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Abstract

Dynamic equilibriummodels based on present value computation not only imply that returns
are predictable but also generate particular short-term patterns of predictability in asset
returns. I take advantage of this to construct a set of tests of equilibrium generated predict-
ability (EGP). I apply the tests to document two puzzles: First, option-implied or realized
measures of volatility ought to predict returns but do not; and second, the variance risk
premium (VRP) predicts returns but only at long horizons. VRP fails the tests of EGP as the
term structure of predictable variation is inconsistent with an equilibrium interpretation.

I. Introduction

Few topics in finance are as heavily researched and hotly contested as the
predictability of asset returns. Cowles (1933), (1944) showed empirically that profes-
sional stock forecasters were no better at forecasting than a random forecast. Samu-
elson (1965) provided a technical proof of the random walk behavior of equilibrium
stock prices, adding to existing empirical evidence (e.g., Kendall (1953), Cootner
(1964)). Counter to the classic theory of random walk, Keim and Stambaugh (1986),
Fama and French (1988a), and Campbell and Shiller (1988a), (1988b) document
predictable variation in stock returns from price–dividend ratios. It is also well
understood that some predictable variation is consistent with dynamic equilibrium
under time-varying expected returns (e.g., Fama (1970), Merton (1973)).

More recent work on equilibrium modeling, including Bansal and Yaron
(2004), Campbell and Cochrane (1999), and Menzly, Santos, and Veronesi
(2004), generates predictable variation in returns from risk-based measures such
as volatility. In these models, prices are obtained as present values of future
dividend payments. Expected returns, or discount factors, work so that shocks to
risk have a contemporaneous negative impact on prices, creating a temporary price
impact that is subsequently reversed as the shock dissipates. Figure 1 illustrates this
in the form of an impulse response.
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In this paper, I develop an empirical framework for testing the dynamic
relationship between candidate risk variables and expected return variation,
referred to as equilibrium generated predictability (EGP). The idea, loosely, is to
exploit the dynamic impulse response shown in Figure 1 by imposing that shocks to
risk, as measured through their contemporaneous price impact, dissipate at the same
rate in the stock return data as in the risk variable data. I derive a simple algebraic
relationship between the contemporaneous return–risk shocks and autocorrelation
in the risk variable that imposes a strong theoretical restriction on coefficients in
linear regression return forecasts. While my baseline test assumes that the risk
variable follows a Gaussian AR(1) (as is common in the price ratio literature; see
Stambaugh (1999), Campbell and Yogo (2006)), I derive two important general-
izations: multivariate tests using multiple predictors and autoregressive moving
average (ARMA) process specifications for the predictor. In the AR(1) case,
I derive an analytic expression for the covariance matrix of prediction slopes at
different forecast horizons. This is used to construct a joint test of the hypothesis
that predictability at all horizons is consistent with equilibrium.

I apply the various tests of EGP to variables that have been shown to predict
(and not predict) stock returns. In particular, I study the variance risk premium
(VRP) of Bollerslev, Tauchen, and Zhou (2009). VRP predicts returnswith highR2s
at the 3- to 5-month horizons. I also study option-implied variance (IV) and realized
variance (RV) well as the Fear Index (FI) of Bollerslev, Todorov, and Xu (2015).
The following empirical conclusions emerge:

FIGURE 1

Equilibrium Stock Price Response of a Positive Expected Return Shock

Figure 1 shows the expected unconditional price appreciation versus price appreciation given a positive shock to expected
return.
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• Tests performed on VRP reject the null of EGP. The shocks to VRP are too
quicklymean-reverting to generate a hump in predictability at a 4-month horizon.
Intuitively, it is not consistent with dynamic equilibrium to observe a return
premium 4 months ahead generated by a shock to VRP that has dissipated by
that time.

• Measures of conditional variance (IV and RV) strongly reject the null. Condi-
tional variance measures ought to predict returns because shocks have a strong
contemporaneous negative correlation with returns. But price shocks attributable
to shocks in conditional variance measures appear to be permanent rather than
transitory despite the fact that variance shocks clearly mean-revert.

• I cannot reject the null of EGP for Bollerslev et al.’s FI. Estimated reduced-form
ordinary least-squares (OLS) predictability slopes are consistent with theory;
however, the amount of predictability generated by FI is far below what is
recorded in the original paper.

Bollerslev et al. (2009) and Drechsler and Yaron (2011) derive LRR models
with the aim of explaining predictabilityR2s that peak at the 4-month horizon. To do
so, they use persistence parameters that are significantly larger (0.8 in both papers)
than the first-order autocorrelation I estimate fromVRPdata.1 This, in part, explains
their favorable interpretation of the equilibrium story relative to my sharp statistical
rejection. The tests also derive power from the null being imposed across multiple
forecasting horizons simultaneously.

The tests suggested here bear similarities with tests of conditional CAPM-style
models (as in, e.g., Harvey (1989), (1991)). This literature typically imposes
equilibrium style restraints on linear forecasts of one1period1ahead expected
returns. Here, I impose restrictions on the whole term structure of forecasts. I also
do not require a specific equilibrium model. My approach is valid whether the
equilibrium is generated by a long-run risk (LRR) economy, as in Bollerslev et al.
(2009) and Drechsler and Yaron (2011), or a habit model, as in Bekaert, Engstrom,
and Ermolov (2020).

I expand my baseline test to cover multivariate (vector autoregressive model
(VAR)) state dynamics as well as ARMA dynamics. The VAR specifications still
reject the null of EGP for pairs of VRP, RV, and IV.

While I am primarily looking to includeARMAdynamics to see ifmy baseline
tests are robust, ARMA state dynamics imply that it is not optimal to forecast
returns using only the state variable. Rather, under an ARMA(p,q) the econome-
trician should use all the ARMA components to forecast returns. I derive a test
based on this principle and find that the null is still rejected consistently with what I
find for the AR(1) case.

The tests I propose rely on the identification assumption that shocks to
expected returns are uncorrelated with shocks to cash flows. This is assumed in
virtually all of the present value-based equilibrium models.2 I check that the main

1The VRP data used here, taken from Zhou (2018), have a monthly first-order autocorrelation of
0.28, with a standard error of 0.008.

2An incomplete list includes Bansal and Yaron (2004), Bansal, Kiku, and Yaron (2016), Bollerslev
et al. (2009), Huang, Schlag, Shaliastovich, and Thimme (2019), Drechsler and Yaron (2011), and
Eraker and Wu (2017).
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empirical results are robust to this assumption by controlling for future earnings
growth rates in the regression specifications. The test results are unaffected.

The tests are intended to work for predictors such as VRP that have been
shown to predict returns at relatively short horizons. The tests do not apply to long-
run prediction using price–dividend ratios, as in Fama and French (1988b), Stam-
baugh (1999), and many others. There are two reasons for this. First and most
importantly, the tests assume that the predictor risk variables are exogenous. This
precludes price–dividend ratios since the endogenous price enters the regressor.
Second, option-implied or variance-related risk variables, which are the focus of
this paper, are typically not persistent enough to imply that equilibrium expected
returns vary much beyond a 1-year horizon.

In order to derive a test, I first consider a simple examplewhere a single predictor
follows an AR(1) process. This example has often been used in the literature on stock
return predictability, including Stambaugh (1999), who shows that if returns are
correlated with shocks to the predictor, the predictive slope coefficients are biased.
Boudoukh, Richardson, and Whitelaw (2006) derive an analytic expression for the
covariance matrix of slope coefficients under the assumption that the predictor
follows an AR(1). They use the resulting estimator to construct a test of the joint
null hypothesis that the predictive coefficients are zero at all horizons. In this paper, I
also derive an analytic expression for the covariance matrix of the predictive slope
coefficients under the AR(1) assumption, but I generalize the assumptions in Bou-
douk et al. to include correlated errors between the shocks to returns and the predictive
variable. This allowsme to construct an analytically based test of the EGPhypothesis.

The EGP restrictions can be seen as a set of nonlinear restrictions that map
predictability implied by a structural model and an assumed VAR driving process
for a set of state variables. A related topic is considered in the macroeconomic
literature on forecasting, including Marcellino, Stock, and Watson (2006), which
compare direct forecasts from period-by-period OLS regression versus multiperiod
forecasts implied by AR models. A separate literature, starting with Jordà (2005),
studies forecasts made from VAR or vector ARMA (VARMA) models to that
of period-specific regressions, dubbed local projections. This paper is related to
studies that impose parametric constraints on reduced-form forecasts relative to
equilibrium-implied structural restrictions on VAR models for exogenous state
variables. One such example is Zviadadze (2021), who compares generalized
impulse response functions (IRFs) between reduced-form and equilibrium asset
pricing models. Her evidence supports multiple shocks in the variance process of
consumption consistent with the model in Drechsler and Yaron (2011).

The remainder of the paper is organized as follows: In Section II, I postulate a
simple equilibrium relation between dividends, prices, and state variables and use
this relationship to derive tests of EGP. Section III applies the test to sample data.
Section IVextends the baseline test to cover the multivariate case and ARMA(p,q)
dynamics for the state variable. Section V concludes.

II. A Test for EGP

In the following, I derive tests of whether -hperiod-ahead expected returns
Et rt + hð Þ computed from a predictive regression on xt is consistent with equilibrium.
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To accomplish this, I derive a simple relationship between the predictor variable and
the expected returns.

A. Prices and Dividends

In the following, I discuss the relationship between prices (Pt) and dividends
(Dt) in dynamic equilibriummodels. To maintain some analytical tractability, I will
assume an economy where the price of a stock equals the present value of its future
dividend payments, as

Pt ¼Et

Z ∞

t
DsMs=Mtds¼EQ

t

Z ∞

t
e�rssDsds(1)

whereMt is the pricing kernel and EQ denotes the expectation under an equivalent
Martingale measure, Q. I further assume that there exist a set of state variables
xt ∈D⊆ℝn. I will further assume that xt is stationary and that the processes xt andDt

satisfy sufficient regularity conditions such that equilibrium exists and that the
economy is arbitrage-free. We then have

Pt ¼P Dt,xtð Þ¼DtF xtð Þ:(2)

for some function F :D!ℝ + . The right-hand side of (2) states that the pricing
function P is homogenous of degree 1 with respect to dividends. That is,
P λDt,xtð Þ¼Ptλ, where λ is a scalar3. Taking logs gives

lnPt ¼ lnDt + f xtð Þ(3)

such that f xtð Þ is the log-price–dividend ratio. It is clear that the (log) price–
dividend ratio then will inherit the dynamic properties of xt. In fact, equation (3)
suggests that we can infer that a lot of short-term variation in prices will be almost
entirely driven by variation in the (log) price–dividend ratio as prices are known to
be much more volatile than dividends.

