ∈ 𝐵(𝑥0, 𝜖),
and we fix

𝐻 (𝑡, 𝑥) =
(
𝜕𝑚+1
𝜇 𝑏2(𝑡, 𝑥, 𝑢2,0) − 𝜕

𝑚+1
𝜇 𝑏1(𝑡, 𝑥, 𝑢1,0)

)
𝑣1 · . . . · 𝑣𝑚(𝑡, 𝑥), (𝑡, 𝑥) ∈ 𝑄

that we extend by zero to (0, 𝑇)×R𝑛. Applying Cauchy-Schwarz inequality and the fact that Γ−(𝑦, 𝜖) ⊂ Γ̃,
we find 				∫ 𝑇

0

∫
𝜕Ω\Γ̃

𝜕𝜈𝑤
(𝑚+1) (𝑡, 𝑥)𝑤(𝑡, 𝑥) 𝑑𝜎(𝑥)𝑑𝑡

				
� 𝐶

(∫ 𝑇

0

∫
𝜕Ω\Γ− (𝑦,𝜖 )

|𝜕𝜈𝑤
(𝑚+1) (𝑡, 𝑥) |2𝑒−2(𝜏2𝑡+𝜏𝜓 (𝑥))𝑑𝜎(𝑥)𝑑𝑡

) 1
2

,
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and, applying the Carleman estimate (6.3) and repeating the above argumentation, we have				∫ 𝑇

0

∫
𝜕Ω\Γ− (𝑦,𝜖 )

𝜕𝜈𝑤
(𝑚+1) (𝑡, 𝑥)𝑤(𝑡, 𝑥) 𝑑𝜎(𝑥)𝑑𝑡

				2
�𝐶𝜏−1

∫
𝑄
|𝐻 (𝑡, 𝑥) |2 |𝑣𝑚+1 (𝑡, 𝑥) |

2𝑒−2(𝜏2𝑡+𝜏𝜓 (𝑥))𝑑𝑥𝑑𝑡

�𝐶𝜏−1.

Thus, we obtain

lim
𝜏→+∞

∫
𝑄
𝐻 (𝑡, 𝑥)𝑣𝑚+1(𝑡, 𝑥)𝑤(𝑡, 𝑥) 𝑑𝑥𝑑𝑡 = 0,

and repeating the above argumentation, we get(
𝜕𝑚+1
𝜇 𝑏2(𝑡, 𝑥, 𝑢2,0) − 𝜕

𝑚+1
𝜇 𝑏1(𝑡, 𝑥, 𝑢1,0)

)
𝑣1 · . . . · 𝑣𝑚(𝑡, 𝑥) = 𝐻 (𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ 𝑄.

Multiplying this expression by any 𝑤 ∈ 𝐶1+ 𝛼
2 ,2+𝛼 ([0, 𝑇] ×Ω)) satisfying (4.2) with 𝑏 = 𝑏1, we obtain∫

𝑄

(
𝜕𝑚+1
𝜇 𝑏2(𝑡, 𝑥, 𝑢2,0) − 𝜕

𝑚+1
𝜇 𝑏1(𝑡, 𝑥, 𝑢1,0)

)
𝑣1 · . . . · 𝑣𝑚𝑤 𝑑𝑥𝑑𝑡 = 0,

and applying Proposition 4.1, we can conclude that (4.4) holds true for 𝑘 = 1, . . . , 𝑚 + 1. It follows
that (4.4) holds true for all 𝑘 ∈ N, and repeating the arguments used in the second step of the proof
of Theorem 2.1, we can conclude that (2.6) implies (2.5) with the function 𝜑 = 𝑢2,0 − 𝑢1,0 satisfying
(2.7)–(2.8). �

7. Breaking the gauge class

This section is devoted to the proof of the positive answers that we give to problem (IP2) in the theorems
and corollaries of Section 2.2.

Proof of Corollary 2.1. We start by assuming that the conditions of Theorem 2.1 are fulfilled and
by proving that (2.4) implies 𝑏1 = 𝑏2. By Theorem 2.1, condition (2.4) implies that there exists
𝜑 ∈ 𝐶1+ 𝛼

2 ,2+𝛼 ([0, 𝑇] ×Ω) satisfying (1.6) such that

𝑏1 (𝑡, 𝑥, 𝜇) = 𝑏2(𝑡, 𝑥, 𝜇 + 𝜑(𝑡, 𝑥)) + 𝜌(𝑡, 𝑥)𝜕𝑡𝜑(𝑡, 𝑥) +A(𝑡)𝜑(𝑡, 𝑥), (𝑡, 𝑥, 𝜇) ∈ 𝑄 × R. (7.1)

We will prove that 𝜑 ≡ 0, which implies that 𝑏1 = 𝑏2. Choosing 𝜇 = 𝜅(𝑡, 𝑥) and applying (2.10), we
obtain

𝜌(𝑡, 𝑥)𝜕𝑡𝜑(𝑡, 𝑥) +A(𝑡)𝜑(𝑡, 𝑥) + 𝑏2(𝑡, 𝑥, 𝜅(𝑡, 𝑥) + 𝜑(𝑡, 𝑥)) − 𝑏2(𝑡, 𝑥, 𝜅(𝑡, 𝑥))

= 𝑏1(𝑡, 𝑥, 𝜅(𝑡, 𝑥)) − 𝑏2 (𝑡, 𝑥, 𝜅(𝑡, 𝑥)) = 0, (𝑡, 𝑥) ∈ 𝑄.

Moreover, we have

𝑏2 (𝑡, 𝑥, 𝜅(𝑡, 𝑥) + 𝜑(𝑡, 𝑥)) − 𝑏2(𝑡, 𝑥, 𝜅(𝑡, 𝑥)) =

(∫ 1

0
𝜕𝜇𝑏2(𝑡, 𝑥, 𝜅(𝑡, 𝑥) + 𝑠𝜑(𝑡, 𝑥))𝑑𝑠

)
𝜑(𝑡, 𝑥)

:= 𝑞(𝑡, 𝑥)𝜑(𝑡, 𝑥), for (𝑡, 𝑥) ∈ 𝑄.
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Therefore, 𝜑 fulfills the condition⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜌(𝑡, 𝑥)𝜕𝑡𝜑(𝑡, 𝑥) +A(𝑡)𝜑(𝑡, 𝑥) + 𝑞(𝑡, 𝑥)𝜑(𝑡, 𝑥) = 0 in 𝑄,
𝜑(𝑡, 𝑥) = 0 on Σ,

𝜑(0, 𝑥) = 0 for 𝑥 ∈ Ω,

(7.2)

and the uniqueness of solutions for this problem implies that 𝜑 ≡ 0. Thus, (7.1) implies 𝑏1 = 𝑏2.
Using similar arguments, one can check that, by assuming the conditions of Theorem 2.2, (2.6)

implies also that 𝑏1 = 𝑏2. �

Proof of Corollary 2.2. Let us assume that the conditions of Theorem 2.1 and (2.4) are fulfilled. By
Theorem 2.1 there exists 𝜑 ∈ 𝐶1+ 𝛼

2 ,2+𝛼 ([0, 𝑇] × Ω) satisfying (1.6) such that (7.1) is fulfilled. In
particular, by choosing 𝜇 = 0, we have

𝑏1 (𝑡, 𝑥, 0) − 𝑏2(𝑡, 𝑥, 0) = 𝑏2(𝑡, 𝑥, 𝜑(𝑡, 𝑥)) − 𝑏2(𝑡, 𝑥, 0) + 𝜌(𝑡, 𝑥)𝜕𝑡𝜑(𝑡, 𝑥) +A(𝑡)𝜑(𝑡, 𝑥) in 𝑄.

