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Abstract
In this paper, we define weighted failure rate and their means from the stand point of an application. We begin
by emphasizing that the formation of n independent component series system having weighted failure rates with
sum of weight functions being unity is same as a mixture of n distributions. We derive some parametric and non-
parametric characterization results. We discuss on the form invariance property of baseline failure rate for a specific
choice of weight function. Some bounds on means of aging functions are obtained. Here, we establish that weighted
increasing failure rate average (IFRA) class is not closed under formation of coherent systems unlike the IFRA class.
An interesting application of the present work is credited to the fact that the quantile version of means of failure
rate is obtained as a special case of weighted means of failure rate.

1. Introduction

The notion of aging plays an important role in reliability theory and in the study of lifetime data analysis.
Aging of a mechanical or biological component based on a lifetime distributions is generally studied
using the residual lifetime of the unit that is affected its age. Abundant literature is available on various
aging concepts and their patterns of aging, comparison of life distributions and to explain their data
generating mechanism. Reliability aging classes based on the monotonicity of the failure rate, such
as increasing (decreasing) failure rate (IFR (DFR)) and its average, increasing (decreasing) failure rate
average (IFRA (DFRA)) have been found great interest among researchers as it easily give an indication
on the manner in which aging can be described, life distributions can be classified and distinguished,
and appropriate models can be chosen when observations are available (cf. Barlow and Proschan [3]).

Let X be a non-negative random variable representing the lifetime of an event or living mechanism
with absolutely continuous cumulative distribution function (CDF), F (·) and probability density func-
tion (PDF), f (·). Then F is said to be IFR (DFR), if the conditional survival function F (x |t) = F (x+t)

F (t) is

decreasing (increasing) in 0 ≤ t < ∞, x > 0, where F = 1 − F is the survival (reliability) function; or
equivalently the failure rate h(t) = f (t)

F (t) is increasing (decreasing) in t ≥ 0, provided f (t) exists. Further,

F is said to IFRA (DFRA), if −
(

1
t

)
log F (t) is increasing (decreasing) in t ≥ 0. However, in many real

situations, h(t) is not always monotonic. In such cases, the monotonicity of IFRA class condition in
terms of the failure rate, 1

t

∫ t
0 h(u)du, known as the arithmetic mean failure rate (AFR) is a useful mea-

sure (Roy and Mukherjee [17]) in identifying the monotonicity of classes of life distributions. Along
with arithmetic mean failure rate, Roy and Mukherjee [17] have also studied classes of distributions
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through the monotonic behavior of geometric failure rate (GFR) and harmonic failure rate (HFR), and
the characterizations and aging classes based on it. They pointed out until then no work has been done
on GFR and HFR. The following definition is cited from Roy and Mukherjee [17].

Definition 1.1. Let X be a non-negative random variable with absolutely continuous CDF F (·), PDF
f (·), and failure rate h(·). Then the arithmetic mean failure rate (AFR), geometric mean failure rate
(GFR), and harmonic failure rate (HFR), denoted by A(·), G(·), and H (·) respectively are defined as

A(x) = 1
x

∫ x
0 h(u)du; G(x) = exp

(
1
x

∫ x
0 ln h(u)du

)
; H (x) =

(
1
x

∫ x
0

1
h(u) du

)−1
, x > 0.

Recently, Bhattacharjee et al. [4] further studied the usefulness of these measures based on the notion
of aging intensity function proposed by Jiang et al. [8].

When sample observations are not equally likely, we use the weighted measures to capture the sig-
nificance of their relative importance. Choosing appropriate weights, we can then compute various
measures in a better way based on the sample observations. Such biased sampling schemes are usu-
ally employed in observational studies either due to its convenience or its cost-effectiveness. Based on
this, Rao [16] identified the concept of weighted distributions in connection with the modeling statis-
tical data, in situations where the usual practice of employing standard distributions for the purpose
was not found appropriate. These distributions occur frequently in the studies related to reliability,
analysis of family data, meta analysis and analysis of intervention data, biomedicine, ecology, etc, for
more details, see Patil and Rao [15], Gupta and Kirmani [7], and the references therein. If X is a non-
negative random variable with a PDF f (x), then the PDF of the weighted random variable Xw is given
by, fw (x) = w(x)f (x)

Ew(X ) , x > 0, where w(·) is a non-negative weight function (cf. Rao [16]). There are many
weight functions used by different authors, however, the weight functions w(x) = x and w(x) = xc, c > 0
are found to be more popular due to its adaptability in terms of identifying the observed distribution in
various applied problems wherein the probability of selecting the sample units are proportional to the
length or size of the population units, the respective random variables are known as the length-biased
and size-biased random variables. Motivated by these, in the present study, we propose weighted mean
failure rates based on the measures of AFR, GFR, and HFR.

The paper is organized as follows. In Section 2, we introduce a new definition of weighted means of
failure rate resulting into a new weighted concept of reliability functions. The proposed weighted con-
cept differs remarkably from the existing version of weighted distribution once proposed by Rao [16]. As
an application, we find that formation of an n component series system having complementary weight
functions is actually a mixture of n distributions and vice-versa. We give a note on form invariance
property of the baseline failure rate and its transformation from one aging class to another depending
upon the choice of the weight function. In Section 3, we derive some characterization results followed by
bounds and limiting behavior of means of aging functions. We define some new non-parametric aging
classes based on means of failure rate and discuss their inclusive properties in Section 4. Section 5
gives some equivalent conditions of aging classes based on geometric and harmonic means. We prove
our claim that weighted IFRA class is not closed under formation of coherent systems unlike IFRA class
through a counterexample. In Section 6, we derive the quantile version of means of failure rate inde-
pendently and also as a special case from weighted means of failure rate. We focus on the proportional
quantile hazards model and compare it with conventional proportional hazards model. In Section 7, we
showcase an application of the proposed weighted concept on a real-life data. Concluding remarks are
given in Section 8.