Indeed, in typical dynamic equilibriummodels, the log-price–dividend ratio is
approximately linear, as in the long-run-risk literature (Bansal and Yaron (2004),
Bansal et al. (2016)), and others) although linearity is shown to fail over certain
areas of the parameter space in Pohl, Schmedders, and Wilms (2018). Eraker and
Wu (2017) derive a model with an exact linear log-price–dividend ratio.

In my empirical tests, I avoid using price–dividend ratios for two reasons.
First, the tests are constructed by exploiting the contemporaneous correlation
between returns and candidate risk variables, xt, that are assumed to drive vari-
ation in expected returns. This requires xt to be exogenous, which precludes
the actual price–dividend ratio, which by construction depends on the price. Thus,
the contemporaneous regressions would imply a regression of returns on returns.
Second, the dividend discounting model is commonly used in endowment-based

3Homogeneity of degree 1 is a consequence of the law of one price: If Pt ¼Et

R ∞
t DsMs=Mtds is the

price of an asset with dividend process Ds, then an asset that pays D∗
s ¼ λDs for all s∈ t,∞ð Þ has value

Et

R ∞
t λDsMs=Mtds¼ λPt .
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economies. Endowment economies are radical simplifications of actual corporate
dividend policies. In actuality, corporations may or may not distribute dividends
and many corporations choose not to as shareholders may prefer to plow earnings
back into the corporations rather than disinvest through dividends. Dividend
irrelevance (Miller and Modigliani (1961)) extends to dynamic economies if
the growth in earnings equals the discount rate (expected returns) in a dividend
discounting model with constant growth rates (Brennan (1971)). If firms pay a
constant fraction of earnings as dividends, the price–earnings ratio is equivalent to
the price–dividend ratio. Indeed, practitioners usually consider price–earnings
ratios rather than price–dividend ratios as a heuristic in valuing a company.

To formulate a test of EGP, I assume that there is some exogenous state
variable xt that induces a mean-reverting component to prices. To derive the test
in its simplest form, I first assume that the state variable follows an AR(1),

xt ¼ ρxt�1 +wt:(4)

This seems restrictive but is consistent withmuch of the literature on long-term
predictability of returns from price ratios, as, for example, Stambaugh (1999). I
relax this assumption later to includemultiple state variables and state variables that
follow ARMA(p,q) processes.

In general, when xt is anN dimensional process, consistent with long-run risk,
habit formation, and other equilibrium models, I assume that the price–dividend
ratio is log-linear,

lnPt ¼ lnDt + α+ β0xt,(5)

where now xt and β0 are K × 1 and 1 ×K dimensional vectors. This specification
nests popular equilibrium models where multiple factors drive variation in
price–dividend ratios. For the remainder of this section, I will assume that xt
is a scalar.

Since dividends contain a unit root, this equation implies that log prices and
log dividends are cointegrated. The dynamics of dividends are not explicitly
modeled. Equation (5) suggests that prices contain a temporary component driven
by the risk variable xt. This variable generates predictability in returns by tempo-
rarily moving the stock price away from its steady state path. To see how shocks to
xt generate time-varying expected rates of return, assume that log dividend growth
rates are given by a random walk:

lnDt + 1� lnDt ¼ μ+ εt + 1:(6)

Appendix A discusses the case when expected dividend growth rates depend
on xt.

The dynamics of log capital gains follow

lnPt + 1� lnPt ¼ μ+ β0 xt + 1� xtð Þ+ εt + 1:(7)

This equation suggests that an estimate of β0 can be obtained through a
regression of log capital gains onto Δxt + 1 ¼ xt + 1� xt.
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The -hperiod-ahead capital gain is given by

lnPt + h� lnPt ¼ μh+ β0 xt + h� xtð Þ+
Xh
i¼1

εt + i(8)

The expected -hperiod capital gain can be found by taking expectations of (8).
In the case that x follows an AR(1) with autocorrelation ρ, it is

Et lnPt + h� lnPt½ � ¼ μh+ β0 ρh�1
� �

xt:(9)

Equation (9) suggests that if one were to run the regression

lnPt + h� lnPt ¼ αh + βhxt + u
h
t(10)

the intercept and slope would have to satisfy

αh ¼ μh,(11)

βh ¼ β0 ρh�1
� �

:(12)

Notice that these equations impose testable restrictions. In particular, the entire
term structure of predictable variation in returns is governed by the feedback
coefficient β0 and the autocorrelation, ρ, of the predictor variable.

B. A Joint Test

In this section, I derive a test for the joint hypothesis that the estimated OLS
predictive coefficients are consistent with equilibrium. That is, if b̂h is the OLS-
estimated slope coefficient in the regression (10), I derive a test of the restriction in
(12).

Hodrick (1992) observes regression coefficients from nonoverlapping data
can be mapped to coefficients from cumulative overlapping returns. If we run a
regression where the dependent variable is a 1-period return from t + h� t to t + h,

rt + h ¼ ah + bhxt + u
h
t + h,(13)

it follows that

βh ¼
Cov rt:t + h,xtð Þ

Var xtð Þ ¼
Cov

Ph
j¼1rt + j,xt

� �
Var xtð Þ ¼

Xh
i¼1

bi:(14)

Thus, a test of βh ¼ β∗h is equivalent to a test of bh ¼ b∗h for all h¼ 1, ::,N . As in
Hodrick (1992), I take advantage of this to reduce the residual serial correlation in
the nonoverlapping return regression.

I propose a test statistic of the usual form

Q¼ b̂�b∗
� �0

Ω�1 b̂�b∗
� �

(15)
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where b̂ and b∗ denote theN length vectors of estimated slopes, b̂h, and hypothesized
slopes, b∗ ¼ β0 ρh�ρh�1

� �
. This expression is obtained as we are regressing rt + h on

xt rather than rt:t + h. Ω is the N ×N covariance matrix of slope coefficients,
Cov bj,bh

� �
. The following result derives an asymptotic estimator for this covariance

matrix.

Theorem 1. Assume that the return-generating process is given by

rt ¼ α0 + β0Δxt + εt(16)

xt ¼ ρxt�1 +wt(17)

for known constants β0, ρ, σ
2
x ¼Var wð Þ,σx ¼Var εð Þ, and Corr w,εð Þ¼ 0. Define

b∗h ¼ β0 ρh�ρh�1
� �

(18)

then

1. The OLS estimator b̂h ¼dCov rt + h,xtð Þ=dVar xtð Þ is consistent for b∗h, and the OLS
estimator β̂h ¼dCov rt:t + h,xtð Þ=dVar xtð Þ is consistent for β0 ρh�1

� �
.

2.
ffiffiffiffi
T

p
b̂�b
� �

!d N 0,Ω β0,ρ,σx,σεð Þð Þ, where Ω¼Cov bh,blð Þ is

Ω β0,ρ,σx,σεð Þ≈ cβ20
X
t

X
s

�
β20 F t,s, t + h,s+ lð Þ�F t,s, t + h,s+ l�1ð Þ½

� F t,s, t + h�1,s+ lð Þ+F t,s, t + h�1,s+ l�1ð Þ�
� β0b

∗
l F t,s,s, t + hð Þ�F t,s,s, t�h�1ð Þ½ �

� β0b
∗
h F t,s,s, t + lð Þ�F t,s,s, t� l�1ð Þ½ �

+ b∗hb
∗
l F t, t,s,sð Þ+ Tρ l�hj jσ2x

σ2ε
1�ρ2

�

(19)

where

c¼E
1P
tx
2
t

� �2
 !

(20)

and

F Tt,T2,T3,T4ð Þ¼G t1, t2, t3, t4ð Þ(21)

where ti is the sorted Tj’s (i, j¼ 1, ::4) and

G Tt,T 2,T3,T 4ð Þ¼E x2
� �

ρT2�T1 3 E x2
� �

ρ2 T2�T1ð Þ + σ2T1:T2

h i
ρ2 T3�T2ð Þ + σ2T2:T3

� �
ρT4�T3(22)

where E x2ð Þ¼ σ2x= 1�ρ2ð Þ and T 1 ≤T 2 ≤ T3 ≤ T4.

The covariance matrix in (19) depends on the parameters β0,ρ,σx,σεf g and is
computable from estimated values for these parameters. Thus, the test statistic
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QN ¼ b̂�b∗ β̂0,ρ
� �� �0

Ω�1 b̂�b∗ β̂0,ρ
� �� �

(23)

is based on the feasible estimate of the true values b∗h β̂0, ρ̂
� �

¼ β̂0 ρ̂h� ρ̂h�1
� �

for
h¼ 1, ::,N .

I examine the performance of the test statistic QN , where N denotes the
maximum forecasting horizon in Table 1 and Figure 2. Each simulation was based
on ρ¼ 0:25, β0 ¼�0:762, σx¼ 19, σx ¼ 3:65, suggestive of monthly VRP esti-
mates. Ω was estimated using the expression in (19) using OLS estimates of
ρ,β0,σx, and σx. The results show that for T ¼ 348, the test is sized correctly since
empirical rejection proportions deviate only mildly from the theoretical p-values
under the theoretical χ-squared distributions.

TABLE 1

Size of QN

The table reports the rejection frequencies of the test of EGP for parameters ρ¼ 0:25,β0 ¼�0:762,σx ¼ 19,σx ¼3:65, and
T ¼348 month observations. The results are based on 10,000 Monte Carlo draws.