Combining this with (2.12) and (1.6), we deduce that 𝜑 fulfills the condition⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜌(𝑡, 𝑥)𝜕𝑡𝜑(𝑡, 𝑥) +A(𝑡)𝜑(𝑡, 𝑥) + 𝑞(𝑡, 𝑥)𝜑(𝑡, 𝑥) = ℎ(𝑥)𝐺 (𝑡, 𝑥) in 𝑄,
𝜑(𝑡, 𝑥) = 𝜕𝜈 (𝑎)𝜑(𝑡, 𝑥) = 0 on Σ,

𝜑(0, 𝑥) = 0 for 𝑥 ∈ Ω,

(7.3)

with

𝑞(𝑡, 𝑥) =
∫ 1

0
𝜕𝜇𝑏2(𝑡, 𝑥, 𝑠𝜑(𝑡, 𝑥)) 𝑑𝑠, (𝑡, 𝑥) ∈ 𝑄.

Moreover, following the proof of Theorem 2.1, we know that 𝜑 = 𝑢2,0 − 𝑢1,0 and the additional
assumption (2.13)

𝑢1,0(𝜃, 𝑥) = 𝑢2,0(𝜃, 𝑥)

implies that

𝜑(𝜃, 𝑥) = 0, 𝑥 ∈ Ω.

Combining this with (2.11),

inf
𝑥∈Ω

|𝐺 (𝜃, 𝑥) | > 0,

(7.3) and applying [IY98, Theorem 3.4], we obtain ℎ ≡ 0. Then the source term in (7.3) is zero, and
uniqueness of solutions implies that 𝜑 ≡ 0. Thus, (7.1) implies 𝑏1 = 𝑏2. The last statement of the
corollary can be deduced from similar arguments. �

We are ready to prove Theorem 2.3.

Proof of Theorem 2.3. We assume first that the conditions of Theorem 2.1 and (2.4) are fulfilled. Let us
first prove that we can assume that 𝑁1 = 𝑁2. Indeed, assuming that 𝑁1 ≠ 𝑁2, we may assume without
loss of generality that 𝑁1 > 𝑁2. From (7.1), we deduce that

𝑏1,𝑁1 (𝑡, 𝑥) = lim
𝜆→+∞

𝑏1(𝑡, 𝑥, 𝜆)

𝜆𝑁1

= lim
𝜆→+∞

𝑏2(𝑡, 𝑥, 𝜆 + 𝜑(𝑡, 𝑥)) + 𝜌(𝑡, 𝑥)𝜕𝑡𝜑(𝑡, 𝑥) +A(𝑡)𝜑(𝑡, 𝑥)

𝜆𝑁1
= 0,
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for (𝑡, 𝑥) ∈ 𝑄. In the same way, we can prove by iteration that

𝑏1,𝑁1 = 𝑏1,𝑁1−1 = · · · = 𝑏1,𝑁2+1 ≡ 0.

Therefore, from now on, we assume that 𝑁1 = 𝑁2 = 𝑁 . In view of (7.1), for all (𝑡, 𝑥, 𝜇) ∈ 𝑄 ×R, we get
by renumbering the sums

𝑁∑
𝑘=0

𝑏1,𝑘 (𝑡, 𝑥)𝜇
𝑘 =

𝑁∑
𝑘=1

𝑏2,𝑘 (𝑡, 𝑥)
���

𝑘∑
𝑗=1

(
𝑘
𝑗

)
𝜑(𝑡, 𝑥)𝑘− 𝑗𝜇 𝑗���

+ 𝜌(𝑡, 𝑥)𝜕𝑡𝜑(𝑡, 𝑥) +A(𝑡)𝜑(𝑡, 𝑥) + 𝑏2(𝑡, 𝑥, 𝜑(𝑡, 𝑥))

=
𝑁∑
𝑗=1

���
𝑁∑
𝑘= 𝑗

𝑏2,𝑘 (𝑡, 𝑥)

(
𝑘
𝑗

)
𝜑(𝑡, 𝑥)𝑘− 𝑗���𝜇 𝑗

+ 𝜌(𝑡, 𝑥)𝜕𝑡𝜑(𝑡, 𝑥) +A(𝑡)𝜑(𝑡, 𝑥) + 𝑏2(𝑡, 𝑥, 𝜑(𝑡, 𝑥)).

It follows that

𝑏1, 𝑗 (𝑡, 𝑥) =
𝑁∑
𝑘= 𝑗

𝑏2,𝑘 (𝑡, 𝑥)

(
𝑘
𝑗

)
𝜑(𝑡, 𝑥)𝑘− 𝑗 , (𝑡, 𝑥) ∈ 𝑄, 𝑗 = 1, . . . , 𝑁, (7.4)

and

𝑏1,0 (𝑡, 𝑥) − 𝑏2,0 (𝑡, 𝑥) = 𝜌(𝑡, 𝑥)𝜕𝑡𝜑(𝑡, 𝑥) +A(𝑡)𝜑(𝑡, 𝑥) + 𝑏2(𝑡, 𝑥, 𝜑(𝑡, 𝑥)) − 𝑏2 (𝑡, 𝑥, 0), (7.5)

for (𝑡, 𝑥) ∈ 𝑄.
Applying (7.4) with 𝑗 = 𝑁 and 𝑗 = 𝑁 − 1, we obtain

𝑏1,𝑁 = 𝑏2,𝑁 , 𝑏1,𝑁−1 = 𝑏2,𝑁 𝜑 + 𝑏2,𝑁−1. (7.6)

Moreover, the fact that the condition (2.16) holds true on the dense set J combined with the fact that
𝑏 𝑗 ,𝑘 ∈ 𝐶 ([0, 𝑇] ×Ω), 𝑗 = 1, 2 and 𝑘 = 𝑁 − 1, 𝑁 implies that

min���
		(𝑏1,𝑁−1 − 𝑏2,𝑁−1) (𝑡, 𝑥)

		, 2∑
𝑗=1

		(𝑏 𝑗 ,𝑁 − 𝑏 𝑗 ,𝑁−1) (𝑡, 𝑥)
		��� = 0, (𝑡, 𝑥) ∈ (0, 𝑇) × 𝜔.

This condition implies that for all (𝑡, 𝑥) ∈ (0, 𝑇) × 𝜔, we have either 𝑏2,𝑁−1 (𝑡, 𝑥) = 𝑏1,𝑁−1(𝑡, 𝑥) or
𝑏 𝑗 ,𝑁 (𝑡, 𝑥) = 𝑏 𝑗 ,𝑁−1 (𝑡, 𝑥), 𝑗 = 1, 2. Combining this with (7.6) and the assumption that |𝑏1,𝑁 (𝑡, 𝑥) | > 0
for (𝑡, 𝑥) ∈ 𝐽, we deduce that 𝜑 = 0 on (0, 𝑇) × 𝜔. Thus, (7.5) implies(

𝑏1,0 − 𝑏2,0
)
(𝑡, 𝑥) = 𝜌𝜕𝑡𝜑(𝑡, 𝑥) +A(𝑡)𝜑(𝑡, 𝑥) + 𝑏2 (𝑡, 𝑥, 𝜑(𝑡, 𝑥)) − 𝑏2(𝑡, 𝑥, 0) = 0,

for (𝑡, 𝑥) ∈ (0, 𝑇) × 𝜔. Finally, the assumption (2.18) implies that 𝑏1,0 = 𝑏2,0 everywhere on Q. Thus,
𝜑 satisfies (7.2) with

𝑞(𝑡, 𝑥) :=
∫ 1

0
𝜕𝜇𝑏2(𝑡, 𝑥, 𝑠𝜑(𝑡, 𝑥)) 𝑑𝑠, (𝑡, 𝑥) ∈ 𝑄.

Therefore, the uniqueness of solutions of (7.2) implies that 𝜑 ≡ 0, and it follows that 𝑏1 = 𝑏2. The last
statement of the theorem can be proved with similar arguments. �
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Proof of Theorem 2.4. We assume that the conditions of Theorem 2.1 and (2.4) are fulfilled. We start
by showing that 𝜕𝜇ℎ1 = 𝜕𝜇ℎ2. For this purpose, combining (1.6) and (7.1) with (2.20), we obtain

𝑏1,1 (𝑡, 𝑥)ℎ1 (𝑡, 𝜇) + 𝑏1,0 (𝑡, 𝑥) = 𝑏2,1(𝑡, 𝑥)ℎ2 (𝑡, 𝜇) + 𝑏2,0 (𝑡, 𝑥) +A(𝑡)𝜑(𝑡, 𝑥), (𝑡, 𝑥, 𝜇) ∈ Σ × R.

Differentiating both sides of this identity with respect to 𝜇, we get

𝑏1,1 (𝑡, 𝑥)𝜕𝜇ℎ1 (𝑡, 𝜇) = 𝑏2,1 (𝑡, 𝑥)𝜕𝜇ℎ2(𝑡, 𝜇), (𝑡, 𝑥, 𝜇) ∈ Σ × R,

and (2.23) implies that

𝑏1,1 (𝑡, 𝑥𝑡 ) (𝜕𝜇ℎ1 (𝑡, 𝜇) − 𝜕𝜇ℎ2 (𝑡, 𝜇)) = 0, (𝑡, 𝜇) ∈ (0, 𝑇) × R,

with 𝑏1,1 (𝑡, 𝑥𝑡 ) ≠ 0, 𝑡 ∈ (0, 𝑇). It follows that 𝜕𝜇ℎ1 = 𝜕𝜇ℎ2.
Now let us show that the function 𝜑 of (7.1) is identically zero. Fixing 𝑡 ∈ (0, 𝑇) and applying the

derivative at order 𝑛𝑡 with respect to 𝜇 on both sides of (7.1), we get

𝑏1,1 (𝑡, 𝑥)𝜕
𝑛𝑡
𝜇 ℎ1 (𝑡, 𝜇) = 𝑏2,1 (𝑡, 𝑥)𝜕

𝑛𝑡
𝜇 ℎ2(𝑡, 𝜇 + 𝜑(𝑡, 𝑥)) = 𝑏2,1 (𝑡, 𝑥)𝜕

𝑛𝑡
𝜇 ℎ1 (𝑡, 𝜇 + 𝜑(𝑡, 𝑥)),

for (𝑥, 𝜇) ∈ Ω × R. Fixing 𝜇 = 𝜇𝑡 − 𝜑(𝑡, 𝑥) and applying (2.21), we get

𝑏1,1 (𝑡, 𝑥)𝜕
𝑛𝑡
𝜇 ℎ1 (𝑡, 𝜇𝑡 − 𝜑(𝑡, 𝑥)) = 𝑏2,1 (𝑡, 𝑥)𝜕

𝑛𝑡
𝜇 ℎ1 (𝑡, 𝜇𝑡 ) = 0, 𝑥 ∈ Ω,

and (2.22) implies

𝜕𝑛𝑡
𝜇 ℎ1(𝑡, 𝜇𝑡 − 𝜑(𝑡, 𝑥)) = 0, 𝑥 ∈ Ω.

However, since R 
 𝜇 ↦→ 𝜕𝑛𝑡
𝜇 ℎ1 (𝑡, 𝜇) is analytic, either it is uniformly vanishing or its zeros are isolated.

By (2.21), we have that 𝜕𝑛𝑡
𝜇 ℎ1 (𝑡, · ) � 0 for 𝑡 ∈ (0, 𝑇). Thus, the zeros of R 
 𝜇 ↦→ 𝜕𝑛𝑡

𝜇 ℎ1 (𝑡, 𝜇) are
isolated. Using the fact that Ω 
 𝑥 ↦→ 𝜑(𝑡, 𝑥) is continuous, we deduce that the map Ω 
 𝑥 ↦→ 𝜑(𝑡, 𝑥) is
constant. Then, recalling that 𝜑(𝑡, 𝑥) = 0 for 𝑥 ∈ 𝜕Ω, we deduce that 𝜑(𝑡, · ) ≡ 0. Since here 𝑡 ∈ (0, 𝑇)
is arbitrary chosen, we deduce that 𝜑 ≡ 0, and it follows that 𝑏1 = 𝑏2. The last statement of the theorem
can be proved with similar arguments. �

Proof of Theorem 2.5. We will only consider the other statement of the theorem since the last statement
can be deduced from similar arguments. Namely, we will prove that (2.4) and the conditions of Theorem
2.1 imply that 𝑏1 = 𝑏2. We start by showing that 𝜕𝜇ℎ1 = 𝜕𝜇ℎ2. For this purpose, combining (1.6) and
(7.1) with (2.24), we obtain

𝑏1,1 (𝑡, 𝑥)ℎ1 (𝑡, 𝑏1,2 (𝑡, 𝑥)𝜇) + 𝑏1,0 (𝑡, 𝑥) = 𝑏2,1(𝑡, 𝑥)ℎ2 (𝑡, 𝑏2,2(𝑡, 𝑥)𝜇) + 𝑏2,0 (𝑡, 𝑥) +A(𝑡)𝜑(𝑡, 𝑥),

for (𝑡, 𝑥, 𝜇) ∈ Σ × R. Differentiating both sides of this identity with respect to 𝜇, we get

𝑏1,2 (𝑡, 𝑥)𝑏1,1 (𝑡, 𝑥)𝜕𝜇ℎ1 (𝑡, 𝑏1,2 (𝑡, 𝑥)𝜇) = 𝑏2,2 (𝑡, 𝑥)𝑏2,1 (𝑡, 𝑥)𝜕𝜇ℎ2(𝑡, 𝑏2,2(𝑡, 𝑥)𝜇), (𝑡, 𝑥, 𝜇) ∈ Σ × R,

and (2.27) implies that

𝑏1,1 (𝑡, 𝑥𝑡 )𝑏1,2(𝑡, 𝑥𝑡 ) (𝜕𝜇ℎ1(𝑡, 𝑏1,2(𝑡, 𝑥𝑡 )𝜇) − 𝜕𝜇ℎ2 (𝑡, 𝑏1,2 (𝑡, 𝑥𝑡 )𝜇)) = 0, (𝑡, 𝜇) ∈ (0, 𝑇) × R,

with 𝑏1,1 (𝑡, 𝑥𝑡 ) ≠ 0 and 𝑏1,2 (𝑡, 𝑥𝑡 ) ≠ 0, 𝑡 ∈ (0, 𝑇). It follows that 𝜕𝜇ℎ1 = 𝜕𝜇ℎ2.
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Now let us show that the function 𝜑 of (7.1) is identically zero. Fixing 𝑡 ∈ (0, 𝑇) and applying the
derivative at order 𝑛𝑡 with respect to 𝜇 on both sides of (7.1), we get

𝑏1,1 (𝑡, 𝑥) (𝑏1,2 (𝑡, 𝑥))
𝑛𝑡 𝜕𝑛𝑡

𝜇 ℎ1 (𝑡, 𝑏1,2 (𝑡, 𝑥)𝜇)

= 𝑏2,1 (𝑡, 𝑥)) (𝑏2,2(𝑡, 𝑥))
𝑛𝑡 𝜕𝑛𝑡

𝜇 ℎ2 (𝑡, 𝑏2,2 (𝑡, 𝑥) (𝜇 + 𝜑(𝑡, 𝑥)))

= 𝑏2,1 (𝑡, 𝑥) (𝑏2,2 (𝑡, 𝑥))
𝑛𝑡 𝜕𝑛𝑡

𝜇 ℎ1 (𝑡, 𝑏2,2 (𝑡, 𝑥) (𝜇 + 𝜑(𝑡, 𝑥))), (𝑥, 𝜇) ∈ Ω × R.

Fixing 𝜇 = −𝜑(𝑡, 𝑥) and applying (2.27), we get

𝑏1,1 (𝑡, 𝑥) (𝑏1,2 (𝑡, 𝑥))
𝑛𝑡 𝜕𝑛𝑡

𝜇 ℎ1 (𝑡,−𝑏1,2 (𝑡, 𝑥)𝜑(𝑡, 𝑥)) = 𝑏2,1 (𝑡, 𝑥) (𝑏2,2 (𝑡, 𝑥))
𝑛𝑡 𝜕𝑛𝑡

𝜇 ℎ1 (𝑡, 0) = 0, 𝑥 ∈ Ω,

and (2.26) implies

𝜕𝑛𝑡
𝜇 ℎ1 (𝑡,−𝑏1,2 (𝑡, 𝑥)𝜑(𝑡, 𝑥))) = 0, 𝑥 ∈ Ω.

However, in view of (2.25), since R 
 𝜇 ↦→ 𝜕𝑛𝑡
𝜇 ℎ1 (𝑡, 𝜇) is analytic, 𝜕𝑛𝑡

𝜇 ℎ1 (𝑡, · ) � 0 and Ω 
 𝑥 ↦→

𝑏1,2 (𝑡, 𝑥)𝜑(𝑡, 𝑥) is continuous, we deduce that the map Ω 
 𝑥 ↦→ 𝑏1,2 (𝑡, 𝑥)𝜑(𝑡, 𝑥) is constant. Then,
recalling that 𝜑(𝑡, 𝑥) = 0 for 𝑥 ∈ 𝜕Ω and applying (2.26), we deduce that 𝜑(𝑡, · ) ≡ 0. Since here
𝑡 ∈ (0, 𝑇) is arbitrary chosen, we deduce that 𝜑 ≡ 0, and it follows that 𝑏1 = 𝑏2. �

Proof of Corollary 2.3. Again, we will only consider the first statement of the corollary as the other
statement follows similarly. Namely, we will prove that (2.4) and the conditions of Theorem 2.1 imply
that 𝑏1 = 𝑏2. For this purpose, we only need to prove that the function 𝜑 of (7.1) is identically zero.
We start by assuming that condition (i) is fulfilled. Fixing 𝑥 ∈ Ω and applying the derivative at order 𝑛𝑥
with respect to 𝜇 on both sides of (7.1), we get

𝑏1,1 (𝑡, 𝑥) (𝑏1,2 (𝑡, 𝑥))
𝑛𝑥𝜕𝑛𝑥

𝜇 𝐺 (𝑥, 𝑏1,2 (𝑡, 𝑥)𝜇)

= 𝑏2,1(𝑡, 𝑥) (𝑏2,2 (𝑡, 𝑥))
𝑛𝑥𝜕𝑛𝑥

𝜇 𝐺 (𝑥, 𝑏2,2 (𝑡, 𝑥) (𝜇 + 𝜑(𝑡, 𝑥)))

= 𝑏2,1(𝑡, 𝑥) (𝑏1,2 (𝑡, 𝑥))
𝑛𝑥𝜕𝑛𝑥

𝜇 𝐺 (𝑥, 𝑏1,2 (𝑡, 𝑥) (𝜇 + 𝜑(𝑡, 𝑥))), (𝑡, 𝜇) ∈ (0, 𝑇) × R.

Applying (2.26), fixing 𝜇 = 𝜇𝑥

𝑏1,2 (𝑡 ,𝑥)
− 𝜑(𝑡, 𝑥) and using (2.30), we get

𝑏1,1 (𝑡, 𝑥) (𝑏1,2 (𝑡, 𝑥))
𝑛𝑥𝜕𝑛𝑥

𝜇 𝐺 (𝑥, 𝜇𝑥 − 𝑏1,2 (𝑡, 𝑥)𝜑(𝑡, 𝑥)) = 𝑏2,1(𝑡, 𝑥) (𝑏1,2 (𝑡, 𝑥))
𝑛𝑥𝜕𝑛𝑥

𝜇 𝐺 (𝑥, 𝜇𝑥) = 0,

for 𝑡 ∈ (0, 𝑇). Then, (2.26) implies

𝜕𝑛𝑥
𝜇 𝐺 (𝑥, 𝜇𝑥 − 𝑏1,2(𝑡, 𝑥)𝜑(𝑡, 𝑥)) = 0, 𝑡 ∈ (0, 𝑇).

However, since R 
 𝜇 ↦→ 𝜕𝑛𝑥
𝜇 𝐺 (𝑥, 𝜇) is analytic and [0, 𝑇] 
 𝑡 ↦→ 𝑏1,2 (𝑡, 𝑥)𝜑(𝑡, 𝑥) is continuous, we

deduce that either 𝜕𝑛𝑥
𝜇 𝐺 (𝑥, · ) ≡ 0 or that the map [0, 𝑇] 
 𝑡 ↦→ 𝑏1,2 (𝑡, 𝑥)𝜑(𝑡, 𝑥) is constant. Since

𝜕𝑛𝑥
𝜇 𝐺 (𝑥, · ) � 0, we deduce that the map [0, 𝑇] 
 𝑡 ↦→ 𝑏1,2 (𝑡, 𝑥)𝜑(𝑡, 𝑥) is constant. Then, recalling that
𝜑(0, · ) = 0 and applying (2.26), we deduce that, for all 𝑡 ∈ [0, 𝑇], 𝜑(𝑡, 𝑥) = 0. Since here 𝑥 ∈ Ω is
arbitrary chosen, we deduce that 𝜑 ≡ 0, and it follows that 𝑏1 = 𝑏2.

Combining the above argumentation and the arguments used for the proof of Theorem 2.5, one can
easily check that (2.4) implies also that 𝑏1 = 𝑏2 when condition (ii) is fulfilled. This completes the proof
of the corollary. �

Proofs of Corollary 2.4. With the conclusion of Theorem 2.2 at hand, combined with 𝑏 𝑗 (𝑡, 𝑥, 𝜇) =
𝑞 𝑗 (𝑡, 𝑥)𝜇 for (𝑡, 𝑥, 𝜇) ∈ 𝑄 × R and 𝑗 = 1, 2, both (2.5) and (2.9) yield that

𝑞1(𝑥, 𝑡)𝜇 = 𝑆𝜑 (𝑞2 (𝑥, 𝑡)𝜇) = 𝑞2(𝑡, 𝑥) (𝜇 + 𝜑(𝑡, 𝑥)) + 𝜌(𝑡, 𝑥)𝜕𝑡𝜑(𝑡, 𝑥) +A(𝑡)𝜑(𝑡, 𝑥), (7.7)
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for any (𝑡, 𝑥, 𝜇) ∈ 𝑄 × R. In particular, plugging 𝜇 = 0 into (7.7), the function 𝜑 satisfies the IBVP⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜌(𝑡, 𝑥)𝜕𝑡𝜑(𝑡, 𝑥) +A(𝑡)𝜑(𝑡, 𝑥) + 𝑞2 (𝑡, 𝑥)𝜑(𝑡, 𝑥) = 0 in 𝑄,
𝜑(𝑡, 𝑥) = 0 on Σ,

𝜑(0, 𝑥) = 0 in Ω.

By the uniqueness of the above IBVP, we must have 𝜑 ≡ 0 in Q. Now, by using (7.7) again, we have
𝑞1 (𝑡, 𝑥)𝜇 = 𝑞2(𝑡, 𝑥)𝜇, for all 𝜇 ∈ R, which implies 𝑞1 = 𝑞2 as desired. This completes the proof. �

8. Application to the simultaneous determination of nonlinear and source terms

One of the important application of our results is to inverse source problems, where the aim is to recover
both the source and nonlinear terms simultaneously. In this section, we consider the IBVP⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜌(𝑡, 𝑥)𝜕𝑡𝑢(𝑡, 𝑥) +A(𝑡)𝑢(𝑡, 𝑥) + 𝑑 (𝑡, 𝑥, 𝑢(𝑡, 𝑥)) = 𝐹 (𝑡, 𝑥) in 𝑄,
𝑢(𝑡, 𝑥) = 𝑓 (𝑡, 𝑥) on Σ,

𝑢(0, 𝑥) = 0 for 𝑥 ∈ Ω,

(8.1)

with 𝑑 ∈ A(R;𝐶 𝛼
2 ,𝛼 ([0, 𝑇] ×Ω)) and 𝐹 ∈ 𝐶

𝛼
2 ,𝛼 ([0, 𝑇] ×Ω) satisfying the conditions

𝐹 (0, 𝑥) = 0, 𝑥 ∈ 𝜕Ω, (8.2)

𝑑 (𝑡, 𝑥, 0) = 0, (𝑡, 𝑥) ∈ 𝑄. (8.3)

The latter condition is just for presentational purposes and can be removed by redefining F. In a similar
way to the problem studied above, we assume here that there exists 𝑓 = 𝑓0 ∈ K0 such that (8.1)
admits a unique solution for 𝑓 = 𝑓0. Then, applying Proposition 3.1, we can prove that there exists
𝜖 > 0, depending on a, 𝜌, d, F, 𝑓0, Ω, T, such that, for all 𝑓 ∈ B( 𝑓0, 𝜖), (8.1) admits a unique solution
𝑢 𝑓 ∈ 𝐶1+ 𝛼

2 ,2+𝛼 ([0, 𝑇] × Ω) that lies in a sufficiently small neighborhood of the solution 𝑢0 of (8.1)
when 𝑓 = 𝑓0. Using these properties, we can define the parabolic DN map

M(𝑑,𝐹 ) : B( 𝑓0, 𝜖) 
 𝑓 ↦→ 𝜕𝜈 (𝑎)𝑢(𝑡, 𝑥)
		Σ,

where u solves (8.1).
We consider in this section the inverse problem of determining simultaneously the nonlinear term d

and the source term F appearing in (8.1). Similarly to the problem (IP), there will be a gauge invariance
for this inverse problem. Indeed, fix 𝜑 ∈ 𝐶1+ 𝛼

2 ,2+𝛼 ([0, 𝑇] ×Ω) satisfying (1.6) and consider the map𝑈𝜑

mapping 𝐶∞(R;𝐶 𝛼
2 ,𝛼 ([0, 𝑇] ×Ω)) ×𝐶

𝛼
2 ,𝛼 ([0, 𝑇] ×Ω) into itself and defined by𝑈𝜑 (𝑑, 𝐹) = (𝑑𝜑 , 𝐹𝜑)

with

𝑑𝜑 (𝑡, 𝑥, 𝜇) = 𝑑 (𝑡, 𝑥, 𝜇 + 𝜑(𝑡, 𝑥)) − 𝑑 (𝑡, 𝑥, 𝜑(𝑡, 𝑥)),

𝐹𝜑 (𝑡, 𝑥) = 𝐹 (𝑡, 𝑥) − 𝜌(𝑡, 𝑥)𝜕𝑡𝜑(𝑡, 𝑥) −A(𝑡)𝜑(𝑡, 𝑥) − 𝑑 (𝑡, 𝑥, 𝜑(𝑡, 𝑥)),
(8.4)

for (𝑡, 𝑥, 𝜇) ∈ 𝑄 ×R. Then, one can easily check that M(𝑑,𝐹 ) = M𝑈𝜑 (𝑑,𝐹 ) . Note that (8.4) is equivalent
to (1.7) for

𝑏(𝑡, 𝑥, 𝜇) = 𝑑 (𝑡, 𝑥, 𝜇) − 𝐹 (𝑡, 𝑥), (𝑡, 𝑥, 𝜇) ∈ 𝑄 × R.

Following, this property, in general, the best one can expect for our inverse problem is the determination
of 𝑈𝜑 (𝑑, 𝐹) from M(𝑑,𝐹 ) for some 𝜑 ∈ 𝐶1+ 𝛼

2 ,2+𝛼 ([0, 𝑇] × Ω) satisfying (1.6). Our first result will be
stated in that sense.
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Proposition 8.1. Let 𝑎 := (𝑎𝑖𝑘 )1�𝑖,𝑘�𝑛 ∈ 𝐶∞([0, 𝑇] × Ω;R𝑛×𝑛) satisfy (1.1), 𝜌 ∈ 𝐶∞([0, 𝑇] × Ω;R+)
and, for 𝑗 = 1, 2, let 𝑑 𝑗 ∈ A(R;𝐶 𝛼

2 ,𝛼 ([0, 𝑇] × Ω)) ∩ 𝐶∞([0, 𝑇] × Ω × R) and 𝐹𝑗 ∈ 𝐶
∞([0, 𝑇] × Ω)

satisfy (8.2)–(8.3) with 𝑑 = 𝑑 𝑗 and 𝐹 = 𝐹𝑗 . We assume also that there exists 𝑓0 ∈ K0 such that problem
(8.1), with 𝑓 = 𝑓0 and 𝑑 = 𝑑 𝑗 , 𝐹 = 𝐹𝑗 , 𝑗 = 1, 2, is well-posed. Then, the condition

M(𝑑1 ,𝐹1) = M(𝑑2 ,𝐹2) (8.5)

implies that there exists 𝜑 ∈ 𝐶1+ 𝛼
2 ,2+𝛼 ([0, 𝑇] ×Ω) satisfying (1.6) such that

(𝑑1, 𝐹1) = 𝑈𝜑 (𝑑2, 𝐹2), (8.6)

where𝑈𝜑 is the map defined by (8.4).

Proof. Fixing

𝑏 𝑗 (𝑡, 𝑥, 𝜇) = 𝑑 𝑗 (𝑡, 𝑥, 𝜇) − 𝐹𝑗 (𝑡, 𝑥), (𝑡, 𝑥, 𝜇) ∈ 𝑄 × R,

one can check that N𝑏 𝑗 = M(𝑑 𝑗 ,𝐹𝑗 ) and (8.5) implies (2.4). Then, applying Theorem 2.1, we deduce
that (2.5) holds true which clearly implies (8.6). �

It is well known that when 𝜇 ↦→ 𝑑 (𝑡, 𝑥, 𝜇) is linear, (𝑡, 𝑥) ∈ 𝑄, there is no hope to determine
general class of source terms 𝐹 ∈ 𝐶∞([0, 𝑇] × Ω) satisfying the condition of Proposition 8.1 from the
knowledge of the map M(𝑑,𝐹 ) ; see Example 1.1 or, for example, [KSXY22, Appendix A]. Nevertheless,
this invariance breaks for several classes of nonlinear terms d for which we can prove the simultaneous
determination of d and F from M(𝑑,𝐹 ) . More precisely, applying Corollary 2.1 and Theorems 2.3, 2.4,
2.5, we can show the following.

Corollary 8.1. Let the condition of Proposition 8.1 be fulfilled, and assume that, for 𝑗 = 1, 2, the
nonlinear term 𝑑 𝑗 satisfies one of the following conditions:

(i) There exists 𝜅 ∈ 𝐶 𝛼
2 ,𝛼 ([0, 𝑇] ×Ω) such that

𝑑1(𝑡, 𝑥, 𝜅(𝑡, 𝑥)) − 𝑑2(𝑡, 𝑥, 𝜅(𝑡, 𝑥)) = 𝐹1 (𝑡, 𝑥) − 𝐹2 (𝑡, 𝑥), (𝑡, 𝑥) ∈ [0, 𝑇] ×Ω.

(ii) There exists 𝑁 𝑗 � 2 such that

𝑑 𝑗 (𝑡, 𝑥, 𝜇) =
𝑁 𝑗∑
𝑘=1

𝑑 𝑗 ,𝑘 (𝑡, 𝑥)𝜇
𝑘 , (𝑡, 𝑥, 𝜇) ∈ [0, 𝑇] ×Ω × R, 𝑗 = 1, 2.

Moreover, for 𝑁 = min(𝑁1, 𝑁2) and J a dense subset of Q, we have

min���| (𝑑1,𝑁−1 − 𝑑2,𝑁−1) (𝑡, 𝑥) |,
2∑
𝑗=1

| (𝑑 𝑗 ,𝑁 − 𝑑 𝑗 ,𝑁−1) (𝑡, 𝑥) |
��� = 0, (𝑡, 𝑥) ∈ 𝐽,

𝑑1,𝑁 (𝑡, 𝑥) ≠ 0, (𝑡, 𝑥) ∈ 𝐽.

(iii) There exists ℎ 𝑗 ∈ A(R;𝐶 𝛼
2 ([0, 𝑇])) such that

𝑑 𝑗 (𝑡, 𝑥, 𝜇) = 𝑞 𝑗 (𝑡, 𝑥)ℎ 𝑗 (𝑡, 𝜇), (𝑡, 𝑥, 𝜇) ∈ [0, 𝑇] ×Ω × R, 𝑗 = 1, 2.

Assume also that, for all 𝑡 ∈ (0, 𝑇), there exist 𝜇𝑡 ∈ R and 𝑛𝑡 ∈ N such that

𝜕𝑛𝑡
𝜇 ℎ1 (𝑡, · ) � 0, 𝜕𝑛𝑡

𝜇 ℎ1 (𝑡, 𝜇𝑡 ) = 0, 𝑡 ∈ (0, 𝑇).
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Moreover, we assume that

𝑞1(𝑡, 𝑥) ≠ 0, (𝑡, 𝑥) ∈ 𝑄,

and that for all 𝑡 ∈ (0, 𝑇), there exists 𝑥𝑡 ∈ 𝜕Ω such that

𝑞1 (𝑡, 𝑥𝑡 ) = 𝑞2(𝑡, 𝑥𝑡 ) ≠ 0, 𝑡 ∈ (0, 𝑇).

(iv) There exists ℎ 𝑗 (𝑡, ·) ∈ A(R;𝐶 𝛼
2 ([0, 𝑇])) such that

𝑑 𝑗 (𝑡, 𝑥, 𝜇) = 𝑞 𝑗 ,1 (𝑡, 𝑥)ℎ 𝑗 (𝑡, 𝑞 𝑗 ,2 (𝑡, 𝑥)𝜇), (𝑡, 𝑥, 𝜇) ∈ [0, 𝑇] ×Ω × R, 𝑗 = 1, 2.

Assume also that, for all 𝑡 ∈ (0, 𝑇), there exists 𝑛𝑡 ∈ N such that

𝜕𝑛𝑡
𝜇 ℎ1 (𝑡, · ) � 0, 𝜕𝑛𝑡

𝜇 ℎ1 (𝑡, 0) = 0, 𝑡 ∈ (0, 𝑇).

Moreover, we assume that

𝑞1,1 (𝑡, 𝑥) ≠ 0, 𝑞1,2 (𝑡, 𝑥) ≠ 0 (𝑡, 𝑥) ∈ 𝑄,

and that for all 𝑡 ∈ (0, 𝑇), there exists 𝑥𝑡 ∈ 𝜕Ω such that

𝑞1,1 (𝑡, 𝑥𝑡 ) = 𝑞2,1 (𝑡, 𝑥𝑡 ) ≠ 0, 𝑞1,2 (𝑡, 𝑥𝑡 ) = 𝑞2,2 (𝑡, 𝑥𝑡 ) ≠ 0, 𝑡 ∈ (0, 𝑇).

Then (8.5) implies that 𝑑1 = 𝑑2 and 𝐹1 = 𝐹2.

Proof. Fixing

𝑏 𝑗 (𝑡, 𝑥, 𝜇) = 𝑑 𝑗 (𝑡, 𝑥, 𝜇) − 𝐹𝑗 (𝑡, 𝑥), (𝑡, 𝑥, 𝜇) ∈ 𝑄 × R,

one can check that N𝑏 𝑗 = M(𝑑 𝑗 ,𝐹𝑗 ) and (8.5) implies (2.4). Then, applying Corollary 2.1 and Theorem
2.3, 2.4, 2.5, we deduce that for semilinear terms 𝑑 𝑗 satisfying one of the conditions (i), (ii), (iii), (iv),
we have

𝑑1 (𝑡, 𝑥, 𝜇) − 𝐹1 (𝑡, 𝑥) = 𝑏1(𝑡, 𝑥, 𝜇) = 𝑏2 (𝑡, 𝑥, 𝜇) = 𝑑2(𝑡, 𝑥, 𝜇) − 𝐹2 (𝑡, 𝑥), (𝑡, 𝑥, 𝜇) ∈ 𝑄 × R.

Choosing 𝜇 = 0 in the above identity and applying (8.3), we deduce that 𝐹1 = 𝐹2 and then 𝑑1 = 𝑑2. �

A. Carleman estimates

In the end of this paper, we prove the Carleman estimate in Section 6. For the sake of convenience, we
also state the result as follows.

Lemma A.1. Let 𝑛 � 3, 𝑞 ∈ 𝐿∞(𝑄) and 𝑣 ∈ 𝐻1 (𝑄) ∩ 𝐿2 (0, 𝑇 ;𝐻2 (Ω)) satisfy the condition

𝑣 |Σ = 0, 𝑣 |𝑡=0 = 0. (A.1)
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Then, there exists 𝜏0 > 0 depending on T, Ω and ‖𝑞‖𝐿∞ (𝑄) such that for all 𝜏 > 𝜏0, the estimate

𝜏

∫ 𝑇

0

∫
Γ+ (𝑥0)

𝑒−2(𝜏2𝑡+𝜏𝜓 (𝑥)) |𝜕𝜈𝑣 |
2 |𝜕𝜈𝜓(𝑥) |𝑑𝜎(𝑥)𝑑𝑡 + 𝜏

2
∫
𝑄
𝑒−2(𝜏2𝑡+𝜏𝜓 (𝑥)) |𝑣 |2𝑑𝑥𝑑𝑡

� 𝐶
(∫

𝑄
𝑒−2(𝜏2𝑡+𝜏𝜓 (𝑥)) | (𝜕𝑡 − Δ 𝑥 + 𝑞)𝑣 |

2 𝑑𝑥𝑑𝑡

+ 𝜏

∫ 𝑇

0

∫
Γ− (𝑥0)

𝑒−2(𝜏2𝑡+𝜏𝜓 (𝑥)) |𝜕𝜈𝑣 |
2 |𝜕𝜈𝜓(𝑥) |𝑑𝜎(𝑥) 𝑑𝑡

) (A.2)

holds true.

Proof. Recall that 𝜓(𝑥) = |𝑥 − 𝑥0 |, 𝑥 ∈ Ω, for 𝑥0 ∈ R𝑛 \ Ω, then 𝜓 satisfies the eikonal equation
|∇𝑥𝜓(𝑥) | = 1 for 𝑥 ∈ Ω. Without loss of generality, we assume that u is real valued and 𝑞 = 0. In order
to prove the estimate (A.2), we fix 𝑣 ∈ 𝐶2 (𝑄) satisfying (A.1), 𝑠 > 0, and we set

𝑤 = 𝑒−(𝜏
2𝑡+𝜏𝜓 (𝑥)−𝑠 𝜓 (𝑥)2

2 )𝑣

in such a way that

𝑒−(𝜏
2𝑡+𝜏𝜓 (𝑥)−𝑠 𝜓 (𝑥)2

2 ) (𝜕𝑡 − Δ 𝑥)𝑣 = 𝑃𝜏,𝑠𝑤, (A.3)

where 𝑃𝜏,𝑠 is given by

𝑃𝜏,𝑠 = 𝜕𝑡 − Δ + 2𝑠𝜏𝜓 − 𝜏Δ𝜓 + 𝑠𝜓Δ𝜓 − 𝑠2𝜓2 + 𝑠 − 2𝜏∇𝜓 · ∇ + 2𝑠𝜓∇𝜓 · ∇.

Here, we used the fact that the function 𝜓 satisfies the eikonal equation.
We next decompose 𝑃𝜏,𝑠 into two parts 𝑃𝜏,𝑠 = 𝑃𝜏,𝑠,+ + 𝑃𝜏,𝑠,− with

𝑃𝜏,𝑠,+ := − Δ + 2𝑠𝜏𝜓 − 𝜏Δ𝜓 + 𝑠𝜓Δ𝜓 − 𝑠2𝜓2 + 𝑠,

𝑃𝜏,𝑠,− :=𝜕𝑡 − 2𝜏∇𝜓 · ∇ + 2𝑠𝜓∇𝜓 · ∇.

Then, it follows that ��𝑃𝜏,𝑠𝑤
��2
𝐿2 (𝑄)

� 2
∫
𝑄

(
𝑃𝜏,𝑠,+𝑤

) (
𝑃𝜏,𝑠,−𝑤

)
𝑑𝑥𝑑𝑡

:= 𝐼 + 𝐼 𝐼 + 𝐼 𝐼 𝐼 + 𝐼𝑉 +𝑉 +𝑉𝐼 +𝑉𝐼𝐼,

(A.4)

where

𝐼 = −2
∫
𝑄
𝜕𝑡𝑤Δ𝑤 𝑑𝑥𝑑𝑡, 𝐼 𝐼 = 4𝜏

∫
𝑄
Δ𝑤∇𝜓 · ∇𝑤 𝑑𝑥𝑑𝑡,

𝐼 𝐼 𝐼 = 4𝑠𝜏
∫
𝑄
𝜓𝑤𝜕𝑡𝑤 𝑑𝑥𝑑𝑡, 𝐼𝑉 = −8𝑠𝜏2

∫
𝑄
𝜓𝑤∇𝜓 · ∇𝑤 𝑑𝑥𝑑𝑡,

𝑉 = −4𝑠
∫
𝑄
Δ𝑤𝜓∇𝜓 · ∇𝑤 𝑑𝑥𝑑𝑡, 𝑉 𝐼 = 8𝑠2𝜏

∫
𝑄
𝜓2𝑤∇𝜓 · ∇𝑤 𝑑𝑥𝑑𝑡,

and

𝑉𝐼𝐼 = 2
∫
𝑄

[
−𝜏Δ𝜓 + 𝑠𝜓Δ𝜓 − 𝑠2𝜓2 + 𝑠

]
𝑤
(
𝑃𝜏,𝑠,−𝑤

)
𝑑𝑥𝑑𝑡.
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Recalling that 𝑤 |Σ = 0 and 𝑤 |𝑡=0 = 0, fixing

𝑐∗ = inf
𝑥∈Ω

𝜓(𝑥) > 0

and integrating by parts, we find

𝐼 = 2
∫
𝑄
𝜕𝑡∇𝑤 · ∇𝑤 𝑑𝑥𝑑𝑡 =

∫
𝑄
𝜕𝑡 |∇𝑤 |

2 𝑑𝑥𝑑𝑡 =
∫
Ω
|∇𝑤(𝑇, 𝑥) |2 𝑑𝑥 � 0,

𝐼 𝐼 𝐼 = 2𝑠𝜏
∫
𝑄
𝜓𝜕𝑡 (𝑤

2) 𝑑𝑥𝑑𝑡 = 2𝑠𝜏
∫
Ω
𝜓(𝑥)𝑤(𝑇, 𝑥)2 𝑑𝑥 � 2𝑐∗𝑠𝜏

∫
Ω
𝑤(𝑇, 𝑥)2 𝑑𝑥 � 0,

𝐼𝑉 = −4𝑠𝜏2
∫
𝑄
(𝑥 − 𝑥0) · ∇(𝑤

2) 𝑑𝑥𝑑𝑡 = 4𝑠𝜏2
∫
𝑄

div(𝑥 − 𝑥0)𝑤
2 𝑑𝑥𝑑𝑡

= 4𝑛𝑠𝜏2
∫
𝑄
𝑤2 𝑑𝑥𝑑𝑡 � 0,

and similarly,

𝑉𝐼 = −4𝑠2𝜏

∫
𝑄

div(𝜓2∇𝜓)𝑤2 𝑑𝑥𝑑𝑡 = −4(𝑛 + 1)𝑠2𝜏

∫
𝑄
|𝑥 − 𝑥0 |𝑤

2 𝑑𝑥𝑑𝑡,

where we utilized the fact that 𝜓2∇𝜓 = |𝑥 − 𝑥0 | (𝑥 − 𝑥0).
Now, let us consider 𝐼 𝐼. Integrating by parts and using the fact that 𝑤 |Σ = 0, we get

𝐼 𝐼 = 4𝜏
∫
Σ
𝜕𝜈𝑤∇𝜓 · ∇𝑤 𝑑𝜎(𝑥)𝑑𝑡 − 4𝜏

∫
𝑄
∇𝑤 · ∇(∇𝜓 · ∇𝑤) 𝑑𝑥𝑑𝑡

= 4𝜏
∫
Σ
(𝜕𝜈𝑤)

2𝜕𝜈𝜓 𝑑𝜎(𝑥)𝑑𝑡 − 4𝜏
∫
𝑄
𝐷2𝜓(∇𝑤,∇𝑤) 𝑑𝑥𝑑𝑡 − 2𝜏

∫
𝑄
∇𝜓 · ∇(|∇𝑤 |2) 𝑑𝑥𝑑𝑡

= 2𝜏
∫
Σ
(𝜕𝜈𝑤)

2𝜕𝜈𝜓 𝑑𝜎(𝑥)𝑑𝑡 − 4𝜏
∫
𝑄
𝐷2𝜓(∇𝑤,∇𝑤) 𝑑𝑥𝑑𝑡 + 2𝜏

∫
𝑄
Δ𝜓 |∇𝑤 |2 𝑑𝑥𝑑𝑡

= 2𝜏
∫
Σ
(𝜕𝜈𝑤)

2𝜕𝜈𝜓 𝑑𝜎(𝑥)𝑑𝑡 − 4𝜏
∫
𝑄
𝐷2𝜓(∇𝑤,∇𝑤) 𝑑𝑥𝑑𝑡 + 2𝜏

∫
𝑄

𝑛 − 1
|𝑥 − 𝑥0 |

|∇𝑤 |2 𝑑𝑥𝑑𝑡.

However, one can check that

𝐷2𝜓(𝑥) = |𝑥 − 𝑥0 |
−3

(
|𝑥 − 𝑥0 |

2IdR𝑛×𝑛 − 𝑁 (𝑥)
)
, 𝑥 ∈ Ω

with 𝑁 (𝑥) = ((𝑥𝑖 − 𝑥
𝑖
0) (𝑥 𝑗 − 𝑥

𝑗
0))1�𝑖, 𝑗�𝑛 where 𝑥 = (𝑥1, . . . , 𝑥𝑛) and 𝑥0 = (𝑥1

0, . . . , 𝑥
𝑛
0 ). Moreover, it can

be proved that 𝑁 (𝑥) is a symmetric matrix whose eigenvalues are either 0 or |𝑥 − 𝑥0 |
2. Thus, we get

0 � 𝐷2𝜓(𝑥) (∇𝑤(𝑡, 𝑥),∇𝑤(𝑡, 𝑥)) �
|∇𝑤(𝑡, 𝑥) |2

|𝑥 − 𝑥0 |
, for (𝑡, 𝑥) ∈ 𝑄,

and it follows that

𝐼 𝐼 � 2𝜏
∫
Σ
(𝜕𝜈𝑤)

2𝜕𝜈𝜓 𝑑𝜎(𝑥)𝑑𝑡 + 𝜏

∫
𝑄

2(𝑛 − 3)
|𝑥 − 𝑥0 |

|∇𝑤 |2 𝑑𝑥𝑑𝑡

� 2𝜏
∫
Σ
(𝜕𝜈𝑤)

2𝜕𝜈𝜓 𝑑𝜎(𝑥)𝑑𝑡 + 𝑐1 (𝑛 − 3)𝜏
∫
𝑄
|∇𝑤 |2 𝑑𝑥𝑑𝑡,

(A.5)

where 𝑐1 = inf𝑥∈Ω 2
|𝑥−𝑥0 |

.
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Applying similar computations for V, one has that

𝑉 = −2𝑠
∫
𝑄
Δ𝑤∇𝜓2 · ∇𝑤 𝑑𝑥𝑑𝑡

= −2𝑠
∫
Σ
𝜕𝜈𝑤∇𝜓

2 · ∇𝑤 𝑑𝜎(𝑥)𝑑𝑡 + 2𝑠
∫
𝑄
∇𝑤 · ∇(∇𝜓2 · ∇𝑤) 𝑑𝑥𝑑𝑡

= −2𝑠
∫
Σ
(𝜕𝜈𝑤)

2𝜕𝜈𝜓
2 𝑑𝜎(𝑥)𝑑𝑡 + 2𝑠

∫
𝑄
𝐷2𝜓2(∇𝑤,∇𝑤) 𝑑𝑥𝑑𝑡 + 𝑠

∫
𝑄
∇𝜓2 · ∇(|∇𝑤 |2) 𝑑𝑥𝑑𝑡

= −𝑠

∫
Σ
(𝜕𝜈𝑤)

2𝜕𝜈𝜓
2 𝑑𝜎(𝑥)𝑑𝑡 + 2𝑠

∫
𝑄
𝐷2𝜓2 (∇𝑤,∇𝑤) 𝑑𝑥𝑑𝑡 − 𝑠

∫
𝑄
Δ𝜓2 |∇𝑤 |2 𝑑𝑥𝑑𝑡

= −𝑠

∫
Σ
(𝜕𝜈𝑤)

2𝜕𝜈𝜓
2 𝑑𝜎(𝑥)𝑑𝑡 + 2𝑠

∫
𝑄
𝐷2𝜓2 (∇𝑤,∇𝑤) 𝑑𝑥𝑑𝑡 − 𝑠𝑛

∫
𝑄
|∇𝑤 |2 𝑑𝑥𝑑𝑡,

� −𝑠

∫ 𝑇

0

∫
Γ+ (𝑥0)

2𝜓(𝜕𝜈𝑤)2𝜕𝜈𝜓 𝑑𝜎(𝑥)𝑑𝑡 + 𝑠(4 − 𝑛)

∫
𝑄
|∇𝑤 |2 𝑑𝑥𝑑𝑡︸����������������������������������������������������������������������������������︷︷����������������������������������������������������������������������������������︸

Here we use Δ𝜓2=Δ |𝑥−𝑥0 |2=𝑛 and 𝐷2𝜓2 (∇𝑤,∇𝑤)=2 |∇𝑤 |2.

.

(A.6)

In addition, the sum of the last two terms on the right-hand side of (A.5) and (A.6) is{
𝑠
∫
𝑄
|∇𝑤 |2 𝑑𝑥𝑑𝑡 for 𝑛 = 3,

𝑐1 (𝑛 − 3)𝜏
∫
𝑄
|∇𝑤 |2 𝑑𝑥𝑑𝑡 + 𝑠(4 − 𝑛)

∫
𝑄
|∇𝑤 |2 𝑑𝑥𝑑𝑡 for 𝑛 � 4.

(A.7)

By choosing 𝜏 � 𝑠 (4−𝑛)
𝑐1 (𝑛−3) for 𝑛 � 4, both cases appearing in (A.7) are nonnegative. Now fixing

𝑐2 = 2 sup𝑥∈𝜕Ω 𝜓(𝑥), and choosing

𝜏 > 𝜏1(𝑠) :=

{
𝑐2𝑠 for 𝑛 = 3,
max

(
𝑐2𝑠,

𝑠 (4−𝑛)
𝑐1 (𝑛−3)

)
for 𝑛 � 4,

we can deduce that

𝐼 𝐼 +𝑉 � 𝜏
∫ 𝑇

0

∫
Γ+ (𝑥0)

(𝜕𝜈𝑤)
2 |𝜕𝜈𝜓 | 𝑑𝜎(𝑥)𝑑𝑡 − 2𝜏

∫ 𝑇

0

∫
Γ− (𝑥0)

(𝜕𝜈𝑤)
2 |𝜕𝜈𝜓 | 𝑑𝜎(𝑥)𝑑𝑡.

In addition, repeating the above argumentation, it is not hard to check that there exists a constant
𝑐0 > 0 independent of s and 𝜏 such that

𝑉𝐼 +𝑉𝐼𝐼 � −𝑐0

(
(𝜏2 + 𝑠2𝜏 + 𝑠2)

∫
𝑄
𝑤2 𝑑𝑥𝑑𝑡 + (𝜏 + 𝑠2)

∫
Ω
𝑤(𝑇, 𝑥)2 𝑑𝑥

)
.

Thus, choosing 𝑠 = 𝑐0 (1 + 𝑐−1
∗ ) + 1, 𝜏0 = max(𝜏1 (𝑠),

𝑠𝑛
𝑐1
, 3𝑠2 + 1, 𝑠𝑐0

𝑐∗
) and applying the above estimates,

for all 𝜏 > 𝜏0, we obtain��𝑃𝜏,𝑠𝑤
��2
𝐿2 (𝑄)

� 2
∫
𝑄
𝑃𝜏,𝑠,+𝑤𝑃𝜏,𝑠,−𝑤 𝑑𝑥𝑑𝑡

� 𝑐1𝜏
2
∫
𝑄
𝑤2 𝑑𝑥𝑑𝑡 + 𝜏

∫ 𝑇

0

∫
Γ+ (𝑥0)

(𝜕𝜈𝑤)
2 |𝜕𝜈𝜓 | 𝑑𝜎(𝑥)𝑑𝑡

− 2𝜏
∫ 𝑇

0

∫
Γ− (𝑥0)

(𝜕𝜈𝑤)
2 |𝜕𝜈𝜓 | 𝑑𝜎(𝑥)𝑑𝑡,
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with 𝑐1 > 0 depending only on Ω. From this last estimate and the fact that

𝜕𝜈𝜓(𝑥) =
(𝑥 − 𝑥0) · 𝜈

|𝑥 − 𝑥0 |
, 𝑥 ∈ 𝜕Ω,

we deduce easily (A.2). �
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