2. A new weighted means of failure rate

In this paper, we introduce a generalized versions of AFR, GFR, and HFR involving a suitable choice
of a non-negative weight function as defined below.
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Definition 2.1. Let X be a non-negative random variable with absolutely continuous distribution func-
tion F (·), probability density function f (·), and failure rate h(·). The weighted arithmetic mean failure
rate (w-AFR), weighted geometric mean failure rate (w-GFR), and weighted harmonic failure rate (w-
HFR) denoted by Aw (·), Gw (·), and Hw (·) respectively, with a suitable non-negative weight function
w(·), are defined as

(i) Aw (x) =
∫ x
0 w(u)h(u)du∫ x

0 w(u)du
, x > 0;

(ii) Gw (x) = exp
( ∫ x

0 w(u) ln h(u)du∫ x
0 w(u)du

)
, x > 0;

(iii) Hw (x) =
( ∫ x

0 w(u)du
) ( ∫ x

0
w(u)
h(u) du

)−1
, x > 0.

Clearly, if w(x) = 1 for all x > 0 then above definition reduces to that of AFR, GFR, and HFR given
in Definition 1.1 due to Roy and Mukherjee [17].

In the pretext, of above, we shall define the other reliability functions of the weighted random variable
as given in the following definition.

Definition 2.2. The weighted survival function of X, or survival function of weighted random variable
Xw, denoted by Fw (·) is defined as Fw (x) = exp

(
−

∫ x
0 w(u)h(u)du

)
, x > 0. The density and failure

rate function of Xw are f w (x) = w(x)h(x) exp
(
−

∫ x
0 w(u)h(u)du

)
and hw (x) = w(x)h(x) for all x > 0,

respectively.

The fact that hw (x) = w(x)h(x) reminds us of proportional hazard rate (PHR) models where h(x) is
the baseline failure rate and w(x) is the proportionality function giving rise to a new hazard rate hw (x)
for x > 0.

Referring to the related literature, one can note that corresponding to the baseline survival function G
having failure rate rG, Marshall and Olkin [10] proposed a cumulative distribution function F such that
its hazard rate hF (·) is given by hF (x,U) = 1

1−UG (x)
hG (x) where x,U ∈ R+ and U = 1−U, (the parameter

U termed as tilt parameter by Marshall and Olkin [11]) and this is a special case of Definition 2.2 if one
assumes w(x) = 1

1−UG (x)
. Furthermore, Balakrishnan et al. [2] defined modified proportional hazard

rates (MPHRs) of n independent components having lifetimes X1, X2, . . . , Xn with respective survival
functions Fi if

Fi (x,_i) =
1 −

(
F (x)

)_i

1 − U
(
F (x)

)_i
,U > 0,U = 1 − U,_i > 0

for i = 1, 2, . . . , n where F is the corresponding baseline survival function. They considered it (MPHR
model) to be the generalization of PHR model because if U = 1 then PHR is a special case of MPHR.
However, one shall observe that this is based on the notion that Xi’s with survival functions Fi (x) follow
PHR model if there exits positive constants _i’s such that Fi (x) =

(
F (x)

)_i . It is worthwhile to note
that the definition of MPHR proposed by Balakrishnan et al. [2] reduces to PHR model hi (x) = _ih(x)
if U = 1. We use the notation hi as mentioned in Balakrishnan et al. [2]. For better clarity, readers may
note that hi and hw are equivalent except that hi corresponds to weighted failure rate of ith component
as discussed earlier. The present work, in other words, is an attempt to define PHR model in a more
general sense.

The next proposition gives a necessary and sufficient condition that weight function w(x), and hazard
rate h(x) must satisfy so that Fw (x) represents a (weighted) survival function. One can refer to Marshall
and Olkin [11] to look into the postulates for hazard rate (non-weighted).
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Proposition 2.3. A non-negative random variable X with failure rate h(x) gives rise to a weighted ran-
dom variable Xw having failure rate hw (x) such that hw (x) = w(x)h(x) for all x > 0, if and only if the
function w(·) satisfies the following conditions.

(i) w(x) ≥ 0, h(x) ≥ 0
(ii) For x > 0,

∫ x
0 w(u)h(u)du < ∞

(iii)
∫ ∞
0 w(u)h(u)du = ∞

(iv) If
∫ x
0 w(u)h(u)du = ∞ for some x then h(y) = ∞ for every y > x.

Now, we look into some uses of weighted failure rate arising in practical field. Let us consider a
series system formed by n components having failure rates hi (x) with respective weights wi (x), for
i = 1, 2, . . . , n and x > 0 such that

∑n
i=1 wi (x) = 1. The failure rate h(x) of the resultant n component

series system is h(x) = ∑n
i=1 hi (x)wi (x). This form of h(x) is similar to the failure rate of the mixture

of n distributions, with cumulative distributions, Fi (·) having failure rates, hi (·) for i = 1, 2, . . . , n. The
failure rate of mixture of n distributions, given by F (x) = ∑n

i=1 ciFi (x), satisfying
∑n

i=1 ci = 1 is

h(x) =

∑n
i1 cifi (x)

1 − ∑n
i=1 ciFi (x)

=

∑n
i=1 cihi (x)Fi (x)∑n

i=1 ciFi (x)
=

n∑
i=1

pi (x)hi (x)

where pi (x) = ciFi (x)∑n
i=1 ciFi (x)

which in turn satisfies
∑n

i=1 pi (x) = 1.

2.1. Invariance property of new weighted distributions

Unlike the log-exponential family (cf. Patil and Ord [14]) possessing the form-invariance property
among the weighted distributions defined by Rao [16] under size biased sampling of order c> 0 that is,
w(x) = xc, in the present work we find that IFR Weibull distribution bears the said property as discussed
in the following example.

Example 2.4. If a two-parameter Weibull distribution with failure rate h(x) = UVxV−1 belongs to
positive aging classes, namely IFR, then the resultant size biased distribution also fall in the same aging
class.

However, in some cases, a particular weight function can shift a distribution from positive aging
class to its dual counterpart or vice-versa. Even, monotonic nature of hazard rate may be considerably
affected for certain choice of weight function. The following counterexamples give some light on this
study.

Counterexample 2.5. Let us consider a two-parameter Weibull distribution having decreasing failure
rate failure rate h(x) as mentioned in Example 2.4. We note that if V+c > 1 then the baseline decreasing
failure rate Weibull distribution is shifted to IFR positive aging class under size biased sampling.