N

Size 6 12

0.05 0.051 0.054
0.01 0.010 0.012

FIGURE 2

Distribution of QN

Figure 2 shows the distribution of the test statistic QN for N ¼ 6 (Graph A) and N ¼ 12 (Graph B) versus corresponding
theoretical χ2 densities.
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C. t-Tests Based on Cumulative Returns

Most of the predictability literature is concerned with the estimation of βhs—
the slope coefficients obtained from regression predictions of cumulative returns
rt:t + h on xt. In order to conform with this standard, I derive the following:

Theorem 2. The covariance matrix of long-horizon regression predictability slopes
βh is related to the 1-period slopes bh by

Cov βh,βkð Þ¼
Xh
i¼1

Xk
j¼1

Cov bi,bj
� �

(24)

Theorem 2, whose proof is trivially a consequence of βh ¼
Ph

i¼1bi, is useful
not only in tests for EGP but also in tests of predictability. The result can be
applied to compute the covariance matrix of long-horizon coefficients β using any
available estimator of 1-period slopes, Cov bj,bj

� �
. Boudoukh et al. (2006) pro-

pose a covariance matrix estimator for the predictive slope coefficients based on
the assumptions that i) a scalar predictor follows a Gaussian AR(1); ii) the
innovations to the AR(1) and the return shocks are uncorrelated; and iii) the null
of no predictability holds. The estimator proposed here generalizes the last two
assumptions.

In a well-known paper, Ang and Bekeart (2007) study the predictability of
interest rates and dividend yields. Perhaps less well known, their paper (see Appen-
dix B) also derives a generalized version of Hodrick’s standard errors to include the
full covariance matrix of regression slopes for different horizon overlapping regres-
sions. Their estimator is based on the generalized method of moments (GMM) and,
as such, is not based on the assumption that the predictor follows an AR(1) or
uncorrelated innovations.

The estimator proposed here can also be generalized to relax the AR(1)
assumption. One natural way to proceed is to obtain an estimate of Cov bi,bj

� �
and then apply equation (24) to obtain the covariance matrix for the coefficients
in the overlapping return regressions, Cov βh,βkð Þ. Obtaining an estimate of
Cov bi,bj

� �
is potentially easier than Cov βh,βkð Þ because one can exploit the

independence of returns.

III. Empirical Analysis

A. Descriptive Data

Table 2 presents descriptive statistics for the predictors/risk candidate vari-
ables. The most noteworthy part of the descriptive evidence is the difference in
autocorrelation, both between variables and across lag lengths. First off, VRP
exhibits relatively low first-order autocorrelation at 0.28. The most persistent
series is IV, with a first-order autocorrelation of 0.81. Higher-order autocorre-
lations are large relative to the first order: For VRP, this is obvious, as the
autocorrelation at 9 months is 0.20, the same order of magnitude as for one
month.
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Let us consider what the long-range autocorrelations would be if the variables
followed an AR(1). The 12-month autocorrelation under an AR(1) equals the
1-month autocorrelation raised to the power of 12. For VRP, we should then see
0:2612 ¼ 0 at the 12-month horizon. For IV, the number is about 0.08, and for RV
and Tail Index (TI), we should see numbers less than 0.01. These are back-of-the-
envelope computations that suggest that AR(1) processes may not capture long
range dynamics of the time series.

B. The VRP

Since Bollerslev et al. (2009) (hereby BTZ), a substantial literature has
emerged on the VRP. BTZ show that the VRP predicts stock returns with 1.07%
and 6.82% R2s at 1- and 3-month forecasting horizon and with a decreasing term
structure after that. In this respect, the pattern of predictability differs from, for
example, P=Dratios, which showmonotonically increasing R2s. Others have found
even higher R2s. For example, Bekaert and Hoerova (2014) report an R2 of 13% for
the quarterly forecasting horizon.

Before proceeding, note that the operational definition of the VRP matters
for the empirical results to follow. I start by replicating the results in BTZ, and I,
therefore, define the VRP as the difference between IV, as measured by the squared
VIX, and 30-day backward-looking RV. I use publicly available data described in
Zhou (2018) consisting of 348 monthly observations from Jan. 1990 to Dec. 2018.
Following BTZ, the VRP is defined as

VRPt ¼ IV t�RV t

where IV t is the squared VIX and RV t computed from 5-minute log returns
collected over the last month prior to date t.

Table 3 confirms what is well documented in the literature: VRP predicts
returns with R2s peaking at 11% for the 4-month forecasting horizon. I use three
different methods for computing standard errors—Hodrick (1992) type A (see their

TABLE 2

Descriptive Statistics

Table 2 shows the mean, standard deviation, and autocorrelations for VRP, IV, RV, and TI.

VRP IV RV TI

N 348 348 348 277
Mean 15.80 35.68 19.88 6.48
Std 20.19 33.07 36.28 2.57

Lag Autocorrelations

1 0.28 0.81 0.64 0.61
2 0.26 0.61 0.40 0.48
3 0.16 0.52 0.31 0.43
4 0.04 0.47 0.26 0.37
5 0.18 0.41 0.25 0.25
6 0.12 0.33 0.18 0.21
7 0.15 0.30 0.15 0.20
8 0.17 0.30 0.13 0.18
9 0.20 0.28 0.15 0.17
10 0.15 0.29 0.11 0.12
11 0.17 0.28 0.10 0.09
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p. 362) using 12 lags, Newey and West (1987) using 12 lags, and the analytical
standard errors described in the previous section. Hodrick’s method generally pro-
vides the more conservative standard errors, rendering coefficients estimated for
horizons longer than 8 months insignificant. All three methods produce standard
errors that increase monotonically with horizon, which is to be expected given
equation (24). Note that the long-horizon predictability vanishes as the 1-period,
marginal coefficients bh turn negative for h¼ 6�94.

Table 4 presents the results from the EGP tests. First off, the estimated
parameters for the data-generating process (DGP) for VRP and returns yield
ρ¼ 0:28 and β0 ¼�0:03. The former suggests that VRP is quickly mean-reverting,
while the latter suggests that the equilibrium response to VRP shocks is negative,
leading to a positive shock to expected returns. The estimated 1-period coefficients,
bh, are positive up until and including the 5-month horizon. This leads to a
monotonic increase in the βh’s for h¼ 1 through 5. The theoretical coefficients
b∗h and β∗h are smaller in magnitude than their OLS counterparts, but most impor-
tantly, bh decays toward zero quickly. At 1month, b1�b∗1 ¼ 2:44with an associated
t-statistic of 2.3. At h¼ 3months, the gap increases to 3.81, and at h¼ 4months, the
gap is 3.00. These differences are statistically significant and large. In essence, the
low autocorrelation of VRP means that any shock to VRP will die out quickly
enough that it will not warrant a risk premium of any magnitude beyond a 1- or
2-month horizon. This is particularly evident at the h¼ 4 month horizon: Here,
predictability of cumulative returns is at its highest with 11%R2, and the gap
between βh and β∗h is at its highest, leading to a t-statistic of 4.33.

Table 4 also reports the multivariate tests of the null: bh ¼ b∗h,h¼ 1, ::,N for
N ¼ 6 and 12. Both reject the null. It is clear that the N ¼ 6 case presents a stronger
case against the null hypothesis than the N ¼ 12 case because the evidence of

TABLE 3

Predictability of VRP

Table 3 reports the results of predictability regressions with cumulative returns, r t :t +h ¼ αh + βhVRP t +ut ,h . The table reports
standard errors and t -statistics for the null of βh ¼ 0 using Hodrick (se-H and t-H), Newey–West (se-NW and t-NW), and
analytical (se-A and t-A) using the estimator in (19) and (24). Parameters and standard errors are scaled by 100.

h 1 2 3 4 5 6 7 8 9 10 11 12

R2 0.05 0.06 0.10 0.11 0.09 0.06 0.05 0.04 0.03 0.03 0.02 0.02
bh 4.69 2.84 3.99 3.06 0.17 �0.84 �0.86 �0.07 �0.96 0.01 �0.15 0.67
βh 4.69 7.44 11.33 14.30 14.38 13.47 12.58 12.46 11.39 11.34 11.01 11.60
se-H (1.88) (2.34) (3.30) (4.09) (4.50) (4.91) (5.29) (5.64) (6.04) (6.64) (7.02) (7.51)
se-NW (0.76) (1.15) (1.41) (1.99) (2.24) (2.80) (3.37) (3.70) (4.31) (4.81) (5.37) (5.53)
se-A (1.06) (1.68) (2.17) (2.58) (2.93) (3.25) (3.54) (3.80) (4.05) (4.29) (4.51) (4.72)
t–H 2.50 3.18 3.44 3.50 3.19 2.74 2.38 2.21 1.89 1.71 1.57 1.55
t–NW 6.14 6.49 8.01 7.19 6.42 4.81 3.74 3.36 2.64 2.36 2.05 2.10
t–A 4.43 4.42 5.21 5.54 4.90 4.14 3.56 3.27 2.81 2.65 2.44 2.46

4Notice that the OLS estimates of bh do not sum to βh exactly, as suggested in (14), which holds in
population. In order to impose that the sum would hold for small samples, we must run regression (13)
with observations t¼ 1, ::,T �N for any h≤N, whereN is themaximum forecast horizon. This trims the
sample length for h<H. Since the main focus here is on the bh coefficients, which can be estimated with
T �h observations, I choose to use longer samples rather than truncating all regression sample sizes to
T �N .

12 Journal of Financial and Quantitative Analysis

https://doi.org/10.1017/S0022109024000218  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109024000218


predictability weakens with longer horizons. In general, the “structural model”
would imply no additional power beyond the 5- to 6-month horizons as the b∗h is
essentially zero.

C. Implied and RV

The VIX index is computed from S&P 500 cash index options by the Chicago
Board Options Exchange (CBOE). In theory, the square of theVIX index represents
a 1-month forward-looking option-implied estimate of the risk-neutral variance of
the logarithmic return for the underlying S&P 500 index. There are strong theoret-
ical reasons to think that the VIX index contains information about expected
returns. In 1-factor models based on dynamic present value computation, including
Bansal and Yaron (2004), a single economy-wide volatility factor drives expected
excess returns. One-factor models also imply that the VRP is proportional to the
volatility factor. This again means that risk-neutral and objective conditional var-
iance are both scaled versions of the same underlying macro-factor and therefore
work equally well in predicting returns. Multifactor models of conditional variance
also imply thatQ expected variance predicts returns. For example, in BTZ’s model,
objective measure conditional variance (P variance) is a strong predictor of return.
In their model, the Q variance equals the P variance plus the VRP, which again
depends on a separate volatility-of-volatility factor. Risk-neutral variance is a linear
combination of these two factors.

Beyond the model-based theoretical justification, it is also clear that option
traders look forward to known future events that can cause volatility. For example,

TABLE 4

Test of EGP: VRP

Table 4 reports the results of tests of EGP using the VRP. The theoretical slope is b∗
h ¼ β0 ρh �ρh�1

� �
for 1-period returns and

βh ¼ β0 ρh �1
� �

for overlapping returns. The VRP is defined as the difference between 1-month IV and 1-month backward-
looking RV. t -statistics correspond to the null that EGP holds at horizon h using the covariance matrix in (19) and (24).

Parameter Estimates

h 1 2 3 4

ρ β0 σε σx

9 10 11 12

0.28 �0.03 4.04 19.37

5 6 7 8

One-Period Returns

bh 4.69 2.84 3.99 3.06 0.17 �0.84 �0.86 �0.07 �0.96 0.01 �0.15 0.67
b∗
h 2.25 0.64 0.18 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

bh �b∗
h 2.44 2.21 3.81 3.00 0.16 �0.84 �0.87 �0.07 �0.96 0.01 �0.15 0.67

t–stat 2.30 2.08 3.59 2.83 0.15 �0.79 �0.82 �0.07 �0.90 0.01 �0.14 0.63

Multiperiod Returns

βh 4.69 7.44 11.33 14.30 14.38 13.47 12.58 12.46 11.39 11.34 11.01 11.60
β∗h 2.25 2.89 3.07 3.12 3.13 3.14 3.14 3.14 3.14 3.14 3.14 3.14
βh �β∗h 2.44 4.55 8.26 11.18 11.25 10.33 9.44 9.32 8.25 8.20 7.87 8.46
t–stat 2.30 2.70 3.80 4.33 3.83 3.18 2.67 2.45 2.04 1.91 1.74 1.79

Multivariate Tests

N 6 12
QN 21.19 22.95
p–val 0.00 0.02
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Federal Reserve (Federal Open Market Committee (FOMC)) meetings are known
to move prices. Naturally, options whose maturity window contains an FOMC
meeting should be more expensive than those that do not. Empirical evidence is
mixed on the extent to which implied volatility predicts future volatility and what
contribution it contains relative to physical volatility. Canina and Figlewski (1993)
conclude that IV has no informational content over physical volatility, while
Christensen and Prabhala (1998) reach the opposite conclusion.

The results for IVare reported in Table 5. The first thing to note is that there is
no predictability asR2s for cumulative returns never top 1% at any horizon. IV does,
however, have a strong contemporaneous negative correlation with returns
(�0.66), reflected in β0 ¼�0:13. This suggests that IV should predict returns:
b∗hgoes from 2:57 to 1:35 for h¼ 1- to 4-month forecasting horizon. This of course
leads to a rejection of the null of EGP, as seen in all t-tests for h¼ 1, ::,4 and also in
the multivariate tests.

The fact that volatility, in this case as measured by implied volatility, does not
predict returns is a puzzle. As it is, prices respond negatively to positive volatility
shocks, but they do not subsequently revert back as volatility dissipates. This is not
only true for IV, but even more so for RV. Table 6 presents the results for RV. Here,
the results are even worse than for IV, as the bh coefficients are negative at horizons
h¼ 1, ::,4. Their magnitudes are about the same as the ones predicted by EGP,

TABLE 5

Test of EGP: IV

Table 5 reports the results of predictability regressions and tests of EGP using IV. The equilibrium restriction is b∗
h ¼

β0 ρh �ρh�1
� �

and βh ¼ β0 ρh �1
� �

. t -statistics correspond to the null that EGP holds at horizon h using the covariance
matrix in (19) and (24).

Parameter Estimates

ρ β0 σε σx

0.81 �0.13 3.08 19.51

h 1 2 3 4 5 6 7 8 9 10 11 12

Panel A. Predictability

R2 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.00
βh �0.13 0.47 0.46 0.78 1.78 2.88 3.26 3.19 3.35 3.21 3.10 3.14
se–A (0.55) (0.98) (1.33) (1.63) (1.88) (2.11) (2.31) (2.50) (2.67) (2.83) (2.98) (3.13)
t–A �0.24 0.48 0.35 0.48 0.94 1.37 1.41 1.28 1.25 1.13 1.04 1.01

Panel B. One-Period Returns

bh �0.13 0.63 �0.02 0.42 1.10 1.19 0.41 �0.02 0.20 �0.13 �0.10 0.15
b∗
h 2.56 2.07 1.67 1.35 1.09 0.88 0.71 0.57 0.46 0.38 0.30 0.24

bh �b∗
h �2.69 �1.44 �1.68 �0.93 0.01 0.31 �0.30 �0.60 �0.26 �0.50 �0.40 �0.10

se–A (0.55) (0.49) (0.47) (0.46) (0.45) (0.45) (0.46) (0.46) (0.46) (0.46) (0.46) (0.46)
t–stat �4.91 �2.91 �3.60 �2.04 0.02 0.69 �0.65 �1.30 �0.57 �1.09 �0.86 �0.21

Panel C. Multiperiod Returns

β∗h 2.56 4.62 6.29 7.64 8.73 9.61 10.32 10.90 11.36 11.74 12.04 12.29
βh �β∗h �2.69 �4.15 �5.83 �6.87 �6.96 �6.73 �7.07 �7.71 �8.02 �8.53 �8.94 �9.14
t–stat �4.91 �4.26 �4.39 �4.22 �3.70 �3.19 �3.06 �3.09 �3.00 �3.01 �3.00 �2.92

Multivariate Tests

N 6 12
QN 23.49 27.61
p–val 0.00 0.01
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except again that the sign is opposite of what they ought to be. The difference,
therefore, is large and statistically significant.

A similar conclusion holds for a longer sample. Specifically, I constructed
monthly RV data from daily S&P 500 returns from 1927 to 2020 and reran the
analysis. While I omit the details, the βh coefficients were marginally negative and
statistically insignificantly different from zero with R2s never exceeding 1%.
Overall, the Qn statistics reject the null with p-values of 0.02 and 0.04 for N ¼ 6
and N ¼ 12, respectively.

The failure of conditional volatility measures in predicting returns is of course
well known (Merton (1980), French, Schwert, and Stambaugh (1987), among
others), which is puzzling, as investors appear to get a smaller risk–reward during
volatile periods. In fact, if investors were to decrease their market exposure during
high volatility periods, they would have earned a larger risk premium in the last
almost 100-year-long sample from 1927 to 2020 (see Moreira and Muir (2017)).

D. TI

Bollerslev and Todorov (2011) argue that the VRP can be decomposed into
two components for continuous, diffusive shocks and jumps, respectively. They
argue that a left TI can be derived from options data alone by studying the rate of
decay of far out-of-the-money (OTM) put options as the maturities of the options

TABLE 6

Test of EGP: RV

Table 6 reports the results of predictability regressions and tests of EGP using RV (IV). The equilibrium restriction is b∗
h ¼

β0 ρh �ρh�1
� �

and βh ¼ β0 ρh �1
� �

. t -statistics correspond to the null that EGP holds at horizon h using the covariance matrix
in (19) and (24).

Parameter Estimates

ρ β0 σε σx

0.64 �0.04 3.93 27.83

h 1 2 3 4 5 6 7 8 9 10 11 12

Panel A. Predictability

R2 0.02 0.01 0.02 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
βh �1.56 �1.91 �3.12 �3.77 �2.97 �1.76 �1.18 �1.20 �0.73 �0.83 �0.81 �0.96

(0.49) (0.87) (1.20) (1.49) (1.75) (1.99) (2.21) (2.41) (2.60) (2.77) (2.94) (3.10)

t–Me �3.20 �2.20 �2.61 �2.54 �1.70 �0.89 �0.54 �0.50 �0.28 �0.30 �0.27 �0.31

Panel B. One-Period Returns

bh �1.56 �0.36 �1.25 �0.59 0.86 1.25 0.61 0.00 0.46 �0.11 �0.03 �0.09
b∗
h 1.43 0.92 0.59 0.38 0.25 0.16 0.10 0.07 0.04 0.03 0.02 0.01

bh �b∗
h �2.99 �1.28 �1.84 �0.97 0.62 1.09 0.51 �0.06 0.42 �0.14 �0.05 �0.10

se–A (0.49) (0.48) (0.48) (0.48) (0.48) (0.48) (0.48) (0.48) (0.48) (0.48) (0.48) (0.48)

t–stat �6.12 �2.67 �3.85 �2.04 1.29 2.28 1.06 �0.13 0.88 �0.28 �0.11 �0.20

Panel C. Multiperiod Returns

βh �1.56 �1.91 �3.12 �3.77 �2.97 �1.76 �1.18 �1.20 �0.73 �0.83 �0.81 �0.96
β∗h 1.43 2.34 2.93 3.31 3.56 3.72 3.82 3.88 3.93 3.95 3.97 3.98
βh �β∗h �2.99 �4.25 �6.05 �7.09 �6.53 �5.48 �5.00 �5.09 �4.66 �4.79 �4.78 �4.94
t–stat �6.12 �4.90 �5.06 �4.76 �3.73 �2.76 �2.27 �2.11 �1.79 �1.73 �1.62 �1.59

Multivariate Tests

N 6 12
QN 39.24 41.76
p–val 0.00 0.00
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shrink. Bollerslev et al. (BTX) (2015) refine this idea and compute left and right
jump premium measures. They label the difference a TI.

Table 7 presents the results for the TI. As seen, the index delivers a modest
amount of predictability with R2s ranging from 1 to 4% from the 1- to 12-month
forecasting horizon. This is much lower than what is reported in BTX where R2s
peak at almost 15% (see BTX, Figure 6, p. 129). The primary driver of the
difference appears to be the sampling period: BTX’s sample period ends in Aug.
2013, while this paper uses the extended sample through Dec. 2019.

While predictability from TI is significantly lower in recent periods, the good
news is that the small amounts that there are (in-sample) appear to be consistent with
equilibrium: Table 7 does not reject the EGP null even at the 10% level. None of the
t-tests based on the β coefficients reject the null and neither of the multivariate tests
does either.

E. Stambaugh Bias

Stambaugh (1999) shows that OLS-estimated slopes in the forecasting regres-
sion (10) are biased. The bias is a function of the correlation between the shocks to
the predictor and returns are correlated as well as the persistence in the predictor.
Specifically, Stambaugh shows that the bias in the estimated forecasting slopes
equals the bias in the AR1 parameter ρmultiplied by population regression slope in
a regression of uh on w,

TABLE 7

Test of EGP: TI

Table 7 reports the results of predictability regressions and tests of EGP using the TI. The tests of EGP assess whether
estimated slopes bh and βh are significantly different from b∗

h ¼ β0 ρh �ρh�1
� �

and β∗h ¼ β0 ρh �1
� �

. t-statistics andQ tests are
constructed from the covariance matrix in (19) and (24).

Parameter Estimates

ρ β0 σε σx

0.61 �0.44 4.23 2.02

h 1 2 3 4 5 6 7 8 9 10 11 12

Panel A. Predictability

R2 0.01 0.01 0.01 0.02 0.03 0.03 0.02 0.03 0.03 0.04 0.04 0.04
βh 20.32 22.00 30.71 51.82 71.51 77.76 76.37 89.44 99.07 114.98 123.27 135.27

(0.49) (0.87) (1.20) (1.49) (1.75) (1.99) (2.21) (2.41) (2.60) (2.77) (2.94) (3.10)
t–A 2.41 1.47 1.49 2.03 2.39 2.29 2.03 2.18 2.24 2.44 2.47 2.57

Panel B. One-Period Returns

bh 20.32 2.17 8.73 21.19 19.88 6.64 �0.80 13.20 9.81 15.29 7.79 11.33
b∗
h 17.16 10.40 6.30 3.82 2.31 1.40 0.85 0.52 0.31 0.19 0.11 0.07

bh �b∗
h 3.17 �8.23 2.43 17.37 17.57 5.24 �1.65 12.68 9.49 15.10 7.68 11.26

se–A (8.45) (8.36) (8.36) (8.37) (8.38) (8.38) (8.38) (8.38) (8.38) (8.38) (8.38) (8.38)
t–stat 0.37 �0.98 0.29 2.08 2.10 0.63 �0.20 1.51 1.13 1.80 0.92 1.34

Panel C. Multiperiod Returns

β∗h 17.16 27.56 33.86 37.67 39.99 41.39 42.24 42.76 43.07 43.26 43.37 43.44
βh �β∗h 3.17 �5.55 �3.15 14.15 31.52 36.37 34.13 46.68 56.00 71.72 79.89 91.83
t–stat 0.37 �0.37 �0.15 0.55 1.05 1.07 0.91 1.14 1.27 1.52 1.60 1.75

Multivariate Tests

N 6 12
QN 6.94 12.54
p–val 0.23 0.32
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E b̂1�b∗1

� �
¼ σw,u1

σ2w
E ρ̂�ρð Þ,(25)

where uh ¼ uht + h
	 


is the disturbances from the forecasting regression (13) w¼
wtf g is the innovations in theAR(1) for x in equation (4). Since σw,uh=σ2w can take on

a wide range of values, the Stambaugh bias can be large even if the bias in ρ̂ is
modest.

The primary question of interest here is the extent to which Stambaugh bias
impacts the tests of EGP. The Stambaugh bias is the difference between the average
realization of the estimated slope coefficient, E b1ð Þ, and the true value
b1 ¼ β0 ρ�1ð Þ. But since I do not observe the true values of β0 and ρ, the empirical
tests I conduct are based on the corresponding feasible estimate constructed from
the estimates β̂0 and ρ̂,

E b̂h� β̂0 ρ̂h1� ρ̂h�1
1

� �� �
(26)

which is the quantity used in empirical tests of EGP. An interesting result obtains if
we assume that β0 is known.

Theorem 3. If β0 is known the bias,

E b̂h�β0 ρ̂h� ρ̂h�1
� �� �

¼ β0E ρ̂h� ρ̂h�1� ρ̂h1� ρ̂h�1
1

� �� �
:(27)

where ρh ¼ Ĉorr xt + h,xtð Þ is the h’th-order sample autocorrelation of x.
The bias is 0 for h¼ 1.

Theorem 3 states that the bias in the estimated slope coefficient bh is exactly
canceled by the bias in the estimated AR1 coefficient ρ for h¼ 1. This implies that
if β0 were known we would have an unbiased test statistic for h¼ 1 even if the
Stambaugh bias in the estimated slope b̂1 is substantial. While the result assumes
that β0 is known, in practice β0 can be estimated with high precision because it uses
contemporaneous returns and innovations in x, which are both near independent. It
is also possible to construct an empirical test where the bias exactly cancels for
all terms. This can be done by setting the estimate of the true value equal to
β0 ρ̂h� ρ̂h�1ð Þ (see the proof of Theorem 3 in Appendix C), thus replacing powers
of the 1-period sample autocorrelation ρ̂ with the autocorrelation estimated for
eachh. This has the disadvantage of requiring N �1 additional autocorrelation
coefficients. In multivariate VAR with M variables, the number increases by
N �1ð Þ×M , leading to a curse of dimensionality. In practice, therefore, as the bias
is typically negligible, I use the test based on ρ̂h.

Since Theorem 3 shows that there is bias for h> 1, I investigate the size of the
bias numerically. Table 8 reports results from simulation experiments where I draw
data under the null ofEGP for various parameters. I report theStambaughbias, aswell
as the deviations between the average slopes and their theoretical counterparts using
OLS estimates of ρ and β0, labeled B1 and B2, respectively. As Theorem 1 suggests,
B1 is 0 for h¼ 1. B2 uses β̂, and as such, it relaxes the assumption that β0 is known.
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Entries 1–4 in Table 8 report the experimental results using parameter esti-
mates reported in Tables 4 through 7 and thus serve to investigate the impact of
Stambaugh bias on the empirical tests for EGP. The table shows that this impact is
zero. There is no measurable Stambaugh bias in the reported results. B2 is also zero
across all entries, suggesting that the reported empirical results in Tables 4 through 7
are not affected by Stambaugh bias. The last two entries in Table 8 use larger values
of ρ and β0 so as to generatemore predictability and potentially therefore larger bias.
As seen, increasing ρ to 0.9 and 0.97, respectively, does generate a nonzero
Stambaugh bias. Interestingly, the bias in B1 and B2 is still zero for small h and
marginally positive for larger h. The h¼ 1 case numerically confirms Theorem 3 as

the estimated bias Ê b̂h�β0 ρ̂h� ρ̂h�1
� �� �

is indistinguishable from zero.

Note here that the last two entries generate very high correlations between
returns and innovations in the state variable. It is hard to construct an example in
which the parameters represent reasonable DGPs and a nontrivial Stambaugh bias.
In the end, the numerical results presented here suggest that EGP tests not only
mitigate the bias in estimated slopes as suggested by Theorem 3 but also that the
Stambaugh bias is negligible for the predictive variables studied in this paper.

TABLE 8

Stambaugh Bias and EGP Bias

Table 8 reports experimental results where 340 time-series observations are simulated under the null that EGP holds. I report
the Stambaugh bias (SB):E b̂h �β0 ρh �ρh�1

� �� �
as well B1E b̂h �β0 ρ̂h � ρ̂h�1� �� �

and B2E b̂h � β̂0 ρ̂h � ρ̂h�1� �� �
:

B1 measures the estimated deviation between the theoretical and estimated slopes under the idealized condition that β0 is
known. B2 assumes β0 unknown and estimated by OLS.

ρ β0 σε σx

0.28 �0.03 4.04 19.37
SB 0.00 0.00 0.00 0.00 �0.00 �0.00 �0.00 0.00 0.00 �0.00 0.00 �0.00
B1 �0.00 0.00 0.00 �0.00 �0.00 �0.00 �0.00 0.00 0.00 �0.00 0.00 �0.00
B2 0.00 0.00 0.00 �0.00 �0.00 �0.00 �0.00 0.00 0.00 �0.00 0.00 �0.00

ρ β0 σε σx

0.81 �0.13 3.08 19.51
SB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 �0.00
B1 �0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
B2 �0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ρ β0 σε σx

0.64 �0.04 3.93 27.83
SB 0.00 0.00 0.00 0.00 0.00 0.00 �0.00 �0.00 0.00 0.00 0.00 �0.00
B1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 �0.00
B2 �0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 �0.00

ρ β0 σε σx

0.61 �0.44 4.23 2.02
SB 0.00 0.00 0.00 0.00 0.00 �0.00 �0.00 �0.00 �0.00 0.00 �0.00 �0.00
B1 �0.00 0.00 0.00 0.00 0.00 0.00 �0.00 �0.00 �0.00 0.00 �0.00 �0.00
B2 �0.00 0.00 0.00 0.00 0.00 0.00 �0.00 �0.00 �0.00 0.00 �0.00 �0.00

ρ β0 σε σx

0.9 �2 4 2
SB 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00
B1 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
B2 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

ρ β0 σε σx

0.97 �2 4 20
SB 0.05 0.05 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03
B1 �0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
B2 �0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
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F. Relaxing the Zero-Correlation Assumption

In the following, I consider the implications of correlated shocks in expected
returns and cash flows. To see what the impact of this correlation is, I consider an
example model where dividend shocks are correlated with shocks to a stochastic
volatility factor. Specifically, I assume an example economy where consumption
and consumption volatility are described by

ln
Ct + 1

Ct
¼ μ+ σtνt + 1(28)

σ2t + 1 ¼ σ + κ σ2t �σ2
� �

+ σtσwwt + 1(29)

where Corr νt + 1,wt + 1ð Þ¼ δ is the correlation between shocks to consumption
growth and its conditional variance, σ2t . One can solve this model easily with the
usual long-run-risk framework. The linearized solution to the equilibrium price of
an asset that pays aggregate consumption as its dividend is given by

lnPt ¼ lnCt +Ao +Aσσ
2
t + 1(30)

where the Aσ is given by

Aσ ¼
1�κk1� 1� γð Þk1σwδ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κk1�1 + 1� γð Þk1σwδð Þ2�2k21σ

2
w 1� γð Þ2= 1� 1

ψ

� �r
2k21σ

2
wθ

(31)

To analyze the impact of a shock to conditional variance, consider equation
(30). Before, I argued that we can identify the factor loading of capital gains or
returns onto the risk variable through a regression of capital gains or returns onto
changes in the risk variable, as in (10). The equivalent regression herewould then be

Δ lnPt + 1 ¼A+ β0Δσ
2
t + 1 + εt + 1(32)

where εt + 1 ¼ σtνt + 1 is the error terms in the regression. These are interpretable as
the demeaned shocks to consumption growth, and by assumption, they are corre-
lated with shocks to the regressor. For this reason, an OLS estimate of β0 in (32) is
inconsistent for Aσ. At the same time, it is easy to verify that expected log capital
gains are given by Et lnPt + i� lnPt + i�1ð Þ¼ μ+Aσ κi�κi�1ð Þ, analogously to the
Bansal–Yaron (BY) model example above. Thus, tests based on simple OLS
regressions, as in (7) or (32), fail.

To gauge the bias in the OLS-estimated β, note that it is given by

βOLS ¼
Cov Δ lnPt + 1,Δσ2t + 1

� �
Var Δσ2t + 1
� � ¼Aσ +

Cov σtνt + 1,Δσt + 1ð Þ
Var Δσ2t + 1
� �

¼Aσ +
δ

1�κð Þ2
1�κ2

+ 1

" #
σw

(33)
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where the second term is bias in the OLS estimate BOLS for Aσ. This bias can be very
substantial. Its sign depends on the correlation δ between dividend and volatility
shocks. If shocks to volatility are positively correlated with dividend news, the OLS
estimator is upwardly biased for Aσ and vice versa.

Figure 3 shows the impact of correlation between volatility and dividend
innovations on the population value of the regression in (32). The shaded turquoise
area represents the bias, which is significant. Even for small positive values of δ, it is
possible that volatility σt predicts returns even if volatility shocks have zero
correlation with asset prices. It is more economically plausible, however, that
shocks to dividends are negatively correlated with volatility shocks. In this case,
one would observe a sharply negative correlation between volatility changes and
asset returns. This is empirically relevant in the context of VIX and other measures
of volatility. In particular, one routinely finds that volatility and return shocks are
sharply negatively correlated, while at the same time, volatility very weakly pre-
dicts returns.

While Figure 3 indicates that the tests are invalid and biased in the case that
cash flow shocks are correlated with expected return shocks, they are biased only
because β̂0 will be biased. Importantly, the term structure of regression predictabil-
ity regression slopes maintains the same shape but is subjected to a parallel shift up
or down depending on the size of the bias. The predictability is itself unchanged, but
the tests are impacted by biased estimates of β̂0. To overcome this, consider the fact
that

FIGURE 3

Bias in OLS

Figure 3 illustrates bias in the OLS estimate β̂0 in the regression Δ lnPt + 1 ¼ ɑ + β0Δσ
2
t +1 + εt +1 when the error term εt + 1 is

correlated with the innovations in volatility, Corr νt + 1,wt + 1ð Þ¼ δ. The graph shows the theoretical factor loading, Aσ , and the
population value ofBOLS as a function of δ. The plot is generated using parameter values γ¼ 7:5,ψ¼ 2:5,κ¼ 0:97,k1 ¼ 0:999,
σw ¼ 0:0015,E σ2t

� �¼ 0:00782.
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β0 ¼ b1= 1�ρð Þ(34)

where, as before, b1is the 1-period-ahead predictability slope. We can now impose
the null

b∗h ¼ b1 ρh�ρh�1
� �

= 1�ρð Þ(35)

for h¼ 2, ::,N. The test takes on the formQ¼ b̂�b∗
� �0

Ω�1 b̂�b∗
� �

as before but
with N �1 elements corresponding to horizons h¼ 2, ::,N .

Table 9 reports the results of the modified tests. Relaxing the zero-correlation
assumption does not alter the conclusion of the tests for VRP, RV, and TI, but does
render the EGP test insignificant for IV. To see why this is the case for IV, and not
RV, note that the correlation between stock returns and shocks to IV is sharply more
negative than the return-RV correlation as can be seen from the estimates of β0,
which equals �0.13 and � 0.04, respectively. For IV, this implies strong equilib-
rium predictability. Since there is essentially no evidence of predictability from IV
in the data, a highly negative estimate of β0 drives the rejection of the EGP null in
Table 5. For the other variables, β0is smaller in magnitude, which leads to smaller
discrepancies between the tests reported previously and those in Table 9.

Empirical studies that measure the correlation between cash flow and discount
rate shocks mostly find the correlation to be statistically insignificant. Vuolteenaho
(2002) finds it to be positive but statistically insignificant in when using multiple
lags of state variables in a VAR. Campbell and Vuolteenaho (2004) estimate the
correlation to be small and statistically insignificant. Botshekan, Kraeussl, and
Lucas (2012) estimate the correlation to be approximately �0.035, while recent
work by Lockstoer and Tetlock (2020) estimates it to be �0.15 and statistically
insignificant. Binsbergen and Koijen (2010) use a latent factor approach to estimate
expected returns and expected dividend growth from price and dividend informa-
tion. They find that shocks to the unobserved (filtered) expected returns factor are
positively but statistically insignificantly correlated with dividend growth rate
shocks.

5Table 2 reports the covariance matrix, implying the correlation to be

�0:0001=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:007∗0:0013

p ¼�0:03.

TABLE 9

Test of EGP Without the Zero-Correlation Assumption

Table 9 reports the results of tests of EGP without using estimates of β0. The theoretical slope coefficients are b∗
h ¼

b1 ρh �ρh�1
� �

= 1�ρð Þ for 1-period returns using h¼2, ::,N . The table reports multivariate test statistics, QN , and associated
χ2 N�2ð Þ p-values for N ¼ 6 and N ¼12 month maximum forecasting horizons.

VRP IV RV TI

N ¼6 N ¼ 12 N ¼ 6 N ¼ 12 N ¼ 6 N ¼ 12 N ¼ 6 N ¼12

Q∗
N 20.90 30.37 7.04 11.00 19.00 21.65 7.64 13.11

p–val 0.00 0.00 0.13 0.36 0.00 0.02 0.11 0.22
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G. Controlling for Cash Flow News

To further analyze the extent to which cash flow and discount rate shock
correlation is an issue with the results in the previous section, I rerun the regression
(7) to estimate β0:

rt ¼ α+ β0Δxt +
XL
l¼1

Blet + l + εt(36)

where et + l ¼ ln Earningst + l=Earningst + l�1ð Þ is the month-over-month future earn-
ings growth. That is, in order to control for shocks to expected earnings, I include
future earnings growth rates. The idea is to decompose returns into shocks due to
cash flow shocks and discount rate shocks, as in Campbell andVuolteenaho (2004).
Since we do not observe expectations of future earnings, I include the actual
earnings. The idea is that actual earnings can be decomposed into an expected
and unexpected part, Earningst + l ¼Et Earningst + lð Þ+wt + l, where the shock wt + l

is uncorrelated with the expected return shock, Δxt.
Table 10 reports the empirical results of the regressions where I control for

future earnings growth. Firstly, I compute R2s from regressions of changes in the
candidate risk variables,Δxt, on future earnings. TheR2s range from 0.8% to 20.6%.
When these R2s are low, there is likely no change in β0 estimates. Estimates of β0
are indeed similar for all the variables. For RV and VRP, the point estimates are
unchanged; for IV, it differs by 0.01; and for TI, we get �0.5, versus �0.44 in
Table 7. Table 10 also reports the multivariate test statistics. With the exception of
TI, the tests all reject the null of EGP. In the case of TI, the test statistics are
marginally smaller. In the case of RV, IV, and VRP, the test statistics are larger
after controlling for future earnings.

IV. Multivariate Extensions

In this section, I study multivariate extensions of the tests considered previ-
ously. This allows for two important generalizations. First, it is common for asset
pricing models to feature more than one priced state variable and therefore more

TABLE 10

Tests of EGP Controlling for Future Earnings

Table 10 reports the results of predictability regressions and tests of EGP controlling for current and future Standard & Poor’s
500 Index (SPX) earnings growth. Estimates of β0 are obtained from the regression:

r t ¼ α + β0Δxt +
X9
l¼1

Blet + l + εt

where et + l ¼ ln EARNINGSt + l=EARNINGSt + l�1ð Þ is future S&P 500 earnings growth rates. The R2�adj are adjusted R2s in
the regression of Δxt on future earnings growth rates.

VRP IV RV TI

R2 �adj 11.6 6.9 20.6 0.8
β0 �0.03 �0.14 �0.04 �0.50
Q6 23.4*** 35.3*** 68.3*** 10.61
Q12 25.5*** 43.0*** 72.3*** 18.26
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than one variable that predicts returns in equilibrium. Second, generalizing the
AR(1) assumption will allow us to better model the dynamics of some of the
variables in question. For example, it is well documented that volatility exhibits
long memory-like features (see, e.g., Bollerslev and Mikkelsen (1996), Bandi and
Perron (2006)). We consider ARMA(p,q) specifications as a natural extension of
the AR(1) process. Fortunately, the ARMA processes nest within the VAR frame-
work considered next.

A. VARs

The results from the previous sections generalize straightforwardly to a mul-
tivariate setting. Consider a K dimensional state variable X t that follows a VAR(1),

X t ¼AX t�1 +Wt(37)

where A is aK ×K dimensional VAR(1) matrix and Cov Wtð Þ≕Σ is an unrestricted
error covariance matrix.

The equilibrium relation between returns and states is

Δ lnPt ¼ a + β00ΔX t + εt(38)

where β0 is now an n-length vector.
The predictive regressions are now

rt + h ¼ ah + b
0
hX t + u

h
t + h(39)

for -hperiods-ahead 1-period returns and

rt:t + h ¼ αh + β
0
hX t +U

h
t + h(40)

where bh and βh are now n-dimensional vectors.
The structural restrictions are

bh ¼ Ah�Ah�1
� �0

β0(41)

for the 1-period returns, and

βh ¼ Ah� IK
� �0

β0(42)

for cumulative returns. IK is a K ×K identity matrix, and Ah is the matrix A multi-
plied h times with itself.

In order to construct a test, let b and β denote the KN length vectors collecting
the estimated predictability coefficients arranged by variable and horizon. Let b̂
denote the OLS-estimated coefficients, while b∗ denote the theoretical coefficients.
I construct a quadratic test as before:

Q¼ b̂�b∗
� �0

Ω�1 b̂�b∗
� �

:(43)

BecauseΩ is too cumbersome to compute in closed form but easy to compute
by simulation, I obtain a simulation-based estimate. This is done by first estimating
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the parameter matrices A and σ2x ¼Cov Wtð Þ, β0, and σε. I then simulate 100,000
draws from the DGP to compute Ω¼Cov b�b∗ð Þ.

B. Multivariate Results

Table 11 reports the results of bivariate VAR computations. EGP is mostly
rejected, especially when the maximum number of months used is 6. When using a
max of 12 months, the IV + RVand VRP + TI tests fail to reject the null. The tests
have roughly twice the degrees of freedom of the univariate tests (11 and 23, respec-
tively) as they have double the number of restrictions. As a result, the tests have
lower power in the 12-month case.

C. ARMA(p,q)

A potential criticism of the baseline tests considered so far is that I have
assumed a simple AR(1) process for the single state variable xt. There are three
ways to imagine generalizing the AR(1) assumption. First, we could reasonably
expect that an AR(p) or ARMA(p,q) dynamics for the state could provide a better
approximation to the underlying DGP for xt and therefore better forecasts x itself
and, implicitly, therefore, returns. Note that both AR(p) and ARMA(p,q) are
examples for processes that are non-Markovian with respect to the single state xt.

As before, I assume that the log-price/dividend ratio is a function of a single
state variable, x,

lnPt ¼ lnDt + β0xt(44)

however with x now assumed to follow an ARMA(p,q):

xt ¼ ρ1xt�1 + ρ2xt�2 +…+ ρpxt�p +wt + θ1wt�1 +…+ θqwt�q(45)

wherewt is a time t shock. In order to represent this process more compactly, define
X t ¼ xt,xt�1, ::,xt�p,wt,wt�1, ::,wt�q

� �
to be a pq dimensional state variable. While

the explicit expressions are not important per se, we can represent the ARMA(p,q)

TABLE 11

Multivariate Tests

Table 11 reports the results of predictability regressions and tests of EGP using bivariate VAR(1) dynamics for pairs of state
variables. β0 coefficients are computed controlling for current and future SPX earnings growth.

r t ¼ α +ΔX t β
0
0 +
X9
l¼1

Blet + l + εt

where et + l ¼ ln EARNINGSt + l=EARNINGSt + l�1ð Þ is future S&P 500 earnings growth rates. The table reportsQ-tests based on
6-month (Q6) and 12-month (Q12) maximum forecasting horizons. The bottomportion of the table adds interest rates (3-month
TBILL rates) as a predictive variable.

VRP + IV VRP + RV IV + RV VRP + TI

Q6 45.9*** 42.7*** 25.19*** 25.2**
Q12 51.5*** 47.2*** 30.2 30.86

VRP + IV + rf VRP + RV + rf IV + rf RV + rf

Q6 47.9*** 45.5*** 24.1*** 43.9***
Q12 55.0*** 51.4*** 29.1 47.1***
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as in equation (B-1) by populating the elements of A and ΣX ¼Cov Wtð Þ is dis-
cussed in Appendix B.

It now follows that the conditionally expected log capital gains are given by

Et lnPt + h� lnPh�1ð Þ¼ β0ι
0 Ah�Ah�1
� �

X t(46)

where ι¼ 1,0,0, ::,0ð Þ.
There are three noteworthy facts about equation (46):

1. We can interpret the equation as representing a scalar β0 multiplied by the
difference in conditional expected future realization of xt, which is also a scalar,
ι0 Ah�Ah�1
� �

X t ≕ xht . For this reason,we can forecast returns by first estimatingA,
or equivalently the AR and MA parameters in the ARMA model, and then
essentially regress returns onto xht . This regression can be run for each h, say,

rt + h ¼ a+Bhx
h
t + ut,h:(47)

The structural restriction is now Bh ¼ β0 for all h¼ 1, ::,H .
2. We can run the multivariate regression:

rt + h ¼ a+ b0hX t + ut,h:(48)

The structural restriction is now

bh ¼ Ah�Ah�1
� �0 β0

0

⋮
0

26664
37775:(49)

This is similar to the VAR(1) case except that the “post-multiplication vector”
ιβ0 ¼ β0,0, ::,0ð Þhas only one estimable parameter, β0, instead of K. As in the
AR(1) case, β0is estimable from a simple regression of log capital gains onto
changes in the state variable. This approach suffers from the curse of dimen-
sionality as it calls for estimating H × p × q number of predictive slope coef-
ficients. Thus, for large values of p and q, the associated test statistic will lack
power.

3. Under no scenario is the regression of future returns onto the time t value of the
scalar xt,

rt + h ¼ a+ bhxt + ut,h,(50)

justified. This is so because xt is not a sufficient statistic in forecasting xt + h and
therefore does not optimally forecast returns either. The implication is that return
predictability regressions constructed from a single state xt that is reasonably
more persistent than an AR(1) are essentially misspecified. This offers hope for
recovering EGP from state variables that are known to be persistent beyond what
can be captured by an AR(1). Put differently, we are led to reexamine EGP for
state variables that have autocorrelation functions that decay at a rate slower than
geometric. This is particularly true of volatility measures, as indicated in Table 2.
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D. Empirical Results for ARMA Processes

In the following, I will investigate the fit of various ARMA model represen-
tations of the respective variables. In doing so, I will first present the R2s for all
the four variables in question for various combinations of max lags p and q. First,
Figures 4–7 present R2 from predictability regressions onto the components of
ARMA decompositions. The ARMA parameters are estimated in-sample. For IV
and TI including higher-order terms lead to modest, negligible improvements in
(adjusted) R2s. For RV, the 1-month R2 is a bit above 5%. For VRP, the increase is
relatively sizable, with a maximum R2 of 16.6% at the 3-month cumulative return
forecasting horizon for p¼ 3,q¼ 4. The result should be interpreted with caution as
the number of regressors is large (7) and the sample size is relatively short (344) and
is done in-sample.

As shown in Figures 4 to 7, predictability vanishes beyond the 3- to 4-month
horizon. For this reason, I focus the joint tests of EGP under the ARMA(p,q) data-
generating assumption to lags up to 6 months. Tables 12 and 13 report the EGP test
results for combinations of p and q up to 4 lags for 3 and 6 months, respectively. At
the 3-month horizon, with the exception of TI, EGP is mostly rejected. For VRP,
there is some evidence suggesting that EGP cannot be rejected when p and q are
large. For example, p¼ 4 and q¼ 3 or q¼ 4 fail to produce a large enough test
statistic to reject the null at the 3-month horizon, but p¼ 3,q¼ 3 reject at the
6-month horizon. The evidence against EGP in IV and RV is pretty strong: At the
3-month horizon, EGP is rejected for RV for all p and q at the 1% level. There is no
evidence against the null for TA at the 3-month horizon, and only three

FIGURE 4

Predictability R2s

Figure 4 shows VRP R2s for predictability regressions up to 6 months using ARMA components.
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FIGURE 5

Predictability R2s for ARMA Components for IV

Figure 5 shows marginal R2s in predictability regressions using IV as predictor for up to 6 months for various ARMA(p,q)
specifications. Graph A shows marginal returns; Graph B shows cumulative returns.
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FIGURE 6

Predictability R2 for ARMA components for RV

Figure 6 shows marginal R2s in predictability regressions using RV as predictor for up to 6 months for various ARMA(p,q)
specifications. Graph A shows marginal returns; Graph B shows cumulative returns.
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combinations of large p and q pairs reject the null at the 6-month horizon. Overall,
the evidence against EGP under the ARMA(p,q) assumption is pretty consistent
with what was reported for the univariate, AR(1) case. EGP is pretty much rejected
for most combinations of AR and MA lags for VRP, IV, and RV, but not for TI.

In order to dig a bit deeper into the question of ARMA processes as data-
generating processes for the risk variables in question, I present two additional
pieces of analysis. First, Table 14 presents parameter estimates for ARMA param-
eters estimated fromVRP data. I estimate all model combinations with AR andMA
lags p¼ 1, :,4, q¼ 0, ::,4 for a total of 20 different combinations. What is apparent
from the results is that parameters tend to vary wildly from one estimation to
another. For example, the AR1 coefficient ranges �0.83 (p¼ 3,q¼ 3) to 1.37
(p¼ 2,q¼ 2). The wild behavior of the coefficient estimates across model specifi-
cations raises obvious questions of model overfitting and model misspecification.
More importantly, it is pertinent to examine what these models imply for the
behavior of expected returns.

To gauge which ARMA specifications may or may not be overfitting the
data, consider what is reasonable behavior for expected returns. Remember that in
the case of AR(1), expected returns decay monotonically in response to a shock as
shown in Figure 1. This monotonicity is reasonable. By contrast, it would seem
unreasonable that expected returns would oscillate from negative to positive in
response to a shock. Yet, this is the implication of some of the higher-order ARMA
(p,q) processes. Figure 8 plots IRFs for VRP. As seen, there are four IRFs where

FIGURE 7

Predictability R2s for ARMA components for TI

Figure 7 shows marginal R2s in predictability regressions using TI as predictor for up to 6 months for various ARMA(p,q)
specifications. Graph A shows marginal returns; Graph B shows cumulative returns.

654321
Horizon

–0.05

0

0.05

0.1

0.15

0.2
Graph A. R2-Adj for Marginal Returns

654321
Horizon

–0.05

0

0.05

0.1

0.15

0.2
Graph B. R2-Adj for Cumulative Returns

p = 1 q = 0
p = 1 q = 2
p = 1 q = 4
p = 3 q = 0
p = 3 q = 2
p = 3 q = 4

p = 1 q = 0
p = 1 q = 2
p = 1 q = 4
p = 3 q = 0
p = 3 q = 2
p = 3 q = 4

28 Journal of Financial and Quantitative Analysis

https://doi.org/10.1017/S0022109024000218  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109024000218


the shocks dissipate monotonically. These are the ARMA(p,q) with p and q less
than or equal to 2. To reduce clutter, the plot does not show all combinations of
p and q larger than 2, but the IRFs all look as in the p¼ 4 case: They oscillate.
Accordingly, I conclude that the only ARMA(p,q) representations that generate
economically plausible implications for expected returns are those that restrict
p≤ 2 and q≤ 2.

I also examined the shape of the IRFs for IV, RV, and TI, and Figure 9 shows
selected IRFs for RV. The results are similar across these variables and show
generally monotonically decreasing IRFs with jaggedness for higher values of p
and q. In general, IRFs appear smooth only for p and q equal to 2 or less, while at
the same time p¼ q¼ 2 appears to capture low-frequency dependence as well as
higher-order models. While highly informal, this would suggest that the northwest
quadrants of Tables 12 and 13, corresponding to, p≤ 2,q≤ 2 are the most robust
tests.

TABLE 12

EGP Tests for ARMA(p,q) States for Horizon up to 3 M

Table 12 reports EGP tests under the assumption that the state variable follows an ARMA(p,q). The null hypothesis is that bh in
the forecasting regression

r t + h ¼ a +b0
hX t + ut ,h :(51)

equals Ah �Ah�1
� �0

ιβ0 forh¼ 1, ::,6, where X t ¼ xt ,xt�1, ::,xt�p ,wt , ::,wt�q
� �

and A is the VAR matrix representation of the
ARMA(p,q) process.

VRP

q

p 0 1 2 3 4

1 16.31*** 22.25*** 25.66*** 31.76*** 21.61*
2 17.48*** 26.28*** 25.81*** 24.72** 30.33**
3 19.59** 25.78*** 25.85** 30.81** 25.74
4 20.05** 22.19* 32.50** 25.20 25.57

IV

q

p 0 1 2 3 4

1 16.55*** 25.29*** 41.94*** 33.32*** 20.66
2 17.32*** 42.20*** 26.13*** 23.69** 28.21**
3 19.78** 20.75** 25.22** 60.03*** 30.49*
4 20.31** 21.51* 32.50** 35.35** 26.16

RV

q

p 0 1 2 3 4

1 29.90*** 32.31*** 40.56*** 41.08*** 43.97***
2 32.03*** 35.10*** 39.98*** 44.52*** 48.74***
3 36.88*** 43.80*** 45.87*** 43.92*** 48.23***
4 41.54*** 45.83*** 45.59*** 66.12*** 52.49***

TI

q

p 0 1 2 3 4

1 2.13 5.06 5.02 6.20 6.51
2 4.86 5.05 6.29 24.28** 9.90
3 5.48 6.47 7.42 20.83 7.55
4 6.43 9.15 7.32 14.40 11.92
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E. Implications for Existing Models

It is natural to ask what the evidence presented here implies for existing
models. In the following, I discuss this in the context of several models proposed
in the LRR literature. I discuss the qualitative implications of the models rather than
discussing whether the models, along with particular parameter calibrations, can
quantitatively explain the findings.

Bansal and Yaron’s (2004) model has received much attention in the litera-
ture. It is a fairly simple model in which a single AR(1) Gaussian spot variance
factor, σ2t , drives expected excess stock market returns. Their model also features
an AR(1) time-varying expected consumption growth rate, xt. Both these factors
generate time variation in price–dividend ratios and thus jointly generate the kind

TABLE 13

EGP Tests for ARMA(p,q) States for Horizon up to 6 M

Table 13 reports EGP tests under the assumption that the state variable follows an ARMA(p,q). The null hypothesis is that bh in
the forecasting regression

r t + h ¼ a +b0
hX t + ut ,h :(52)

equals Ah �Ah�1
� �0

ιβ0 forh¼ 1, ::,6, where X t ¼ xt ,xt�1, ::,xt�p ,wt , ::,wt�q
� �

and A is the VAR matrix representation of the
ARMA(p,q) process.

VRP

Q

p 0 1 2 3 4

1 20.69*** 51.06*** 44.49*** 48.11*** 43.71**
2 21.78** 45.97*** 44.97*** 35.20 56.45**
3 24.71 27.26 35.71 190.79*** 64.92**
4 25.72 27.30 74.26*** 88.49*** 39.40

IV

q

p 0 1 2 3 4

1 22.07*** 35.91*** 38.80*** 44.07*** 48.30**
2 39.24*** 36.61*** 45.08*** 47.15** 55.45**
3 39.86*** 41.43** 45.38** 48.33* 71.05***
4 43.07*** 45.82** 48.42* 59.90** 78.03***

RV

q

p 0 1 2 3 4

1 38.04*** 41.76*** 43.59*** 44.95*** 50.67***
2 41.77*** 45.10*** 45.64*** 50.95*** 52.95**
3 40.97*** 45.89*** 51.99*** 64.40*** 53.17*
4 43.61*** 49.91*** 51.05** 83.15*** 62.36*

TI

q

P 0 1 2 3 4

1 6.72 7.30 10.74 10.28 14.07
2 7.37 10.67 10.01 74.22*** 14.76
3 9.12 9.67 10.67 66.56*** 18.53
4 12.15 13.71 15.71 69.13*** 98.83***
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TABLE 14

Estimated ARMA(p,q) Parameters for VRP

Table 14 reports parameter estimates in ARMA(p,q) models for VRP.

p q

AR1 AR2 AR3 AR4 MA1 MA2 MA3 MA4

0.28
0.94*** �0.81***
0.95*** �0.77*** �0.08*
0.96*** �0.77*** 0.06 �0.15***
�0.70 0.95*** 0.41*** 0.28*** �0.02
0.23 0.20***
1.06*** �0.11* �0.87***
1.37*** �0.39 �1.17*** 0.25
�0.62 0.13 0.87*** 0.26** 0.26*
0.14 0.79*** 0.09 �0.60*** �0.05 �0.20***
0.22 0.19*** 0.05
�0.68 0.39*** 0.25*** 0.92***
�0.57 �0.08 0.31* 0.81*** 0.47*
�0.83 0.90*** 0.78*** 1.00*** �0.70*** �0.72***
�0.05 0.78*** 0.18** 0.27 �0.55*** �0.21** �0.23*
0.22 0.20*** 0.06* �0.06***
�0.67 0.40*** 0.23*** �0.03 0.91***
0.17 0.97*** �0.05 �0.15*** 0.03 �0.84***
�0.09 1.02*** 0.17** �0.18 0.29*** �0.82*** �0.22**
�0.11 0.48*** 0.25 0.27* 0.33* �0.25 �0.22 �0.47***

FIGURE 8

Impulse Response Functions for VRP

Figure 8 plots IRFs for VRP on selected ARMA specifications.
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of AR(1) induced impulse response seen in Figure 1. If we were to observe xt and
σ2t , we could carry out a test of EGP exactly as described in the previous sections.

Since we, as econometricians, do not observe consumption spot variance σ2t ,
we need to resort to some observable quantity. Here, we then need to rely on another
feature of the BY model—the fact that stock market variance is a linear function of
σ2t

6. It is also true that option-implied volatility is a linear function of σ2t
7.

I now turn to the question of whether any of the tests presented earlier are valid
tests of the BY model.

Logarithmic capital gains in the BY model are given by

lnPt + 1� lnPt ¼A0 +Aσ σ2t + 1�σ2t
� �

+Ax xt + 1� xtð Þ+ et + 1(53)

where et + 1 is an error that is uncorrelated with changes in consumption variance,
σ2t + 1�σ2t
� �

. We can therefore write

lnPt + 1� lnPt ¼A0 +Aσ σ2t + 1�σ2t
� �

+ êt + 1(54)

That is, we can write êt + 1 ¼Ax xt + 1� xtð Þ+ et + 1, which is uncorrelated with
σ2t + 1�σ2t
� �

. This means that we estimate the parameter Aσ in (54) by OLS without
worrying about omitted variable bias. Similarly, we can run the predictability
regression.

FIGURE 9

Impulse Response Functions for RV

Figure 9 shows IRFs for ARMA(p,q) models estimated for RV.
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6See equation (A13), p. 1505, in Bansal and Yaron (2004).
7See, e.g., Eraker andYang (2022) for a detailed analysis of option-implied variance in the context of

LRR models.
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Since σ2t and xt are statistically independent, even univariate tests of whether
σ2t is EGP would be valid tests of the BY model.

V. Conclusion

While classic theories of efficient markets (e.g., Fama (1970)) postulate that
returns are simple random walks with drifts, a plethora of subsequent work recog-
nized that dynamic equilibrium generates a small predictable component of asset
returns. The most theoretically appealing risk candidate is some measure of con-
ditional variance. Disappointingly, however, measures of conditional variance do
not predict returns (e.g., Merton (1973), (1980), French et al. (1987), Bollerslev,
Engle, andWooldridge (1988), Glosten, Jagannathan, and Runkle (1993)). A close
cousin of conditional variance, the VRP, has been shown (e.g., Bollerslev et al.
(2009)) to predict returns. Bollerslev et al. (2009) and Drechsler and Yaron (2011)
derive equilibrium models of VRP based on Epstein–Zin preferences akin to the
models of Bansal and Yaron (2004) and Eraker and Shaliastovich (2008). