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4 Background

1.1 Basic Notation

The sets N, Z, Q, R, and C denote the sets of natural, whole, rational, real, and
complex numbers, respectively. We assume that N contains the number 0.
For real numbers a, b ∈ R we use a ∧ b = min{a, b} and a ∨ b = max{a, b}.
For sets A, B the notation AB is used to denote all functions from B to A.
A ] B is used to denote disjoint unions; that is, this notation includes the

claim that A ∩ B = ∅.
We use 1A to denote the indication function of a set A; so 1A(ω) = 1 for

ω ∈ A and 1A(ω) = 0 for ω < A.
For linear operators we use I to denote the identity operator.
In a generic probability space, we use P to denote the probability measure

and E to denote expectation.
A graph is a pair (V, E) where V is a set (whose elements are called vertices)

and E ⊂ {{x, y} ⊂ G}. A subset {x, y} ∈ E is called an edge. Sometimes we
write x ∼ y to denote the case that {x, y} ∈ E. A graph is naturally equipped
with the notion of paths: A finite path in a graph G is a sequence x0, . . . , xn
of vertices such that x j ∼ x j+1 for all 0 ≤ j < n. For such a sequence, n
is the length of the path; this is the number of edges traversed by the path.
An infinite such sequence is called an infinite path. A graph is connected if
for every x, y ∈ G there is some finite path starting at x and ending at y. A
connected graph comes with a natural metric on it: distG (x, y) is the minimal
length of a path between x and y.

For a sequence (an)n we use the notation a[m, n] = (am, . . . , an).
For two measures µ, ν on a measurable space (Ω, F ), we write µ � ν if µ

is absolutely continuous with respect to ν. That is, for any A ∈ F it holds that
if ν(A) = 0 then µ(A) = 0.
If µ is a probability measure on a measurable space (Ω, F ), then an i.i.d.-µ

sequence of elements means a sequence of elements (ωt )t such that each one
has law µ and that are all independent. (Sometimes this is just called i.i.d.,
omitting µ from the notation; “i.i.d.” stands for independent and identically
distributed.)
In a group G we use 1 and sometimes 1G to denote the identity element.

For elements x, y ∈ G we denote xy = y−1xy and [x, y] = x−1y−1xy = x−1xy .
The latter is called the commutator of x, y. Iterated commutators are defined
inductively by [x1, . . . , xn] := [[x1, . . . , xn−1], xn]. The centralizer of x ∈ G is
defined to be CG (x) = {y ∈ G : [x, y] = 1}.

For A ⊂ G we write Ax = {ax : a ∈ A} and A−1 =
{
a−1 : a ∈ A

}
. A is

called symmetric if A = A−1. A group G is generated by a subset S ⊂ G if
every element of G can be written a product of finitely many elements from
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S ∪ S−1. Also, 〈A〉 denotes the subgroup generated by the elements of A; that
is, all elements that can be written as a product of finitely many elements from
A ∪ A−1. For two subsets A, B ⊂ G we write [A, B] = 〈[a, b] : a ∈ A , b ∈ B〉
(note that this is the group generated by all commutators, not just the set of
commutators). We also denote AB = {ab : a ∈ A , b ∈ B}.

1.2 Spaces of Sequences

Let G be a countable set. Let us briefly review the formal setup of the canonical
probability spaces onGN. This is the space of sequences (ωn)∞

n=0 whereωn ∈ G
for all n ∈ N. A cylinder set is a set of the form

C(J, ω) =
{
η ∈ GN | ∀ j ∈ J , η j = ω j

}
, J ⊂ N , 0 < |J | < ∞, ω ∈ GN.

It is also natural to define C(∅, ω) = GN. Let X j : GN → G be the map
X j (ω) = ω j projecting onto the jth coordinate. For times t > s we also use the
notation X[s, t] = (Xs, Xs+1, . . . , Xt ).

Define the cylinder σ-algebra

F = σ(X0, X1, X2, . . .) = σ
(
X−1
n (g) | n ∈ N , g ∈ G

)
.

Exercise 1.1 Show that

F = σ(X0, X1, X2, . . .) = σ
(
C(J, ω) | 0 < |J | < ∞ , J ⊂ N, ω ∈ GN

)
= σ

(
C({0, . . . , n}, ω) | n ∈ N ω ∈ GN

)
.

Show that η ∈ C(J, ω) if and only if C(J, ω) = C(J, η).

For t ≥ 0 we denote

Ft = σ(X0, . . . , Xt ).

Exercise 1.2 Show that Ft ⊂ Ft+1 ⊂ F . (A sequence of σ-algebras with this
property is called a filtration.) Conclude that

F = σ
(⋃

t

Ft

)
.

Theorems of Carathéodory and Kolmogorov tell us that the probability mea-
sure P on

(
GN, F

)
is completely determined by knowing the marginal proba-

bilities P[X0 = g0, . . . , Xn = gn] for all n ∈ N, g0, . . . , gn ∈ G. That is, when G
is countable, Kolmogorov’s extension theorem implies the following:
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Theorem 1.2.1 Let (Pt )t be a sequence of probability measures, where each Pt

is defined on Ft . Assume that these measures are consistent in the sense that
for all t,

Pt+1
(
{(X0, . . . , Xt ) = (g0, . . . , gt )}

)
= Pt

(
{(X0, . . . , Xt ) = (g0, . . . , gt )}

)
(1.1)

for any g0, . . . , gt ∈ G. Then, there exists a unique probability measure P on(
GN, F

)
such that for any A ∈ Ft we have P(A) = Pt (A).

Details can be found in Durrett (2019, appendix A).

Exercise 1.3 Let (Pt )t be a sequence of probability measures, where each Pt is
defined on Ft . Show that (1.1) holds if and only if for any t < s and any A ∈ Ft ,
we have Ps (A) = Pt (A).

The space GN comes equipped with a natural shift operator: θ : GN → GN

given by θ(ω)t = ωt+1 for all t ∈ N.

Exercise 1.4 Show that θt (A) ∈ F for any A ∈ F . B solution C

Exercise 1.5 Let K ⊂ F be a collection of events. Show that if G = σ(K ) is
the σ-algebra generated by K , then θ−tG := {θ−t (A) : A ∈ G} is a σ-algebra,
and in fact θ−tG = σ

(
θ−t (K ) : K ∈ K

)
. B solution C

Exercise 1.6 Show that θ−1(A) ∈ F for any A ∈ F . B solution C

Exercise 1.7 Define

σ(Xt, Xt+1, . . .) = σ
(
X−1
t+j (g) : g ∈ G , j ≥ 0

)
.

Show that σ(Xt, Xt+1, . . .) = θ−tF = {θ−t (A) : A ∈ F }. B solution C

Exercise 1.8 If ∼ is an equivalence relation on Ω, we say that a subset A ⊂ Ω
respects ∼ if for any ω ∼ η ∈ Ω we have ω ∈ A ⇐⇒ η ∈ A.
Show that the collection of subsets A that respect the equivalence relation ∼

forms a σ-algebra on Ω.

Exercise 1.9 Define an equivalence relation on GN by ω ∼t ω′ if ω j = ω
′
j for

all j = 0, 1, . . . , t.
Show that this is indeed an equivalence relation.
Show that σ(X0, X1, . . . , Xt ) =

{
A : A respects ∼t

}
.
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1.3 Group Actions

A (left) group action G y X is a function from G × X to X , (γ, x) 7→ γ.x, that
is compatible in the sense that (γη).x = γ.(η.x), and such that 1.x = x for all
x ∈ X . We usually denote γ.x or γx for the action of γ ∈ G on x ∈ X .
A right action is analogously defined for (x, γ) 7→ x.γ and compatibility is

x.(γη) = (x.γ).η (and x.1 = x for all x ∈ X).

Exercise 1.10 Let G y X be a left group action. For any γ ∈ G and x ∈ X
define x.γ := γ−1.x. Show that this defines a right action of G on X .
Conversely, show that ifG acts on X from the right, then defining γ.x = x.γ−1

is a left action.

The bijections on a set X form a group with the group operation given by
composition of functions. A (left) group action G y X can be thought of as a
homomorphism from the group into the group of bijections on X .

Sometimes, we wish to restrict to some subgroup of bijections on X when
X has some additional structure. For example, if X is a topological space,
we say that G acts on X by homeomorphisms if every element of G is a
homeomorphism of X , when thinking of elements of G as identified with their
corresponding bijection of X . That is, an action by homeomorphisms is a group
homomorphism from G into the set of homeomorphisms of X .
Similarly, if H is some Hilbert space, then a group G acts on H by unitary

operators if every element of G is mapped to a unitary operator of H. This is
just a group homomorphism from G into the group of unitary operators on H.

Exercise 1.11 Show that any group acts on itself by left multiplication; that is,
G y G by x.y := xy.

Exercise 1.12 Let CG be the set of all functions from G → C. Show that
G y CG by (x. f )(y) := f

(
x−1y

)
.

Show that f x (y) := f
(
yx−1

)
defines a right action.

Exercise 1.13 Generalize the previous exercise as follows:
Suppose that G y X . Consider CX , all functions from X → C. Show that

G y CX by γ. f (x) := f
(
γ−1.x

)
, for all f ∈ CX, γ ∈ G, x ∈ X .

Show that the action G y CX is linear; that is, γ.(ζ f + h) = ζ (γ. f ) + h,
for all f , h : X → C, ζ ∈ C, and γ ∈ G.

Show that f γ (x) := f (γ.x) defines a right action of G on CX . Show that this
right action is linear as well.
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Exercise 1.14 Let G y X . LetM1(X ) be the set of all probability measures
on (X, F ), where F is some σ-algebra on X . Suppose that for any g ∈ G the
function g : X → X given by g(x) = g.x is a measurable function. (In this case
we say that G acts on X by measurable functions.)
Show that G yM1(X ) by

∀ A ∈ F g.µ(A) := µ
(
g−1 A

)
,

where g−1 A :=
{
g−1.x : x ∈ A

}
.

Exercise 1.15 Let F = { f : G → C : f (1) = 0}. Show that

(x. f )(y) := f
(
x−1y

)
− f

(
x−1

)
defines a left action of G on F.

Notation Throughout this book, unless specified otherwise, we will always
use the left action γ. f (x) = f

(
γ−1x

)
for G y X and f : X → C.

Definition 1.3.1 Let G y X be a (left) action. For A ⊂ X and γ ∈ G define
γ.A = {γ.x : x ∈ A}. For F ⊂ G denote F .A = {γ.x : γ ∈ F, x ∈ A}.
A subset A ⊂ X is called G-invariant if γ.A ⊂ A for all γ ∈ G; equivalently,

G.A = A.

Definition 1.3.2 For a group action G y X and some x ∈ X , the set G.x :=
{g.x : g ∈ G} is called the orbit of x under G. The stabilizer of x is the
subgroup stab(x) = {g ∈ G : g.x = x}.

Exercise 1.16 Show that forG y X any stabilizer stab(x) is indeed a subgroup.
B solution C

Exercise 1.17 (Orbit-Stabilizer theorem) Let G y X .
Show that |G.x | = [G : stab(x)]. B solution C

One nice consequence of the orbit-stabilizer theorem is that intersections of
finite-index subgroups have finite index.

Proposition 1.3.3 Let G be a group and H, N ≤ G be subgroups.
Then, [G : H ∩ N] ≤ [G : H] · [G : N].

Proof If either [G : H] = ∞ or [G : N] = ∞ there is nothing to prove because
the right-hand side is infinite. So assume that [G : H] < ∞ and [G : N] < ∞.
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Let X = G/H × G/N . That is, elements of X are pairs of cosets (αH, βN ).
Therefore, X is finite, since |X | = |G/H | · |G/N |.

The group G acts on X by g.(αH, βN ) = (gαH, g βN ). The stabilizer of
(H, N ) may easily be computed: stab(H, N ) = H ∩ N . Thus, [G : H ∩ N] ≤
|X | ≤ [G : H] · [G : N]. �

1.4 Discrete Group Convolutions

Throughout this book we will almost exclusively deal with countable groups.
Given a countable group G, one may define the convolution of functions
f , g : G → C as follows.

Definition 1.4.1 LetG be a countable group. Let f , g : G → C. The convolution
of f and g is the function f ∗ g : G → C defined by

( f ∗ g)(x) :=
∑
y

f (y)g
(
y−1x

)
=

∑
y

f (y)(y.g)(x),

as long as the above sum converges absolutely.

This is the analogue of the usual convolution of functions on the group R:

( f ∗ g)(x) =
∫

f (y)g(x − y)dy.

However, the convolution is not necessarily commutative, as is the case for
Abelian groups.

Exercise 1.18 Show that

( f ∗ g)(x) =
∑
y

f
(
xy−1

)
g(y).

Give an example for which f ∗ g , g ∗ f .

Exercise 1.19 (Left action and convolutions) Show that x.( f ∗ g) = (x. f ∗ g)
for the canonical left action x. f (y) = f

(
x−1y

)
.

When G is countable, a probability measure µ on G may be thought of as a
function µ : G → [0, 1] so that µ(A) =

∑
a∈A µ(a).

Exercise 1.20 Let µ be a probability measure on a countable group G, and let
X be a random element of G with law µ. Show that
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E
[

f
(
x · X−1

)]
= ( f ∗ µ)(x)

whenever the above quantities are well defined.

Definition 1.4.2 Let µ be a probability measure on G. We will use the notation
µt to denote the t-fold convolution of µ with itself. Specifically, µ1 = µ and
µt+1 = µ ∗ µt = µt ∗ µ.

Exercise 1.21 Let G be a countable group. Let µ, ν be probability measures on
G. Let X,Y be independent random elements in G such that X has law µ, and
Y has law ν.

Show that the law of X · Y is µ ∗ ν. B solution C

Exercise 1.22 Show that for any p ≥ 1 we have | |x. f | |p = | | f | |p . Here,
| | f | |pp =

∑
x | f (x) |p and | | f | |∞ = supx | f (x) |.

Show that | | f̌ | |p = | | f | |p , where f̌ (x) = f
(
x−1

)
.

Exercise 1.23 Prove Young’s inequality for products: For all a, b ≥ 0 and any
p, q > 0 such that p + q = 1, we have ab ≤ pa1/p + qb1/q . B solution C

Exercise 1.24 Prove the generalized Hölder inequality: for all p1, . . . , pn ∈
[1,∞] such that

∑n
j=1

1
p j
= 1, we have

| | f1 · · · fn | |1 ≤
n∏
j=1
| | f j | |p j . B solution C

Exercise 1.25 Prove Young’s inequality for convolutions: For any p, q ≥ 1 and
1 ≤ r ≤ ∞ such that 1

p +
1
q =

1
r + 1, we have

| | f ∗ g | |r ≤ || f | |p · | |g | |q . B solution C

1.5 Basic Group Notions

Here we briefly recall some basic notions and examples from group theory.
Further depth on any of these notions can be found in any basic textbook on
group theory.
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1.5.1 Basic Linear Groups
If R is a ring we use the notationMn(R) to denote the set of n× n matrices with
entries in R. For example, Mn(Z) is the set of all n × n matrices with integer
entries. These do not necessarily form a group. By GLn(R) we denote the
group of n × n invertible matrices with real entries. The group operation here
is matrix multiplication. In more generality, GLn(C) is the group of n × n
matrices with complex entries, so that GLn(R) ≤ GLn(C).

Exercise 1.26 Show that GL2(R) ∩M2(Z) is not a group with matrix multipli-
cation. B solution C

A nontrivial fact is that if we restrict to integer entries with determinant ±1,
we do have a group. We denote

GLn(Z) = {M ∈ Mn(Z) : |det(M) | = 1}.

Proposition 1.5.1 GLn(Z) is a group with matrix multiplication.

Proof The main property we will use is that for any M ∈ GLn(Z) the number
det(M) is invertible in the ring Z. (This proof generalizes to matrices over a
commutative ring with unit such that the determinants are invertible in the ring;
see Exercise 1.102.)
Recall Cramer’s Rule: For b ∈ Rd and A ∈ GLn(R), we may compute the

solution to Ax = b by xi =
det(A(i,b))

det(A) for each i = 1, . . . , n, where A(i, b) is the
matrix A with ith column replaced by the vector b.
Let ei denote the standard basis for Rn. So ei is a vector with 1 in the ith

position, and 0 everywhere else.
Now let A ∈ GLn(Z). We want to compute A−1 and show that it has integer

entries. Let xi be the ith column of A−1. Then Axi = ei . Consequently,(
A−1

)
i, j
= (xi)j =

det(A( j, ei))
det(A)

.

Note that since A, ei have integer entries, then so does A( j, ei). Since det(A) ∈
{−1, 1}, we conclude that A−1 has integer entries.
Thus, if A ∈ GLn(Z) then A−1 ∈ GLn(Z).
The fact that GLn(Z) is closed under matrix multiplication is easy to prove,

and is left to the reader. �

The following notation is also standard. Define:

SLn(Z) = {A ∈ GLn(Z) | det(A) = 1}.
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Exercise 1.27 Show that SLn(Z) C GLn(Z) and that [GLn(Z) : SLn(Z)] = 2.
B solution C

Exercise 1.28 For 1 ≤ i, j ≤ n let Ei, j denote the n × n matrix with 1 only in
the (i, j) entry, and 0 in all other entries.
Show that SLn(Z) =

〈
I + Ei, j | 1 ≤ i , j ≤ n

〉
, where I is the n × n identity

matrix. B solution C

1.5.2 Abelian Groups
A group G is called Abelian, or commutative, if xy = yx for all x, y ∈ G.
A group G is called finitely generated if there exists a finite generating set

for G. That is, if there exists a finite set S ⊂ G, |S | < ∞, such that for any
x ∈ G there are s1, . . . , sn ∈ S∪ S−1 such that x = s1 · · · sn. We will come back
to finitely generated groups in Section 1.5.7.

Exercise 1.29 Show that the group Zd (with vector addition as the group
operation) is a finitely generated Abelian group, with the standard basis serving
as a finite generating set.

Finitely generated Abelian groups have a special structure. The classifica-
tion of these groups is given by the so-called fundamental theorem of finitely
generated Abelian groups. We will prove a simplified version of this theorem.

Theorem 1.5.2 Let G be a finitely generated Abelian group. Then there exists
a finite Abelian group F and some integer d ≥ 0 such that G � Zd × F. Also,
d > 0 if and only if |G | = ∞.

Proof Let U = {u1, . . . , un} be a finite generating set for G. Consider the
vector space V = Qn. Define a map ψ : Zn → G by

ψ(z1, . . . , zn) = (u1)z1 · · · (un)zn .

Note that since G is Abelian and since U generates G, the map ψ is surjective.
Also, it is simple to check that because G is Abelian we have that ψ is a
homomorphism.
Let K = Kerψ = {~z ∈ Zn : ψ(~z) = 1}. LetW = span(K ), which is a subspace

of V . The quotient vector space V/W has dimension d ≤ n, so we can choose
~b1, . . . , ~bd ∈ V such that {bj +W : 1 ≤ j ≤ d} forms a (linear) basis for V/W .
Let ~w1, . . . , ~wk be a basis for W . By multiplying by a large enough integer,
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we can assume without loss of generality that ~bj ∈ Z
n for all 1 ≤ j ≤ d and

~w j ∈ Z
n for all 1 ≤ j ≤ k.

Define s j = ψ(~bj ) for all 1 ≤ j ≤ d and f j = ψ(~w j ) for all 1 ≤ j ≤ k.
We claim that the map (z1, . . . , zd) 7→ (s1)z1 · · · (sd)zd is an isomorphism

from Zd onto Z = 〈s1, . . . , sd〉. It is immediate to verify that this is a surjective
homomorphism. To show it is injective, assume that (s1)z1 · · · (sd)zd = 1.
Then,

ψ
(
z1~b1 + · · · + zd~bd

)
= (s1)z1 · · · (sd)zd = 1,

implying that z1~b1+ · · ·+ zd~bd ∈ K ⊂ W . Since ~b1+W, . . . , ~bd+W are linearly
independent, it must be that z1 = · · · = zd = 0. This proves injectivity, showing
that Z � Zd .
Now fix some ~z ∈ Zn ∩ W . Then since W = span(K ), there exist some

q1, . . . , qm ∈ Q and ~z1, . . . ,~zm ∈ K such that ~z = q1~z1 + · · · + qm~zm. So
there exists a large enough integer r , 0 such that r~z ∈ K , implying that
ψ(~z)r = ψ(r~z) = 1. This implies that any element of F = 〈 f1, . . . , fk〉 is
torsion; that is, for any x ∈ F there exists an integer r , 0 such that xr = 1.
(One can check that in fact F is exactly the subgroup of all torsion elements of
G.) So we may take r > 0 large enough so that ( f j )r = 1 for all 1 ≤ j ≤ k.
Since F is generated by f1, . . . , fk , and since F is Abelian, we have that the map
{0, . . . , r − 1}k → F given by (a1, . . . , ak ) 7→ ( f1)a1 · · · ( fk )ak is surjective,
and thus F is a finite group.
Let x ∈ Z ∩ F. So xr = 1 for some integer r > 0. Then

ψ
(
r z1~b1 + · · · + r zd~bd

)
= ((s1)z1 · · · (sd)zd )r = xr = 1,

for some integers z1, . . . , zd ∈ Z. This implies that r z1~b1+· · ·+r zd~bd ∈ K ⊂ W ,
and as before we get that z1 = · · · = zd = 0, so that x = 1. That is, we have
shown that Z ∩ F = {1}.
Finally, recall that the map ψ : Zn → G is surjective. Any ~z ∈ Zn can be

written as ~z = ~v + ~w where ~v = z1~b1 + · · · + zd~bd and ~w = a1~w1 + · · · + ak ~wk

for integers z1, . . . , zd, a1, . . . , ak . Thus, for any x ∈ G there exist ψ(~v) ∈ Z and
ψ(~w) ∈ F such that x = ψ(~v) · ψ(~w).
To conclude, we have Z C G with Z � Zd and F C G with |F | < ∞, and

these have the following properties:

• G = ZF = {z f : z ∈ Z , f ∈ F},
• Z ∩ F = {1},
• and for any z ∈ Z , f ∈ F we have z f = f z.

It is an exercise to show that this implies that G � Z × F. �
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Exercise 1.30 Let G be a group and let Z, F be subgroups such that G = ZF,
Z ∩ F = {1}, and z f = f z for all z ∈ Z , f ∈ F.
Show that G � Z × F.

1.5.3 Virtual Properties
A group property is a class of groups P such that if G � H and G ∈ P, then
also H ∈ P. For G ∈ P we sometimes say that G is P.
For a group property P, we may define the property virtually P. A group G

is virtually P if there exists a finite index subgroup [G : H] < ∞ such that H
is P.

Example 1.5.3 A group G is virtually finitely generated if there exists a finite
index subgroup H ≤ G, [G : H] < ∞ such that H is finitely generated. 4 5 4

Exercise 1.31 Show that if G is virtually finitely generated then G is finitely
generated. B solution C

Example 1.5.4 A group G is called indicable if there exists a surjective homo-
morphism from G onto Z.
A group G is therefore virtually indicable if there exists a finite index

subgroup [G : H] < ∞ and a surjective homomorphism ϕ : H → Z. 4 5 4

Exercise 1.32 Show that if G is finitely generated and there exists a homomor-
phism ϕ : G → A where A is an Abelian group and |ϕ(G) | = ∞, then G is
indicable. B solution C

Exercise 1.33 Let G be a finitely generated group. Show that |G/[G,G]| = ∞
if and only if there exists a surjective homomorphism ϕ : G → Z. B solution C

Every group G ∈ P is also virtually P, as it has index 1 in itself. But not
every property P is the same as virtually P.
For example: the infinite dihedral group D∞, see Exercise 1.72, is virtually

Z (i.e. contains a finite index subgroup isomorphic to Z) but is not Abelian, and
so definitely not isomorphic to Z.
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1.5.4 Nilpotent Groups

Definition 1.5.5 For a group G, we define the lower central series inductively
as follows: γ0 = γ0(G) = G and γn+1 = γn+1(G) = [γn(G),G] for all n ≥ 0.

We define the upper central series as: Z0 = {1} and for all n ≥ 0,

Zn+1 = Zn+1(G) := {x ∈ G : ∀ y ∈ G [x, y] ∈ Zn}.

Z1 = Z1(G) is called the center of G, and is sometimes denoted just Z (G).

Exercise 1.34 Assume that G = 〈S〉, for some set of elements S ⊂ G.
Show that

γn(G) =
〈
[s0, . . . , sn]x : s0, . . . , sn ∈ S , x ∈ G

〉
. B solution C

Exercise 1.35 Let ϕ be an automorphism of a group G. Show that ϕ(γn(G)) =
γn(G) and that ϕ(Zn(G)) = Zn(G).
Conclude that γn(G), Zn(G) are normal subgroups of G. B solution C

Exercise 1.36 Show that for k ≤ n we have Zk (G) C Zn(G).
Show that Zn(G)/Zk (G) = Zn−k (G/Zk (G)). B solution C

Exercise 1.37 Show that if γn(G) = {1} then Zn(G) = G. B solution C

Exercise 1.38 Show that if Zn(G) = G then γn(G) = {1}. B solution C

Exercise 1.39 Show that if G is finitely generated, then γk/γk+1 is also finitely
generated for any k ≥ 0. B solution C

Definition 1.5.6 A group G is called n-step nilpotent if γn(G) = {1} and
γn−1(G) , {1}. (By convention, 0-step nilpotent is just the trivial group.)
A group is called nilpotent if it is n-step nilpotent for some n ≥ 0.

Note that 0-step nilpotent is the trivial group {1}. Note too that 1-step nilpotent
is just Abelian.

Exercise 1.40 Show that a group is n-step nilpotent if and only if Zn(G) = G
and Zn−1(G) , G.

Show that G is (n + 1)-step nilpotent if and only if G/Z1(G) is n-step
nilpotent. B solution C
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Exercise 1.41 Show that G/γn(G) is at most n-step nilpotent. B solution C

Exercise 1.42 Show that if G is a nilpotent group and H ≤ G, then H is
nilpotent as well. B solution C

Exercise 1.43 Show that if G is nilpotent and NCG, then G/N is also nilpotent.
B solution C

Let us go through some basic examples of nilpotent groups.

Some readers may have seen the following definition: An n × n matrix
M ∈ Mn(R) is called k-step nilpotent if Mk−1 , 0 and Mk = 0. This is related
to nilpotence of groups, as the following exercises show.

Exercise 1.44 Let Tn(R) denote all n × n upper triangular matrices with real
entries. For 1 ≤ k ≤ n define

Dk = {M ∈ Tn(R) : ∀ j ≤ i + k − 1, Mi, j = 0}.

That is, all the first k diagonals of M are 0. (So e.g. D0 = Tn(R).)
Show that if M ∈ Dk, N ∈ D` then M N ∈ Dk+` . B solution C

Exercise 1.45 Fix n > 1. Let Tn(R) denote all n × n upper triangular matrices.
For 1 ≤ k ≤ n define

Dk = {M ∈ Tn(R) : ∀ j ≤ i + k − 1, Mi, j = 0},

and define Dk (Z) = Dk ∩Mn(Z) (recall that Mn(Z) is the set of n × n matrices
with integer entries).
Set

Qn,k = {I + N : N ∈ Dk (Z)}.

Show that Qn,k is a group (with the usual matrix multiplication). B solution C

Exercise 1.46 Let n > 1. Let Hn(Z) be the collection of all upper triangular
n × n matrices, with 1 on the diagonal, and only integer entries.
Show that Hn(Z) is a group (with the usual matrix multiplication).
Show that for 0 ≤ k ≤ n − 1 we have

γk (Hn(Z)) ⊂ Qn,k+1 ⊂ Zn−k−1(Hn(Z)). B solution C
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1.5.5 Solvable Groups

Definition 1.5.7 Let G be a group. The derived series is defined inductively as
follows: G(0) = G, and G(n+1) =

[
G(n),G(n)

]
.

Definition 1.5.8 A group G is n-step solvable if G(n) = {1} and G(n−1) , {1}.
(By convention, 0-step solvable is the trivial group.)
A group is solvable if it is solvable for some n ≥ 0.

Note that the properties of 1-step solvable, 1-step nilpotent, and Abelian all
coincide.

Exercise 1.47 Show that any nilpotent group is solvable. B solution C

Exercise 1.48 Show that if G is 2-step solvable, then G(1) is Abelian. B solution C

Exercise 1.49 Show that the following are equivalent:

• G is a solvable group.
• G(n) is solvable for all n ≥ 0.
• G(n) is solvable for some n ≥ 0. B solution C

Exercise 1.50 Show that if G is solvable and infinite then [G : [G,G]] = ∞.
B solution C

Exercise 1.51 Show that if G is a solvable group and H ≤ G then H is solvable.
B solution C

Exercise 1.52 Let ∆+n denote the collection of all n × n diagonal matrices with
real entries and only positive values on the diagonal.
Show that ∆+n is an Abelian group (with the usual matrix multiplication).

B solution C

Exercise 1.53 Fix n > 1, and recall Dk , the collection of all n × n upper
triangular matrices, with first k diagonals equal to 0 (from Exercise 1.44).
Recall also∆+n , the collection of all n×n diagonal matrices with only positive

values on the diagonal.
For k ≥ 1 define

Pn,k = Pn,k := {T + M : T ∈ ∆+n , M ∈ Dk }.

https://doi.org/10.1017/9781009128391.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009128391.003


18 Background

Show that Pn,k is a group (with the usual matrix multiplication).
Show that [Pn,k, Pn,k] ⊂ {I + M : M ∈ Dk }.
Show that Pn,k is solvable, of step at most dlog2(n)e + 1.
Show that Pn,k is not nilpotent when k < n. B solution C

Exercise 1.54 Let r > 1 and consider ω = e2πi/r , the rth root of unity. Define

D =



r−1∑
k=0

akωk : ak ∈ Z



and
G =

{ [
ωz d
0 1

]
: z ∈ Z , d ∈ D

}
.

Show that G is a finitely generated virtually Abelian group that is not nilpotent.
B solution C

1.5.6 Free Groups
Let S be a finite set. For each element s ∈ S, consider a new element s̄, and
define S̄ = { s̄ : s ∈ S}. Consider all possible finite words in the letters S ∪ S̄,
including the empty word ∅, and denote this set by ΩS . That is,

ΩS := {a1 · · · an : n ∈ N , a j ∈ S ∪ S̄} ∪ {∅}.

Define the reduction operation R : ΩS → ΩS as follows: Call a word
a1 · · · an ∈ ΩS reduced if for all 1 ≤ j < n we have that (a j, a j+1) <

{(s, s̄), (s̄, s) : s ∈ S}. The empty word ∅ is reduced by convention. Let
FS denote the collection of all reduced words. Now, for a word ω ∈ FS ,
define R(ω) = ω. For a word a1 · · · an < FS , let j be the smallest in-
dex for which (a j, a j+1) ∈ {(s, s̄), (s̄, s) : s ∈ S}, and define R(a1 · · · an) =
a1 · · · a j−1a j+2 · · · an (if j = 1 this means R(a1 · · · an) = a3 · · · an).
It is easy to see that for any word a1 · · · an ∈ ΩS , at most n applications of R

will result in a reduced word. Let R∞(a1 · · · an) denote this reduced word. So
R∞ : ΩS → FS , which fixes any word in FS .
Define a product structure on FS: For two reduced words a1 · · · an and

b1 · · · bm define
∅a1 · · · an = a1 · · · an∅ = a1 · · · an

and
a1 · · · an · b1 · · · bm = R∞(a1 · · · anb1 · · · bm).

It is easily verified that this turns FS into a group with identity element ∅.

https://doi.org/10.1017/9781009128391.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009128391.003
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Definition 1.5.9 FS is called the free group on generators S.

Since the actual letters generating the free group are not important, we will
usually write Fd for the free group generated by d elements.

If G is a finitely generated group, generated by a finite set S, then consider FS
and define amap ϕ : FS → G by ϕ(∅) = 1, for s ∈ S we set ϕ(s) = s and ϕ(s̄) =
s−1, and finally for general reduced words set ϕ(a1 · · · an) = ϕ(a1) · · · ϕ(an).
This is easily seen to be a surjective homomorphism, so G � FS/Kerϕ.

Remark 1.5.10 Let G be a group generated by a finite set S. We have seen that
there exists a normal subgroup R C FS such that FS/R � G. In this case we
write G = 〈S | R〉.
Moreover, suppose there exist (rn)n ⊂ R such that R is the smallest normal

subgroup containing all (rn)n. Then we write G = 〈S | (rn)n〉.
We will come back to this presentation in Section 1.5.8.

There is a classical method of proving that certain groups (or subgroups)
are isomorphic to a free group. We will not require it but include it for the
educational value.

Exercise 1.55 (Ping-pong lemma) Let G be a group acting on some set X . Let
a, b ∈ G.
Suppose that there exist disjoint non-empty subsets A, B ⊂ X , A ∩ B = ∅

such that for all 0 , z ∈ Z we have az (B) ⊂ A and bz (A) ⊂ B. (This is known
as: a, b play ping-pong.)

Then H = 〈a, b〉 ≤ G is isomorphic to F2. B solution C
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Exercise 1.56 Consider a =
[

1 2
0 1

]
and b =

[
1 0
2 1

]
in SL2(Z).

Show that S = 〈a, b〉 is a free group generated by 2 elements. B solution C

Remark 1.5.11 The group S above, generated by a =
[

1 2
0 1

]
and b =

[
1 0
2 1

]
, is

sometimes called the Sanov subgroup.
Note that SL2(Z) is generated by x =

[
1 1
0 1

]
and y =

[
1 0
1 1

]
, and that a = x2

and b = y2.

Exercise 1.57 Let I ∈ SL2(Z) denote the 2 × 2 identity matrix. Show that
{−I, I} C SL2(Z).

Denote PSL2(Z) = SL2(Z)/{−I, I}.

Exercise 1.58 Let x =
[

1 1
0 1

]
and y =

[
1 0
1 1

]
and let a = x2, b = y2. Set

t =
[

0 −1
1 0

]
and s = xt.

Show that t2 = s3 = −I, where I is the 2 × 2 identity matrix.
Show that x = −st and y = −s2t.
Let π : SL2(Z) → PSL2(Z) be the canonical homomorphism. Show that

PSL2(Z) = 〈π(t), π(s)〉.
Show that for any z ∈ SL2(Z) there exist ε1, . . . , εn ∈ {−1, 1} and α, β ∈

{0, 1} such that z ≡ tαsε1 tsε2 · · · tsεn tβ (mod {−I, I}).

Exercise 1.59 Let x, y, a, b, s, t be as in Exercise 1.58.
Let S = 〈a, b〉 ≤ SL2(Z) be the Sanov subgroup (from Exercise 1.56).
Show that a = stst and b = s2ts2t.
Let π : SL2(Z) → PSL2(Z) be the canonical projection.
Show that for any z ∈ SL2(Z) there exist w ∈ S and p ∈

{
1, s, s2, t, st, s2t

}

such that π(z) = π(w)π(p).
Show that [PSL2(Z) : π(S)] ≤ 6.
Conclude that [SL2(Z) : S] ≤ 12. B solution C

1.5.7 Finitely Generated Groups

Exercise 1.60 Let H ≤ G and let S be a finite generating set for G. Let T be a
right-traversal of H in G; that is, a set of representatives for the right-cosets of
H containing 1 ∈ T . So G = ]t∈T Ht.
Show that H is generated by T ST−1 ∩ H . B solution C
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Exercise 1.61 Show that a finite index subgroup of a finitely generated group
is also finitely generated.

Exercise 1.62 Let H C G and let π : G → G/H be the canonical projection.
Assume that H is generated by U and G/H is generated by S̃.
Show that if S ⊂ G is such that π(S) = S̃, then U ∪ S generates G.
Conclude that if H and G/H are finitely generated, then so is G. B solution C

A nice property of finitely generated groups is that there cannot be too many
finite index subgroups of a given index.

Theorem 1.5.12 Let G be a finitely generated group, generated by d elements.
Then for any n, the set {H ≤ G | [G : H] = n} has size at most (n!)d .

Proof Assume that S ⊂ G is a finite generating set for G of size |S | = d.
Let Πn be the group of permutations of the set {1, 2, . . . , n}.
Let X = {H ≤ G : [G : H] = n}. If X = ∅ then it is of course finite. So

assume that X , ∅.
Consider H ∈ X . Write G/H = {xH : x ∈ G} = {x1H, x2H, . . . , xnH },

where x1 = 1. G acts on G/H by x(yH) = xyH . Define ψH : G → Πn by
x 7→ πx ∈ Πn, where πx is the permutation for which πx (i) = j for the unique
1 ≤ i, j ≤ n such that xxiH = x jH . Note that πx (1) = 1 if and only if x ∈ H .

It is easy to see that ψH is a homomorphism from G into Πn.
We claim that H 7→ ψH is an injective map from X intoHom(G,Πn). Indeed,

if H , K ∈ X , thenwithout loss of generality wemay take x ∈ H\K (otherwise
x ∈ K\H , and reverse the roles of H and K in what follows). Let π = ψH (x)
and σ = ψK (x). Since x ∈ H we have that π(1) = 1. Since x < K we have that
σ(1) , 1. So ψH (x) , ψK (x), implying that ψH , ψK .
We conclude that |X | ≤ |Hom(G,Πn) |, so we only need to bound the size of

this last quantity.
Any homomorphism ψ ∈ Hom(G,Πn) is completely determined by the

values {ψ(s) : s ∈ S}. Thus,

|Hom(G,Πn) | ≤ ���(Πn)S ��� = (n!)d . �

1.5.8 Finitely Presented Groups

Definition 1.5.13 Let G be a group generated by a finite set S. Consider the free
group on the generators S, FS . If it is possible to find a normal subgroup RCFS
and finitely many r1, . . . , rk ∈ R such that R is the smallest normal subgroup
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containing r1, . . . , rk , we write G = 〈S | r1, . . . , rk〉, and in this special case we
say that G is finitely presented.
The elements of S are called generators of G, and the elements of R are

called relations of G.

The next lemma shows how the property of finite presentation can be moved
from quotients by finitely presented groups to the mother group.

Lemma 1.5.14 Let G be a group and N CG. Assume that both N and G/N are
finitely presented. Then, G is finitely presented as well.

Proof Assume that

N = 〈s1, . . . , sk | r1, . . . , r`〉 and G/N = 〈a1, . . . , ad | p1, . . . , pm〉 .

Let F = Fd+k be the free group on d + k generators. Denote the generators of
F by { f1, . . . , fd, t1, . . . , tk }. Let F = 〈 f1, . . . , fd〉 ≤ F andT = 〈t1, . . . , tk〉 ≤ F.
So F is a free group on d generators, and T is a free group on k generators.
For any 1 ≤ j ≤ d choose an element gj ∈ G such that gj is mapped to a j

under the canonical projection G → G/N (i.e. a j = Ngj).
Let ϕ : F → G be the homomorphism defined by ϕ( f j ) = gj for 1 ≤ j ≤ d

and ϕ(t j ) = s j for 1 ≤ j ≤ k. By our assumptions on the presentation for N ,
there exist words r1, . . . , r` ∈ T such that if R is the smallest normal subgroup
of T containing r1, . . . , rk , then ϕ��T : T → N with Ker(ϕ��T ) = Kerϕ ∩ T = R.
Also, by our assumptions on the presentation of G/N , there exist words

p1, . . . , pm ∈ F such that if P is the smallest normal subgroup of F containing
p1, . . . , pm, then ϕ−1(N ) ∩ F = P
For any 1 ≤ i ≤ k and 1 ≤ j ≤ d, we have that ϕ

(
(ti) fj

)
= (ni)g j ∈ N . So

there exists ui, j ∈ T such that ϕ
(
(ti) fj

)
= ϕ(ui, j ). Define qi, j = (ti) fj (ui, j )−1.

Observe that qi, j ∈ Kerϕ for all i, j.
For any 1 ≤ j ≤ m we have that ϕ(pj ) ∈ N , by our assumptions on the

presentation of G/N . So there exists w j ∈ T such that ϕ(pj ) = ϕ(w j ). Define
z j = pj (w j )−1. Observe that z j ∈ Kerϕ for all j.
Denote K := Kerϕ. Let Q be the smallest normal subgroup of F containing

{qi, j : 1 ≤ i ≤ k , 1 ≤ j ≤ d}. Let Z be the smallest normal subgroup of F
containing z1, . . . , zm.
Let M C F be any normal subgroup containing

{r1, . . . , r`, z1, . . . , zm}
⋃
{qi, j : 1 ≤ i ≤ k , 1 ≤ j ≤ d} ⊂ M .

Since M is an arbitrary normal subgroup containing the above relations, we
only need to show that K CM for all such M , which will prove that G is finitely
presented, since G � F/K .

https://doi.org/10.1017/9781009128391.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009128391.003


1.5 Basic Group Notions 23

To this end, we will prove that

K ⊂ RQZ := {rqz : r ∈ R , q ∈ Q , z ∈ Z } ⊂ M . (1.2)

We move to prove (1.2). It will be convenient to use the notations

AB = {ab : a ∈ A , b ∈ B} and AB = {ab : a ∈ A , b ∈ B}

for subsets A, B ⊂ F.
Step I. Let t ∈ T and f ∈ F. Then replacing (ti) fj = ui, jqi, j , since Q CF, we

have that t f = uq for some u ∈ T and q ∈ Q. That is, TF ⊂ TQ.
Step II. For any 1 ≤ j ≤ m, and any f ∈ F, we have that (pj ) f = (w j z j ) f .

Since Z C F and since P =
〈
(pj ) f : 1 ≤ j ≤ m , f ∈ F

〉
, we have that P ⊂

TF Z ⊂ TQZ .
Step III. For any x ∈ Fwe can write x = h1v1 · · · hnvn for some h1, . . . , hn ∈

F and v1, . . . , vn ∈ T . By conjugating the vj , we have that x = (u1)d1 · (un)dn f
for some u1, . . . , un ∈ T and d1, . . . , dn, f ∈ F. Since Q C F, we conclude that
F ⊂ TQF.
Step IV. Let x ∈ K . Write x = tq f for t ∈ T , q ∈ Q, and f ∈ F. So

ϕ(t f ) = 1, implying that f ∈ ϕ−1(N ) ∩ F = P. This implies that

K ⊂ TQP ⊂ TQTQZ ⊂ TQZ .

Hence, for any x ∈ K we can write x = tqz for some t ∈ T , q ∈ Q, and z ∈ Z .
SinceQ, Z ⊂ K , we have that t ∈ T∩K = R. So we have shown that K ⊂ RQZ ,
which is (1.2). �

Theorem 1.5.15 Suppose G is a group, and suppose that there exists a sequence
of subgroupsG = H0BH1B· · ·BHn = {1}, with the property that every quotient
Hj/Hj+1 is finitely presented.
Then G is finitely presented.

Proof This is proved by induction on n. If n = 1, then G = H0 is finitely
presented by assumption.
For n > 1, let H = H1. By induction, considering the sequence H = H1 B

· · ·B Hn = {1} we have that H is finitely presented. Also, by assumption G/H1
is finitely presented. So G is finitely presented by Lemma 1.5.14, completing
the induction. �

Exercise 1.63 Show that if G is a finite group then it is finitely presented.
B solution C
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Exercise 1.64 Assume that a group G is virtually-Z; that is, there exists a finite
index normal subgroup H C G, [G : H] < ∞ such that H � Z.
Show that G is finitely presented. B solution C

Exercise 1.65 Let G be a n-step solvable group. Assume that G(k)/G(k+1) is
virtually-Z for every 0 ≤ k < n.
Show that G is finitely presented. B solution C

Exercise 1.66 Show that Zd is finitely presented.
Show that any finitely generated virtually Abelian group is finitely presented.

B solution C

Exercise 1.67 Show that if G is a finitely generated nilpotent group, then G is
finitely presented. B solution C

1.5.9 Semi-direct Products
In this exercise, we introduce the notion of semi-direct products.
Recall that a direct product of groups G, H is the group whose elements are

the pairs G × H and the group operation is given by (g, h)(g′, h′) = (gg′, hh′)
for all g, g′ ∈ G and h, h′ ∈ H .

Exercise 1.68 LetG, H be groups. Assume thatG acts on H by automorphisms.
That is, each g ∈ G can be thought of as an automorphism of H . A different
way of thinking of this is that there is a homomorphism ρ : G → Aut(H); that
is, g.h = (ρ(g))(h) for any g ∈ G and h ∈ H .
Define the semi-direct product of G acting on H (with respect to ρ) as the

group G n H (also sometimes denoted H oρ G), whose elements are G × H =
{(g, h) | g ∈ G , h ∈ H } and where multiplication is defined by

(g, h)(g′, h′) = (gg′, h · g.h′).

Show that this defines a group structure. Determine the identity element in
G n H and the inverse of (g, h).

Show that the set {1G } × H is an isomorphic copy of H sitting as a normal
subgroup inside G n H . Show that G n H/({1G } × H) � G. B solution C

A useful (but not completely precise) way to think about semi-direct product
G n H is to think of matrices of the form

[
g h
0 1

]
, g ∈ G, h ∈ H . This is

especially aesthetic when H is Abelian, so that multiplication in H can be
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written additively. Indeed, when multiplying two such matrices we have
[
g h
0 1

]
·

[
g′ h′

0 1

]
=

[
gg′ gh′+h
0 1

]
,

which is reminiscent of (g, h)(g′, h′) = (gg′, h + gh′). In the non-Abelian case
matrix multiplication must be interpreted properly:

[
g h
0 1

]
·

[
g′ h′

0 1

]
=

[
gg′ h ·gh′

0 1

]
.

Also, it may be worth pointing out that G n H hints at which group is acting
on which: n has a small triangle, similar to the symbol B, which reminds us
that H � {1G } × H C G.

Exercise 1.69 Let G, H be groups. Define an action ρ : G → Aut(H) of G on
H by ρ(g).h = h for all h ∈ H and g ∈ G.
Show that G n H = G × H .

So a semi-direct product generalizes the notion of a direct product of groups.

Exercise 1.70 Recall from Sections 1.5.4 and 1.5.5 the following groups of
n × n matrices: For 1 ≤ k ≤ n, the group Dk is the additive group of all
upper-triangular n × n real matrices A such that Ai, j = 0 for all j ≤ i + k − 1
(so the first k diagonals are 0). Here, ∆+n is the multiplicative group of diagonal
matrices with only strictly positive entries on the diagonal.
Show that ∆+n acts on Dk by left multiplication.
Show that ∆+n n Dk is 2-step solvable.
Show that if ∆+n n Dk is nilpotent, then k ≥ n. B solution C

Exercise 1.71 Let V be a vector space over C. ϕ : V → V is an affine trans-
formation if ϕ(v) = αv + u for some fixed scalar 0 , α ∈ C and fixed vector u
(α is called the dilation and u the translation).
Let A be the collection of all affine transformations on V . Show that A is a

group with multiplication given by composition.
Show that A � C∗ n V where C∗ is the multiplicative group C\{0} and V is

considered as an additive group.
Is A Abelian? Nilpotent? Solvable? B solution C

Exercise 1.72 The infinite dihedral group is D∞ =
〈
a, b | baba , b2

〉
.

Let ϕ ∈ Aut(Z) be given by ϕ(x) = −x. Let Z2 = {−1, 1} be the group on 2
elements (the group operation given by multiplication). Show that D∞ � Z2nZ

where Z2 acts on Z via ε.x = ε · x for ε ∈ {−1, 1}.
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Show that D∞ is not nilpotent.
Show that D∞ is 2-step solvable.
Show that D∞ is virtually Z. B solution C

Exercise 1.73 Consider the following group: Let Sd be the group of permuta-
tions on d elements. Let Sd act on Zd by permuting the coordinates; that is,
σ(z1, . . . , zd) =

(
zσ−1 (1), . . . , zσ−1 (d)

)
.

Show that this is indeed a left action.
Consider the group G = Sd n Zd . Show that there exist H C G such that

G/H � Sd and H � Zd . (Specifically H is Abelian.)
Show that G is not Abelian for d > 2. B solution C

1.6 Measures on Groups and Harmonic Functions
1.6.1 Metric and Measure Structures on a Group

Definition 1.6.1 (Cayley graph) Let G be a finitely generated group. Let S ⊂ G
be a finite generating set. Assume that S is symmetric; that is, S = S−1 :=
{s−1 : s ∈ S}. The Cayley graph of G with respect to S is the graph with vertex
set G and edges defined by the relations x ∼ y ⇐⇒ x−1y ∈ S.
The distance in this Cayley graph is denoted by distS .

Exercise 1.74 Show that distS (x, y) is invariant under the diagonal G-action.
That is, distS (gx, gy) = distS (x, y) for any g ∈ G.

Due to this fact, wemay denote |x | = |x |S := distS (1, x). So that distS (x, y) =
|x−1y |. Balls of radius r in this metric are denoted

B(x, r) = BS (x, r) = {y : distS (x, y) ≤ r }.

Throughout the book, the underlying generating set will be implicit, and wewill
not specify it explicitly in the notation. If we wish to stress a specific generating
set (or, sometimes, a specific group), we will use the notation distG,S (x, y) =
distS (x, y) = distG (x, y) and BG,S (x, r) = BS (x, r) = BG (x, r).

Exercise 1.75 Let S,T be two finite symmetric generating sets of G. Show that
there exists a constant κ = κS,T > 0 such that for all x, y ∈ G,

κ−1 · distT (x, y) ≤ distS (x, y) ≤ κ · distT (x, y) . B solution C
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Definition 1.6.2 Let µ be a probability measure on G.

• We say that µ is adapted (to G) if any element x ∈ G can be written as a
product x = s1 · · · sk where s1, . . . , sk ∈ supp(µ).

• µ is symmetric if µ(x) = µ
(
x−1

)
for all x ∈ G.

• µ has an exponential tail if for some ε > 0,

Eµ
[
eε |X |

]
=

∑
x

µ(x)eε |x | < ∞.

• We say that µ has kth moment if

Eµ
[
|X |k

]
=

∑
x

µ(x) |x |k < ∞.

By SA(G, k) we denote the collection of symmetric, adapted measures on G
with kthmoment. BySA(G,∞) we denote the collection of symmetric, adapted,
exponential tail measures on G.

Exercise 1.76 Show that if µ has kth moment with respect to a finite symmetric
generating set S, then µ has kth moment with respect to any finite symmetric
generating set.
Show that if µ has an exponential tail with respect to a finite symmetric

generating set S, then µ has an exponential tail with respect to any finite
symmetric generating set.

The most basic example of µ ∈ SA(G,∞) is when µ is the uniform measure
on some finite symmetric generating set S of a finitely generated group G.

Exercise 1.77 Show that if µ is a symmetric, adapted measure on G with finite
support, then µ ∈ SA(G,∞).

Exercise 1.78 Show that if µ, ν are symmetric probability measures on G, then
pµ + (1 − p)ν is also symmetric for p ∈ (0, 1).

Exercise 1.79 Show that if µ is an adapted probability measure on G and ν is
any probability measure on G, then for any p ∈ (0, 1] we have that pµ+ (1− p)ν
is also adapted.

Exercise 1.80 Let p ∈ (0, 1). Show that if µ ∈ SA(G, k) then ν = pδ1 + (1 −
p)µ ∈ SA(G, k). (Such a measure ν is called a lazy version of µ.) B solution C
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1.6.2 RandomWalks
Given a group G with a probability measure µ define the µ-random walk on
G started at x ∈ G as the sequence

Xt = xU1U2 · · ·Ut,

where (Uj )j are i.i.d. with law µ.
The probability measure and expectation onGN (with the canonical cylinder-

set σ-algebra) are denoted Px,Ex . When we omit the subscript x we refer to
P = P1,E = E1. Note that the law of (Xt )t under Px is the same as the law of
(xXt )t under P. For a probability measure ν on G we denote Pν =

∑
x ν(x) Px

and similarly for Eν =
∑

x ν(x) Ex . More precisely, given some probability
measure ν on G, we define Pν to be the measure obtained by Kolmogorov’s
extension theorem, via the sequence of measures

Pt
(
{(X0, . . . , Xt ) = (g0, . . . , gt )}

)
= ν(g0) ·

t∏
j=1

µ
(
g−1
j−1gj

)
.

Exercise 1.81 Show that Pt above indeed defines a probability measure on
Ft = σ(X0, . . . , Xt ).

Exercise 1.82 Show that the µ-random walk on G is a Markov chain with
transition matrix P(x, y) = µ

(
x−1y

)
. (Markov chains will be defined and

studied in Chapter 3. For the unfamiliar reader, this exercise may be skipped in
the meantime.)
Show that the corresponding Laplacian operator, usually defined ∆ := I − P,

and the averaging operator P are given by

P f (x) = f ∗ µ̌(x), ∆ f (x) = f ∗ (δ1 − µ̌)(x),

where µ̌(y) = µ
(
y−1

)
.

Exercise 1.83 Consider the matrix P(x, y) = µ
(
x−1y

)
from the previous exer-

cise. Show that if Pt is the tth matrix power of P then

Ex[ f (Xt )] =
(
Pt f

)
(x).

Exercise 1.84 Let µ be a probability measure on G, and let P(x, y) = µ
(
x−1y

)
.

• Show that Pt (1, x) = µ̌∗t (x), where µ̌t is convolution of µ̌with itself t times.(
µ̌(y) = µ(y−1)

)
.
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• Show that µ is adapted if and only if for every x, y ∈ G there exists t ≥ 0
such that Pt (x, y) > 0. (This property is also called irreducible.)

• Show that µ is symmetric if and only if P is a symmetric matrix (if and only
if µ̌ = µ).
We will investigate random walks in more depth in Chapter 3.

1.6.3 Harmonic Functions
In classical analysis, a function f : Rn → R is harmonic at x if for any
small enough ball around x, B(x, r), it satisfies the mean value property:

1
|∂B(x,r ) |

∫
∂B(x,r ) f (y)dy = f (x). Another definition is that ∆ f (x) = 0 where

∆ =
∑

j
∂2

∂x2
j

is the Laplace operator. (Why these two definitions should coincide
is a deep fact, outside the scope of our current discussion.)

Definition 1.6.3 Let G be a finitely generated group and µ a probability measure
on G. A function f : G → C is µ-harmonic (or simply, harmonic) at x ∈ G if∑

y

µ(y) f (xy) = f (x)

and the above sum converges absolutely.
A function is harmonic if it is harmonic at every x ∈ G.

Exercise 1.85 Show that f is µ-harmonic at x if and only if Eµ[ f (xU)] = f (x),
if and only if ∆ f (x) = 0. (Here Eµ is expectation with respect to µ, and U is a
random element of G with law µ.)

Exercise 1.86 Prove the maximum principle for harmonic functions:
Consider an adapted probability measure µ on G. If f is harmonic, and there

exists x such that f (x) = supy f (y), then f is constant.

Exercise 1.87 (L2 harmonic functions) Consider the space `2(G) of functions
f : G → C such that

∑
y | f (y) |2 < ∞. This space is a Hilbert space with the

inner product 〈 f , g〉 =
∑

y f (y)g(y).
Prove the following “integration by parts” identity: for any f , g ∈ `2(G),∑

x,y

P(x, y)( f (x) − f (y))(ḡ(x) − ḡ(y)) = 2 〈∆ f , g〉 .

(The left-hand side above is 〈∇ f ,∇g〉, appropriately interpreted, hence the name
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“integration by parts”. This is also sometimes understood as Green’s identity.)
Here as usual, P(x, y) = µ

(
x−1y

)
for a symmetric measure µ.

Show that any f ∈ `2(G) that is harmonic must be constant. B solution C

Example 1.6.4 Consider the group Z and the measure µ = 1
2 δ1+

1
2 δ−1. Suppose

that f is a µ-harmonic function. Then, for any z ∈ Z, f (z−1)+ f (z+1) = 2 f (z),
which implies that

f (z + 1) = 2 f (z) − f (z − 1),

f (z − 1) = 2 f (z) − f (z + 1).

So the values of f are determined by the two numbers f (0), f (1). This implies
that the space HF(Z, µ) = { f : Z→ C : ∆ f ≡ 0} of all harmonic functions has
dimension at most 2.
Moreover, any function f (z) = αz + β, is a µ-harmonic function (check

this!).
Thus, we conclude that HF(Z, µ) is the (2-dimensional) space of all linear

maps z 7→ αz + β for α, β ∈ C. 4 5 4

Exercise 1.88 Show that if G = Z and µ is uniform measure on {−1, 1,−2, 2}
then the space of all µ-harmonic functions has dimension at least 2.
Is this dimension finite? B solution C

Exercise 1.89 Consider the group G = Z2 and the measure µ, which is uniform
on the standard generators {(±1, 0), (0,±1)}.
Show that the functions f (x, y) = x, h(x, y) = y and g(x, y) = x2 − y2 and

k (x, y) = xy are all µ-harmonic.
Consider a differentmeasure ν, which is uniformon {(±1, 0), (0,±1),±(1, 1)}.

Which of the above functions is harmonic with respect to ν? B solution C

Exercise 1.90 Let G be a finitely generated group. Let µ ∈ SA(G, 1). Show
that any homomorphism from G to the additive group (C,+) is a µ-harmonic
function. B solution C

Exercise 1.91 Let µ be a symmetric and adapted probability measure on a
finitely generated group G. Let p ∈ (0, 1) and let ν = pδ1 + (1 − p)µ be a lazy
version of µ. Show that any function f : G → C is µ-harmonic if and only if it
is ν-harmonic. B solution C
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1.7 Bounded, Lipschitz, and Polynomial Growth Functions

1.7.1 Bounded Functions
Recall for f : G → C and p > 0 we have

| | f | |pp =
∑
x

| f (x) |p,

| | f | |∞ = sup
x
| f (x) |.

Recall that | |x. f | |p = | | f | |p for all p ∈ (0,∞].

Exercise 1.92 Show that | | f | |∞ ≤ || f | |p for any p > 0.

For a finitely generated group G and a probability measure µ on G, we use
BHF(G, µ) to denote the set of bounded µ-harmonic functions on G; that is,

BHF(G, µ) = { f : G → C : | | f | |∞ < ∞ , ∆ f ≡ 0}.

Exercise 1.93 Show that BHF(G, µ) is a vector space over C. Show that it is a
G-invariant subspace; that is, G.BHF(G, µ) ⊂ BHF(G, µ).

Any constant function is in BHF(G, µ), so dimBHF(G, µ) ≥ 1. The ques-
tion of whether BHF(G, µ) consists of more than just constant functions is an
important one, and we will dedicate Chapter 6 to this investigation.

1.7.2 Lipschitz Functions
For a group G and a function f : G → C, define the right-derivative at y

∂y f : G → C by ∂y f (x) = f
(
xy−1

)
− f (x).

Given a finite symmetric generating set S, define the gradient∇ f = ∇S f : G →
CS by (∇ f (x))s = ∂s f (x). We define the Lipschitz semi-norm by

| |∇S f | |∞ := sup
s∈S

sup
x∈G
|∂s f (x) |.

Definition 1.7.1 A function f : G → C is called Lipschitz if | |∇S f | |∞ < ∞.

Exercise 1.94 Show that for any two symmetric generating sets S1, S2, there
exists C > 0 such that
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| |∇S1 f | |∞ ≤ C · | |∇S2 f | |∞.

Conclude that the definition of Lipschitz function does not depend on the choice
of specific generating set.

Exercise 1.95 What is the set
{

f ∈ CG : | |∇S f | |∞ = 0
}
?

We use LHF(G, µ) to denote the set of Lipschitz µ-harmonic functions; that
is,

LHF(G, µ) = { f : G → C : | |∇S f | |∞ < ∞ , ∆ f ≡ 0}.

Exercise 1.96 Show that LHF(G, µ) is a G-invariant vector space, by showing
that

∀ x ∈ G | |∇S x. f | |∞ = | |∇S f | |∞.

Exercise 1.97 (Horofunctions) Let G be a finitely generated group with a metric
given by some fixed finite symmetric generating set S.
Consider the space

L = {h : G → C : | |∇Sh| |∞ ≤ 1 , h(1) = 0}.

Show that L is compact under the topology of pointwise convergence.
Show that x.h(y) = h

(
x−1y

)
− h

(
x−1

)
defines a left action of G on L.

Show that if h is fixed under the G-action (i.e. x.h = h for all x ∈ G) then h
is a homomorphism from G into the group (C,+).
Show that if h is a homomorphism from G into (C,+), then there exists

α > 0 such that αh ∈ L.
For every x ∈ G let bx (y) = distS (x, y) − distS (x, 1) = ���x

−1y
��� − |x |. Show

that bx ∈ L for any x ∈ G. Prove that the map x 7→ bx from G into L is an
injective map. B solution C

1.7.3 Polynomially Growing Functions

Let S be a finite, symmetric generating set for a group G. For f : G → C and
k ≥ 0, define the kth degree polynomial semi-norm by

| | f | |S,k := lim sup
r→∞

r−k · sup
|x | ≤r

| f (x) |.
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Let
HFk (G, µ) =

{
f ∈ CG : f is µ-harmonic, | | f | |S,k < ∞

}
.

Exercise 1.98 Show that | | · | |S,k is indeed a semi-norm.
Show that | |x. f | |S,k = | | f | |S,k .
Show that HFk (G, µ) is a G-invariant vector space. B solution C

Exercise 1.99 Show that if S,T are two finite symmetric generating sets for G
then there exists some constant C = C(S,T, k) > 0 such that for any f : G → C

we have | | f | |S,k ≤ C · | | f | |T,k .
Specifically, the space HFk (G, µ) does not depend on the specific choice of

generating set. B solution C

Exercise 1.100 Show that if | | f | |S,k < ∞ then there exists C > 0 such that for
all x ∈ G we have | f (x) | ≤ C

(
|x |k + 1

)
.

Exercise 1.101 Show that

C ≤ BHF(G, µ) ≤ LHF(G, µ) ≤ HF1(G, µ) ≤ HFk (G, µ) ≤ HFk+1(G, µ),

for all k ≥ 1.

1.8 Additional Exercises

Exercise 1.102 Let R be a commutative ring. DefineGLn(R) to be the collection
of all n × n matrices M with entries in R such that det(M) is an invertible
element in R.
Show that GLn(R) is a group. B solution C

Exercise 1.103 Let I be the n × n identity matrix. Show that {I,−I} CGLn(Z).
Define PGLn(Z) = GLn(Z)/{−I, I}.
Show that GL2n+1(Z) � {−1, 1} × PGL2n+1(Z).
Show that SL2n+1(Z) � PGL2n+1(Z). B solution C
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Exercise 1.104 Let S ≤ SL2(Z) be the Sanov subgroup (see Exercise 1.56 and
Remark 1.5.11). Show that if A ∈ S then

A =
[

4k+1 2n
2m 4`+1

]

for some integers n,m, k, ` ∈ Z. B solution C

Exercise 1.105 Show that the Sanov subgroup is exactly

S =
{

A =
[

4k+1 2n
2m 4`+1

]
| det(A) = 1, k, `, n,m ∈ Z

}
. B solution C

Exercise 1.106 Show that the Sanov subgroup S has finite index in SL2(Z).
(Hint: use the map taking the matrix entries modulo 4.) B solution C

1.9 Solutions to Exercises
Solution to Exercise 1.4 :(
Let G = {A : θ t (A) ∈ F }. G is easily seen to be a σ-algebra. For any t ≤ n ∈ N and g ∈ G, we have that

θ t
(
X−1
n (g)

)
= {θ t (ω) : ωn = g } = X−1

n−t (g) ∈ F ,

and if t > n ∈ N then θ t
(
X−1
n (g)

)
= GN ∈ F .

So X−1
n (g) ∈ G for all n ∈ N and g ∈ G. This implies that F ⊂ G, which completes the proof. :)X

Solution to Exercise 1.5 :(
θ−t G is a σ algebra because θ−t

(
GN

)
= GN and θ−t (∪nAn ) = ∪nθ−t (An ) and θ−t (Ac ) = (θ−t (A))c .

For any k ∈ K we have that θ−t (K ) ∈ θ−t G by definition. So let H be any σ-algebra containing
{θ−t (K ) : K ∈ K }. Define G′ = {A : θ−t (A) ∈ H }. Then, similarly to the above, it is easy to see that G′ is
a σ-algebra. Moreover, K ⊂ G′, so it must be that G ⊂ G′. But then, θ−t G ⊂ θ−t G′ ⊂ H . Since H was
any σ-algebra containing {θ−t (K ) : K ∈ K }, this implies that θ−t G = σ(θ−t (K ) : K ∈ K ). :)X

Solution to Exercise 1.6 :(
This is immediate from

θ−1F = σ
(
θ−1 (Xn (g)) : n ∈ N , g ∈ G

)
= σ(Xn+1 (g) : n ∈ N , g ∈ G) ⊂ F . :)X

Solution to Exercise 1.7 :(
Note that

θ−t
(
X−1
n (g)

)
=

{
ω : θ t (ω) ∈ X−1

n (g)
}
= {ω : ωt+n = g } = X−1

t+n (g).

Since F = σ
(
X−1
n (g) : n ∈ N , g ∈ G

)
we have that

θ−t F = σ
(
θ−tX−1

n (g) : n ∈ N , g ∈ G
)
= σ

(
X−1
n+t (g) : n ∈ N , g ∈ G

)
= σ(Xt, Xt+1, . . .). :)X

Solution to Exercise 1.16 :(
If g, γ ∈ stab(x), then γg.x = γ.x = x, and also g−1.x = g−1g.x = x. :)X
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Solution to Exercise 1.17 :(
Let x ∈ X and S = stab(x). The map of cosets of S intoG.x given by gS 7→ g.x is a well-defined bijection.

Indeed, if gS = γS then g = γs for some s ∈ S. So g.x = γs.x = γ.x, and the map is well defined.
It is obviously surjective, and if g.x = γ.x then γ−1g ∈ S, so gS = γS, implying that the map is injective

as well. :)X

Solution to Exercise 1.21 :(
Compute:

P[X ·Y = z] =
∑
x

P
[
X = x , Y = x−1z

]
=

∑
x

µ(x)ν
(
x−1z

)
= (µ ∗ ν)(z). :)X

Solution to Exercise 1.23 :(
If a = 0 or b = 0 there is nothing to prove. So assume that a, b > 0. Consider the random variable X that
satisfies P

[
X = a1/p

]
= p, P[X = b1/q ] = q. Then E[log X] = log a + log b. Also, E[X] = pa1/p +

qb1/q . Jensen’s inequality tells us that E[log X] ≤ logE[X], which results in log(ab) = log a + log b ≤
log

(
pa1/p + qb1/q

)
.

:)X

Solution to Exercise 1.24 :(
The proof is by induction on n. For n = 1 there is nothing to prove. For n = 2, this is the “usual” Hölder
inequality, which is proved as follows: denote f = f1, g = f2, p = p1, q = p2 and f̃ =

f
| | f | |p

, g̃ =
g

| |g | |q
. Then,

| | f g | |1 = | | f | |p · | |g | |q ·
∑
x

| f̃ (x) | · |g̃(x) | ≤ | | f | |p · | |g | |q ·
∑
x

1
p | f̃ (x) |p + 1

q |g̃(x) |q

= | | f | |p · | |g | |q ·
(

1
p | | f̃ | |

p
p +

1
q | |g̃ | |

q
q

)
= | | f | |p · | |g | |q,

where the inequality is just Young’s inequality for products: ab ≤ pa1/p + qb1/q . A similar (and simpler)
argument proves the case where p = 1, q = ∞.

Now for the induction step, n > 2. Let qn = pn
pn−1 and qj = p j ·

(
1 − 1

pn

)
=

pj
qn

for 1 ≤ j < n. Then,
1
pn
+ 1

qn
= 1 and

n−1∑
j=1

1
qj
=

(
1 − 1

pn

)−1
·

n−1∑
j=1

1
pj
= 1.

By the induction hypothesis (for n = 2 and n − 1),

| | f1 · · · fn | |1 ≤ | | fn | |pn · | | f1 · · · fn−1 | |qn = | | fn | |pn ·
(
| | | f1 |

qn · · · | fn−1 |
qn | |1

)1/qn

≤ | | fn | |pn ·
*.
,

n−1∏
j=1
| | | fj |

qn | |qj
+/
-

1/qn

= | | fn | |pn ·

n−1∏
j=1
| | fj | |pj

. :)X

Solution to Exercise 1.25 :(
For any x, since 1

r +
r−p
pr +

r−q
qr =

1
p +

1
q −

1
r = 1,

| f ∗ g(x) | ≤
∑
y

��� f (y)g
(
y−1x

) ��� =
∑
y

(
| f (y) |p ���g

(
y−1x

) ���
q )1/r

· | f (y) |(r−p)/r ���g
(
y−1x

) ���
(r−q)/r

= | | f1 · f2 · f3 | |1 ≤ | | f1 | |r · | | f2 | |pr/(r−p) · | | f3 | |qr/(r−q),

where the second inequality is the generalized Hölder inequality with

f1 (y) =
(
| f (y) |p ���g

(
y−1x

) ���
q )1/r

,

f2 (y) = | f (y) |(r−p)/r ,

f3 (y) = ���g
(
y−1x

) ���
(r−q)/r

.
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Now,

| | f1 | |r =
(∑

y

| f (y) |p ���g
(
y−1x

) ���
q )1/r

,

| | f2 | |pr/(r−p) =
*.
,

∑
y

| f (y) |p+/
-

(r−p)/pr

= | | f | |
(r−p)/r
p ,

| | f3 | |qr/(r−q) =
*.
,

∑
y

���g(y−1x)���
q+/

-

(r−q)/qr

= | |x.ǧ | |
(r−q)/r
q = | |g | |

(r−q)/r
q ,

recalling that ǧ(z) = g
(
z−1

)
and that | |x.ǧ | |q = | |g | |q . Combining all the above,

| | f ∗ g | |rr =
∑
x

| f ∗ g(x) |r ≤
∑
x,y

| f (y) |p ���g
(
y−1x

) ���
q
· | | f | |

r−p
p · | |g | |

r−q
q

= | | f | |
r−p
p · | |g | |

r−q
q ·

∑
y

| f (y) |p · | |y.g | |qq

= | |g | |rq · | | f | |
r−p
p ·

∑
y

| f (y) |p = | |g | |rq · | | f | |
r
p . :)X

Solution to Exercise 1.26 :(
Inverses of invertible matrices with integer entries do not necessarily have to have integer entries. For example,
take M =

[
1 2
2 1

]
. The inverse is M−1 = 1

3

[
−1 2
2 −1

]
. :)X

Solution to Exercise 1.27 :(
The map A 7→ det(A) is a homomorphism from GLn (Z) onto {−1, 1}. SLn (Z) is the kernel of this map. :)X

Solution to Exercise 1.28 :(
We use e1, . . . , en to denote the standard basis of Rn .

For a matrix Awe write c j (A) for the jth column of A, and rj (A) for the jth row of A.
It is easy to see that AEi, j is a matrix with ck (AEi, j ) = 0 for k , j and c j (AEi, j ) = ci (A). Thus,

multiplying A on the right by I + Ei, j results in adding ci (A) to c j (A). That is,

ck (A(I + Ei, j )) =
{
ck (A) for k , j,

c j (A) + ci (A) for k = j.

Specifically, (I + Ei, j )−1 = I − Ei, j . Applying (I + Ei, j )z we see that we can add a z-multiple of column i
to column j.

By transposing the matrices, we see that

rk ((I + Ei, j )A) =
{
rk (A) for k , j,

ri (A) + rj (A) for k = i.

Thus, we can add a multiple of some row i to another row j.
Also, for i , j, set Si, j = (I + Ei, j )(I − Ej, i )(I + Ei, j ). One may compute that

ck (ASi, j ) =



ck (A) for k < {i, j },
−c j (A) for k = i,

ci (A) for k = j.

That is, we can swap columns at the price of changing the sign of one of them. Multiplying by Si, j on the left
we can also swap rows, changing the sign of one.

DenoteGk =
〈
I + Ei, j | 1 ≤ i , j ≤ k

〉
.

We claim by induction on k that for any A ∈ GLk (Z) there exist M, N ∈ Gk such that for any diagonal
(n − k) × (n − k) matrix D with integer entries, if we consider the n × n matrix A′ =

[
A 0
0 D

]
, we find that

https://doi.org/10.1017/9781009128391.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009128391.003


1.9 Solutions to Exercises 37

MA′N is a diagonal matrix. The base case, where k = 1, is just the case where A′ is already diagonal, so we
may choose M = N = I .

So assume 1 < k ≤ n, and let A ∈ GLk (Z). Let D be any diagonal (n − k) × (n − k) matrix D with
integer entries, and define A′ =

[
A 0
0 D

]
. By swapping columns and/or rows, we may assume without loss of

generality that A′
k,k

, 0. Now, suppose that A′
i,k

, 0 for some 1 ≤ i < k. Adding appropriate multiples of
rk (A′) to ri (A′) and appropriate multiples of ri (A′) to rk (A′) sequentially, we arrive at a matrix M ∈ Gk

for which (MA′)k,k , 0 and (MA′)i,k = 0. Continuing this way for all 1 ≤ i < k, we find that there exists
M ∈ Gk such that (MA′)k,k , 0 and (MA′)i,k = 0 for all 1 ≤ i < n. The same procedure with columns
instead of rows yields a matrix N ∈ Gk such that (MA′N )k,k , 0 and (MA′N )i,k = (MA′N )k, i = 0 for
all 1 ≤ i < n.

Let B be the (k − 1) × (k − 1) matrix given by Bi, j = (MA′N )i, j for all 1 ≤ i, j ≤ k − 1. Let D′ be the
(n−k+1)×(n−k+1) diagonalmatrix given byD′1,1 = (MA′N )k,k andD′1+i,1+i = (MA′N )k+i,k+i = Di, i

for all 1 ≤ i ≤ n − k. We find that
MA′N =

[
B 0
0 D′

]
.

Moreover,
det(A) · det(D) = det(A′) = det(MA′N ) = det(B) · (MA′N )k,k · det(D),

which implies that det(B) · (MA′N )k,k = det(A). As these are all integers, and | det(A) | = 1, we also find
that | det(B) | = 1, so that B ∈ GLk−1 (Z). By induction, there exist M′, N ′ ∈ Gk−1 such that M′MA′NN ′

is a diagonal matrix. SinceGk−1 ≤ Gk , we have that M′M, MN ′ ∈ Gk , completing the induction step.
Taking k = n from the above induction claim, we see that for any A ∈ GLn (Z) there exist M, N ∈ Gn

such that MAN is a diagonal matrix. Since det(A) = det(MAN ), and since MAN has integer entries, we
find that ai := (MAN )i, i ∈ {−1, 1} for all 1 ≤ i ≤ n. Also, det(A) =

∏n
i=1 ai .

Now, if A ∈ SLn (Z), then
∏n

i=1 ai = 1. Let J = {1 ≤ i ≤ n : ai = −1}.
If J , ∅, then since (−1) |J | =

∏
j∈J a j = 1, it must be that |J | ≥ 2. Take any i , j ∈ J and consider

the matrix B = S j, iMANSi, j . B is a diagonal matrix, with B j, j = −ai = 1 and Bi, i = −a j = 1 and
Bk,k = ak for all k < {i, j }. Continuing this way, we find some matrices S, T ∈ Gn such that TMANS = I .
So A = M−1T−1S−1N−1 ∈ Gn , and we are done. :)X

Solution to Exercise 1.31 :(
LetG be virtually finitely generated. So there exists H ≤ G, [G : H] < ∞ such that H is finitely generated.

Let R ⊂ G be a set of representatives for the cosets of H inG; that isG =
⊎

r∈R Hr , and |R | = [G : H].
Let S be a finite symmetric generating set for H .

Let x ∈ G. There are unique y ∈ H and r ∈ R such that x = yr . Since S generates H , there are
s1, . . . , sn ∈ S such that y = s1 · · · sn . Thus, x = s1 · · · sn · r .

This implies that S ∪ R is a finite generating set forG. :)X

Solution to Exercise 1.32 :(
SinceG is finitely generated, the image ϕ(G) is a finitely generated Abelian group. By Theorem 1.5.2, ϕ(G) �
Zd × F for a finite Abelian group F . If d = 0 then |ϕ(G) | < ∞. So under our assumptions, d > 0.

Since |ϕ(G) | = ∞, there must exist 0 , z ∈ Zd and f ∈ F such that (z, f ) ∈ ϕ(G) ≤ Zd × F . Since
z , 0, there must exist 1 ≤ j ≤ d such that z j , 0. Let π : Zd × F → Z be the homomorphism given
by π (w, f ) = wj for all w ∈ Zd and f ∈ F . Then, ψ = π ◦ ϕ is a homomorphism from G into Z. Since
0 , z j ∈ ψ(G), we obtain that z jZ ≤ ψ(G), implying that |ψ(G) | = ∞. Since ψ(G) ≤ Z it can only be
trivial, or isomorphic to Z. Thus, ψ mapsG onto the group ψ(G) � Z. :)X

Solution to Exercise 1.33 :(
Let π : G → G/[G,G] be the canonical projection. If G/[G,G] is infinite, then π (G) is an infinite Abelian
group, so Exercise 1.32 provides a surjective homomorphism onto Z.

If on the other hand there exists a surjective homomorphism ϕ : G → Z, then [G,G] C Kerϕ. Thus,
[G : [G,G]] ≥ [G : Kerϕ] = ∞. :)X

Solution to Exercise 1.34 :(
We prove this by induction on n.

Note that
[xy, z] = y−1x−1z−1xyz = ([x, z])y · [y, z],
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so if x = s1 · · · sm then for any y ∈ G, there exist z1, . . . , zm such that

[x, y] = ([s1, y])z1 · · · ([sm, y])zm .

Expanding out y in a similar fashion shows that

γ1 (G) =
〈
[s, s′]x : s, s′ ∈ S, x ∈ G

〉
,

proving the claim for n = 1.
Assume now that n > 1. Recall that

γn (G) = 〈[x, z] : x ∈ γn−1 (G) , z ∈ G〉 .

By induction on n, any x ∈ γn−1 (G) can be written as

x = [s1,1, . . . , sn−1,1]z1 · · · [s1,m, . . . , sn−1,m]zm

for si, j ∈ S and z j ∈ G. Thus, for any s ∈ S there exist w1, . . . , wm ∈ G such that

[x, s] = [s1,1, . . . , sn−1,1, s]w1 · · · [s1,m, . . . , sn−1,m, s]wm .

Also, for any y = r1 · · · r` with rj ∈ S there exist u1, . . . , u` such that

[x, y]−1 = [y, x] = [r1, x]u1 · · · [r`, x]u` .

All this implies that for any x ∈ γn−1 (G) and any y ∈ G we can write [x, y] as a finite product of elements of
the form [s1, . . . , sn]z where sj ∈ S and z ∈ G. In other words, this proves the induction step. :)X

Solution to Exercise 1.35 :(
This is shown by induction on n.

For n = 0 it is immediate that we have ϕ(γ0 (G)) = ϕ(G) = G and ϕ(Z0 (G)) = ϕ( {1}) = {1}.
For n > 0, note that ϕ([x, y]) = [ϕ(x), ϕ(y)] for all x, y ∈ G. So by induction

ϕ([γn−1 (G),G]) = [ϕ(γn−1 (G)), ϕ(G)] = [γn−1 (G),G] = γn (G).

Also by induction, [ϕ(x), y] ∈ Zn−1 (G) for all y ∈ G if and only if ϕ([x, y]) ∈ Zn−1 (G) = ϕ(Zn−1 (G))
for all y ∈ G, which is if and only if [x, y] ∈ Zn−1 (G) for all y ∈ G. So ϕ(Zn (G)) = Zn (G).

This completes the proof by induction.
Finally, for any y ∈ G, the map ϕy (x) = xy is an automorphism of G, so that γn (G)y = γn (G) and

Zn (G)y = Zn (G) for all y ∈ G; that is, these are normal subgroups. :)X

Solution to Exercise 1.36 :(
Since Zk (G) is a normal subgroup, for any x ∈ Zk (G) and any y ∈ G we have that [x, y] = x−1xy ∈ Zk (G).
So Zk (G) C Zk+1 (G). This proves the first assertion.

Now, the second assertion we prove by induction on m := n − k. Fix k ≥ 0. The base step is m = 0, which
is just Zk (G)/Zk (G) = {1} = Z0 (G/Zk (G)).

For the induction step, let m > 0. Let H = G/Zk (G) and let π : G → H be the canonical projection.
Since Zk (G) C Zk+m (G), it suffices to prove that π (Zk+m (G)) = Zm (H ). Indeed, we have by induction
that for x, y ∈ G,

[x, y] ∈ Zk+m−1 (G) ⇐⇒ [π (x), π(y)] = π ([x, y]) ∈ Zk+m−1 (G)/Zk (G) = Zm−1 (H ),

so

π (Zk+m (G)) = {π (x) : ∀ y ∈ G [x, y] ∈ Zk+m−1 (G) }

= {π (x) : ∀ z ∈ H [π (x), z] ∈ Zm−1 (H ) } = Zm (H ),

completing the induction step. :)X

Solution to Exercise 1.37 :(
We do this by induction on n. For n = 0 this is obvious.

For n > 0, assume that γn = {1}. Then, [γn−1,G] = {1} implies that γn−1 C Z1. Let H = G/Z1, and let
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π : G → H be the canonical projection. It is easy to verify that for all k ≥ 1, we have

π (γk ) = [π (γk−1), π(G)] = [γk−1 (H ), H] = γk (H ),

so γn−1 (H ) = {1}. By induction and a previous exercise,

G/Z1 = H = Zn−1 (H ) = Zn−1 (G/Z1) = Zn/Z1.

As Z1 C Zn , this can only happen ifG = Zn . :)X

Solution to Exercise 1.38 :(
Again this is by induction, where the base step n = 0 is obvious.

Assume for n > 0 that Zn = G. Set H = G/Z1. Since Zn−1 (H ) = Zn/Z1 = H , we have by induction
that γn−1 (H ) = {1}. As before, if π : G → H is the canonical projection, then π (γn−1) = γn−1 (H ) = {1},
so γn−1 C Z1. Thus,

γn = [γn−1,G] C [Z1,G] = {1}. :)X

Solution to Exercise 1.39 :(
Let k ≥ 1. We know thatγk = 〈[x, y] : x ∈ γk−1, y ∈ G〉. Considerγk/γk+1 as a subgroup ofG/γk+1. Note
that since [γk,G] = γk+1, we have thatγk/γk+1 ≤ Z (G/γk+1). Thus, for any x ∈ γk−1, y, z ∈ G we get that

[x, yz] = x−1z−1y−1xyz = [x, z]z−1[x, y]z ≡ [x, z] · [x, y] (mod γk+1).

Also, if x, y ∈ γk−1 and z ∈ G then

[xy, z] = y−1x−1z−1xyz = y−1[x, z]z−1yz ≡ [x, z] · [y, z] (mod γk+1).

We conclude that if γk−1 = 〈X〉 andG = 〈S〉 then

γk/γk+1 = 〈[γk+1x, γk+1s] : x ∈ X , s ∈ S〉 .

By induction on k, this proves that as long asG is finitely generated, the group γk/γk+1 is finitely generated
for all k. :)X

Solution to Exercise 1.40 :(
G is n-step nilpotent if and only if γn (G) = {1} and γn−1 (G) , {1}, which, by Exercises 1.37 and 1.38, is if
and only if Zn = G and Zn−1 , G.

The second assertion follows from the fact that Zn+1 (G) = Zn (G/Z1) and Zn (G) = Zn−1 (G/Z1). :)X

Solution to Exercise 1.41 :(
One verifies that γk (G/γn ) ≤ γk/γn , so γn (G/γn ) = {1}. :)X

Solution to Exercise 1.42 :(
This follows from γn (H ) ≤ γn (G) for all n, which is easily shown by induction, since for any subgroups
A ≤ B ≤ G andC ≤ D ≤ G we have [A,C] ≤ [B, D]. :)X

Solution to Exercise 1.43 :(
Let π : G → G/N be the canonical projection. Note that γk (G/N ) ≤ π (γk (G)). So if γn (G) = {1} ≤ N ,
then γn (G/N ) = {1}. :)X

Solution to Exercise 1.44 :(
Let 1 ≤ j ≤ i + k + ` − 1 ≤ n. Compute for M ∈ Dk, N ∈ D` :

(MN )i, j =
n∑
t=1

Mi, tNt, j1{t≥i+k }1{ j≥t+` } = 0,

because j − ` < i + k. :)X

Solution to Exercise 1.45 :(
If M, N ∈ Dk (Z) then

(I +M )(I + N ) = I +M + N +MN ∈ Qn,k
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because MN ∈ D2k (Z) ⊂ Dk (Z).
Moreover, since Dn contains only the 0 matrix, we have that for any N ∈ Dk (Z) we may choose M =∑n−1

j=1 (−N ) j ∈ Dk (Z), and we have that

(I + N )(I +M ) = (I + N ) ·
n−1∑
j=0

(−N ) j = I,

implying that (I + N )−1 = I +M for this choice of M .
This proves that Qn,k is a group. :)X

Solution to Exercise 1.46 :(
Let H = Hn (Z). Note that H = Qn,1 from the previous exercise, so it is indeed a group.

We now show that for 0 ≤ k ≤ n − 1 we have γk (H ) ⊂ Qn,k+1 ⊂ Zn−k−1 (H ).
The case k = 0 is exactly what was shown above. For k > 0, if I +M ∈ H, N ∈ Dk (Z) then

[(I +M ), (I + N )] = (I +M )−1 (I + N )−1 (I + N +M (I + N ))

= (I +M )−1
(
I + ((I + N )−1 − I )M (I + N ) +M (I + N )

)
= (I +M )−1 (

(I +M ) + L +MN
)
= I + (I +M )−1 (L +MN ),

where

L =
(
(I + N )−1 − I

)
M (I + N ) =

n∑
j=1

(−N ) jM (I + N ) ∈ Dk+1 (Z).

Since MN ∈ Dk+1 (Z) as well, we conclude inductively that γk (H ) ⊂ Qn,k+1.
Also, sinceDn only contains the 0matrix, it is immediate thatQn,k+1 ⊂ Zn−k−1 (H ) holds when k = n−1.

For k < n − 1 and N ∈ Dk+1 (Z), for any I + M ∈ H , we have seen that [(I + M ), (I + N )] ∈ Qn,k+2 ⊂
Zn−k−2 (H ) (inductively). Thus, I + N ∈ Zn−k−1 (H ) for any N ∈ Dk+1 (Z), as required. :)X

Solution to Exercise 1.47 :(
This follows since if H ≤ G then [G, H] ≤ [G,G].

So for any groupG we have thatG(n) ≤ γn (G), inductively. :)X

Solution to Exercise 1.48 :(
IfG is 2-step solvable then

[
G(1),G(1)

]
= G(2) = {1}. :)X

Solution to Exercise 1.49 :(
This follows since

(
G(n)

) (k )
= G(n+k ) . :)X

Solution to Exercise 1.50 :(
There exists n such thatG(n) , {1} = G(n+1) .

We prove this by induction on n. If n = 0 thenG is infinite Abelian, in which case [G,G] = {1}.
For n > 0, let H = G/G(n) . We have that H (n) = {1}, so by induction [H : [H, H]] = ∞. Also,

[H, H] = G(1)/G(n) , so [G : [G,G]] = [H : [H, H]] = ∞, completing the induction. :)X

Solution to Exercise 1.51 :(
This follows from H (n) ≤ G(n) , which can be easily shown inductively. :)X

Solution to Exercise 1.52 :(
For A, B ∈ ∆+n we have that

(AB)i, j =
n∑
`=1

Ai,`B`, j = 1{i= j }Ai, iBi, i .

This immediately shows that AB = BA.
Also, since Ai, i > 0 for all i, we can choose Bi, i =

1
Ai, i

, to get AB = I , so B = A−1. :)X
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Solution to Exercise 1.53 :(
ForT +M, S+N ∈ Pn,k we have (T +M )(S+N ) = TS+TN +MS+MN . SinceTN, MS, MN ∈ Dk

we get that Pn,k is closed under matrix multiplication.
Choosing M =

∑n
j=1

(
−S−1N

) j
· S−1 and T = S−1 will give us that

(T +M )(S + N ) = I + S−1N +M
(
I + S−1N

)
= I,

so (S + N )−1 = S−1 +M for this choice of M .
Now consider the map ϕ : Pn,k → ∆

+
n given by ϕ(T + M ) = T . One easily check that this is a surjective

homomorphism, and that Kerϕ = {I + N : N ∈ Dk }. Since ∆+n is an Abelian group, it must be that
[Pn,k, Pn,k ] C Kerϕ.

As in Exercise 1.46, we compute commutators: for any M ∈ D`, N ∈ Dk we have [(I + M ), (I + N )] =
I + (I +M )−1 (L +MN ), where

L =

n∑
j=1

(−N ) jM (I + N ) ∈ D`+k

and also MN ∈ D`+k (by Exercise 1.44).
This implies inductively that

(Pn,k )(`+1) = ([Pn,k, Pn,k ])(`) C {I + N : N ∈ D2` k }

for all ` ≥ 0. Since Dn contains only the 0 matrix, Pn,k is solvable of step at most dlog2 (n/k)e + 1.
Finally, to show that Pn,k is not nilpotent, we will show that Z1 (Pn,k ) = {1}, which implies that

Z` (Pn,k ) = {1} for all ` ≥ 0. Indeed,

(T +M )(S + N ) − (S + N )(T +M ) = TN − NT +MS − SM +MN − NM .

If S+N ∈ Z1 (Pn,k ), then by choosing M ∈ Dn−1, we have that NM = MN = 0. Also, an easy computation
gives

MS − SM = (Sn,n − S1,1) · M .

Also, there exist t, s such that Nt,s , 0. Necessarily s > t . We choose Mi, j = 1{i= j=n} andTi, j = α ·1{i= j=t }
for some α > 0. Then

(TN − NT )i, j = α
(
1{i=t } − 1{ j=t }

)
Ni, j .

Hence
((T +M )(S + N ) − (S + N )(T +M ))t,s = αNt,s + Sn,n − S1,1.

Since we can choose α > 0 such that this is nonzero, we find that S + N does not commute with T +M in this
case. :)X

Solution to Exercise 1.54 :(
It is easy to compute that

[
ωz d

0 1

]
·

[
ωw c

0 1

]
=

[
ωz+w ωz c+d

0 1

]
,

so that
[
ωz d

0 1

]−1
=

[
ω−z −ω−z d

0 1

]
showing thatG is a group.

For d =
∑r−1

k=0 akω
k where a0, . . . , ar−1 ∈ Z, and z ∈ Z, we have that

[
ωz d

0 1

]
=

[
1 d
0 1

]
·
( [

ω 0
0 1

] )z
=

r−1∏
k=0

[
1 akω

k

0 1

]
·
( [

ω 0
0 1

] )z
=

r−1∏
k=0

( [
1 ωk

0 1

] )ak
·
( [

ω 0
0 1

] )z
,

implying thatG is generated by the finite set

G =
〈[
ω 0
0 1

]
,

[
1 ωk

0 1

]
: 0 ≤ k ≤ r − 1

〉
.

Computing commutators we see that
[ [
ωz d

0 1

]
,

[
ωw c

0 1

] ]
=

[
ω−z−w −ω−z−wc−ω−z d

0 1

] [
ωz+w ωz c+d

0 1

]
=

[
1 ω−z−w ((ωz−1)c−(ωw−1)d)
0 1

]
.
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As above, this shows thatG is 2-step solvable, but not nilpotent, since Z1 (G) = {1}.
However, consider the map ϕ : G → {0, 1, . . . , r − 1} given by ϕ

( [
ωz d

0 1

] )
= z (mod r ). This is easily

seen to be a well-defined surjective homomorphism, so [G : Kerϕ] = r . Moreover,
[
ωz d

0 1

]
∈ Kerϕ if and only

if z = 0 (mod r ). Thus

Kerϕ =
{ [

1 d
0 1

]
: d ∈ D

}
,

which is an Abelian group of finite index inG. :)X

Solution to Exercise 1.55 :(
Let S = {a, b }. Define ϕ : FS → H by ϕ(a) = a and ϕ(b) = b and extending in the canonical way to words
in FS . This is a surjective homomorphism, and we want to show that it is injective as well.

Step I. Let h = az1bw1 · · · azn be an element in H such that zn, zk, wk ∈ Z \ {0} for all 1 ≤ k ≤ n − 1.
For any x ∈ B,

h.x = az1bw1 · · · azn .x ∈ az1bw1 · · · azn−1bzn−1 (A) ⊂ A,

so it is impossible that h.x = x, implying that h , 1.
Step II. Now, for a general element h = az1bw1 · · · azn bwn , where w1, zn, zk, wk ∈ Z \ {0} for

2 ≤ k ≤ n − 1, but possibly z1 = 0 or wn = 0. In this case we can define:

g =




a−znhazn if z1 = wn = 0,
a−1ha if z1 = 0 , wn,

h if z1 , 0 = wn .

We see that in each of the above cases, the element g falls into the conditions of Step I. So g , 1. Since every
time g is a conjugate of h, also h , 1. :)X

Solution to Exercise 1.56 :(
SL2 (Z) acts on Z2. Let A =

{
(x, y) ∈ Z2 : |y | < |x |

}
and B =

{
(x, y) ∈ Z2 : |x | < |y |

}
.

Note that az =
[

1 2z
0 1

]
and bz =

[
1 0

2z 1
]
for any z ∈ Z.

We have that az (x, y) = (x + 2zy, y). So if (x, y) ∈ B, since |y | > |x | we get that

|x + 2zy | ≥ 2 |z | |y | − |x | > (2 |z | − 1) |y | ≥ |y |

if z , 0. So az (x, y) ∈ A for all z , 0 and (x, y) ∈ B.
Similarly, if (x, y) ∈ A then

|2zx + y | ≥ 2 |z | |x | − |y | > (2 |z | − 1) |x | ≥ |x |,

so bz (x, y) ∈ B for all z , 0 and (x, y) ∈ A.
This implies that 〈a, b〉 is isomorphic to F2 by the Ping-Pong Lemma. :)X

Solution to Exercise 1.59 :(
It was shown in Exercise 1.58 that a = x2 = (−st)2 = stst and b = y2 = (−s2t)2 = s2ts2t .

Now, let z ∈ SL2 (Z). By Exercise 1.58, there exist n ≥ 0 and ε1, . . . , εn ∈ {−1, 1} and α, β ∈ {0, 1} such
that z ≡ tαsε1 tsε2 · · · tsεn tβ (mod {−I, I }). Choose a minimal n = n(z) as above. We prove the assertion
that there exist w ∈ S and p ∈

{
1, s, s2, t, ts, ts2

}
such that z ≡ wp (mod {−I, I }) by induction on n.

The base case is n(z) = 0, for which z ≡ tα+β (mod {−I, I }) for some α, β ∈ {0, 1}. In all cases one sees
that the assertion holds with w = 1 and p ∈ {1, t }.

For the induction step, we have that z ≡ tαsε1 tsε2 · · · tsεn tβ (mod {−I, I }) and n ≥ 1. Set z̃ =
tαsε1 tsε2 · · · sεn−1 t . By induction, there exist w̃ ∈ S and p̃ ∈

{
1, s, s2, t, st, s2t

}
such that z̃ ≡ w̃p̃

(mod {−I, I }). Note that modulo {−I, I },

p̃s−1t ≡




s−1t ≡ s2t p̃ = 1,
t p̃ = s,

st p̃ = s2,

ts−1t ≡ a−1s p̃ = t,

sts−1t ≡ ab−1s2 p̃ = st,

s2ts−1t ≡ b p̃ = s2t,

p̃st ≡




st p̃ = 1,
s2t p̃ = s,

t p̃ = s2,

tst ≡ b−1s2 p̃ = t,

stst = a p̃ = st,

s2tst ≡ ba−1s p̃ = s2t,
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which completes the induction step.
This immediately shows that the number of cosets of π (S) is at most 6, that is, [PSL2 (Z) : π (S)] ≤ 6.
Finally, we also have that for any z ∈ SL2 (Z) there exist w ∈ S and p ∈

{
1, s, s2, t, st, s2t

}
such that

π (z) = π (wp). This implies that for some ε ∈ {−1, 1} we have that z = εwp. Hence, there are at most 12
cosets for S in SL2 (Z); that is, [SL2 (Z) : S] ≤ 12. :)X

Solution to Exercise 1.60 :(
For every x ∈ G there are unique elements yx ∈ H and tx ∈ T such that x = yx tx . For any u ∈ T and s ∈ S
one has that us(tus )−1 = yus ∈ TST−1 ∩ H .

We will show that {yus : u ∈ T, s ∈ S } generate H . To this end, fix some x ∈ G and write x = s1 · · · sn
for sj ∈ S. Define inductively u1 = s1 and uk+1 = tuk sk+1. Then,

x = ys1 ts1 s2 · · · sn = yu1yu2 tu2 s3 · · · sn = · · · = yu1yu2 · · · yun tun .

Note that u j ∈ TS so yuj
∈ TST−1 ∩ H . Specifically, if x ∈ H then it must be that tun = 1 and

x = yu1 · · · yun . :)X

Solution to Exercise 1.62 :(
For any x ∈ G, we can write π (x) = π (s1) · · · π (sn ) for some sj ∈ S. Thus, there exists h ∈ H such that
x = hs1 · · · sn . Writing h = u1 · · · um for ui ∈ U , we have thatU ∪ S generatesG. :)X

Solution to Exercise 1.63 :(
LetG = {g1, . . . , gn }. LetF = Fn be the free group on n generators, and denote the generators by {s1, . . . , sn }.
Consider the homomorphism ϕ : F→ G defined by setting ϕ(sj ) = g j .

For every 1 ≤ i, j ≤ n there exists 1 ≤ k = k (i, j) ≤ n such that gig j = gk . Define the relation
ri, j = si sj (sk )−1 for k = k (i, j).

Let K = Kerϕ and let R C F be the smallest normal subgroup containing {ri, j : 1 ≤ i, j ≤ n}. Note that
R C K .

Let π : F/R → G be the homomorphism defined by π (Rx) = ϕ(x). This is well defined because R C K .
So F/R and K/R are finite groups. Since (F/R)/(K/R) � F/K � G, we have that |G | ≤ |G |

|K/R | , which can
only mean that K = R. HenceG =

〈
s1, . . . , sn | ri, j 1 ≤ i, j ≤ n

〉
is a finitely presented group. :)X

Solution to Exercise 1.64 :(
Z is finitely presented, as it is just the free group on 1 generator. SinceG/H is finite, it is also finitely presented.
Thus,G is finitely presented by Lemma 1.5.14. :)X

Solution to Exercise 1.65 :(
This follows directly from Theorem 1.5.15 and the fact that virtually-Z groups are finitely presented. :)X

Solution to Exercise 1.66 :(
If e1, . . . ed are the standard basis vectors spanning Zd , then defining Hk = 〈e1, . . . , ed−k 〉 for 0 ≤ k < d,
and Hd = {1}, we have that Hk+1 C Hk and Hk/Hk+1 � Z for all 0 ≤ k < d. Thus Zd is finitely presented
by Theorem 1.5.15.

If G is a finitely generated virtually Abelian group, then G � Zd × F for some d and some finite group F
(by Theorem 1.5.2). Thus, there exists a normal subgroup N CG such that N � Zd andG/N � F . Since both
N and F are finitely presented, so isG by Lemma 1.5.14. :)X

Solution to Exercise 1.67 :(
Assume thatG is n-step nilpotent. We prove the claim by induction on n.

If n = 1 then G is Abelian, and since it was assumed to be finitely generated, G is finitely presented,
completing the induction base.

For n > 1, consider the lower central seriesG = γ0 Bγ1 B · · · Bγn = {1}. Consider the group H = γn−1.
Since [G, H] = {1}, we have that H is Abelian. By Exercise 1.39, H � γn−1/γn is finitely generated. Thus,
H is finitely presented. Also, G/H is at most (n − 1)-step nilpotent and finitely generated, so G/H is finitely
presented by induction. Thus,G is also finitely presented, completing the induction step. :)X
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Solution to Exercise 1.68 :(
Multiplication is associative since(

(g, h)(g′, h′)
)
(g′′, h′′) = (gg′, hg(h′))(g′′, h′′) = (gg′g′′, hg(h′)gg′(h′′)),

(g, h)
(
(g′, h′)(g′′, h′′)

)
= (g, h)(g′g′′, h′g′(h′′)) = (gg′g′′, hg(h′)gg′(h′′)).

The identity is easily seen to be (1G, 1H ). Inverses are given by (g, h)−1 =
(
g−1, g−1 (h−1)

)
.

The map (g, h) 7→ g is a homomorphism ontoG with kernel {(1, h) | h ∈ H }, which is isomorphic to H .
:)X

Solution to Exercise 1.70 :(
Since TM ∈ Dk for all T ∈ ∆+n and M ∈ Dk , it is obvious that ∆+n acts on the set Dk . Also, T (M + N ) =
TM +TN so this action is indeed a group automorphism (recall that Dk has an additive operation).

For T ∈ ∆+n, M ∈ Dk define a 2n × 2n matrix by Ψ(T, M ) =
[
T M
0 I

]
. Multiplying two such matrices by

blocks givesΨ(T, M )Ψ(S, N ) = Ψ(TS, TN +M ). This immediately leads to the conclusion that ∆+n nDk �
G := {Ψ(T, M ) : T ∈ ∆+n, M ∈ Dk }.

Now, since Ψ(T, M )−1 = Ψ
(
T−1, −T−1M

)
, we have that

[Ψ(T, M ), Ψ(S, N )] = Ψ
(
T−1S−1, −T−1S−1N −T−1M

)
Ψ(TS, TN +M )

= Ψ
(
I, T−1S−1 (TN +M ) −T−1S−1N −T−1M

)
= Ψ

(
I, (I −T−1)S−1N − (I − S−1)T−1M

)
.

Thus, G(1) ⊂ {Ψ(I, M ) : M ∈ Dk }. However, computing the commutator again (when S = T = I ) we get
thatG(2) = {I }, soG is 2-step solvable.

If k ≥ n then Dk is just the 0 matrix, so ∆+n n Dk � ∆
+
n , which is Abelian.

To show thatG is not nilpotent when k < n, we first compute the center Z = Z1 (G). If Ψ(S, N ) ∈ Z , then
the commutator computation above implies that (T − I )N = (S − I )M for all T ∈ ∆+n, M ∈ Dk . Choosing
T = I and Mi, j = 1{ j≥i+k } , we get that S j, j = 1 for all j ≤ n − k. Thus, (S − I )M = 0 for any M ∈ Dk .
This leads to (T − I )N = 0 for all T ∈ ∆+n , which cannot hold unless N = 0. We conclude that

Z = {Ψ(S, 0) : ∀ j ≤ n − k , S j, j = 1}.

Now, we compute the second center Z2 = Z2 (G) = {x ∈ G : ∀ y ∈ G [x, y] ∈ Z1 (G) }. Using
the commutator formula above, we see that if Ψ(S, N ) ∈ Z2, then again (T − I )N = (S − I )M for all
T ∈ ∆+n, M ∈ Dk , which leads to N = 0 and S j, j = 1 for all j ≤ n − k, as before. But then we get that
Z2 = Z , so the upper-central series stabilizes at Z , andG cannot be nilpotent. :)X

Solution to Exercise 1.71 :(
Forα , 0 and u ∈ V , denote the transformation v 7→ αv+u by the “matrix”

[ α u
0 1

]
. (IfV is finite dimensional,

then this is an actual (dimV + 1) × (dimV + 1) matrix.)
One sees that the usual matrix multiplication provides us with composition of transformations:[ α u

0 1
]
·

[
β v
0 1

]
=

[
αβ αv+u
0 1

]
.

The inverse transformation is given by [ α u
0 1

]−1
=

[
α−1 −α−1u

0 1

]
.

This provides the group structure for the affine transformations ofV .
In fact, note that the multiplicative group C∗ = C\{0} acts on the additive groupV , so the collection of affine

transformations is just C∗ nV .
It is now straightforward to compute commutators:

[ [ α u
0 1

]
,

[
β v
0 1

] ]
=

[
α−1β−1 −α−1β−1v−α−1u

0 1

] [
αβ αv+u
0 1

]
=

[
1 α−1β−1 ((α−1)v−(β−1)u)
0 1

]
.

Just as before, one sees that C∗ nV is 2-step solvable, ifV , {0}.
Also, if

[ α u
0 1

]
∈ Z = Z1 (C∗ nV ), then (α − 1)v = (β − 1)u for all β ∈ C∗, v ∈ V . If V , {0}, this is

only possible if u = 0 and α = 1. Hence Z = {1}. That is, the only case where C∗ nV is nilpotent is when
V = {0} and C∗ nV � C∗, which is Abelian. :)X
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Solution to Exercise 1.72 :(
First, note that the collection {axbη : η ∈ {0, 1}, x ∈ Z} forms a subgroup of D∞. Since the generators a, b
of D∞ are contained in this subgroup, we get that any element of D∞ is of the form axbη for some η ∈ {0, 1}
and x ∈ Z.

It is not difficult to verify that the map (ε, x) 7→ axb(1+ε)/2 is a surjective homomorphism with trivial
kernel.

Now,

[(ε, x), (δ, y)] = (ε, −εx)(δ, −δy)(ε, x)(δ, y)

= (εδ, −εx − εδy)(εδ, x + εy)

=
(
ε2δ2, −εx − εδy + εδx + ε2δy

)
= (1, ε(δ − 1)x + δ(1 − ε)y).

Thus [(1, x), (−1, 0)] = (1, −2x) and [(−1, x), (1, 1)] = (1, 2). Hence Z (Z2 nZ) = {(1, 0) }, soD∞ � Z2 nZ
is not nilpotent.

Also, the above commutator calculation shows that [(1, x), (1, y)] = (1, 0), so D∞ � Z2 n Z is 2-step
solvable.

Finally, the surjective homomorphism (ε, x) 7→ ε shows that H = {(1, x) : x ∈ Z} is a normal subgroup
of Z2 n Z isomorphic to Z, and of index 2 because Z2 n Z/H � Z2. :)X

Solution to Exercise 1.73 :(
The group structure is easy to verify. The identity inG is 1G = (1Sd

, 0) and (σ, z)−1 =
(
σ−1, −σ−1z

)
.

Now, note that

(σ, z)(τ,w) =
(
τ−1, −τ−1w

)
(στ, z + σw) =

(
στ, τ−1z + σττ−1w − τ−1w

)
.

Let H = {(1Sd
, z) : z ∈ Zd }. Then it is immediate that H � Zd and from the above,

(
1Sd

, z
) (τ,w)

=(
1Sd

, τ−1z
)
, so H CG. Also, the map π : G → Sd given by (σ, z) 7→ σ is a homomorphism with kernel H .

SoG/H � Sd .
Finally,

[(σ, z), (τ, w)] =
(
σ−1, −σ−1z

) (
στ, τ−1z + σττ−1w − τ−1w

)
=

(
[σ, τ], −σ−1z + τσw − σ−1τ−1w

)
.

Since Sd is non-Abelian (for d > 2) we may find σ, τ ∈ Sd such that [σ, τ] , 1Sd
. :)X

Solution to Exercise 1.75 :(
It suffices to show only one inequality, as the other will follow by reversing the roles of S, T .

For any t ∈ T let st,1, . . . , st,n(t ) ∈ S be such that st,1 · · · st,n(t ) = t and n(t) = |t |S = distS (1, t). Let
κ = maxt∈T n(t).

Now, for any x ∈ G let t1, . . . , tm ∈ T be such that t1 · · · tm = x and m = |x |T = distT (1, x). Then,

x = t1 · · · tm = st1,1 · · · st1,n(t1 ) · st2,1 · · · st2,n(t2 ) · · · stm,1 · · · stm,n(tm ),

so

|x |S ≤

m∑
j=1

n(t j )∑
k=1
|st j ,k | ≤ κ · m = κ · |x |T .

Hence, for general x, y ∈ G we have that

distS (x, y) = ���x
−1y���S ≤ κ ·

���x
−1y���T = distT (x, y). :)X

Solution to Exercise 1.80 :(
Symmetry and adaptedness of ν follow from the previous exercises. LetU be a random element of law µ, and
letV =U with probability 1 − p, andV = 1 with probability p. Then,

E
[
|V |k

]
= (1 − p) E

[
|U |k

]
< ∞,

implying that ν ∈ SA(G, k). :)X
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Solution to Exercise 1.87 :(
Compute using the symmetry of P:

2 〈∆ f , g〉 = 2
∑
x

∆ f (x)ḡ(x) = 2
∑
x

∑
y

P(x, y)( f (x) − f (y))ḡ(x)

=
∑
x,y

P(x, y)( f (x) − f (y))ḡ(x) +
∑
y,x

P(y, x)( f (y) − f (x))ḡ(y)

=
∑
x,y

P(x, y)( f (x) − f (y))(ḡ(x) − ḡ(y)).

We have used that f , g ∈ `2, so that the above sums converge absolutely, and so can be summed together.
Thus, if f is `2 and harmonic we have that∑

x,y

P(x, y) | f (x) − f (y) |2 = 2 〈∆ f , f 〉 = 0.

Thus, | f (x) − f (y) |2 = 0 for all x, y such that P(x, y) > 0. Since P is irreducible (i.e. µ is adapted) this
implies that f is constant. :)X

Solution to Exercise 1.88 :(
Note that any linear map z 7→ αz + β is still harmonic with respect to this µ.

The dimension is at most 4 since the linear map f 7→ ( f (−1), f (0), f (1), f (2)) from the space HF(Z, µ) to
C4 is injective (it has a trivial kernel). Indeed, for any µ-harmonic function f , and any z we have that

f (z + 2) = 4 f (z) − f (z − 1) − f (z + 1) − f (z − 2),

f (z − 2) = 4 f (z) − f (z − 1) − f (z + 1) − f (z + 2).

So if f (z − 1) = f (z) = f (z + 1) = f (z + 2) = 0 for any z then f ≡ 0 is identically 0. :)X

Solution to Exercise 1.89 :(
It is easy to verify µ-harmonicity.

As for ν, one may check that f , h are ν-harmonic. Also,

g ∗ ν̌(x, y) = 1
6
(
(x + 1)2 − y2 + (x − 1)2 − y2 + x2 − (y + 1)2 + x2 − (y − 1)2

+ (x + 1)2 − (y + 1)2 + (x − 1)2 − (y − 1)2)
= x2 − y2 + 1

6
(
2 − 2 + 1 + 2x − 1 − 2y + 1 − 2x − 1 + 2y

)
= x2 − y2 = g(x, y),

k ∗ ν̌(x, y) = 1
6
(
(x + 1)y + (x − 1)y + x(y + 1) + x(y − 1) + (x + 1)(y + 1) + (x − 1)(y − 1)

)
= xy + 1

6
(
y − y + x − x + x + y + 1 − x − y + 1

)
= xy + 1

3 ,

so g is ν-harmonic, but k is not ν-harmonic. :)X

Solution to Exercise 1.90 :(
Let ϕ : G → C be a homomorphism. Then, using the symmetry of µ,∑

y

µ(y)ϕ(xy) = ϕ(x) +
∑
y

µ(y) 1
2

(
ϕ(y) + ϕ(y−1)

)
= ϕ(x).

The above sum converges absolutely because µ has finite first moment, and since |ϕ(xy) | ≤ |ϕ(x) |+ |ϕ(y) | ≤
maxs∈S |ϕ(s) | · ( |x | + |y |), where S is the finite symmetric generating set used to determine the metric onG.

:)X

Solution to Exercise 1.91 :(
For any x ∈ G, ∑

y

ν(y) f (xy) = p f (x) + (1 − p)
∑
x

µ(y) f (xy),

where the sums on both sides converge absolutely together. :)X
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Solution to Exercise 1.97 :(
The fact that L is compact is basically the Arzelà–Ascoli theorem. However, let us give a self-contained proof.

The space L with the topology of pointwise convergence is metrizable; for example, one may consider the
metric

dist( f , h) = exp(−R(h, f )), R(h, f ) := sup{r ≥ 0 : ∀ |x | ≤ r , h(x) = f (x) }.

So compactness will follow by showing that any sequence has a converging subsequence.
Let ( fn )n be a sequence in L. DenoteG = {x1, x2, . . . }.
We will inductively construct a sequence of subsets N ⊃ I1 ⊃ I2 ⊃ I3 ⊃ · · · , all infinite |Ij | = ∞, such

that for all m ≥ 1 the limits limI j 3k→∞
fk (x j ) exist.

Indeed, if m = 1 then since | fn (x) | ≤ |x | for all n, the sequence ( fn (x1))n is bounded, and thus has a
converging subsequence. Let I1 be the indices of this converging subsequence.

For m > 1, given Im−1, we consider ( fk (xm ))k∈Im−1 . Since this sequence is bounded, it too has a
converging subsequence, and we denote by Im ⊂ Im−1 the indices of this new subsequence.

With this construction, we now write Im = (n(m)
k

)k , for each m ≥ 1. Consider the sequence hk = f
n

(k )
k

.

For any m ≥ 1, the sequence (hk )k≥m is a subsequence of ( fk )k∈Im . Thus, h(xm ) := limk→∞ hk (xm )
exists.

This shows that (hk )k converges pointwise to h, proving that L is compact.
The fact that x.h(y) = h

(
x−1y

)
− h

(
x−1

)
is a left action is easily shown.

Also, if x.h = h for all x ∈ G, then h(xy) = x−1.h(y) + h(x) = h(y) + h(x) for all x, y ∈ G.
If h : G → C is a homomorphism, then choose α = 1

maxs∈S |h (s) | . Then

| |∇Sh | |∞ = sup
s∈S

sup
x∈G

|h(xs) − h(x) | = max
s∈S
|h(s) |,

so that | |∇Sαh | |∞ = 1. Hence, αh ∈ L.
Now for the functions bx . Note that

z.bx (y) = bx

(
z−1y

)
− bx

(
z−1

)
=

���x
−1z−1y��� −

���x
−1z−1��� = bzx (y).

By the triangle inequality, |bx (y) | ≤ |y |. So,

|bx (ys) − bx (y) | = ���y
−1.bx (s)��� = |by−1x (s) | ≤ |s |,

which implies that | |∇Sbx | |∞ ≤ 1.
Finally, if bx = by , then

distS (x, y) = bx (y) + |x | = by (y) + |x | = |x | − |y |.

Reversing the roles of x, y we have that distS (x, y) = −distS (x, y), implying that distS (x, y) = 0, so that
x = y. :)X

Solution to Exercise 1.98 :(
The fact that | | · | |S,k is a semi-norm is easy to verify.

For f : G → C and x ∈ G note that

| |x. f | |S,k = lim sup
r→∞

r−k sup
|y |≤r

��� f
(
x−1y

) ��� ≤ lim sup
r→∞

(r + |x |)−k sup
|z |≤r+|x |

| f (z) | ·
(
r+|x |
r

)k
= | | f | |S,k .

Repeating this for x−1, we have that | |x. f | |S,k ≤ | | f | |S,k =



x
−1.x. f 


S,k ≤ | |x. f | |S,k , which implies

equality.
It is now immediate that HFk (G, µ) is aG-invariant vector space. :)X

Solution to Exercise 1.99 :(
We know that there exists κ > 0 such that |x |T ≤ κ |x |S for all x ∈ G. Hence,

| | f | |S,k = lim sup
r→∞

r−k sup
|x |S ≤r

| f (x) | ≤ lim sup
r→∞

r−k sup
|x |T ≤κr

| f (x) | ≤ κk | | f | |T ,k . :)X
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48 Background
Solution to Exercise 1.102 :(
This is similar to the proof of Proposition 1.5.1.

Let M ∈ GLn (R). Let us recall the cofactor matrix c(M ) and the adjugate matrix adj(M ) given as follows:
For every 1 ≤ i, j ≤ n let M i, j be the (n − 1) × (n − 1) matrix obtained from M by deleting the ith row and
jth column. Define c(M ) to be the n× n matrix given by c(M )i, j = (−1)i+ j det(M i, j ). It is well known that
for any fixed 1 ≤ i ≤ n we have det(M ) =

∑n
j=1 Mi, jCi, j . Define adj(M ) = c(M )τ (the transpose). Thus,

Madj(M ) = adj(M )M = det(M ) · I where I is the n × n identity matrix.
This implies that if det(M ) is invertible in R, then M−1 = (det(M ))−1 · adj(M ). :)X

Solution to Exercise 1.103 :(
It is easy to see that I, −I commute with any A ∈ GLn (Z). Thus, {I, −I } C GLn (Z).

For A ∈ GL2n+1 (Z) we have that det(det(A) · A) = det(A)2n+1 · det(A) = 1. Thus, the map A 7→
(det(A), det(A) · A) is an isomorphism from GL2n+1 (Z) onto {−1, 1} × SL2n+1 (Z).

Also, the map A 7→ {−I, I }A is an isomorphism from SL2n+1 (Z) onto PGL2n+1 (Z). :)X

Solution to Exercise 1.104 :(
Since S is generated by a =

[
1 2
0 1

]
and b =

[
1 0
2 1

]
, it suffices to show that for any matrix A =

[
4k+1 2n
2m 4`+1

]
, we

have that Aa and Ab are both still of this form.
For A as above, compute,

Aa =
[

4k+1 2n
2m 4`+1

]
·

[
1 2
0 1

]
=

[
4k+1 2(4k+1)+2n
2m 2·2m+4`+1

]
=

[ 4k+1 2(4k+1+n)
2m 4(m+`)+1

]
,

which is of the correct form. Similarly,

Ab =
[

4k+1 2n
2m 4`+1

]
·

[
1 0
2 1

]
=

[
4k+1+2·2n 2n

2m+2(4`+1) 4`+1
]
=

[ 4(k+n)+1 2n
2(m+4`+1) 4`+1

]
,

completing the proof. :)X

Solution to Exercise 1.105 :(
Let

H =
{
A =

[
4k+1 2n
2m 4`+1

]
| det(A) = 1 , k, `, n,m ∈ Z

}
.

We have already seen that S ⊂ H .
Let a =

[
1 2
0 1

]
and b =

[
1 0
2 1

]
be the generators of S.

Let A =
[

4k+1 2n
2m 4`+1

]
. Denote | |A| | = max{ |4k + 1 |, |4` + 1 | }. Since A−1 =

[
4`+1 −2n
−2m 4k+1

]
, by possibly

replacing Awith A−1, we may assume that |4k + 1 | ≥ |4` + 1 |, so that | |A| | = |4k + 1 |.
We will prove by induction on | |A| | that if det(A) = 1 then A ∈ S.
The base case is where | |A| | = 1, which is k = ` = 0. Then 1 = det(A) = 4(` − mn) + 1 implies that

` = nm, so that either n = 0 or m = 0. If n = 0 then A = bm ∈ S and if m = 0 then A = an ∈ S. This
completes the base case.

For | |A| | > 1 we proceed by induction as follows.
Note that det(A) = 1 implies that |(4k + 1)(4` + 1) | = |4nm + 1 |. If 2 min{ |n |, |m | } > |4k + 1 | then

|4k + 1 |2 ≥ |(4k + 1)(4` + 1) | ≥ 4 |nm | − 1 ≥ ( |4k + 1 | + 1)2 − 1 > |4k + 1 |2,

a contradiction! So it must be that
2 min{ |n |, |m | } ≤ |4k + 1 |.

Since 2 min{ |n |, |m | } is even, and |4k + 1 | is odd, equality cannot hold, so we conclude that

2 min{ |n |, |m | } < |4k + 1 |.

We now have two cases.
Case I. 2 |n | < |4k + 1 |. In this case we see that for some z ∈ {−1, 1} we have |4(k + zn) + 1 | < |4k + 1 |.

Since
Abz =

[ 4(k+zn)+1 2n
2(m+z (4`+1)) 4`+1

]
,

if |4` + 1 | < |4k + 1 |, then | |Abz | | < | |A| |, and by induction Abz ∈ S, implying that A ∈ S as well.
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1.9 Solutions to Exercises 49

If |4` + 1 | = |4k + 1 |, then we can find w ∈ {−1, 1} such that |4(` + wn) + 1 | < |4` + 1 |. So the matrix
bw Abz admits that

| |bw Abz | | = max{ |4(k + zn) + 1 |, |4(` + wn) + 1 | } < | |A| |.

Again by induction bw Abz ∈ S so that A ∈ S as well.
Case II. 2 |m | < |4k + 1 |. Similarly to the previous case, taking z ∈ {−1, 1} such that |4(k + zm) + 1 | <

|4k + 1 |, we find that

az A =
[

4(k+zm)+1 2(n+z (4`+1))
2m 4`+1

]
.

If |4` + 1 | < |4k + 1 | then | |az A| | < | |A| |, so that az A ∈ S by induction, implying that A ∈ S.
If |4` + 1 | = |4k + 1 |, then taking w ∈ {−1, 1} such that |4(` + wm) + 1 | < |4` + 1 |, we obtain that

| |az Aaw | | = max{ |4(k + zm) + 1 |, |4(` +wm) + 1 | } < | |A| |. As before, by induction az Aaw ∈ S so that
A ∈ S as well. :)X

Solution to Exercise 1.106 :(
Let ϕ : SL2 (Z) → SL2 (Z/4Z) be the map given by taking the matrix entries modulo 4. This is easily seen to be
a surjective homomorphism.

Let K = Kerϕ C SL2 (Z). By the above exercises, K C S. So [SL2 (Z) : S] = [SL2 (Z)/K : S/K] =
[SL2 (Z/4Z) : ϕ(S)] < ∞. :)X
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