Counterexample 2.6. Additive Weibull distribution having failure rate h(x) = U\x\−1 + VWxW−1 with
U, V, \, W > 0 has form-invariance property under size biased sampling. However, the weight function
w(x) = xc drags the additive Weibull distribution from decreasing failure rate class to IFR class if
c + \ > 1 and c + W > 1.
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Counterexample 2.7. If X follows four-parameter Weibull distribution (cf. Kies [9]) with survival
function

F (x) = exp
(
−_

( x − a
b − x

)V)
, 0 ≤ a < x < b,_, V > 0

then w(x) =
( x−a

b−x
)

is a form-invariance weight function for the distribution provided V > 1. We know
that X has bathtub failure rate if 0 < V < 1, and IFR if V > 1 but the weighted random variable Xw is
always IFR independent of the value of V under the aforementioned weighted transformation.

3. Main results

Now, we prove that the equality of any two of w-AFR, w-GFR, and w-HFR characterize exponential
distribution. The following proposition gives some light on this. We continue with the same notations
as discussed in previous sections of the paper.

Proposition 3.1. A non-negative random variable X, follows exponential distribution if and only if for
x > 0, any one of the following hold

(i) Aw (x) = Gw (x)
(ii) Gw (x) = Hw (x)
(iii) Aw (x) = Hw (x).

Proof. If X follows exponential distribution then it is easy to prove that (i), (ii), and (iii) hold.
Conversely, if (i) holds then ∫ x

0 w(u)h(u)du∫ x
0 w(u)du

= exp
( ∫ x

0 w(u) ln h(u)du∫ x
0 w(u)du

)
,

gives( ∫ x

0
w(u)du

) {
ln

( ∫ x

0
h(u)w(u)du

)}
=

( ∫ x

0
w(u)du

) (
ln

∫ x

0
w(u)du

)
+

∫ x

0
w(u) ln h(u)du. (1)

Differentiating (1) with respect to x, we get ln(ez1(x)) = z1(x) where

z1(x) =
h(x)

∫ x
0 w(u)du∫ x

0 w(u) ln w(u)h(u)du
.

Thus, z1(x) = 1, for all x ≥ 0, gives d
dx h(x)

( ∫ x
0 w(u)du

)
= 0, and since

∫ x
0 w(u)du ≠ 0, we conclude

that h(x) is constant for all x ≥ 0. This proves that X has exponential distribution. Similarly, if (ii) holds
then

exp
( ∫ x

0 w(u) ln h(u)du∫ x
0 w(u)du

)
=

( ∫ x

0
w(u)du

) ( ∫ x

0

w(u)
h(u) du

)−1
,

or equivalently∫ x

0
w(u)h(u)du +

( ∫ x

0
w(u)du

)
ln

( ∫ x

0

w(u)
r(u) du

)
=

( ∫ x

0
w(u)du

)
ln

( ∫ x

0
w(u)du

)
. (2)

https://doi.org/10.1017/S0269964824000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964824000123


6 S. Bhattacharjee, S. M Sunoj and S. Anwar

After differentiating (2), we get ln(ez2(x)) = z2(x) where

z2(x) =
∫ x
0 w(u)du

h(x)
( ∫ x

0
w(u)
h(u) du

) .
Hence, z2(x) = 1 which in turn gives d

dx r(x)
( ∫ x

0
w(u)
h(u) du

)
= 0. Since

(
w(u)∫ x
0 h(u) du

)
≠ 0, it follows that

h(x) = constant. This proves that if (ii) holds then X has exponential distribution.
Note that if (iii) holds then it is equivalent to the fact that( ∫ x

0
w(u)h(u)du

) ( ∫ x

0

w(v)
h(v) dv

)
=

( ∫ x

0
w(u)du

)2
. (3)

Taking logarithm on both sides and then differentiating both sides with respect to x, we get

h(x)
∫ x
0 w(u)du∫ x

0 w(u)h(u)du
+

( 1
h(x)

) ( ∫ x
0 w(u)du∫ x
0

w(v)
h(v) dv

)
= 2. (4)

Since w-HFR = w-AFR, replacing w-HFR by w-AFR in the second term of (4), we get

h(x)
∫ x
0 w(u)du∫ x

0 w(u)h(u)du
+

( 1
h(x)

) ( ∫ x
0 w(u)h(u)du∫ x

0 w(u)du

)
= 2.

Hence, (
h(x)

∫ x

0
w(u)du −

∫ x

0
w(u)h(u)du

)2
= 0,

and this gives d
dx h(x) = 0 as

∫ x
0 w(u)du ≠ 0. This completes the proof. �

Note that Aw (x) = c for all x > 0 characterizes exponential distribution, and so is true for Gw (·) and
Hw (·). If we simultaneously peep into the lines in the proof of Proposition 3.1, we conclude that (i),
(ii), and (iii) get reduced to Aw (x) = Gw (x) = Hw (x) = c for all x > 0.

In the next proposition we obtain simple relationships between w-AFR, w-GFR, and w-HFR func-
tions and hazard rate, that characterize the underlying distributions through their hazard rates. The proof
is omitted.

Proposition 3.2. Let h(x) be differentiable for all x ≥ 0. Then for any non-negative weight function
w(x), and for suitable positive values of constants, a, b, c, k we have

(i) Aw (x) = ah(x) for all x if and only if h(x) = k
( ∫ x

0 w(u)du
) (1−a)/a

(ii) Gw (x) = bh(x) for all x if and only if h(x) = k
( ∫ x

0 w(u)du
) ln(e/b)−1

(iii) Hw (x) = ch(x) for all x if and only if h(x) =
(

1
kc

∫ x
0 w(u)du

)1−c
, where k is an arbitrary constant.

One can wonder whether for any particular class of well known probability distribution, weighted
means are proportional to their respective hazard rates. If we choose weight function as w(x) = xc,
then the corresponding failure rate is that of two-parameter Weibull distribution with shape parameter
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(c − ac + 1)/a and scale parameter ka/
(
(c − ac + 1) (c + 1) 1−a

a
)
, provided

(
1+c−ac

a

)
> 0 satisfying (i).

Intuitively, it follows that (ii) and (iii) are also satisfied for two-parameter Weibull distribution having a
different set of scale and shape parameters. We summarize this discussion by claiming that w(x) = xc

for suitable c, and x > 0 is a proper choice of weight function as it results in a legitimate probability
distribution. A little work out will show that if we choose w(x) = enx, then the resultant failure rate
function h(x) does not correspond to a well defined probability distribution, underlying the fact that
proportionality of weighted means and hazard rate do not hold good.

We end this subsection by stating some crucial observations in the upcoming remark.

Remark 3.3. An essence of introducing the weighted version of means of failure rate lies in the afore-
mentioned Proposition 3.2, where a suitable choice of weight function characterizes some well known
distributions. The readers may also note that, proportionality of each of Aw (·), Gw (·), and Hw (·) with
h(·) imply that h(x) is increasing (decreasing) in x if and only if a ≤ (≥)1, b ≤ (≥)1, and c ≤ (≥)1
respectively. It is clear that, under the aforementioned conditions, monotonicity of h(·) is independent
of the choice of weight function.

3.1. Bounds and limiting behavior of aging means

We state a result from Wijsman [19] in the form of a lemma.

Lemma 3.4. Let fi, gi are non-negative functions, such that the integrals
∫

figi are positive for i, j = 1, 2.
Then ∫

f1g1d`∫
f1g2d`

≥
∫

f2g1d`∫
f2g2d`

, (5)

provided f1/f2 and g1/g2 are monotonic in same direction. The inequality in (5) is reversed if f1/f2
and g1/g2 are monotonic in opposite direction. Equality holds if and only if either f1/f2 or g1/g2 is a
constant. Here ` is Lebesgue measure on a subset of the real line or counting measure on a subset of
the integers.

The following proposition gives bounds of the aging means on the basis of monotonicity of weight
function and hazard rate (as the case may be).

Proposition 3.5.

(i) Aw (x) ≥ (≤)A(x), x > 0, according as w(x) and h(x) are monotonic in same (opposite) direction.
(ii) If the hazard rate function h(x) ≥ 1 for all x> 0 then Gw (x) ≥ (≤)G(x), x > 0, according as w(x)

and h(x) are monotonic in same (opposite) direction.
(iii) Hw (x) ≥ (≤)H (x), x > 0, according as w(x) and h(x) are monotonic in same (opposite) direction.

Proof. We choose f1(x) = w(x), g1(x) = h(x), f2 (x) = g2(x) = 1, to prove (i). By choosing f1(x) =

w(x), g1(x) = ln h(x), f2(x) = g2(x) = 1, and assuming ln h(x) ≥ 0 (since h(x) ≥ 1 for all x > 0),
Lemma 3.4 gives

( ∫ x
0 w(u) ln h(u)du∫ x

0 w(u)du

)
≥ (≤)

(
1
x

∫ x
0 ln h(u)du

)
according as w(x) and h(x) are monotonic in

same (opposite) direction. This proves (ii). Similarly, taking f1(x) = w(x), g1(x) = 1, f2(x) = 1, g2(x) =
1/h(x), we prove (iii). �

The readers may arrive at the following remark by looking at the Proposition 3.5 and the fact that
Aw (x) ≥ Gw (x) ≥ Hw (x) for all x > 0.
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Remark 3.6. If w(x) and h(x) are monotonic in same direction then the lower and upper bounds of
the aging means of failure rate are H(x) and Aw (x) respectively. On the other hand, w(x) and h(x) are
monotonic in opposite direction then the lower and upper bounds of the aging means of failure rate are
Hw (x) and A(x) respectively. The lower and upper bounds of the aging means of failure rate discussed
in this article are min(H (x), Hw (x)) and max(A(x), Aw (x)) respectively.

In the following theorem, we obtain bounds for the ratio of the weighted hazard means by associating
weights in sequence.

Theorem 3.7. Let hk (x) = w(x)hk−1(x) = (w(x))kh(x), k ≥ 1, h0(x) = h(x), for x> 0. We define

Aw
hk
(x) =

( ∫ x
0 w(u)hk (u)du∫ x

0 w(u)du

)
, Gw

hk
(x) = exp

( ∫ x
0 w(u) ln hk (u)du∫ x

0 w(u)du

)
, and Hw

hk
(x) =

( ∫ x
0 w(u)du∫ x
0

w(u)
hk (u)

du

)
. For x > 0, the

following statements hold.

(i) If h(x) and w(x) are monotonic in opposite (same) direction then

Aw
hk
(x)

Aw
h (x)

≥ (≤)
∫ x
0 w(u)du∫ x

0 (w(u))n+1du
.

(ii) If w(x) > 1, then

Gw
hk
(x)

Gw
h (x)

≥ exp
( k
x

∫ x

0
ln w(u)du

)
.

(iii) If h(x) and w(x) are monotonic in same (opposite) direction then

Hw
hk
(x)

Hw
h (x)

≥ (≤)
∫ x
0 w(u)du∫ x

0
1

(w(u) )k−1 du
.

(iv) If w(x) and h(x) are monotonic in same (opposite) direction then Aw
hk
(x) ≥ (≤)A(x), and Hw

hk
(x) ≥

(≤)H (x), according as w(x) ≤ (≥)1.
(v) If h(x) ≥ 1, w(x) ≥ 1 then Gw

hk
(x) ≥ G(x), provided w(x) and h(x) are monotonic in same

direction.

Proof. The proofs of (i), (ii), and (iii) follow by applying Lemma 3.4 on the ratios, viz.,

Aw
hk
(x)

Aw
h (x)

=

∫ x
0 (w(u))k+1h(u)du∫ x

0 w(u)h(u)du
,
Gw

hk
(x)

Gw
h (x)

= exp
( k

∫ x
0 w(u) ln w(u)du∫ x

0 w(u)du

)
,

and

Hw
hk
(x)

Hw
h (x)

=

( ∫ x
0

w(u)
h(u) du∫ x

0
1

wk−1 (u)h(u) du

)
, x > 0.

The proof of (iv) follows from (i) and (iii) of Proposition 3.5. The proof of (v) follows from (ii) of
Proposition 3.5. If w(x) and h(x) are monotonic in same (opposite) direction then Aw

hk
(x) ≥ (≤)Aw

h (x),
and Hw

hk
(x) ≥ (≤)Hw

h (x), according as w(x) ≥ (≤)1. �
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The above theorem can be interpreted by saying that one can keep minimizing the means of failure
rate (AFR and HFR) of a component, having IFR by associating weights in sequence which are mono-
tonically decreasing with time. However, GFR increases rapidly with the increase in number of weight
functions and is independent of the nature of monotonicity of weight and hazard rate. Theorem 3.7 (ii)
reveals that if k → ∞ and w(x) > 1 then Gw

hk
(x) → ∞.

4. Non-parametric classes of distributions based on weighted means of failure rate

We define non-parametric classes of distributions on the basis of monotonicity of w-AFR, w-GFR, and
w-HFR.

Definition 4.1. A random variable X is said to belong to the class of

(i) Increasing (resp. Decreasing) weighted arithmetic mean failure rate Iw-AFR (resp. Dw-AFR))
distributions if Aw (x) is increasing (resp. decreasing) in x> 0.

(ii) Increasing (resp. Decreasing) weighted geometric mean failure rate Iw-GFR (resp. (Dw-GFR))
distributions if Gw (x) is increasing (resp. decreasing) in x> 0.

(iii) Increasing (resp. Decreasing) weighted harmonic mean failure rate Iw-HFR (resp. Dw-HFR))
distributions if Hw (x) is increasing (resp. decreasing) in x> 0.

4.1. Monotonicity of weighted means of failure rate

The next theorem emphasizes on the fact that the monotonic behavior of h(x) is possessed by
Aw (x), Gw (x), and Hw (x).

Theorem 4.2. If h(x) is increasing (decreasing) in x> 0 then

(i) Aw (x) is increasing (decreasing) in x > 0;
(ii) Gw (x) is increasing (decreasing) in x > 0;
(iii) Hw (x) is increasing (decreasing) in x> 0.

Proof. To prove (i), we note that
( ∫ x

0 w(u)du
) (

d
duAw (x)

)
= w(x) (h(x) −Aw (x)), and thus

(
d
dx Aw (x)

)
≥

(≤) 0 according as h(x) ≥ (≤)Aw (x) for all x > 0. If h(x) is increasing (decreasing) in x then h(x) ≥ (≤
) Aw (x) for x > 0. This proves (i). Similarly, to prove (ii), we first note that( d

dx
Gw (x)

)
=

Gw (x)( ∫ x
0 w(u)du

) w(x) ln
( h(x)
Gw (x)

)
,

and this implies that d
dx Gw (x) ≥ (≤) 0 according as h(x) ≥ (≤)Gw (x). One can note that if h(x) is

increasing (decreasing) in x then h(x) ≥ (≤) Gw (x) for all x > 0, thus proving (ii). To prove (iii), we
first note that ( d

dx
Hw (x)

) ( ∫ x

0

w(p)
h(p) dp

)
= w(x)

{
1 − Hw (x)

h(x)

}
,

and hence we find that
(

d
dx Hw (x)

)
≥ (≤) 0 according as h(x) ≥ (≤)Hw (x) for all x > 0. Also, if h(x) is

increasing (decreasing) in x then h(x) ≥ (≤)Hw (x) for all x > 0. This completes the proof. �

Below, we state two theorems highlighting the inclusion property of the non-parametric aging classes
given in Definition 4.1. The proof follows due to Theorem 4.2, line of the proof therein and the fact that
Aw (x) ≥ Gw (x) ≥ Hw (x) for all x > 0.
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Theorem 4.3. IFR ⊆ Iw-AFR ⊆ Iw-GFR ⊆ Iw-HFR.

Theorem 4.4. DFR ⊆ Dw-HFR ⊆ Dw-GFR ⊆ Dw-AFR.

The next example highlights the importance of choosing weight functions in generating new distri-
butions. We also take the help of this example in upcoming counterexample 5.4 for establishing that
w − IFRA class is not closed under formation of coherent systems.

Example 4.5. Let X follows two parameter Weibull distribution with scale and shape parameter U and
V respectively. If we take w(x) = enx for all x > 0, then the weighted random variable Xw has failure
rate hw (x) = UVenxxV−1. Here, taking n = −m with m> 0,∫ x

0
w(u)h(u)u = UV

∫ x

0
e−mttV−1dt

= UV(−n)−VW(V,−nx)
= UV(−n)−V

(
Γ(V) − Γ(V,−nx)

)
, (6)

where the incomplete Gamma function W(z, a) and its complement Γ(z,U) (also known as Prym’s
function) are

W(a, x) =
∫ x

0
ta−1e−tdt, Γ(a, x) =

∫ ∞

x
ta−1e−tdt, Real(a) > 0),

satisfying W(a, x) + Γ(a, x) = Γ(a). If n< 0 we have real values for F̄w (t), as

F̄w (x) = exp
{
− UV(−n)−V

(
Γ(V) − Γ(V,−nx)

)}
, x > 0, V > 0.

Also, considering m = −n, we get

d
dx

hw (x) = d
dx

(
UVenxxV−1

)
= UVenxxV−2(V − 1 − mx) ≤ 0

if (V − 1 − mx) ≤ 0, that is, d
dx hw (x) ≤ 0 if x ≥ V−1

m . If V < 1 then d
dx hw (x) ≤ 0 for all x > 0. Thus, Xw

is decreasing failure rate if V < 1. On the other hand if V > 1, then d
dx hw (x) ≥ 0 for x ∈ (0, V−1

m ) and
d
dx hw (x) ≤ 0 for x ≥ V−1

n . Thus Xw is decreasing failure rate if V < 1, whereas Xw has upside-down
bathtub shaped failure rate if V > 1. Using (6) and the fact that

∫ x
0 w(u)du = 1

n

(
enx − 1

)
we get

Aw (x) =
n(−n)−VUV

(
Γ[V] − Γ[V,−nx]

)(
enx − 1

) .

Here, for V < 1, hw (x) is decreasing in x, and so is Aw (x) as evident from Theorem 4.2. Similarly, for
V > 1, Aw (x) is upside-down bathtub. We note that,

d
dx

Aw (x) = n(−n)−VUV d
dx

( (
Γ[V] − Γ[V,−nx]

)
enx − 1

)
= n(−n)−VUV

{ (enx − 1)enx (−nx)V−1(−n) −
(
Γ[V] − Γ[V,−nx]

)
enxn

(enx − 1)2

}
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= n(−n)−VUV
{ (enx − 1)enx (−nx)V

(
(−n)
−(nx)

)
−

(
Γ[V] − Γ[V,−nx]

)
enxn

(enx − 1)2

}
=

n(−n)−VUVenx

x(enx − 1)2

{
(enx − 1) (−nx)V + nx

(
Γ[V,−nx] − Γ[V]

)}
=

n2x(−n)−VUVenx

x(enx − 1)2

{
Γ[V,−nx] − Γ[V] − (enx − 1) (−nx)V−1

}
=

n2x(−n)−VUVenx

x(enx − 1)2

{
− W [V,−nx] − P(x)

}
, (say),

where

P(x) = (enx − 1) (−nx)V−1 ≤ 0, x > 0.

The change point of monotonicity of Aw (x) is determined by the root of equation W [V,−nx] +P(x) = 0.
Similarly, we obtain

Gw (x) = UVtV−1(−nt)
V−1

ent−1 e
(V−1) (E1 (−nt)+W)

ent−1

Hw (x) = UV(ent − 1)ntV (−nt)−V
Γ[2 − V] − Γ[2 − V,−nt] ,

where W ∼ 0.577216 is Euler’s constant and En (z) is the exponential integral function.

5. Characterization results of w-AFR and w-GFR classes of distributions

We introduce the concept of weighted star-shaped (anti-star) function which is a generalization of star-
shaped (anti-star) function to give an equivalent condition of increasing weighted AFR (Iw-AFR) and
decreasing weighted AFR (Dw-AFR) classes of distributions.

Definition 5.1. A function g(x) defined on [0,∞) is said to be a weighted star-shaped function (weighted
anti-star shaped) with respect to a non-negative weight function w(x) if

(
− 1∫ x

0 w(u)du

)
g(x) is decreasing

(increasing) in x> 0. Equivalently, for 0 < U ≤ 1 and x > 0,

g(Ux) ≤ (≥)
( ∫ Ux

0 w(u)du∫ x
0 w(u)du

)
g(x).

The next theorem gives a necessary and sufficient condition of a increasing (decreasing) weighted
arithmetic failure rate or weighted failure rate average class of distributions, denoted by w-AFR. We
omit the proof for the sake of brevity.

Theorem 5.2. Let X has Iw-AFR (Dw-AFR). Then the following conditions are equivalent.

(i)
(
− 1∫ x

0 w(u)du

)
ln Fw (x) is increasing (decreasing) in x> 0.

(ii) − ln Fw (x) is weighted star-shaped (weighted anti-star shaped) with respect to w(·).
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(iii)
(
Fw (x)

) 1∫ x
0 w(u)du is decreasing (increasing) in x> 0.

(iv) For U ∈ [0, 1], and x > 0, Fw (Ux) ≥ (≤)
(
Fw (x)

) ∫ Ux
0 w(u)du∫ x
0 w(u)du

.

The following theorem gives equivalent conditions for w − GFR aging class.

Theorem 5.3. Let X has Iw-GFR (Dw-GFR). Then the following conditions are equivalent.

(i)
(

1∫ x
0 w(u)du

) ( ∫ x
0 w(u) ln h(u)du

)
is increasing (decreasing) in x> 0.

(ii)
( ∫ x

0 w(u) ln h(u)du
)

is weighted star-shaped (weighted anti-star shaped) with respect to w(·).

(iii) For U ∈ [0, 1], and x > 0,
∫ Ux
0 w(u) ln h(u)du ≤ (≥)

∫ Ux
0 w(u)du∫ x
0 w(u)du

( ∫ x
0 w(u) ln h(u)du

)
.

We note that, 0 ≤
∫ Ux
0 w(u)du∫ x
0 w(u)du

≤ 1 since w(x) ≥ 0 for all x ≥ 0 and 0 ≤ U ≤ 1.

5.1. Results on coherent system

In this section, we primarily focus on Iw-AFR class and its closure properties. We know that IFRA class
is closed under the formation of coherent system. Naturally, a question ponders, whether the same result
is true for Iw-AFR class.

Let us consider a coherent system with n components having weighted survival functions Fw
i (x) for

i = 1, 2, . . . , n. The survival function Fw (x) of the resultant coherent system satisfies

Fw (Ux) = h(Fw
1 (Ux), Fw

2 (Ux), . . . , Fw
n (Ux)), (7)

where h represents the survival function of the coherent system. Further, if we assume that each Xi
has increasing w-AFR, then we explore what would be the survival function of the resultant coherent

system. Since Fw
i (Ux) ≥

(
Fw

i (x)
) ∫ Ux

0 w(u)du∫ x
0 w(u)du for i = 1, 2, . . . , n, U ∈ [0, 1], x > 0, and h is increasing in

each argument, (7) reduces to

Fw (Ux) ≥ h
( (

Fw
1 (x)

) ∫ Ux
0 w(u)du∫ x
0 w(u)du ,

(
Fw

2 (x)
) ∫ Ux

0 w(u)du∫ x
0 w(u)du , . . . ,

(
Fw

n (x)
) ∫ Ux

0 w(u)du∫ x
0 w(u)du

)
.

The following counter example shows that Iw-AFR is not closed under the formation of coherent system.

Counterexample 5.4. Let us consider a series system with lifetime X formed by two components with
lifetimes Xw

1 and Xw
2 respectively. Let the failure rates be h1(x), and h2(x) with corresponding weights

w1(x) and w2(x) respectively. Let h1 (x) = UVxV−1, w1(x) = enx, and h2 (x) = abxb−1, w2(x) = (1− enx)
where U, a > 0; V, b > 1; n < 0. Since, V, b > 1; h1(x) and h2(x) are increasing in x. By Theorem
4.2, it follows that Aw

1 (x) and Aw
2 (x) are increasing in x as h1(x) and h2(x) are increasing in x. Then

the hazard rate of the series system is given by hX (x) = h1(x)w1(x) + h2(x)w2 (x) for all x> 0. From
Example 4.5, it follows that each of hw

1 (x) = h1(x)w1(x) and hw
2 (x) = h2(x)w2(x) are non-monotonic in

x> 0 (upside-down bathtub curve). Thus, Xw
1 and Xw

2 are Iw-AFR but not IFR. Here, X is not Iw-AFR
since h(x) is non-monotonic (as noted in Example 4.5) and non-monotonicity of h(x) is transmitted to
A(x) (by Theorem 4.2).
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6. Quantile version of AFR, GFR, and HFR

Recently, there is a greater interest among researchers in modeling and analysis of lifetime data using
quantile functions (QFs) as an efficient alternative to the traditional distribution function approach.
Accordingly, we examine here some properties of the quantile versions of AFR, GFR, and HFR, denoted
respectively by QA(·), QG(·), QH (·). The formulae of QA(·), QG(·), QH (·) can also be independently
derived from Definition 2.2 by replacing the failure rate h(·) by hazard QF hq (·) and w(·) by density
QF q(·) respectively, with support restricted to [0, 1].

We first begin with a few preliminaries on quantile based reliability concepts. For a random variable
X, QF is defined as

Q(u) = F−1(u) = inf
{
x : F (x) ≥ u

}
, 0 ≤ u ≤ 1 (8)

gives FQ(u) = u. Differentiating with respect to u, we get f (Q(u))q(u) = 1 or f (Q(u)) = 1
q(u) , where

f (Q(u)) and q(u) = d
duQ(u) are respectively known as the density QF and quantile density function of

X. From the definition of hazard rate, the corresponding hazard QF is given by

hq (u) = h(Q(u)) = f (Q(u))
F̄ (Q(u))

=
1

(1 − u)q(u) .

This implies q(u) = 1
(1−u)hq (u) . Integrating, we get Q(u) =

∫ u
0

1
(1−p)hq (p) dp. The quantile approach is

an alternative to the traditional distribution function method as it can also used to specify a probability
distribution. As the quantile approach possess some interesting properties not shared by its distribu-
tion function counterpart and in many situations, quantile measures provide simple expressions that
are easily amenable to many computational analysis. Abundant literature are now available on various
properties of QFs and different measures based on it and their applications, for details see Gilchrist [6],
Nair et al. [12, 13], Aswin et al. [1], and references therein.

QA(u) = QA(Q(u)) =
− ln(1 − F (Q(u)))

Q(u)

=
− ln(1 − u)

Q(u) = −
(
ln(1 − u)

) { ∫ u

0

1
(1 − p)hq (p)

dp
}−1

. (9)

QG(u) = QG(Q(u)) = exp
( 1
Q(u)

∫ u

0
ln

( 1
(1 − p)q(p)

)
dQ(p)

)
= exp

(
− 1

Q(u)

∫ u

0
q(p) ln

(
(1 − p)q(p)dp

))
,

or equivalently,

Q(u) ln QG(u) = −
∫ u

0
(ln(1 − p))q(p)dp −

∫ u

0
(ln q(p))q(p)dp

= −
∫ u

0
q(p) ln

{
(1 − p)q(p)

}
dp =

∫ u

0
q(p) ln hq (p)dp (10)

and

QH (u) = QH (Q(u)) =

( 1
Q(u)

∫ u

0

1
h(Q(p)) dQ(p)

)−1

= Q(u)
( ∫ u

0
(1 − p) (q(p))2dp

)−1
(11)
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= Q(u)
( ∫ u

0

q(p)
hq (p)

dp
)−1

. (12)

Differentiating (9) with respect to u, we obtain

QA′ (u)Q(u) + QA(u)q(u) = 1
1 − u

.

When quantile AFR is increasing (decreasing), we get

QA(u) ≤ (≥) hq (u).

From (11), we have

Q(u)
QH (u) =

∫ u

0
(1 − p) (q(p))2dp.

Differentiating with respect to u, we get

QH (u)q(u) − Q(u)QH′ (u) = (1 − u) (q(u))2 (QH (u))2 .

Now when the quantile HFR is increasing (decreasing), yield

QH (u) ≤ (≥)hq (u).

A similar argument as given in Theorem 4.2 depicts that monotonicity of hazard quantile function
hq (·) is transmitted to quantile version of AFR, GFR, and HFR, that is, QA(·), QG(·), and QH (·). In
continuation to the Proposition 3.2 of previous section, if we replace w(·) by q(·) and h(·) by hq (·), we
find that proportionality of weighted means of quantile hazard functions with quantile hazard function
characterizes some QF. To the best of our knowledge, Q(x) as obtained in Proposition 6.2 represents a
new generalized version of QF where Q(0) ≠ 0.

The next example gives the QF of AFR, GFR, and HFR of Pareto-I distribution.

Example 6.1. For Pareto I distribution, with quantile function Q(u) = U(1 − u)−1/U, we have

QA(u) = − (1 − u)1/U log(1 − u)
U

, QG(u) = e1−(1−u)1/U (1 − u)1/U, and QH (u) = − 2(1 − u)1/U

(1 − u)2/U − 1
,

for 0 < u < 1.

Proposition 6.2. Let hazard quantile function hq (u) be differentiable for all u ∈ [0, 1] . Then for the
non-negative weight function q(u), called as density quantile function and for a, b, c > 0 we have

(i) QA(u) = a hq (u) for all u ∈ [0, 1] if and only if Q(u) =
(

1
ak

)a{
ln( A

1−u )
}a
.

(ii) QG(u) = b hq (u) for all u if and only if Q(u) =
(

ln(e/b)
k

) 1
ln(e/b)

{
ln( A

1−u )
} 1

ln(e/b)
.

(iii) QH (u) = c hq (u) for all u if and only if Q(x) =

(
ln(e/b)

k

) 1
ln(e/b)

{
ln( A

1−u )
} 1

ln(e/b) where k is an
arbitrary constant.
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Proof. From Theorem 3.2 (i), it follows that QA(u) = a hq (u) is equivalent to

hq (u) = k
( ∫ u

0
q(p)dp

) (1−a)/a

and since hq (u) = 1
(1−u)q(u) , we prove (i). Proofs of (ii) and (iii) are similar. �

Transformation on a random variable is generally employed to find the best model for a given set of
observations. A simple alternative method to this is to keep the original data as it is and transform the
QF to find the best model, using the following property of QFs which is not shared by the distribution
function. If TX (x) is a continuous non-decreasing function then TX (QX (u)) is the QF of TX (X) or in
symbols

QT (X ) (u) = T (QX (u)) .

Theorem 6.3. Let T (·) be a continuous non-decreasing and invertible transformation. Then the
quantile versions of AFR, GFR, and HFR takes the form

(i) QAT (X ) (u) = − log(1−u)
T (QX (u) ) ,

(ii) QGT (X ) (u) = exp
(
− 1

T (QX (u) )
∫ u
0 T ′ (QX (p)) q(p) [log(1 − p)T ′ (QX (p)) q(p)] dp

)
, and

(iii) QHT (X ) (u) = T (QX (u))
( ∫ u

0 (1 − p) (T ′ (QX (p)) q(p))2 dp
)−1

.

Theorem 6.4. The following statements are equivalent: (i) X follows Exponential distribution with
shape parameter c, (ii) QA(u) = c, (iii) QG(u) = c, and (iv) QH (u) = c.

Remark 6.5. The quantile version is not always equivalent to its distribution function approach.

Theorem 6.6. QA(u) = (Q(u))C−1, where C> 0 holds if and only X follows Weibull distribution with
quantile function Q(u) = (− log(1 − u))

1
_ , 0 < u < 1, _ > 0.

For many models, the distribution function and quantile approaches yield similar properties as we
have seen in Theorem 4.2, while for certain other cases, it gives different results. For example, when
X and Y satisfy PHR model, we have hqY (u) = \hqX (u), or equivalently, we have F̄Y (u) =

(
F̄X (u)

) \
.

We look at the corresponding AFR, GFR, and HFR of Y. It is easy to note that AY (x) = \ AX (x),
GY (x) = \ GX (x), and HY (x) = \ HX (x). To obtain the quantile version of AFR, GFR, and HFR under
PHR, it is easy to obtain the QF of Y, as

QY (u) = inf
{
x : FY (x) ≥ u

}
= QX (1 − (1 − u)1/\ ),

which in turn obtain the quantile version of AFR for PHR as

QAY (u) = − ln(1 − u)
QY (u)

=
− ln(1 − u)

QX (1 − (1 − u)1/\ )
= \QAX (1 − (1 − u)1/\ ) ≠ \QAX (u),

since

QAX (1 − (1 − u)1/\ ) =
− ln

{{
1 − (1 − (1 − u)1/\

}}
QX (1 − (1 − u)1/\ )

= −1
\

ln(1 − u)
QX (1 − (1 − u)1/\ )

. (13)
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Figure 1. Comparative analysis through proposed (termed as new) weighted means, non-weighted
means, and failure rate of the data given in Example 7.1.

The quantile GFR of PHR will be

QGY (u) = exp

[
− 1

QX

(
1 − (1 − u) 1

\

) ∫ u

0

1
\

qX

(
1 − (1 − p) 1

\

)
(1 − p) 1

\
−1

ln
(
1
\

qX

(
1 − (1 − p) 1

\

)
(1 − p) 1

\

)
dp

]
,

or equivalently

QGY (u) = exp

[
− 1

QX (u)

∫ 1−(1−u)
1
\

0

1
\

qX (p) (1 − p)1−\ ln
(
(1 − p) 1

\
qX (p)

)
dp

]
≠ \ QGX (u).

Also, the quantile version of HFR becomes

QHY (u) =
(

1

QX

(
1 − (1 − u) 1

\

) ∫ u

0

1
\
(1 − p) 2

\
−1qX

(
1 − (1 − p) 1

\

)2
dp

)−1

≠ \ QHX (u).

This clearly illustrates that quantile version of the AFR, GFR, and HFR for the PHR do not satisfy the
properties which hold in the distribution function approach.
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Figure 2. Reliability analysis of the data given in Example 7.1 using proposed (termed as new) weighted
functions and existing weighted concept (cf. Rao [16]).

7. Applications to real-life data

In this section, we demonstrate an application of the proposed weighted concept in the following exam-
ple to examine a survival time data (cf. Bryson and Siddiqui [5]) and the intrinsic aging phenomenon
among patients suffering from chronic granulocytic leukemia.

Example 7.1. The ordered survival times (in days from diagnosis) of patients suffering from chronic
granulocytic leukemia from the very beginning of their diagnosis are collected from National Cancer
Institute (cf. Siddiqui and Gehen [18], Bryson and Siddiqui [5]). The values of survival times are given
as: 747, 58,74, 177, 232, 273, 285, 317, 429, 440, 445, 455, 468, 495, 497, 532, 571, 579, 581, 650,
702, 715, 779, 881, 900, 930, 968, 1,077, 1,109, 1,314, 1,334, 1,367, 1,534, 1,712, 1,784, 1,877, 1,886,
2,045, 2,056, 2,260, 2,429, 2,509.

At the given survival times points, we apply muhaz package available in RStudio 2024.04 Build 748.
Particularly, we choose Epanechnikov kernel and assigned 1,000 grid (time) points in muhaz package
to obtain estimated values of hazard rate at the grid points. Subsequently, the estimated value of other
reliability functions, viz., failure rate (FR), w-AFR, w-GFR, w-HFR, AFR, GFR, and HFR at estimated
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grid (time) points are obtained for further analyses by taking length biased weight function, that is,
w(x) = x as shown in Figure 1.

In Figure 2, we do a reliability analysis of the data using proposed (termed as new) weighted functions
and existing weighted concept (cf. Rao [16]).

It is revealed that the definition of weighted concept proposed in this paper corroborates with the
actual functions, namely failure rate, survival function, density function in a better way than the existing
weighted concepts proposed by Rao [16]. It allows us to conclude that the proposed weighted failure and
its means can be used as more flexible functions for the measurement of failure rate in the analysis of
lifetime data, especially in cases where sample observations do not have equal probability of selection.

8. Conclusion

At the long last, for readers we reiterate that mixture of n distributions is a special case of formation of
n independent component series system having weighted failure rates with the sum of weight functions
being unity. However, the latter system having arbitrary weights is also not a generalization of the former.
The idea of relating the said concepts deserves some credit because the existing literature on mixture of
distributions can be extended to the formation of coherent systems (in particular, series system) so far as
non-preservation properties of reliability operations are concerned. One can generate new distributions
using weighted version of arithmetic, geometric and harmonic means of failure rate. Since, the quantile
version of means of hazard rate is a special case of weighted means of failure rate, the properties studied
for weighted means is put forth for the prior.
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