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4 Background
1.1 Basic Notation

The sets N, Z, Q, R, and C denote the sets of natural, whole, rational, real, and
complex numbers, respectively. We assume that N contains the number 0.

For real numbers a, b € R we use a A b = min{a, b} and a V b = max{a, b}.

For sets A, B the notation A® is used to denote all functions from B to A.

A W B is used to denote disjoint unions; that is, this notation includes the
claimthat AN B = 0.

We use 14 to denote the indication function of a set A; so 14(w) = 1 for
we€ Aand 14(w) =0 forw ¢ A.

For linear operators we use / to denote the identity operator.

In a generic probability space, we use P to denote the probability measure
and E to denote expectation.

A graph is a pair (V, E) where V is a set (whose elements are called vertices)
and £ C {{x,y} € G}. A subset {x,y} € E is called an edge. Sometimes we
write x ~ y to denote the case that {x, y} € E. A graph is naturally equipped
with the notion of paths: A finite path in a graph G is a sequence xy, . .., Xp
of vertices such that x; ~ x;;1 for all 0 < j < n. For such a sequence, n
is the length of the path; this is the number of edges traversed by the path.
An infinite such sequence is called an infinite path. A graph is connected if
for every x,y € G there is some finite path starting at x and ending at y. A
connected graph comes with a natural metric on it: distg (x, y) is the minimal
length of a path between x and y.

For a sequence (a,), we use the notation a[m, n] = (an, . .., an).

For two measures y, v on a measurable space (Q, ), we write u < v if u
is absolutely continuous with respect to v. That is, for any A € ¥ it holds that
if v(A) = 0 then u(A) = 0.

If u is a probability measure on a measurable space (2, ¥ ), then an i.i.d.-u
sequence of elements means a sequence of elements (w;); such that each one
has law p and that are all independent. (Sometimes this is just called i.i.d.,
omitting u from the notation; “i.i.d.” stands for independent and identically
distributed.)

In a group G we use 1 and sometimes 15 to denote the identity element.
For elements x, y € G we denote x¥ = y~'xy and [x,y] = x 'y lxy = x"1x¥.
The latter is called the commutator of x,y. Iterated commutators are defined
inductively by [xy, ..., x,] := [[X1, ..., Xn—1], X ]. The centralizer of x € G is
definedtobe Cs(x) ={y € G : [x,y] = 1}.

For A ¢ G we write A = {a*:a € A} and A™! = {a‘l: aeA}. A is
called symmetric if A = A™!. A group G is generated by a subset S c G if
every element of G can be written a product of finitely many elements from
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SU S, Also, (A) denotes the subgroup generated by the elements of A; that
is, all elements that can be written as a product of finitely many elements from
AU A~!. For two subsets A, B C G we write [A, B] = {[a,b]:a € A, b € B)
(note that this is the group generated by all commutators, not just the set of
commutators). We also denote AB ={ab:a € A, b € B}.

1.2 Spaces of Sequences

Let G be a countable set. Let us briefly review the formal setup of the canonical
probability spaces on G'. This is the space of sequences (w, )yeo Where w, € G
for all n € N. A cylinder set is a set of the form

CU.wy={neG |Vjel, nj=wj}, JcN,0<|/|<o, weG"

It is also natural to define C(0,w) = GY. Let X it GY = G be the map
X;(w) = wj projecting onto the jth coordinate. For times ¢ > s we also use the
notation X[s, ] = (Xs, Xs+1, ..., X¢).

Define the cylinder o-algebra

F =0(Xo.X1.X2,...) =0 (X,'(g) IneN, g€ G).

Exercise 1.1 Show that
F =0(X0.X1.X2,...) =0 (C(J.w) |0< |J| <00, JCN, weG")
=o(CH0.....n}w) |neN wed).
Show that n € C(J, w) if and only if C(J,w) = C(J, 7).
For t > 0 we denote

Fi =0 (Xo, ..., Xyp).

Exercise 1.2 Show that F; C F;,1 C ¥ . (A sequence of o-algebras with this
property is called a filtration.) Conclude that

7’=0‘(uﬁ).

Theorems of Carathéodory and Kolmogorov tell us that the probability mea-
sure P on (GN, Vil ) is completely determined by knowing the marginal proba-
bilities P[Xo = go, ..., Xn = gnl foralln e N, gy, ..., g, € G. Thatis, when G
is countable, Kolmogorov’s extension theorem implies the following:
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Theorem 1.2.1 Let (P;); be a sequence of probability measures, where each P,
is defined on ;. Assume that these measures are consistent in the sense that

forallt,
Pt+1({(X07"‘,Xt) = (go"~-’gt)}) = Pt({(X()?"‘,Xt) = (80,.~’gt)})
(1.
for any go, ..., g € G. Then, there exists a unique probability measure P on

(GN, 7‘") such that for any A € F; we have P(A) = P;(A).

Details can be found in Durrett (2019, appendix A).

Exercise 1.3 Let (P;), be a sequence of probability measures, where each P is
defined on 7. Show that (1.1) holds if and only if for any 7 < s and any A € 77,
we have Ps(A) = P;(A).

The space G comes equipped with a natural shift operator: 6: G — GM
given by 8(w); = w4 forall t € N.

Exercise 1.4 Show that §’(A) € F forany A € F. 5 solution @

Exercise 1.5 Let K C F be a collection of events. Show that if G = o (K) is
the o-algebra generated by K, then 7' G := {07'(A) : A € G} is a o-algebra,
and in fact 07'G = o (07" (K): K € K). b solution

Exercise 1.6 Show that 67! (A) € ¥ forany A € F. 5 solution <

Exercise 1.7 Define

o (Xp Xeur,..) = (X (9): € G, j20).

t+j

Show that O-(X[, XtJr], .. ) = 9_177 = {G_I(A) A€ ‘7_—} > solution <

Exercise 1.8 If ~ is an equivalence relation on €, we say that a subset A C Q
respects ~ if foranyw ~n € Qwehavew € A & n € A.

Show that the collection of subsets A that respect the equivalence relation ~
forms a o-algebra on Q.

Exercise 1.9 Define an equivalence relation on G'' by w ~; w’ if w ;= w]’. for
allj=0,1,...,r

Show that this is indeed an equivalence relation.

Show that o-(Xo, X1, ..., X;) = {A: Arespects ~;}.
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1.3 Group Actions

A (left) group action G ~ X is a function from G X X to X, (y, x) — vy.x, that
is compatible in the sense that (yn).x = v.(n.x), and such that 1.x = x for all
x € X. We usually denote y.x or yx for the action of y € G on x € X.

A right action is analogously defined for (x,7y) — x.y and compatibility is
x.(yn) = (x.y).n (and x.1 = x for all x € X).

Exercise 1.10 Let G ~ X be a left group action. For any y € G and x € X
define x.y := y~!.x. Show that this defines a right action of G on X.

Conversely, show that if G acts on X from the right, then defining y.x = x.y~!
is a left action.

The bijections on a set X form a group with the group operation given by
composition of functions. A (left) group action G ~ X can be thought of as a
homomorphism from the group into the group of bijections on X.

Sometimes, we wish to restrict to some subgroup of bijections on X when
X has some additional structure. For example, if X is a topological space,
we say that G acts on X by homeomorphisms if every element of G is a
homeomorphism of X, when thinking of elements of G as identified with their
corresponding bijection of X. That is, an action by homeomorphisms is a group
homomorphism from G into the set of homeomorphisms of X.

Similarly, if H is some Hilbert space, then a group G acts on H by unitary
operators if every element of G is mapped to a unitary operator of H. This is
just a group homomorphism from G into the group of unitary operators on H.

Exercise 1.11 Show that any group acts on itself by left multiplication; that is,
G ~ Gbyx.y := xy.

Exercise 1.12 Let CY be the set of all functions from G — C. Show that
G~ COby (x.f)(y) = f (x71y).
Show that f*(y) := f (yx‘l) defines a right action.

Exercise 1.13 Generalize the previous exercise as follows:

Suppose that G ~ X. Consider C¥, all functions from X — C. Show that
GACXbyy.f(x):=f (y_l.x), forall f € CX,y € G, x € X.

Show that the action G ~ CX is linear; that is, y.(( f + h) = {(y.f) + h,
forall f,h: X - C,le€C,andy € G.

Show that f(x) := f(y.x) defines a right action of G on CX. Show that this
right action is linear as well.
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Exercise 1.14 Let G ~ X. Let M (X) be the set of all probability measures
on (X, ), where ¥ is some o-algebra on X. Suppose that for any g € G the
function g: X — X given by g(x) = g.x is a measurable function. (In this case
we say that G acts on X by measurable functions.)

Show that G ~ M (X) by

VAeF  gu(A):=u(g'A),

where g7'A := {g‘l.x: X € A}.

Exercise 1.15 Let F = {f: G — C: f(1) = 0}. Show that
PO =1 (x7y) = £ (x7)
defines a left action of G on F.

Notation Throughout this book, unless specified otherwise, we will always
use the left action y.f(x) = f (y‘lx) forG~ Xand f: X — C.

Definition 1.3.1 Let G ~ X be a (left) action. For A ¢ X and y € G define
vy A={yx:xeA}.ForF c Gdenote F.A={y.x:y€eF, x € A}.

A subset A C X is called G-invariant if y.A C A for all y € G; equivalently,
G.A=A.

Definition 1.3.2 For a group action G ~ X and some x € X, the set G.x :=
{g.x : g € G} is called the orbit of x under G. The stabilizer of x is the
subgroup stab(x) = {g € G: g.x = x}.

Exercise 1.16 Show that for G ~ X any stabilizer stab(x) is indeed a subgroup.

> solution <

Exercise 1.17 (Orbit-Stabilizer theorem) Let G ~ X.
Show that |G.x| = [G : stab(x)]. > solution 4

One nice consequence of the orbit-stabilizer theorem is that intersections of
finite-index subgroups have finite index.

Proposition 1.3.3 Let G be a group and H, N < G be subgroups.
Then, [G: HNN]<[G:H]-[G:N]

Proof [Ifeither [G : H] = coor [G : N] = oo there is nothing to prove because
the right-hand side is infinite. So assume that [G : H] < oo and [G : N] < oo.
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Let X = G/H X G/N. That is, elements of X are pairs of cosets (¢ H, BN).
Therefore, X is finite, since |X| = |G/H| - |G/N].

The group G acts on X by g.(eH, SN) = (gaH,gBN). The stabilizer of
(H, N) may easily be computed: stab(H,N) = HN N. Thus, [G: HN N] <
|X| <[G:H] [G:N]. O

1.4 Discrete Group Convolutions

Throughout this book we will almost exclusively deal with countable groups.
Given a countable group G, one may define the convolution of functions
f,8: G — C as follows.

Definition 1.4.1 Let G be a countable group. Let f, g: G — C. The convolution
of f and g is the function f % g: G — C defined by

() =) fe (y'x) = D FOG),
y y
as long as the above sum converges absolutely.
This is the analogue of the usual convolution of functions on the group R:

(f*g)(x)=ff(y)g(x—y)dy.

However, the convolution is not necessarily commutative, as is the case for
Abelian groups.

Exercise 1.18 Show that
()@ = f(xy™) g
y

Give an example for which f % g # g * f.

Exercise 1.19 (Left action and convolutions) Show that x.(f = g) = (x.f * g)
for the canonical left action x.f(y) = f (x‘ly).

When G is countable, a probability measure y on G may be thought of as a
function p: G — [0, 1] so that u(A) = Y ,eca 1(a).

Exercise 1.20 Let u be a probability measure on a countable group G, and let
X be a random element of G with law p. Show that
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Elf (e X)) = (f

whenever the above quantities are well defined.

Definition 1.4.2 Let u be a probability measure on G. We will use the notation

u' to denote the ¢-fold convolution of u with itself. Specifically, u' = u and
t+1

W=t = e

Exercise 1.21 Let G be a countable group. Let y, v be probability measures on
G. Let X, Y be independent random elements in G such that X has law y, and

Y has law v.
Show that the law of X - Y is p = v. 5 solution
Exercise 1.22 Show that for any p > 1 we have ||x.f||, = [If]l,. Here,

1115 = 2 1f ()P and || flleo = sup, [ f(x)].
Show that || /11, = [ f1l,, where f(x) = f (x~!).

Exercise 1.23 Prove Young’s inequality for products: For all a, b > 0 and any

p,q > 0 such that p + ¢ = 1, we have ab < pa'/? + qb'/4, b solution <
Exercise 1.24 Prove the generalized Holder inequality: for all py,...,p, €
[1, o] such that 2;’21 pi =1, we have
E J
n
Ufi fulli Sl_[“fj”pj' > solution
J=1

Exercise 1.25 Prove Young’s inequality for convolutions: For any p, g > 1 and

1SrSoosuchthatIl)Jr‘lI=%+1,wehave

1 gllr < 1S 1lp - 1181l > solution <

1.5 Basic Group Notions

Here we briefly recall some basic notions and examples from group theory.
Further depth on any of these notions can be found in any basic textbook on
group theory.
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1.5.1 Basic Linear Groups

If R is aring we use the notation M,, (R) to denote the set of n X n matrices with
entries in R. For example, M, (Z) is the set of all n X n matrices with integer
entries. These do not necessarily form a group. By GL,(R) we denote the
group of n X n invertible matrices with real entries. The group operation here
is matrix multiplication. In more generality, GL, (C) is the group of n X n
matrices with complex entries, so that GL,(R) < GL, (C).

Exercise 1.26 Show that GL,(R) N M(Z) is not a group with matrix multipli-
cation. > solution

A nontrivial fact is that if we restrict to integer entries with determinant +1,
we do have a group. We denote

GL,(Z) ={M € M, (Z) : |det(M)| = 1}.

Proposition 1.5.1 GL, (Z) is a group with matrix multiplication.

Proof The main property we will use is that for any M € GL,(Z) the number
det(M) is invertible in the ring Z. (This proof generalizes to matrices over a
commutative ring with unit such that the determinants are invertible in the ring;
see Exercise 1.102.)

Recall Cramer’s Rule: For b € R4 and A € GL,(R), we may compute the
solution to Ax = b by x; = %&i’)) foreachi = 1,...,n, where A(i, b) is the
matrix A with ith column replaced by the vector b.

Let ¢; denote the standard basis for R". So ¢; is a vector with 1 in the ith
position, and 0 everywhere else.

Now let A € GL,(Z). We want to compute A~ and show that it has integer
entries. Let x; be the ith column of A~!. Then Ax; = e;. Consequently,

. det(A(j, ei))
(4 )u =00 = =5

Note that since A, e; have integer entries, then so does A(j, ¢;). Since det(A) €
{1, 1}, we conclude that A~! has integer entries.

Thus, if A € GL,(Z) then A~! € GL,(Z).

The fact that GL,,(Z) is closed under matrix multiplication is easy to prove,
and is left to the reader. O

The following notation is also standard. Define:

SL,(Z) = {A € GL,(Z) | det(A) = 1}.
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Exercise 1.27 Show that SL,(Z) < GL,(Z) and that [GL,(Z) : SL,(Z)] =2

> solution <

Exercise 1.28 For 1 <i,j < nlet E; ; denote the n X n matrix with 1 only in
the (i, j) entry, and O in all other entries.

Show that SL,,(Z) = <I +Ejl1<i#j< n>, where [ is the n X n identity
matrix. > solution <

1.5.2 Abelian Groups

A group G is called Abelian, or commutative, if xy = yx forall x,y € G.

A group G is called finitely generated if there exists a finite generating set
for G. That is, if there exists a finite set S C G, |S| < oo, such that for any
x € Gthereare sy,...,s, € SUS™! such that x = s; - - - 5,,. We will come back
to finitely generated groups in Section 1.5.7.

Exercise 1.29 Show that the group Z? (with vector addition as the group
operation) is a finitely generated Abelian group, with the standard basis serving
as a finite generating set.

Finitely generated Abelian groups have a special structure. The classifica-
tion of these groups is given by the so-called fundamental theorem of finitely
generated Abelian groups. We will prove a simplified version of this theorem.

Theorem 1.5.2 Let G be a finitely generated Abelian group. Then there exists
a finite Abelian group F and some integer d > O such that G = Z¢ x F. Also,
d > 0ifand only if |G| =

Proof Let U = {uy,...,u,} be a finite generating set for G. Consider the
vector space V = Q". Define a map y: Z" — G by

Wzt . zn) = @)™ - ()

Note that since G is Abelian and since U generates G, the map  is surjective.
Also, it is simple to check that because G is Abelian we have that ¢ is a
homomorphism.

LetK = Keryy = {Z € Z": y(Z) = 1}. Let W = span(K), which is a subspace
of V. The quotient vector space V /W has dimension d < n, so we can choose
b bd € V such that {b; + W: 1 < j < d} forms a (linear) basis for V/W.
Let Wi, ..., Wx be a basis for W. By multiplying by a large enough integer,
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we can assume without loss of generality that l;j €Z'foralll < j <dand
wj € Z"forall 1 < j <k.

Define s; = ¢(b;) forall 1 < j < d and fj = ¢ (;) forall 1 < j < k.

We claim that the map (z1,...,2q4) = (s1)% - (s4)% is an isomorphism
from Z9 onto Z = (s1, . . ., s4). It is immediate to verify that this is a surjective
homomorphism. To show it is injective, assume that (s1)*' --- (sg)%¢ = 1.
Then,

w(Z]El +'”+Zdl—;d) = (Sl)zl ...(Sd)zd — 1,

implying that zll;I +-- -+zdl;d € K c W. Since l;l +W, ..., I;d + W are linearly
independent, it must be that z; = - - - = z4 = 0. This proves injectivity, showing
that Z = 79,

Now fix some 7 € Z" N W. Then since W = span(K), there exist some
qis---qGm € Qand Zi,...,Zn € K such that Z = q1Z1 + -+ + gmZm. SO
there exists a large enough integer r # O such that r7 € K, implying that
Y(2)" = ¢(r7) = 1. This implies that any element of F = (fy,..., fx) is
torsion; that is, for any x € F there exists an integer » # 0 such that x” = 1.
(One can check that in fact F is exactly the subgroup of all torsion elements of
G.) So we may take r > 0 large enough so that (f;)" = 1forall 1 < j < k.
Since F is generated by f1, ..., fk, and since F' is Abelian, we have that the map
0,...,r = 1} = F given by (ay,...,ax) = (f1)® ---(fr)® is surjective,
and thus F is a finite group.

Letx € ZN F.So x" =1 for some integer r > 0. Then

Y (raibi + -+ +rzaba) = (s -+~ (sa)*) = 2" = 1,

for some integers zy, . . ., Zg € Z. Thisimplies thatrzll;]+- . ~+rzd5d eKcW,
and as before we get that z; = -+ = z4 = 0, so that x = 1. That is, we have
shown that Z N F = {1}.

Finally, recall that the map y: Z" — G is surjectlve Any 7 € Z" can be
written as Z = ¥ + w where v = zlb1 + - +zdbd and W = a;wy + -+ + apwi
for integers z1, . . ., 24, @1, - - ., ag. Thus, for any x € G there exist zﬂ(\'z’) € Zand
W (W) € F such that x = (V) - ¢ (w).

To conclude, we have Z < G with Z = Z4 and F < G with |F| < oo, and
these have the following properties:

e G=ZF={zf:z€Z, feF},
o« ZNF ={1},
e andforany z € Z, f € F we have zf = fz.

It is an exercise to show that this implies that G = Z X F. O
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Exercise 1.30 Let G be a group and let Z, F be subgroups such that G = ZF,
ZNF={l},andzf = fzforallze Z, f € F.
Show that G = Z X F.

1.5.3 Virtual Properties

A group property is a class of groups P such thatif G = H and G € P, then
also H € P. For G € P we sometimes say that G is P.

For a group property #, we may define the property virtually . A group G
is virtually # if there exists a finite index subgroup [G : H] < oo such that H
is P.

Example 1.5.3 A group G is virtually finitely generated if there exists a finite
index subgroup H < G, [G : H] < oo such that H is finitely generated.  ava

Exercise 1.31 Show that if G is virtually finitely generated then G is finitely
generated. & solution

Example 1.5.4 A group G is called indicable if there exists a surjective homo-
morphism from G onto Z.

A group G is therefore virtually indicable if there exists a finite index
subgroup [G : H] < oo and a surjective homomorphism ¢: H — Z. ava

Exercise 1.32 Show that if G is finitely generated and there exists a homomor-
phism ¢: G — A where A is an Abelian group and |¢(G)| = oo, then G is
indicable. 5 solution @

Exercise 1.33 Let G be a finitely generated group. Show that |G/[G, G]| = oo
if and only if there exists a surjective homomorphism ¢: G — Z. b solution <

Every group G € P is also virtually P, as it has index 1 in itself. But not
every property P is the same as virtually P.

For example: the infinite dihedral group D, see Exercise 1.72, is virtually
Z (i.e. contains a finite index subgroup isomorphic to Z) but is not Abelian, and
so definitely not isomorphic to Z.
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1.5.4 Nilpotent Groups

Definition 1.5.5 For a group G, we define the lower central series inductively
as follows: yo = y90(G) = G and y,+1 = Yn+1(G) = [¥n(G), G] for all n > 0.
We define the upper central series as: Zy = {1} and for all n > 0,

Znt1 =Znt1(G) ={xeG:VyeGlx,yl]l € Z,}.

Z1 = Z1(G) is called the center of G, and is sometimes denoted just Z(G).

Exercise 1.34 Assume that G = (S), for some set of elements S C G.
Show that

Yu(G) =[50, ..., 5u): 50,...,5n €S, x €G). 5 solution <

Exercise 1.35 Let ¢ be an automorphism of a group G. Show that ¢(y,,(G)) =
¥n(G) and that ¢(Z,(G)) = Zu(G).

Conclude that y,(G), Z,,(G) are normal subgroups of G. > solution <

Exercise 1.36 Show that for k < n we have Z;(G) < Z,(G).

Show that Z,,(G)/ Zx (G) = Z,-x (G Z,(G)). > solution <
Exercise 1.37 Show that if y,(G) = {1} then Z,(G) = G. > solution <
Exercise 1.38 Show that if Z,(G) = G then v, (G) = {1}. > solution <

Exercise 1.39 Show that if G is finitely generated, then y /yx+1 is also finitely
generated for any k > 0. 5 solution <

Definition 1.5.6 A group G is called n-step nilpotent if y,(G) = {1} and
vn-1(G) # {1}. (By convention, O-step nilpotent is just the trivial group.)
A group is called nilpotent if it is n-step nilpotent for some n > 0.

Note that O-step nilpotent is the trivial group {1}. Note too that 1-step nilpotent
is just Abelian.

Exercise 1.40 Show that a group is n-step nilpotent if and only if Z,(G) = G
and Z,,_1(G) # G.

Show that G is (n + 1)-step nilpotent if and only if G/Z;(G) is n-step
nilpotent. & solution <
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Exercise 1.41 Show that G/v, (G) is at most n-step nilpotent. > solution <

Exercise 1.42 Show that if G is a nilpotent group and H < G, then H is
nilpotent as well. 5 solution

Exercise 1.43 Show that if G is nilpotent and N <G, then G/N is also nilpotent.

> solution <

Let us go through some basic examples of nilpotent groups.

Some readers may have seen the following definition: An n X n matrix
M € M, (R) is called k-step nilpotent if M*~! # 0 and M* = 0. This is related
to nilpotence of groups, as the following exercises show.

Exercise 1.44 Let T,,(R) denote all n X n upper triangular matrices with real
entries. For 1 < k < n define

Dy ={MeT,(R):Vj<i+k—1, M;=0).

That is, all the first k diagonals of M are 0. (So e.g. Dy = T,,(R).)
Show that if M € Dy, N € Dy then MN € Dy . > solution <

Exercise 1.45 Fix n > 1. Let T,(R) denote all n X n upper triangular matrices.
For 1 < k < n define

Dy ={MeT,R):Vj<i+k—1, My;=0},

and define Dy (Z) = D N M,,(Z) (recall that M,,(2) is the set of n X n matrices
with integer entries).
Set

Onk ={I+N:N e Di(Z)}
Show that Q,, « is a group (with the usual matrix multiplication).  » soluon <
Exercise 1.46 Let n > 1. Let H,,(Z) be the collection of all upper triangular
n X n matrices, with 1 on the diagonal, and only integer entries.

Show that H,,(Z) is a group (with the usual matrix multiplication).
Show that for 0 < k < n — 1 we have

Yi(Hn(Z)) C Qni+1 C Zn—k-1(Hn(Z)). o solution
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1.5.5 Solvable Groups

Definition 1.5.7 Let G be a group. The derived series is defined inductively as
follows: G = G, and G*1) = [G™,G™)].

Definition 1.5.8 A group G is n-step solvable if G = {1} and G~V # {1}.
(By convention, O-step solvable is the trivial group.)
A group is solvable if it is solvable for some n > 0.

Note that the properties of 1-step solvable, 1-step nilpotent, and Abelian all
coincide.

Exercise 1.47 Show that any nilpotent group is solvable. b solution <

Exercise 1.48 Show that if G is 2-step solvable, then G is Abelian. - soluion <

Exercise 1.49 Show that the following are equivalent:

e G is a solvable group.
e G™ js solvable for all n > 0.
e G™ is solvable for some n > 0. > solution <

Exercise 1.50 Show that if G is solvable and infinite then [G : [G, G]] = oo.

> solution <

Exercise 1.51 Show that if G is a solvable group and H < G then H is solvable.

> solution <

Exercise 1.52 Let A} denote the collection of all n X n diagonal matrices with
real entries and only positive values on the diagonal.
Show that A} is an Abelian group (with the usual matrix multiplication).

> solution <

Exercise 1.53 Fix n > 1, and recall Dy, the collection of all n X n upper
triangular matrices, with first k diagonals equal to O (from Exercise 1.44).
Recall also A}, the collection of all nx n diagonal matrices with only positive
values on the diagonal.
For k > 1 define

Pui=Pux :={T+M:T €A, Me Dy}
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Show that P, is a group (with the usual matrix multiplication).

Show that [Py, k, Pnx] C{I+ M: M € Dy}.

Show that P, is solvable, of step at most [log,(n)] + 1.

Show that P, is not nilpotent when k < n. > solution <

Exercise 1.54 Let 7 > 1 and consider w = ¢?™/”  the rth root of unity. Define

r—1
D= {Zakwk: ay EZ}

k=0
and
G={[4{]:z€z.deD}.

Show that G is a finitely generated virtually Abelian group that is not nilpotent.

&> solution <

1.5.6 Free Groups

Let S be a finite set. For each element s € S, consider a new element §, and
define S = {5 : s € S}. Consider all possible finite words in the letters S U S,
including the empty word @, and denote this set by Qs. That is,

Qs:={a;---a,:neN, ajeSUS‘}U{QD}.

Define the reduction operation R: Qs — Qg as follows: Call a word
ay---a, € Qg reduced if for all 1 < j < n we have that (a;,aj,1) ¢
{(s,5),(5,5) : s € S}. The empty word @ is reduced by convention. Let
Fs denote the collection of all reduced words. Now, for a word w € Fg,
define R(w) = w. For a word a;---a, ¢ Fs, let j be the smallest in-
dex for which (aj,ajs1) € {(s,5),(5,5) : s € S}, and define R(a; ---a,) =
ay---aj_1aj42 -+ -ap (if j = 1 this means R(a; - --a,) = a3 - - - ay).

It is easy to see that for any word a; - - - a, € Qg, at most n applications of R
will result in a reduced word. Let R®(a; - - - a,) denote this reduced word. So
R*: Qg — Fg, which fixes any word in Fg.

Define a product structure on Fg: For two reduced words a; ---a, and
by --- b, define

@al...an:al...angzal...an
and
ai--ap by by =R anby - by).

It is easily verified that this turns Fg into a group with identity element @.
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Definition 1.5.9 [Fg is called the free group on generators S.

Since the actual letters generating the free group are not important, we will
usually write F; for the free group generated by d elements.

If G is a finitely generated group, generated by a finite set S, then consider Fg
and defineamap ¢: Fg — Gby (@) = 1,fors € Sweset ¢(s) = sand ¢(5) =
57!, and finally for general reduced words set p(aj ---ay,) = @(ap) -+ - ¢(a,).
This is easily seen to be a surjective homomorphism, so G = Fg/Kerep.

Remark 1.5.10 Let G be a group generated by a finite set S. We have seen that
there exists a normal subgroup R < Fg such that Fg/R = G. In this case we
write G = (S | R).

Moreover, suppose there exist (r,),, C R such that R is the smallest normal
subgroup containing all (r,,),. Then we write G = (S | (r)n)-

We will come back to this presentation in Section 1.5.8.

There is a classical method of proving that certain groups (or subgroups)
are isomorphic to a free group. We will not require it but include it for the
educational value.

Exercise 1.55 (Ping-pong lemma) Let G be a group acting on some set X. Let
a,beG.

Suppose that there exist disjoint non-empty subsets A, B ¢ X, ANB =0
such that for all 0 # z € Z we have a*(B) C A and b*(A) C B. (This is known
as: a, b play ping-pong.)

Then H = {a, b) < G is isomorphic to F,. > solution <
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Exercise 1.56 Consider a = [(1) %] and b = [é 91in SL2(2).
Show that S = (a, b) is a free group generated by 2 elements. 5 solution

Remark 1.5.11 The group S above, generated by a = [(1) %] and b = [% ?], is
sometimes called the Sanov subgroup.

Note that SL,(Z) is generated by x = | } }] and y = [% (1)], and that a = x°
and b = y2.

Exercise 1.57 Let I € SL,(Z) denote the 2 x 2 identity matrix. Show that
{-=I1,1} <« SL,(2).

Denote PSLy(Z) = SLo(Z)/{~1, I}.

Exercise 1.58 Let x = [(1)}] and y = [H’] and let a = x%,b = y2. Set
t= [(1)‘01] and s = xt.

Show that t> = s3 = —I, where [ is the 2 x 2 identity matrix.

Show that x = —st and y = —s°t.

Let n: SLy(Z) — PSLy(Z) be the canonical homomorphism. Show that
PSL2(Z) = (7 (2), 7(s)).

Show that for any z € SL,(Z) there exist €1,...,&, € {—1,1} and @, 8 €
{0, 1} such that z = t®s%1£s%2 - - - ts°7t# (mod {-1,1}).

Exercise 1.59 Let x, y, a, b, 5,t be as in Exercise 1.58.

Let S = (a, b) < SL,(Z) be the Sanov subgroup (from Exercise 1.56).

Show that a = stst and b = s2ts%t.

Let w: SLy(Z) — PSL,(Z) be the canonical projection.

Show that for any z € SL;(Z) there exist w € S and p € {1, s, §2,1, st, szt}
such that 7(z) = r(w)x(p).

Show that [PSL,(Z) : n(S)] < 6.

Conclude that [SLy(Z) : S] < 12. > solution <

1.5.7 Finitely Generated Groups

Exercise 1.60 Let H < G and let S be a finite generating set for G. Let T be a
right-traversal of H in G; that is, a set of representatives for the right-cosets of
H containing 1 € T. So G = W,y Ht.

Show that H is generated by TST~! N H. b soluion <

https://doi.org/10.1017/9781009128391.003 Published online by Cambridge University Press


https://doi.org/10.1017/9781009128391.003

1.5 Basic Group Notions 21

Exercise 1.61 Show that a finite index subgroup of a finitely generated group
is also finitely generated.

Exercise 1.62 Let H < G and let 7: G — G/H be the canonical projection.
Assume that H is generated by U and G/H is generated by S.
Show that if S ¢ G is such that 7(S) = S, then U U S generates G.
Conclude that if H and G/H are finitely generated, then so is G. 5 solution

A nice property of finitely generated groups is that there cannot be too many
finite index subgroups of a given index.

Theorem 1.5.12 Let G be a finitely generated group, generated by d elements.
Then for any n, the set (H < G | [G : H] = n} has size at most (n!)“.

Proof Assume that S C G is a finite generating set for G of size |S| = d.

Let IT,, be the group of permutations of the set {1,2,...,n}.

Let X ={H < G :[G: H] = n}. If X = 0 then it is of course finite. So
assume that X # 0.

Consider H € X. Write G/H = {xH : x € G} = {x1H,x2H,...,x,H},
where x; = 1. G acts on G/H by x(yH) = xyH. Define yg: G — 11, by
x — 7, € I1,,, where m, is the permutation for which 7, (i) = j for the unique
1 <i,j < nsuchthat xx;H = x;H. Note that m, (1) = 1 if and only if x € H.

It is easy to see that g is a homomorphism from G into IT,,.

We claim that H — g is an injective map from X into Hom(G, I1,,). Indeed,
if H # K € X, then without loss of generality we may take x € H\ K (otherwise
x € K\H, and reverse the roles of H and K in what follows). Let 7 = ¢/ (x)
and o = Yk (x). Since x € H we have that 7(1) = 1. Since x ¢ K we have that
o(1) # 1. Soyy(x) # Yk (x), implying that Yy # Y.

We conclude that | X| < |Hom(G, I1,,)|, so we only need to bound the size of
this last quantity.

Any homomorphism ¥ € Hom(G,II,) is completely determined by the
values {¢/(s) : s € S}. Thus,

[Hom (G, TT,,)| < |(I1,)%| = (n)?. o

1.5.8 Finitely Presented Groups

Definition 1.5.13 Let G be a group generated by a finite set S. Consider the free
group on the generators S, Fg. If it is possible to find a normal subgroup R < Fg
and finitely many ry,...,rx € R such that R is the smallest normal subgroup
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containing ry, . . ., rx, we write G = (S | r1, ..., rr), and in this special case we
say that G is finitely presented.

The elements of S are called generators of G, and the elements of R are
called relations of G.

The next lemma shows how the property of finite presentation can be moved
from quotients by finitely presented groups to the mother group.

Lemma 1.5.14 Let G be a group and N < G. Assume that both N and G/N are
finitely presented. Then, G is finitely presented as well.

Proof Assume that
N =(51,...,8 | Fty...,rg) and G/N ={ai,...,aq | p1s---sPm)-

LetF = F44 be the free group on d + k generators. Denote the generators of
Fby {f1,.... fa.t1,.. ., tx}.Let F ={f1,..., fa) <FandT = (t1,...,4k) <F.
So F is a free group on d generators, and 7 is a free group on k generators.

For any 1 < j < d choose an element g; € G such that g; is mapped to a;
under the canonical projection G — G/N (i.e. aj = Ng;).

Let ¢: F — G be the homomorphism defined by ¢(f;) = g;for1 < j <d
and ¢(t;) = sj for 1 < j < k. By our assumptions on the presentation for N,
there exist words 7y, ...,r¢ € T such that if R is the smallest normal subgroup
of T containing r1, . . ., rg, then ¢|: T — N with Ker(¢|;) = Kero N T = R.

Also, by our assumptions on the presentation of G/N, there exist words
D1, - - -» Pm € F such that if P is the smallest normal subgroup of F containing
Pl Pmathen @ '\ (N)NF = P

Forany 1 <i < kand 1 < j < d, we have that ¢ ((ti)ff) = (n;)% € N. So
there exists u; ; € T such that ¢ ((t,-)ff) = ¢(u; ;). Define g; ; = () (ui,j)_l.
Observe that g; ; € Kerg for all i, j.

For any 1 < j < m we have that ¢(p;) € N, by our assumptions on the
presentation of G/N. So there exists w; € T such that ¢(p;) = ¢(w;). Define
Zj = pj(w,-)_l. Observe that z; € Kerg for all j.

Denote K := Keryp. Let Q be the smallest normal subgroup of F containing
{gij: 1 <i<k,1<j<d} LetZbe the smallest normal subgroup of F
containing zi, ..., Zm.

Let M < F be any normal subgroup containing

{r1,...,rg,zl,...,zm}U{q,-,j:lﬁisk, 1<j<d}cM.

Since M is an arbitrary normal subgroup containing the above relations, we
only need to show that K <« M for all such M, which will prove that G is finitely
presented, since G = F/K.
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To this end, we will prove that
KCRQZ:={rqz:reR,qeQ,zeZ}C M. (1.2)
We move to prove (1.2). It will be convenient to use the notations
AB={ab:a€ A, be B} and ABz{ab:aeA,beB}

for subsets A, B C F.

StepL Let? € T and f € F. Then replacing (t;)/ = u; jqij, since Q <F, we
have that #/ = ug for some u € T and ¢ € Q. Thatis, TF c TQ.

Step IL. For any 1 < j < m, and any f € F, we have that (p;)’ = (w;z;)’.
Since Z < F and since P = <(pj)f c1<j<m, fe F>, we have that P c
TFZ cTQZ.

Step I1L. For any x € F we can write x = hyvy - - - h,v, for some hy, ..., h, €
Fandvy,...,v, €T.By conjugating the v;, we have that x = ()4 - (un)d"f
for some uy,...,u, € Tand dy,...,d,, f € F. Since Q < F, we conclude that
F c TQF.

Step IV. Let x € K. Write x = tqf fort € T, q € Q, and f € F. So
@(tf) = 1, implying that f € ¢~'(N) N F = P. This implies that

K cTQP c TQTQZ c TQZ.

Hence, for any x € K we can write x = tgz forsomet € T, g € Q,and z € Z.
Since Q, Z C K,wehavethatt € TNK = R. So we have shown that K ¢ RQZ,
which is (1.2). O

Theorem 1.5.15 Suppose G is a group, and suppose that there exists a sequence
of subgroups G = Ho>Hy>- - ->Hy, = {1}, with the property that every quotient
Hj/Hj,y is finitely presented.

Then G is finitely presented.

Proof This is proved by induction on n. If n = 1, then G = Hj is finitely
presented by assumption.

For n > 1, let H = H;. By induction, considering the sequence H = H; >
---> H, = {1} we have that H is finitely presented. Also, by assumption G/H;
is finitely presented. So G is finitely presented by Lemma 1.5.14, completing
the induction. O

Exercise 1.63 Show that if G is a finite group then it is finitely presented.

> solution <
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Exercise 1.64 Assume that a group G is virtually-Z; that is, there exists a finite
index normal subgroup H < G, [G : H] < oo such that H = Z.
Show that G is finitely presented. & solution <

Exercise 1.65 Let G be a n-step solvable group. Assume that G® /G*+D s
virtually-Z for every 0 < k < n.
Show that G is finitely presented. b solution <

Exercise 1.66 Show that Z¢ is finitely presented.
Show that any finitely generated virtually Abelian group is finitely presented.

> solution <

Exercise 1.67 Show that if G is a finitely generated nilpotent group, then G is
finitely presented. b solution <

1.5.9 Semi-direct Products

In this exercise, we introduce the notion of semi-direct products.

Recall that a direct product of groups G, H is the group whose elements are
the pairs G X H and the group operation is given by (g, h)(g’, h') = (gg’, hh")
forall g,g’ e Gand h, i’ € H.

Exercise 1.68 Let G, H be groups. Assume that G acts on H by automorphisms.
That is, each g € G can be thought of as an automorphism of H. A different
way of thinking of this is that there is a homomorphism p: G — Aut(H); that
is, g.h = (p(g))(h) forany g e Gand h € H.

Define the semi-direct product of G acting on H (with respect to p) as the
group G < H (also sometimes denoted H >, G), whose elements are G X H =
{(g,h) | g € G, h € H} and where multiplication is defined by

(& m)(g"h') = (gg" h-g.h").
Show that this defines a group structure. Determine the identity element in
G = H and the inverse of (g, h).

Show that the set {15} X H is an isomorphic copy of H sitting as a normal
subgroup inside G < H. Show that G < H/({1g} X H) = G. > solution <

A useful (but not completely precise) way to think about semi-direct product
G < H is to think of matrices of the form [fgﬂ, g € G,h € H. This is
especially aesthetic when H is Abelian, so that multiplication in H can be
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written additively. Indeed, when multiplying two such matrices we have

[gh .[g’h']_[gg’gh’+h]
01 ot1]= Lo 1 J°

which is reminiscent of (g, 7)(g’, h’) = (gg’, h + gh’). In the non-Abelian case
matrix multiplication must be interpreted properly:

gh] [gh] _ [gg hel
[01 [01]_[0 1]‘
Also, it may be worth pointing out that G < H hints at which group is acting

on which: x has a small triangle, similar to the symbol >, which reminds us
that H = {lg} x H<G.

Exercise 1.69 Let G, H be groups. Define an action p: G — Aut(H) of G on
Hbyp(g)h=hforallhe Hand g € G.
Show that Gx H = G X H.

So a semi-direct product generalizes the notion of a direct product of groups.

Exercise 1.70 Recall from Sections 1.5.4 and 1.5.5 the following groups of
n X n matrices: For 1 < k < n, the group Dy is the additive group of all
upper-triangular n X n real matrices A such that A;; = Oforall j <i+ k-1
(so the first k diagonals are 0). Here, A} is the multiplicative group of diagonal
matrices with only strictly positive entries on the diagonal.

Show that A} acts on Dy by left multiplication.

Show that A} = Dy is 2-step solvable.

Show that if A} = Dy is nilpotent, then k > n. > solution

Exercise 1.71 Let V be a vector space over C. ¢: V — V is an affine trans-
formation if ¢(v) = av + u for some fixed scalar 0 # @ € C and fixed vector u
(a is called the dilation and u the translation).

Let A be the collection of all affine transformations on V. Show that A is a
group with multiplication given by composition.

Show that A = C* < V where C* is the multiplicative group C\{0} and V is
considered as an additive group.

Is A Abelian? Nilpotent? Solvable? 5 solution

Exercise 1.72 The infinite dihedral group is D, = <a, b | baba , b2>.

Let ¢ € Aut(Z) be given by ¢(x) = —x. Let Z, = {—1, 1} be the group on 2
elements (the group operation given by multiplication). Show that Do, = Z;~<Z
where Z, actson Zviae.x = g- x fore € {—1,1}.
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Show that D, is not nilpotent.
Show that D, is 2-step solvable.
Show that D, is virtually Z. 5 solution

Exercise 1.73 Consider the following group: Let S; be the group of permuta-
tions on d elements. Let S; act on Z¢ by permuting the coordinates; that is,
(21 2a) = (2101 2 21 @) -

Show that this is indeed a left action.

Consider the group G = S; =< Z¢. Show that there exist H < G such that
G/H = Sy and H = Z%. (Specifically H is Abelian.)

Show that G is not Abelian for d > 2. 5 solution <

1.6 Measures on Groups and Harmonic Functions

1.6.1 Metric and Measure Structures on a Group

Definition 1.6.1 (Cayley graph) Let G be a finitely generated group. Let S ¢ G
be a finite generating set. Assume that S is symmetric; that is, S = S~! :=
{s7!: 5 € S}. The Cayley graph of G with respect to S is the graph with vertex
set G and edges defined by the relations x ~y & x"'y € §.

The distance in this Cayley graph is denoted by distg.

Exercise 1.74 Show that dists(x, y) is invariant under the diagonal G-action.
That is, dists(gx, gy) = dists(x, y) for any g € G.

Due to this fact, we may denote |x| = |x|s := dists(1, x). So thatdists (x, y) =
|x~! y|. Balls of radius r in this metric are denoted

B(x,r) = Bs(x,r) = {y : dists(x,y) <r}.

Throughout the book, the underlying generating set will be implicit, and we will
not specify it explicitly in the notation. If we wish to stress a specific generating
set (or, sometimes, a specific group), we will use the notation distg s(x,y) =
dists(x, y) = distg(x, y) and Bg,s(x,r) = Bs(x,r) = Bg(x,r).

Exercise 1.75 Let S, T be two finite symmetric generating sets of G. Show that
there exists a constant k = k5,7 > 0 such that for all x,y € G,

k! -disty (x, y) < distg(x, y) < « - distp(x,y) . > solution <
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Definition 1.6.2 Let y be a probability measure on G.

e We say that u is adapted (to G) if any element x € G can be written as a
product x = sy - - - s where sy, ..., sx € supp(L).

ey is symmetric if u(x) = u (x‘l) for all x € G.

e . has an exponential tail if for some € > 0,

E, [eslxl] = Z:,u(x)e‘elx| < o0,

e We say that y has kth moment if
By [IXIF] = 3 p@)lal < oo.

By SA(G, k) we denote the collection of symmetric, adapted measures on G
with kth moment. By SA(G, o) we denote the collection of symmetric, adapted,
exponential tail measures on G.

Exercise 1.76 Show that if ¢ has kth moment with respect to a finite symmetric
generating set S, then u has kth moment with respect to any finite symmetric
generating set.

Show that if u has an exponential tail with respect to a finite symmetric
generating set S, then p has an exponential tail with respect to any finite
symmetric generating set.

The most basic example of y € SA(G, o) is when y is the uniform measure
on some finite symmetric generating set S of a finitely generated group G.

Exercise 1.77 Show that if u is a symmetric, adapted measure on G with finite
support, then y € SA(G, ).

Exercise 1.78 Show that if 1, v are symmetric probability measures on G, then
pu~+ (1 — p)vis also symmetric for p € (0, 1).

Exercise 1.79 Show that if y is an adapted probability measure on G and v is
any probability measure on G, then for any p € (0, 1] we have that pu+ (1 -p)v

is also adapted.

Exercise 1.80 Let p € (0, 1). Show that if u € SA(G, k) then v = pd; + (1 —
p)u € SA(G, k). (Such a measure v is called a lazy version of u.) > solution <
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1.6.2 Random Walks

Given a group G with a probability measure u define the y-random walk on
G started at x € G as the sequence

X, =xUUy--- Uy,

where (U;); are i.i.d. with law u.

The probability measure and expectation on G*' (with the canonical cylinder-
set o-algebra) are denoted Py, E,. When we omit the subscript x we refer to
P = P, E = E,. Note that the law of (X;); under P, is the same as the law of
(xX;); under P. For a probability measure v on G we denote P, = >, v(x) Py
and similarly for E, = ), v(x)E,. More precisely, given some probability
measure v on G, we define P, to be the measure obtained by Kolmogorov’s
extension theorem, via the sequence of measures

t

Pi({(Xo,- -, X0) = (80, 8)}) = ¥(80) - [_] r(ghie)

Exercise 1.81 Show that P; above indeed defines a probability measure on
¥ =o0(Xo,- .., Xs).

Exercise 1.82 Show that the y-random walk on G is a Markov chain with
transition matrix P(x,y) = u (x‘1 y). (Markov chains will be defined and
studied in Chapter 3. For the unfamiliar reader, this exercise may be skipped in
the meantime.)

Show that the corresponding Laplacian operator, usually defined A := I — P,
and the averaging operator P are given by

Pf(x) = f=*p(x), Af(x) = f= (61— @)(x),
where i(y) = u (y™!).

Exercise 1.83 Consider the matrix P(x,y) = u (x‘l y) from the previous exer-
cise. Show that if P! is the rth matrix power of P then

Eil[f(X0)] = (P'f) (x).

Exercise 1.84 Let u be a probability measure on G, and let P(x, y) = u ()c‘1 y).

e Show that P'(1, x) = j1*'(x), where ' is convolution of j with itself 7 times.

(4G = ™).
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e Show that u is adapted if and only if for every x,y € G there exists t > 0
such that P'(x, y) > 0. (This property is also called irreducible.)
o Show that y is symmetric if and only if P is a symmetric matrix (if and only

if i = p).
We will investigate random walks in more depth in Chapter 3.

1.6.3 Harmonic Functions

In classical analysis, a function f: R" — R is harmonic at x if for any
small enough ball around x, B(x,r), it satisfies the mean value property:
m f()B(x " f(y)dy = f(x). Another definition is that Af(x) = 0 where

2

A=3%; % is the Laplace operator. (Why these two definitions should coincide
J

is a deep fact, outside the scope of our current discussion.)

Definition 1.6.3 Let G be a finitely generated group and u a probability measure
on G. A function f: G — Cis y-harmonic (or simply, harmonic) at x € G if

DO FOy) = f()
y

and the above sum converges absolutely.
A function is harmonic if it is harmonic at every x € G.

Exercise 1.85 Show that f is u-harmonic at x if and only if E, [ f (xU)] = f(x),
if and only if Af(x) = 0. (Here E, is expectation with respect to u, and U is a
random element of G with law u.)

Exercise 1.86 Prove the maximum principle for harmonic functions:
Consider an adapted probability measure p on G. If f is harmonic, and there
exists x such that f(x) = sup, f(y), then f is constant.

Exercise 1.87 (L2 harmonic functions) Consider the space £2(G) of functions
f: G — Csuch that 3, | f(y)|> < oco. This space is a Hilbert space with the

inner product (f,g) = Xy, f()&(y).
Prove the following “integration by parts” identity: for any £, g € £2(G),

Z P, y)(f(x) = fF(y(E(x) = 8(») =2(Af. ).
Xy

(The left-hand side above is (V f, Vg), appropriately interpreted, hence the name
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“integration by parts”. This is also sometimes understood as Green’s identity.)
Here as usual, P(x,y) = u ()c‘1 y) for a symmetric measure u.
Show that any f € £%>(G) that is harmonic must be constant. > solution <

Example 1.6.4 Consider the group Z and the measure y = %6 1+ %6_1. Suppose
that f is a y-harmonic function. Then, forany z € Z, f(z—1)+f(z+1) = 2f(2),
which implies that

flz+1)=2f(2) - f(z—-1),
flz=1)=2f(2) - f(z+1).

So the values of f are determined by the two numbers f(0), f(1). This implies
that the space HF(Z, 1) = {f: Z — C : Af = 0} of all harmonic functions has
dimension at most 2.

Moreover, any function f(z) = @z + S, is a y-harmonic function (check

this!).
Thus, we conclude that HF(Z, p) is the (2-dimensional) space of all linear
maps z — az + S fora, 8 €C. ava

Exercise 1.88 Show that if G = Z and y is uniform measure on {-1, 1, -2, 2}
then the space of all y-harmonic functions has dimension at least 2.
Is this dimension finite? > solution <

Exercise 1.89 Consider the group G = Z? and the measure g, which is uniform
on the standard generators {(+1,0), (0, £1)}.

Show that the functions f(x,y) = x, h(x,y) = y and g(x, y) = x> — y? and
k(x,y) = xy are all y-harmonic.

Consider a different measure v, which is uniformon { (%1, 0), (0, 1), +(1, 1)}.
Which of the above functions is harmonic with respect to v? 5 solution <

Exercise 1.90 Let G be a finitely generated group. Let u € SA(G, 1). Show
that any homomorphism from G to the additive group (C, +) is a y-harmonic
function. 5 solution

Exercise 1.91 Let u be a symmetric and adapted probability measure on a
finitely generated group G. Let p € (0,1) and let v = po; + (1 — p)u be alazy
version of p. Show that any function f: G — C is y-harmonic if and only if it
is v-harmonic. 5 solution <
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1.7 Bounded, Lipschitz, and Polynomial Growth Functions

1.7.1 Bounded Functions
Recall for f: G — C and p > 0 we have

A1 = > 1 I,

sup | f(x)].

/1 loo
Recall that ||x. f|l, = || f]|, for all p € (0, co].
Exercise 1.92 Show that || f||w < || f]l, for any p > 0.

For a finitely generated group G and a probability measure u on G, we use
BHF (G, u) to denote the set of bounded p-harmonic functions on Gj that is,

BHF(G, 1) ={f: G = C:||fllo < o0, Af =0}.

Exercise 1.93 Show that BHF (G, p) is a vector space over C. Show that it is a
G-invariant subspace; that is, G.BHF(G, i) € BHF(G, u).

Any constant function is in BHF(G, u), so dim BHF(G, i) > 1. The ques-
tion of whether BHF (G, p) consists of more than just constant functions is an
important one, and we will dedicate Chapter 6 to this investigation.

1.7.2 Lipschitz Functions

For a group G and a function f: G — C, define the right-derivative at y

PrGoC by  @f=f(o7)-f@.

Given a finite symmetric generating set S, define the gradient Vf = Vgf: G —
CS by (Vf(x))s = 0° f(x). We define the Lipschitz semi-norm by

[IVs fllo := sup sup [8° f(x)].
seS xeG

Definition 1.7.1 A function f: G — C is called Lipschitz if ||Vs f||c < 0.

Exercise 1.94 Show that for any two symmetric generating sets Sy, S», there
exists C > 0 such that
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Vs, flloo < C - 11V, flloo-

Conclude that the definition of Lipschitz function does not depend on the choice
of specific generating set.

Exercise 1.95 What s the set {f € C% : ||V f|l = 0}?

We use LHF (G, u) to denote the set of Lipschitz py-harmonic functions; that
is,

LHF(G, 1) = {f: G = C: |[Vsfllo <00, Af = 0}.

Exercise 1.96 Show that LHF(G, p) is a G-invariant vector space, by showing
that

VxeG  |IVsx.fllo = IVsflleo-

Exercise 1.97 (Horofunctions) Let G be a finitely generated group with a metric
given by some fixed finite symmetric generating set S.
Consider the space

L=1{h:G—>C:||Vshlle <1, h(1) = 0}.

Show that L is compact under the topology of pointwise convergence.

Show that x.h(y) = h (x’ly) —h (x’l) defines a left action of G on L.

Show that if 4 is fixed under the G-action (i.e. x.h = h for all x € G) then h
is a homomorphism from G into the group (C, +).

Show that if 4 is a homomorphism from G into (C, +), then there exists
a > Osuchthatah € L.

For every x € G let by(y) = dists(x,y) - dists(x, 1) = [x~!y| - |x|. Show
that b, € L for any x € G. Prove that the map x — b, from G into L is an
injective map. > solution <

1.7.3 Polynomially Growing Functions

Let S be a finite, symmetric generating set for a group G. For f: G — C and
k > 0, define the kth degree polynomial semi-norm by

1 £1ls,k := limsupr~ - sup | f(x)!.

r—oo |x|<r
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Let
HF(G, ) = {f € C9: f is p-harmonic, ||f|lsx < oo} .

Exercise 1.98 Show that || - ||s x is indeed a semi-norm.
Show that [|x. flls.x = [If1ls k-
Show that HF (G, u) is a G-invariant vector space. > solution <

Exercise 1.99 Show that if S, T are two finite symmetric generating sets for G
then there exists some constant C = C(S, T, k) > Osuch that forany f: G - C
we have || fllsx < C - [Ifllz.x-

Specifically, the space HF; (G, u) does not depend on the specific choice of
generating set. > solution <

Exercise 1.100 Show that if || f||sx < oo then there exists C > O such that for
all x € G we have | f(x)| < C (Ix[* +1).

Exercise 1.101 Show that
C < BHF(G, p) < LHF(G, p) < HF(G, ) < HF (G, ) < HF11(G, p),
forall k > 1.

1.8 Additional Exercises

Exercise 1.102 Let R be acommutative ring. Define GL,, (R) to be the collection
of all n X n matrices M with entries in R such that det(M) is an invertible
element in R.

Show that GL,,(R) is a group. 5 solution

Exercise 1.103 Let / be the n X n identity matrix. Show that {I, -1} < GL,(Z).
Define PGL,(Z) = GL,,(Z)/{-1, I}.
Show that GLy,11(Z) = {1, 1} X PGLy,+1(2Z).
Show that SLy,,.1(Z) = PGLy,+1(2). > solution <

https://doi.org/10.1017/9781009128391.003 Published online by Cambridge University Press


https://doi.org/10.1017/9781009128391.003

34 Background

Exercise 1.104 Let S < SL,(Z) be the Sanov subgroup (see Exercise 1.56 and
Remark 1.5.11). Show that if A € S then

_ [4k+1 2n
A= [ 2m 4(,’+l]

for some integers n, m, k, £ € Z. > solution <

Exercise 1.105 Show that the Sanov subgroup is exactly

S={A=[%1 2] 1det(A) = 1, k.tnm e Z} | + soluion <

Exercise 1.106 Show that the Sanov subgroup S has finite index in SL,(Z).
(Hint: use the map taking the matrix entries modulo 4.) 5 solution <

1.9 Solutions to Exercises

Solution to Exercise 1.4 :(
Let G = {A: 0'(A) € F}. G is easily seen to be a o--algebra. Forany # < n € Nand g € G, we have that

0" (X;'(9)) = 10" (W): wn =g} = XL, (g) € F,
and if t > n € N then 07 (X;l(g)) =GV eF.

So X,’,I (g) € Gforalln € Nand g € G. This implies that # C G, which completes the proof. IV

Solution to Exercise 1.5 :(

07! G is a o~ algebra because 7' (GN) =GV and 67" (U, A,) = U 071 (Ay) and 071 (A€) = (071 (A))C.
For any k € K we have that 677 (K) € 67" G by definition. So let H be any o--algebra containing

{07(K) : K € K}.Define G’ = {A: 07" (A) € H }. Then, similarly to the above, it is easy to see that G’ is

a o-algebra. Moreover, K C G’, so it must be that G C G’. But then, 7' G c 67" G’ c H. Since H was

any o--algebra containing {6~/ (K) : K € K}, this implies that 7' G = o (07" (K) : K € K). bR

Solution to Exercise 1.6 :(
This is immediate from

0 F =0 (07 (Xa(g)) in €N, g €G) =0 (Xpu1(g):neN, geG) C F. '

Solution to Exercise 1.7 :(
Note that

07" (X,'(9) = {w: 0" () € X;' (@)} = (W : wren = g} = XL, ().
Since ¥ = o (X,‘ll(g) :neN, ge G) we have that

9*‘?:0(9*’)(;,1(;;) ineN, geG) :a(X;L,(g):n €N, ge G) =X, Xests--). DV

Solution to Exercise 1.16 :(
If g,y € stab(x), thenyg.x =y.x = x,and also g"'.x = g7 'g.x = x. DV
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Solution to Exercise 1.17 :(
Let x € X and S = stab(x). The map of cosets of S into G.x given by gS + g.x is a well-defined bijection.
Indeed, if gS =S then g =ys for some s € S. So g.x =ys.x =7y.x, and the map is well defined.
It is obviously surjective, and if g.x = y.x then y’lg € S, 50 gS =S, implying that the map is injective
as well. DV

Solution to Exercise 1.21 :(
Compute:

PX -Y=z]= ZP [X=x.v=xT¢]= Z/J(X)V (x7'2) = (=) 8%

X

Solution to Exercise 1.23 :(
If @ = 0 or b = 0 there is nothing to prove. So assume that a, b > 0. Consider the random variable X that

satisfies ]P’[X = a‘/f’] = p,P[X = b'/9] = q. Then E[log X] = loga + logb. Also, E[X] = pal/P +
gb'/4 . Jensen’s inequality tells us that E[log X] < log E[X], which results in log(ab) = loga + logh <
log (pal/p + qb”").

DV

Solution to Exercise 1.24 :(
The proof is by induction on n. For n = 1 there is nothing to prove. For n = 2, this is the “usual” Holder

inequality, which is proved as follows: denote f = fi, g = 5, p = p1,q = p2 and f = fi, g= Then,

ngq
gl = 111y - lgllg - D IF1 - 12601 < 1f1lp - lgllg - Y, L IFP + Lign)e

=111 llgllg - (LUFIE + L121E) = 1111y - llgllg,

where the inequality is just Young’s inequality for products: ab < pal/ P4 qbl/ 4. A similar (and simpler)
argument proves the case where p = 1, g = co.

i ion s - _pn_, - 1y - Pi
Now for the induction step, n > 2. Let g, = pn'il and g; = p; - (l - Pn) = for 1 < j < n. Then,
1

i B
ot an =1and

l
E €L 1 - L § I
By the induction hypothesis (for n = 2 and n - 1),

1
Wfi = Falle < Wfllpp < Wi ot lgn = Whallpn = QHATE™ < 1o 197 1) V7

n-1 Van n-1
s||fn||pn-(]_[|m|""||,,j) = Wallpn - [ [ 1511, - DV
j=1

Jj=1

Solution to Exercise 1.25 :(

For any x, smgel+r L 4 rq_rq =%+%—%=1,
B g\1/r _ - (r=q)/r
If 20l < Y [Fomg (v7'x)] = D (IFeIP [ (v7'x)[7) " - Fon1 =7 [g (v7'x)
y y

=lA A Bl < Wil - Wellprie-p) - Blgrie-g)
where the second inequality is the generalized Holder inequality with
. 1 \|a\ T
A6y =(IFoPle (7)),
A = 1F TP,

A =g ()|
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Now,

s (")

Al

(2 rer
y

(r=p)/pr
(Z If(y)l”) = |If1y ",
y

WApr/G—p)

(r-q)/qr
—1.,|4 (= -
15 gr/¢r-a) =(Z ley~"x)] ) = lx.glly " = gl ",
y

recalling that g(z) = g (z’l) and that ||x.g|l; = ||gllg. Combining all the above,
- _ q — -
Wf = glly = D I xg@l” < Y IFOIP [ (v )" - 1A1,7 - T1gllg ™
x X,y
=P - 1lgllg ™ Z FOIP - lly-glla
y

=llglg 1117 Z FOOIP = 11gllg - 11f - v
y

Solution to Exercise 1.26 :(
Inverses of invertible matrices with integer entries do not necessarily have to have integer entries. For example,

takeM:[éﬂ.TheinverseisM’l:%[_zl}l]. R4

Solution to Exercise 1.27 :(
The map A + det(A) is a homomorphism from GL,, (Z) onto {1, 1}. SL,, (Z) is the kernel of this map. :) v

Solution to Exercise 1.28 :(
We use e, . . ., e, to denote the standard basis of R™.

For a matrix A we write c; (A) for the jth column of A, and r; (A) for the jth row of A.

It is easy to see that AE; j is a matrix with cx (AE; j) = 0 for k # j and c;(AE; j) = c¢;i(A). Thus,
multiplying A on the right by I + E; ; results in adding c; (A) to ¢;j (A). That is,

cr(A) for k # j,

k(AU + Eij)) = {c, (A) +ci(A) fork=j.

Specifically, (I + E,-,j)’] =1-E; ;. Applying (I + E; ;) we see that we can add a z-multiple of column i
to column j.
By transposing the matrices, we see that

ri(A) fork # j,

re(I+ Eij)A) = {r[(A) +ri(A) fork =i.

Thus, we can add a multiple of some row i to another row j.
Also, fori # j,setS; ;j = (I + E; j)(I — Ej i )(I + E; ;). One may compute that

cr(A) fork ¢ {i,j},
Ck (AS[J') =91"6¢j (A) fork = i,
ci(A) fork =j.

That is, we can swap columns at the price of changing the sign of one of them. Multiplying by S; ; on the left
we can also swap rows, changing the sign of one.

Denote Gy, = <1+E,~,,» [1<i#j< k>.

We claim by induction on k that for any A € GLy (Z) there exist M, N € Gy such that for any diagonal
(n — k) X (n — k) matrix D with integer entries, if we consider the n X n matrix A’ = [/8 g ], we find that
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M A’N is a diagonal matrix. The base case, where k = 1, is just the case where A’ is already diagonal, so we
may choose M = N =1.

So assume 1 < k < n, and let A € GLi (Z). Let D be any diagonal (n — k) X (n — k) matrix D with
integer entries, and define A’ = [A 9 ] By swapping columns and/or rows, we may assume without loss of
generality that Ak « # 0. Now, suppose that A, .k # Oforsome I < i < k. Adding appropriate multiples of
ri (A”) to r; (A’) and appropriate multiples of r; (A”) to ri (A”) sequentially, we arrive at a matrix M € Gy
for which (M A") x # 0 and (M A"); ;. = 0. Continuing this way for all 1 < i < k, we find that there exists
M € Gy such that (M A ) x # 0and (MA’); x = 0forall 1 <i < n. The same procedure with columns
instead of rows yields a matrix N € Gy such that (M A’N )y  # 0 and (M A'N); o = (MA'N)y,; = 0 for
alll <i<n.

Let B be the (k — 1) X (k — 1) matrix given by =(MA'N); jforall 1 <i,j <k—1.Let D be the
(n—k+1)x(n—k+1) diagonal matrix given by D (MA N)j,k and D! =(MA'N)jsik+i = Dii

forall 1 <i < n— k. We find that

I+i,1+i

MA'N = [gzg’]'

Moreover,
det(A) - det(D) = det(A") = det(M A’N) = det(B) - (M A’N)y k - det(D),

which implies that det(B) - (M A’N)g, i = det(A). As these are all integers, and |det(A)| = 1, we also find
that |det(B)| = 1, so that B € GLy_|(Z). By induction, there exist M’, N’ € G_; such that M'M A’N N’
is a diagonal matrix. Since Gi_; < Gy, we have that M'M, M N’ € Gy, completing the induction step.

Taking k = n from the above induction claim, we see that for any A € GL,,(Z) there exist M, N € G,
such that M AN is a diagonal matrix. Since det(A) = det(M AN), and since M AN has integer entries, we
find that a; := (MAN);; € {=1, 1} forall 1 <i < n.Also,det(A) =[], a:.

Now, if A € SL,,(Z), then Hl’f:] ai=1.LetJ={l<i<n:a;=-1}.

If J # 0, then since (-1 = [1jes @j = 1, it must be that |J| > 2. Take any i # j € J and consider
the matrix B = S; ; MANS; j. B is a diagonal matrix, with Bj ; = —a; = 1 and B;; = —a;j = 1 and
By, i = ay forall k ¢ {i, j}. Continuing this way, we find some matrices S, T € G,, suchthat TM ANS = 1I.
SoA=M"'T1S"IN"! € G,,, and we are done. IV

Solution to Exercise 1.31 :(
Let G be virtually finitely generated. So there exists H < G, [G : H] < oo such that H is finitely generated.
Let R C G be a set of representatives for the cosets of H in G; thatis G = |4,cg Hr,and |[R| =[G : H].
Let S be a finite symmetric generating set for H.
Let x € G. There are unique y € H and r € R such that x = yr. Since S generates H, there are
S1y...,8, € Ssuchthaty =51 ---s,.Thus,x =51 -5, - 7.
This implies that S U R is a finite generating set for G. R4

Solution to Exercise 1.32 :(
Since G is finitely generated, the image ¢ (G) is a finitely generated Abelian group. By Theorem 1.5.2, ¢(G) =
74 x F for a finite Abelian group F.If d = 0 then |<{)(G)| < 00. So under our assumptions, d > 0.

Since |@(G)| = oo, there must exist 0 # z € Z< and f € F such that (z, f) € ¢(G) < Z% x F. Since
z # 0, there must exist 1 < j < d such that z; # 0. Let 7: 74 x F — Z be the homomorphism given
by n(w, f) = wj forall w € Z4 and f € F.Then, ¢ = 7 o ¢ is a homomorphism from G into Z. Since
0 # z; € ¥(G), we obtain that z;Z < ¢/(G), implying that [y(G)| = co. Since /(G) < Z it can only be
trivial, or isomorphic to Z. Thus, ¢ maps G onto the group ¥ (G) = Z. N4

Solution to Exercise 1.33 :(
Let 7: G — G/[G, G] be the canonical projection. If G/[G, G] is infinite, then 1(G) is an infinite Abelian
group, so Exercise 1.32 provides a surjective homomorphism onto Z.

If on the other hand there exists a surjective homomorphism ¢: G — Z, then [G, G] < Kerg. Thus,
[G:[G,G]l =[G : Kerg] = co. N4

Solution to Exercise 1.34 :(
‘We prove this by induction on n.
Note that

[xy, 2] =y~ 'x 7'z xyz = (Ix, 2)7 - [y, 2,
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soif x = 51 -+ sy, then forany y € G, there exist zj, . . ., Zp, such that
[, y] = (s, YD -+ - (s, YD
Expanding out y in a similar fashion shows that
y1(G) ={[s,s'] : 5,5 €8S, x € G),

proving the claim for n = 1.
Assume now that n > 1. Recall that

Yn(G) =([x,z] : x €yn-1(G), z € G).

By induction on n, any x € y,,—1(G) can be written as

X =811 oo Sn=1,11°0 - [S1ms + - o5 Sn—1,m %™
for s;,j € S and z; € G. Thus, for any s € S there exist wy, ..., Wy, € G such that
06 ST =[51,15 -+ 5 Sn-1,1, S0 -+ [SLms -+ o5 Sn—1,m> STV™.
Also, forany y = ry - - -rg with rj € S there exist uy, . . ., ug such that
-1
0 yI7 = [y, x] = [r1, X140 -+« [re, x]%C.

All this implies that for any x € y,,—1(G) and any y € G we can write [x, y] as a finite product of elements of
the form [s1, . . ., 5, ] where s; € S and z € G. In other words, this proves the induction step. R4

Solution to Exercise 1.35 :(

This is shown by induction on 7.
For n = 0 it is immediate that we have ¢ (y0(G)) = ¢(G) = G and ¢(Zy(G)) = ¢({1}) = {1}.
For n > 0, note that ¢([x, y]) = [¢(x), ¢(y)] for all x, y € G. So by induction

#([yn-1(G), G) = [¢(yn-1(G)), (G)] = [yn-1(G), G] = yn (G).

Also by induction, [¢(x), y] € Z,,-1(G) forall y € G if and only if ¢ ([x, y]) € Z,,_1(G) = ¢(Z,,-1(G))
forall y € G, which is if and only if [x, y] € Z,,_1(G) forally € G. So ¢(Z,,(G)) = Z,(G

This completes the proof by induction.

Finally, for any y € G, the map ¢y (x) = x¥ is an automorphism of G, so that ¥, (G)” = y,(G) and
Z,(G)Y =Z,(G) forally € G; that is, these are normal subgroups. v

Solution to Exercise 1.36 :(
Since Zy (G) is anormal subgroup, for any x € Z; (G) andanyy € G we have that [x, y] = xIxy e Zi (G).
S0 Z; (G) < Zk+1(G). This proves the first assertion.

Now, the second assertion we prove by induction on m := n — k. Fix k > 0. The base step is m = 0, which
is just Zx (G)/ Zi (G) = {1} = Zo(G/ Z (G)).

For the induction step, let m > 0. Let H = G/Z;(G) and let 7 : G — H be the canonical projection.
Since Zi (G) < Zg 1 (G), it suffices to prove that 7(Zy 1, (G)) = Zp, (H). Indeed, we have by induction
that for x, y € G,

. ¥] € Zkem-1(G) = [x(x), 7(y)] = 7([x, y]) € Zi4m-1(G)/Zi(G) = Zin-1(H),
SO

A(Zim(G)) = {m(x) : ¥y € G [x, ] € Zim-1(G))
={n(x): ¥z € H[n(x),z] € Zm-1(H)} = Zn(H),

completing the induction step. R4

Solution to Exercise 1.37 :(
‘We do this by induction on 7. For n = 0 this is obvious.
For n > 0, assume thaty,, = {1}. Then, [y, -1, G] = {1} implies thaty,_; < Z;. Let H = G/Z, and let
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7 : G — H be the canonical projection. It is easy to verify that for all k > 1, we have
(k) = [w(yk-1), 7(G)] = [yk-1(H), H] = yi (H),
$0yn-1(H) = {1}. By induction and a previous exercise,
G/Zi=H =Z,.1(H) =Z2,.1(G/Z)) = Zn/|Z;.

As Z| < Z,,, this can only happen if G = Z,,. N4
Solution to Exercise 1.38 :(
Again this is by induction, where the base step n = 0 is obvious.

Assume for n > O that Z,, = G. Set H = G/Z,. Since Z,,_\(H) = Z,,/Z) = H, we have by induction

that y,,_1 (H) = {1}. As before, if 7 : G — H is the canonical projection, then 7 (y,,—1) = yn-1(H) = {1},
S0 Yn-1 < Z;. Thus,

Yn = [yn-1, G122, G] = {1} DR
Solution to Exercise 1.39 :(

Letk > 1. We know thatyx = ([x, y]: x € yx_1, ¥y € G). Consider yy /yi+1 as a subgroup of G /yg+1. Note
that since [yx, G] = Yk +1, we have that v /yk+1 < Z(G/yk+1). Thus, forany x € yx_1,y, 2 € G we get that

[, yzl =x7'z7 'y xyz = [x, 227 % ylz = [x, 2] - v, y]  (mod yier).

Also, if X,y € yi-1 and z € G then
[xy, 2l =y 'x7 'z xyz =y e zlz lyz =[x, 2] - [y, 2] (mod yrqr).
We conclude that if 1 = (X) and G = (S) then
Vi Vs = {Yke1%vis1sl i x € X, s €S).

By induction on k, this proves that as long as G is finitely generated, the group yx /¥ +1 is finitely generated
for all k. )V

Solution to Exercise 1.40 :(
G is n-step nilpotent if and only if y,, (G) = {1} and y,,-1 (G) # {1}, which, by Exercises 1.37 and 1.38, is if
andonlyif Z, =G and Z,,_; # G.

The second assertion follows from the fact that Z,,11(G) = Z,,(G/Z;) and Z,,(G) = Z,_1 (G| Zy). ) v

Solution to Exercise 1.41 :(
One verifies that i (G /¥n) < ¥k /Yn.50¥n(G/yn) = {1}. o1

Solution to Exercise 1.42 :(
This follows from y,,(H) < vy, (G) for all n, which is easily shown by induction, since for any subgroup%
A<B<GandC <D < Gwehave [A C] <[B, D].

Solution to Exercise 1.43 :(
Let 7 : G — G/ N be the canonical projection. Note that yx (G/N) < n(yr(G)). Soif y,(G) = {1} < N,
theny, (G/N) = {1}. DV

Solution to Exercise 1.44 :(
Letl <j<i+k+{¢—-1<n.Computefor M € Dy, N € Dg:

n
(MN); ;= Z M; Ny jlsivkyLijze+e) =0,
=1
because j — € < i+ k. R4
Solution to Exercise 1.45 :(

If M, N € Dy (Z) then
T+MYI+N)=I+M+N+MN € Q,
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because M N € Dy (Z) C Dy (Z).
Moreover, since D,, contains only the O matrix, we have that for any N € Dy (Z) we may choose M =
Z;’;ll (=N)J € Dy (Z), and we have that

n—1
T+N)YT+M)=I+N) - Z(—N)j =1
=0

implying that (1 + N)~! = I + M for this choice of M.
This proves that Q,, i is a group. B4

Solution to Exercise 1.46 :(
Let H = H,,(Z). Note that H = Q,, 1 from the previous exercise, so it is indeed a group.
We now show that for0 < k <n—1wehaveyx (H) C Qn k+1 C Zn-ik-1(H).
The case k = 0 is exactly what was shown above. For k > 0,if I + M € H, N € Dy (Z) then

[d+M),I+N)=U+M)'U+N)'U+N+MUI+N))
=U+M) T+ +N)' =DMI +N)+ M +N))
=U+M)Y " (U+M)+L+MN)=1+I+M)""(L+MN),
where
= ((1 +N) I - 1) M{I+N) = zn:(—N)jM(I +N) € D41 (Z).
j=1

Since M N € Dy, (Z) as well, we conclude inductively that yi (H) C Qj k+1-
Also, since D,, only contains the 0 matrix, it is immediate that Q, k41 C Z,,—k—1(H)holds whenk = n—1.
Fork <n-land N € Dy,(Z), forany I + M € H, we have seen that [(I + M), (I + N)] € Qp k42 C
Zn-k—-2(H) (inductively). Thus, I + N € Z,,_j—1(H) forany N € Dy (Z), as required. IV

Solution to Exercise 1.47 :(
This follows since if H < G then [G, H] < [G, G].
So for any group G we have that G™ < y,, (G), inductively. bR

Solution to Exercise 1.48 :(
If G is 2-step solvable then [G“), G(l)] =G® ={1). B4

Solution to Exercise 1.49 :(

k
This follows since (G(">)( ) Gntk) R4

Solution to Exercise 1.50 :(
There exists n such that G # {1} = G+,

We prove this by induction on n. If n = 0 then G is infinite Abelian, in which case [G, G] = {1}.

Forn > 0,let H = G/G"). We have that H™ = {1}, so by induction [H : [H, H]] = oo. Also,
[H,H] =GV /G"™ s0[G :[G,G]] = [H : [H, H]] = o0, completing the induction. )V

Solution to Exercise 1.51 :(
This follows from H"™ < G which can be easily shown inductively. R4

Solution to Exercise 1.52 :(
For A, B € A}, we have that

n
(AB);,j = ZAi,fo,j =1i=j)AiiBii.
=1

This immediately shows that AB = BA.
Also, since A; ; > 0 for all i, we can choose B; ; = % toget AB=1,5s0B = AL B4
i,i
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Solution to Exercise 1.53 :(
ForT+M,S+N € P,y wehave T +M)(S+N)=TS+TN+MS+MN.SinceTN,MS, MN € Dy
we get that P,, i is closed under matrix multiplication.

Choosing M = Z;’zl (—S'IN)'I .S~V and T = S~! will give us that
(T +M)(S +N) =I+S’1N+M(I+S’1N) =1,

s0 (S + N)™! =571 + M for this choice of M.

Now consider the map ¢: Pp, x — A}, given by (T + M) = T. One easily check that this is a surjective
homomorphism, and that Kerop = {I + N : N € Dg}. Since A}, is an Abelian group, it must be that
[Pn.k’ Pn,k] < Kerp.

As in Exercise 1.46, we compute commutators: for any M € Dy, N € Dy we have [(I + M), (I + N)] =
I+ +M)"(L+MN), where

n
L= Z(—N)jM(I +N) € Dpap
Jj=1
and also M N € Dy, (by Exercise 1.44).
This implies inductively that

(P, i) = (Pris P D' <{I+N:N €Dy, )

for all £ > 0. Since D,, contains only the 0 matrix, P,, i is solvable of step at most [log,(n/k)] + 1.
Finally, to show that P, j is not nilpotent, we will show that Z;(P, ) = {1}, which implies that
Z¢(Py,i) = {1} forall £ > 0. Indeed,

T+M)S+N)-(S+N)T+M)=TN-NT+MS-SM+MN -NM.

If S+ N € Z|(Py, k), then by choosing M € D,,_, we havethat NM = M N = 0. Also, an easy computation
gives
MS —-SM = (Sp,n—S1,1) - M.
Also, there exist 7, s such that Ny s # 0. Necessarily s > t. We choose M; j = 1(;=j=p)and T; j = @ -1{i=j=y)
for some @ > 0. Then
(TN = NT); j = a (Lji=e) = 1j=r)) Ni ;.-
Hence

(T +M)S+N)=(S+N)T +M))s =aNis +Spn = Si1-

Since we can choose a > 0 such that this is nonzero, we find that S + N does not commute with 7 + M in this
case. )V

Solution to Exercise 1.54 :(
It is easy to compute that

[wz zl] . [ww ('] — [wZ'+W wzc+d:|
0 1 0 1 0 1 ’

-1 - -
so that [‘*E)Z ‘11] = [“'OZ *‘“]Zd] showing that G is a group.

Ford = Z,C;(l) akwk where ay, ..., a,_1 € Z,and z € Z, we have that

(6 41=[54]-( ?]>Z=ﬁ)[(‘,“kr"‘] (gD =TT D™ - (T2

implying that G is generated by the finite set

o8

Computing commutators we see that

[[wz d] [ww c]] — [w’z’W —w-z-wc-w %d [werw wzc+d] — [lufz'*w(((uz—l)(-—(ww—l}d)]
0 1] 0 1 0 1 0 1 0 1 )
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As above, this shows that G is 2-step solvable, but not nilpotent, since Z;(G) = {1}.

However, consider the map ¢: G — {0, 1,...,r — 1} given by ¢ ([‘*{)Z ‘]i]) =z (mod r). This is easily
seen to be a well-defined surjective homomorphism, so [G : Kerg] = r. Moreover, [ “62' ‘11 ] € Ker if and only
ifz =0 (mod r). Thus

_[[td].
Ker<p—{[0 1] ‘dED},
which is an Abelian group of finite index in G. B4

Solution to Exercise 1.55 :(
Let S = {a, b}. Define ¢ : Fg — H by ¢(a) = a and ¢(b) = b and extending in the canonical way to words
in Fg. This is a surjective homomorphism, and we want to show that it is injective as well.

Step L. Leth = a*1b™1 - - - a*n be an element in H such that z,,, zx, wi € Z\ {0} foralll <k <n-1.
For any x € B,

h.x =a*1b™l ---a*" .x € a®*1b"1 - .. a*n-1p*n-1(A) C A,
so it is impossible that 4.x = x, implying that i # 1.
Step II. Now, for a general element h = a*1b™1 --.a*" b1 where wy, 2, 2k, Wi € Z \ {0} for
2 <k < n—1,butpossibly z; = 0 or w, = 0. In this case we can define:
a*nha*n  ifzy =w, =0,
g= alha ifz; =0 # wy,
h ifz1 #0=w,.

We see that in each of the above cases, the element g falls into the conditions of Step I. So g # 1. Since every
time g is a conjugate of h, also h # 1. DV

Solution to Exercise 1.56 :(
SL,(Z) acts on Z?. Let A = {(x,y) eZ?: |yl < |x|} and B = {(x,y) eZ?: |x| < |y\}.
Note that a® = [(I)Z]Z] and b* = [211?] forany z € Z.
We have that a®(x,y) = (x + 2zy, y). Soif (x,y) € B, since |y| > |x| we get that
lx +2zy| = 2|zlly| = Ix] > 2lz] = DIyl = Iyl

ifz#0.S0a%(x,y) € Aforallz # Oand (x,y) € B.
Similarly, if (x, y) € A then

Vv

[2zx +y| 2 2|zllx| - Iy] > 2lz] = DIx| = |x],

so b*(x,y) € Bforallz # 0 and (x,y) € A.
This implies that (a, b) is isomorphic to IF, by the Ping-Pong Lemma. B4

Solution to Exercise 1.59 :(
It was shown in Exercise 1.58 that a = x> = (—=st)? = stst and b = y2 = (=521)? = s%t5%t.

Now, let z € SL>(Z). By Exercise 1.58, there existn > Oand g, ..., &, € {-1, 1}and @, B € {0, 1} such
thatz = 1¥s®1£5%2 - - -t t# (mod {—I, I}). Choose a minimal nn = n(z) as above. We prove the assertion
that there exist w € Sand p € {1, s, 82,1, ts, tsz} such that z = wp (mod {-1, I}) by induction on n.

The base case is n(z) = 0, for which z = tr**# (mod {1, I'}) for some a, 8 € {0, 1}. In all cases one sees
that the assertion holds withw = l and p € {1, ¢}.

For the induction step, we have that z = r*s®17s%2 - - - 51 t# (mod {-I,1})) andn > 1. Set 7 =
t¥s®1ts®2 ... s%n-1¢. By induction, there exist w € S and p € {1, s, 82, ¢, st, szt} such that Z = Wp
(mod {-1, I}). Note that modulo {1, I},

sl =87t p=1 st p=1

t p=s, 52t p=s,

= 2 = 2

-1, _ st p=s T p=s
PSTEEq. L _ _ pst = Zplg2 s,

tsT't=a's p=t, tst=b7's p=t,
stsT't=ab 's? p=st, stst =a p = st,
s2ts~lr=b p = st s2tst =ba™'s p=s%t,
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which completes the induction step.

This immediately shows that the number of cosets of 77(.S) is at most 6, that is, [PSLy(Z) : 7(S)] < 6.
zt} such that
7(z) = m(wp). This implies that for some £ € {—1, 1} we have that z = ewp. Hence, there are at most 12
cosets for S in SL(Z); that is, [SL2(Z) : ST < 12. IV

Finally, we also have that for any z € SL;(Z) there exist w € S and p € {l, s, 82, st, s

Solution to Exercise 1.60 :(
For every x € G there are unique elements yx € H andt, € T suchthat x = y,tx.Foranyu e T ands € S
one has that us(f,5)~! = Yus € TST'nH.

We will show that {y,s : u € T, s € S} generate H. To this end, fix some x € G and write x = 51 - - - s,
for s; € S. Define inductively u; = sy and ug 41 = Tuy, Sk+1- Then,

X = y_sltslsz o 8Sp = )’ul)’uztuzsfa‘ Sn = = YuYuy t  Yun Tuy -

Note that u; € TS so Yuj e TST' n H. Specifically, if x € H then it must be that 7, = 1 and
X =Yuy  Vun- R4

Solution to Exercise 1.62 :(
For any x € G, we can write 71(x) = 7t(sy) - - - w(sp,) for some s; € S. Thus, there exists & € H such that
X =hsy s, Writing h = uj - - - u,y, foru; € U, we have that U U S generates G. IV

Solution to Exercise 1.63 :(
LetG = {g}, - - -, &n }. LetF = F,, be the free group on n generators, and denote the generators by {sy, . . ., s, }.
Consider the homomorphism ¢ : F — G defined by setting ¢ (s;) = g;.

For every 1 < i,j < n there exists 1 < k = k(i,j) < n such that g;g; = gi. Define the relation
rij = SiSj(Sk)il for k = k(l,])

Let K = Kery and let R < F be the smallest normal subgroup containing {r; j : 1 < i, j < n}. Note that
R<K.

Let 7: F/R — G be the homomorphism defined by 77 (Rx) = ¢(x). This is well defined because R < K.

So F/R and K /R are finite groups. Since (F/R)/(K/R) = F/K = G, we have that |G| < %, which can

only mean that K = R. Hence G = <S1, cenSp i1 <6, j < n> is a finitely presented group. DV

Solution to Exercise 1.64 :(
Z is finitely presented, as it is just the free group on 1 generator. Since G /H is finite, it is also finitely presented.
Thus, G is finitely presented by Lemma 1.5.14. IV

Solution to Exercise 1.65 :(
This follows directly from Theorem 1.5.15 and the fact that virtually-Z groups are finitely presented. R4

Solution to Exercise 1.66 :(
If ey, ... eq are the standard basis vectors spanning Z<, then defining Hy, = (ey, ..., eq_r) for0 < k < d,
and Hyg = {1}, we have that Hy; < Hy and Hy /Hy4; = Z forall 0 < k < d. Thus Z¢ is finitely presented
by Theorem 1.5.15.

If G is a finitely generated virtually Abelian group, then G = Z4 x F for some d and some finite group F
(by Theorem 1.5.2). Thus, there exists a normal subgroup N <t G such that N = Z4 and G/N = F. Since both
N and F are finitely presented, so is G by Lemma 1.5.14. R4

Solution to Exercise 1.67 :(
Assume that G is n-step nilpotent. We prove the claim by induction on 7.

If n = 1 then G is Abelian, and since it was assumed to be finitely generated, G is finitely presented,
completing the induction base.

For n > 1, consider the lower central series G =y >y > - - - >, = {1}. Consider the group H =17,,_;.
Since [G, H] = {1}, we have that H is Abelian. By Exercise 1.39, H = y,,_1/y» is finitely generated. Thus,
H is finitely presented. Also, G/H is at most (n — 1)-step nilpotent and finitely generated, so G/H is finitely
presented by induction. Thus, G is also finitely presented, completing the induction step. DV
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Solution to Exercise 1.68 :(
Multiplication is associative since

((&: M)(g', W) (8", h") = (gg’, hg(W))(g", h") = (gg’g”, hg(h)gg' (h")),
(&M (g h)(E" h") = (g h)(g'g" . Wg (W) = (gg'8", hg(h)gg' (h")).

The identity is easily seen to be (1, 1 /). Inverses are given by (g, h = (g’l, g" (h~! ))A
The map (g, h) +— g is a homomorphism onto G with kernel {(1, &) | h € H }, which is isomorphic to H.
R4

Solution to Exercise 1.70 :(
Since TM € Dy forall T € A}, and M € Dy, it is obvious that A}, acts on the set Dy. Also, T(M + N) =
TM +T N so this action is indeed a group automorphism (recall that Dy has an additive operation).

ForT € A},, M € Dy define a 2n x 2n matrix by ¥(T', M) = ’(r) "1/’ ] Multiplying two such matrices by
blocks gives W(T, M)¥(S, N) = ¥(T'S, TN + M). This immediately leads to the conclusion that A}, < Dy =
G ={¥Y(T,M):T €A}, M € D }.

Now, since W(T, M)’] =¥ (T’], -T! M), we have that

[(¥(T, M), ¥(S, N)] =¥ (T7'S™", -T7'ST'N =T ' M) ¥(TS, TN + M)
=y (1, TSN +M)-T7'S7IN - T’IM)
=y (1, I-THS'N-(- S’I)T’IM) .

Thus, GV ¢ (¥, M) : M € Dy }. However, computing the commutator again (when S = T = I) we get
that G® = {I},s0 G is 2-step solvable.

If k > n then Dy is just the 0 matrix, so A}, < Dy = A}, which is Abelian.

To show that G is not nilpotent when k < n, we first compute the center Z = Z;(G). If ¥(S, N) € Z, then
the commutator computation above implies that (I' — I)N = (S — )M forall T € A};,, M € Dy. Choosing
T =1and M;; = 1{j>ik), we get that S; ; = 1 forall j < n —k. Thus, (S —I)M =0 forany M € Dy.
This leads to (I' = [)N = O forall T € A};, which cannot hold unless N = 0. We conclude that

Z=(¥(S,0):Vj<n—k,S;;=1).

Now, we compute the second center Zy = Z(G) = {x € G : Vy € G [x,y] € Z;(G)}. Using
the commutator formula above, we see that if W(S, N) € Z,, then again (T' — I)N = (S — I)M for all
T € A}, M € Dy, whichleadsto N = 0and S; ; = 1 forall j < n — k, as before. But then we get that
Zy = Z, so the upper-central series stabilizes at Z, and G cannot be nilpotent. Vv

Solution to Exercise 1.71 :(
Fora # 0and u € V, denote the transformation v - av +u by the “matrix” [ § { ]. (If V is finite dimensional,
then this is an actual (dimV + 1) X (dimV' + 1) matrix.)

One sees that the usual matrix multiplication provides us with composition of transformations:

auy [Bv] o [aB avtu
[97] 01]_[0 1 ]
The inverse transformation is given by
-1 -1 -1
(8117 = [ v ]
This provides the group structure for the affine transformations of V.
In fact, note that the multiplicative group C* = C\ {0} acts on the additive group V, so the collection of affine

transformations is just C* =< V.
It is now straightforward to compute commutators:

[[g'“’ Bv ] — [0*113*1 7&’1/3’1\/70’“4] [aﬁ m/+u] _ [1 a1~ (@-v-B-Du) |

01 0 1 0 1 0 1

Just as before, one sees that C* < V is 2-step solvable, if V # {0}.

Also,if [§ 1] € Z=Z(C* < V), then (@ — 1)v = (B - DuforallB € C*,v € V.IfV # {0}, this is
only possible if u = 0 and @ = 1. Hence Z = {1}. That is, the only case where C* < V is nilpotent is when
V = {0} and C* x V = C*, which is Abelian. R4
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Solution to Exercise 1.72 :(
First, note that the collection {a* b : 17 € {0, 1}, x € Z} forms a subgroup of D. Since the generators a, b
of Do are contained in this subgroup, we get that any element of Do, is of the form a* b" for some 7 € {0, 1}
and x € Z.

It is not difficult to verify that the map (&, x) — a*b1*¥)/2 is a surjective homomorphism with trivial
kernel.

Now,

[(&, x), (6, )] = (&, —&x)(6, =6y) (&, X)(8, y)
= (&0, —&ex — £6y)(&6, x + £y)
= (8252, —&X — &0y + £0x + széy)
= e@-Dx+6(1-¢g)y).

Thus [(1, x), (=1,0)] = (1, =2x) and [(—1, x), (1, 1)] = (1, 2). Hence Z(Z; < Z) = {(1,0)},80 Do = Zp <Z
is not nilpotent.
Also, the above commutator calculation shows that [(1, x), (1, ¥)] = (1,0), so De = Zj x Z is 2-step

solvable.
Finally, the surjective homomorphism (&, x) +— & shows that H = {(1, x) : x € Z} is a normal subgroup
of Z < Z isomorphic to Z, and of index 2 because Zy < Z/H = Z;. B4

Solution to Exercise 1.73 :(
The group structure is easy to verify. The identity in G is g = (lsd, 0) and (0, z)"! = (o"], —o! z).
Now, note that

1

(o, 2)™") = (‘r*l, —Tﬁlw) (o1, z+0w) = (O‘T,‘r*lz +oTr w1t ) .

d PR . d (T,w)
Let H = {(1s,,2): z € Z7}. Then it is immediate that H = Z and from the above, (lsd,z) =

(lsd, T’lz), so H < G. Also, themap 7: G — Sq given by (o, z) — o is a homomorphism with kernel H.

SoG/H = Sq4.
Finally,
[(o,2), (T, w)] = (0'_1, 70'_12) (O’T, 2407w *T_IW) = ([o‘, -0z 47w - O'_IT_IW) .
Since S is non-Abelian (for d > 2) we may find o, 7 € S such that [0, T] # lsd. IV
Solution to Exercise 1.75 :(
It suffices to show only one inequality, as the other will follow by reversing the roles of S, T'.
Foranyt € T lets; 1, ..., St n(r) € Sbesuchthats; | ---5; () =tand n(t) = |t|s = dists (1, ¢). Let
K = maxzer n(t).
Now, for any x € G letty, ..., t, €T besuchthatt) ---t, =xand m = |x|r = disty (1, x). Then,
X =01t = S, Stun(ty) Stp.1 0 Stpun(ty) T St 1 Stiun(tm)»
S0
m n(tj)
lxls < Z Z Istj. k| <k -m=x-|xlr.
j=1 k=1
Hence, for general x, y € G we have that
dists (x,y) = |x_1y|S <k- |x'1y|T = distz (x, y). IV

Solution to Exercise 1.80 :(
Symmetry and adaptedness of v follow from the previous exercises. Let U be a random element of law u, and
let V = U with probability 1 — p, and V = 1 with probability p. Then,

E[IVI*] =a-pE[IUF] <,

implying thatv € SA(G, k). R4
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46 Background

Solution to Exercise 1.87 :(
Compute using the symmetry of P:

2(Af,8) =2 ) AF(0E(X) =2 ) P, »)(f(x) — fF())EX)
x X oy

= D P = FONEE) + Y PO, 0)(FO) — f(DEW)
X,y

y.x

= D PG = FONEE) = g0

Xy

We have used that f, g € 2 so that the above sums converge absolutely, and so can be summed together.
Thus, if f is £2 and harmonic we have that

3P - fG)P = 2481, f) = 0.
X,y
Thus, [f(x) — f(¥)|? = 0 for all x, y such that P(x,y) > 0. Since P is irreducible (i.e. u is adapted) this

implies that f is constant. R4

Solution to Exercise 1.88 :(
Note that any linear map z +— az + f is still harmonic with respect to this .

The dimension is at most 4 since the linear map f — (f(—=1), £(0), (1), £(2)) from the space HF (Z, u) to
C* is injective (it has a trivial kernel). Indeed, for any g-harmonic function f, and any z we have that

fz+2)=4f(@) - fz-D-fz+ 1) -f(z-2),

f@-2)=4f@) - fz-D-fz+1) - flz+2).
Soif f(z—1) =f(z) =f(z+ 1) =f(z+2) =0 forany z then f = 0 is identically 0. DV
Solution to Exercise 1.89 :(

It is easy to verify p-harmonicity.
As for v, one may check that f, h are v-harmonic. Also,

gV y) = ((x+ 1P =y + (x = D= y? +xP - (y+ D2+ x2 = (y - 1)?
D=+ D? =P - (- D)
:xz—y2+é(2—2+1+2x—1—2y+1—2x—1+2y)=x2—y2:g(x,y),
kxv(x,y) = g((x+ Dy +(x =Dy +xp+ D+x(y =D+ @+ D+ D+ x-DHy-1)
:xy+%(y7y+x7x+x+y+l—x—y+l) :xy+%,

s0 g is v-harmonic, but k is not v-harmonic. R4

Solution to Exercise 1.90 :(
Let ¢: G — C be a homomorphism. Then, using the symmetry of u,

D HOEGY) = @)+ Y p0 () +e0™h) = e(x).
y y

The above sum converges absolutely because u has finite first moment, and since | (xy)| < [@(x)|+ [ (¥)| <
maxgses |@(s)| - (Ix]+ [y]), where S is the finite symmetric generating set used to determine the metric on G.

R4
Solution to Exercise 1.91 :(
Forany x € G,
D) = pf () + (1= p) Y uy)f (xy),
y x
where the sums on both sides converge absolutely together. Vv
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Solution to Exercise 1.97 :(

The fact that L is compact is basically the Arzela—Ascoli theorem. However, let us give a self-contained proof.
The space L with the topology of pointwise convergence is metrizable; for example, one may consider the

metric

dist(f, 1) = exp(-R(h, f)),  R(h, f):=suplr 20:V |x| <7, h(x) = f(x)).

So compactness will follow by showing that any sequence has a converging subsequence.

Let (f;,)n be a sequence in L. Denote G = {x1, x2, .. .}.

We will inductively construct a sequence of subsets N > Iy D I D I3 D -- -, all infinite |I;| = oo, such
that for all m > 1 the limits limlj sk—oo Jic (Xj) exist.

Indeed, if m = 1 then since |f;, (x)| < |x] for all n, the sequence (f;, (x1)), is bounded, and thus has a
converging subsequence. Let /] be the indices of this converging subsequence.

For m > 1, given I,,,—1, we consider (fk(xm))kelm,l- Since this sequence is bounded, it too has a
converging subsequence, and we denote by 1,,, C I,,,—; the indices of this new subsequence.

With this construction, we now write I,,; = (n;(m))k, for each m > 1. Consider the sequence hy = f (i).
n
For any m > 1, the sequence (/i )k >m is a subsequence of (fi)ker,, - Thus, h(xy,) := limg_co Ag (X5)

exists.
This shows that (hg ) converges pointwise to &, proving that L is compact.

The fact that x.h(y) = (x"y) h ( ‘l) is a left action is easily shown.
Also, if x.h = h for all x € G, then h(xy) = x1 h(y) + h(x) =h(y) +h(x)forallx,y € G.

If h: G — Cis a homomorphism, then choose @ = m Then
s

[IVshllew = sup sup |h(xs) —h(x)| = max |h(s)],
seS xeG S€S

so that ||Vsah||eo = 1. Hence, ah € L.
Now for the functions b, . Note that

2 () = by (z7'y) = b (z7) = ey = ! = b )
By the triangle inequality, |bx (y)| < |y]. So,
I (ys) = b ()] = [y b ()] = 11 ()] < Isl,

which implies that ||[Vsbx || < 1.
Finally, if by = by, then
dists (x, y) = bx (y) + x| = by (y) + |x| = |x[ = |yl
Reversing the roles of x, y we have that dists (x, y) = —dists (x, y), implying that dists (x, y) = 0, so that
x=y. R4

Solution to Exercise 1.98 :(
The fact that || - ||s, x is a semi-norm is easy to verify.
For f: G — Cand x € G note that

1x.flls.k = limsupr™ sup |f (x~ y)|<hmsup<r+\x|> “osup IF @1 () < 1 ls .
N

lylsr |zl<r+]x]|
Repeating this for x~!, we have that ||x.fls.x < [Iflls.x = ||x’1.x.f||s o < lIxflls,k, which implies

equality.
It is now immediate that HF . (G, u) is a G-invariant vector space. IV

Solution to Exercise 1.99 :(
‘We know that there exists k > 0 such that |x|r < «|x|s forall x € G. Hence,

[Iflls.k = limsupr™ sup |f(x)| < limsupr™ sup |f(0)| <& |If lIr.k- I
bl

|xlg<r r—oo |xlr <kr
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48 Background

Solution to Exercise 1.102 :(
This is similar to the proof of Proposition 1.5.1.

Let M € GL,, (R). Let us recall the cofactor matrix ¢ (M) and the adjugate matrix adj(M ) given as follows:
Forevery 1 <i,j < nlet M"/ bethe (n — 1) X (n — 1) matrix obtained from M by deleting the ith row and
Jjth column. Define ¢ (M) to be the n X n matrix given by ¢(M); ; = (=17 det(M 7). It is well known that
for any fixed 1 < i < n we have det(M) = 27:1 M; ;C; ;. Define adj(M) = ¢(M)™ (the transpose). Thus,
Madj(M) = adj(M)M = det(M) - I where [ is the n X n identity matrix.

This implies that if det(M) is invertible in R, then M~ = (det(M))™" - adj(M). IV

Solution to Exercise 1.103 :(
It is easy to see that I, —I commute with any A € GL,, (Z). Thus, {I, -1} < GL, (Z).

For A € Gly,+1(Z) we have that det(det(A) - A) = det(A)*"*! . det(A) = 1. Thus, the map A —
(det(A), det(A) - A) is an isomorphism from GLy,,4+1(Z) onto {—1, 1} X SLy,+1(Z).

Also, the map A — {—1, I }A is an isomorphism from SLy,,+1(Z) onto PGLy,,11(Z). R4

Solution to Exercise 1.104 :(
Since S is generated by a = [(]) ﬂ and b = [; (]’] it suffices to show that for any matrix A = [45";] 4%’;1 ] we
have that Aa and Ab are both still of this form.

For A as above, compute,

Aa = 4k+1 2n ] . [12] — [4k+l 2(4k+1)+2n] _ [4k+1 2(4k+1+n)]
T L 2m 4c+1 01] 7 | 2m 22m+4e+1 ] — | 2m 4(m+O)+1 |°

which is of the correct form. Similarly,

Ab = [4k+1 2n ] . [1 0] _ [ 4k+1+22n  2n ] _ [ 4(k+n)+1 2n ]
=L 2m 4e+1 1| = | 2m+204e+1) 46+1 | = | 20m+4e+1) 40+1 | »

completing the proof. IV

Solution to Exercise 1.105 :(
Let

H={A=[% 201 |det(A) =1, k,&,n,m € Z} .
We have already seen that S ¢ H.
Leta = [(l) %] and b = [; ?] be the generators of S.

Let A = [4%;!1 4%,11 ] Denote ||A|| = max{|4k + 1], |4€ + 1|}. Since A™! = A;(;;J 4713:11 ], by possibly

replacing A with A~!, we may assume that |4k + 1| > |4£ + 1|, so that ||A|| = |4k + 1.

We will prove by induction on ||A]| that if det(A) = 1 then A € S.

The base case is where ||A|| = 1, whichis k = € = 0. Then 1 = det(A) = 4(¢ — mn) + 1 implies that
¢ = nm, so that eithern = 0orm = 0.If n = O then A = b™ € Sandif m = O then A = a” € S. This
completes the base case.

For ||A|| > 1 we proceed by induction as follows.

Note that det(A) = 1 implies that |(4k + 1)(4€ + 1)| = [4nm + 1|. If 2min{|n|, |m|} > |4k + 1| then

|4k + 1% > |4k + D@L+ 1)| = 4lnm| -1 > (J4k + 1|+ 1)> =1 > |4k + 1%,
a contradiction! So it must be that
2min{|n|, |m|} < |4k + 1].
Since 2min{|n|, |m|} is even, and |4k + 1] is odd, equality cannot hold, so we conclude that
2min{|n|, |m|} < |4k + 1].

We now have two cases.
Case L. 2|n| < |4k + 1|. In this case we see that for some z € {—1, 1} we have |[4(k +zn) + 1| < |4k + 1|.
Since
z _ 4(k+zn)+1 2n
Ab* = 2(m+z(4€+1)) 4€+1 ] i

if |[4€ + 1| < |4k + 1], then [|Ab*|| < ||A]], and by induction Ab* € S, implying that A € S as well.
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1.9 Solutions to Exercises 49

If |4 + 1| = |4k + 1], then we can find w € {—1, 1} such that [4(£ + wn) + 1| < |[4€ + 1]. So the matrix
b Ab* admits that

[16™ Ab* || = max{|4(k + zn) + 1|, |[4(€ + wn) + 1]} < ||A]|.

Again by induction b* Ab* € S sothat A € S as well.
Case IL. 2|m| < |4k + 1]|. Similarly to the previous case, taking z € {—1, 1} such that |[4(k + zm) + 1| <
|4k + 1], we find that

z A _ [Hk+zm)+] 2(n+z(4€+1))
asA= [ 2m 4r+1

If [4€ + 1| < |4k + 1] then ||a® A[| < ||A]l, so that a* A € S by induction, implying that A € S.

If |4€ + 1| = |4k + 1|, then taking w € {—1, 1} such that |[4(£ + wm) + 1| < |[4€ + 1|, we obtain that
[la® Aa™ || = max{|4(k +zm) + 1], |4(€ + wm) + 1|} < ||A]|. As before, by induction a®* Aa™ € S so that
A € S as well. IV

Solution to Exercise 1.106 :(
Let ¢: SLy(Z) — SL2(Z/4Z) be the map given by taking the matrix entries modulo 4. This is easily seen to be
a surjective homomorphism.

Let K = Kerg < SLy(Z). By the above exercises, K < S. So [SLy(Z) : S] = [SL2(Z)/K : S/K]
[SL2(Z/AZ) : ¢(S)] < co. ]

SN
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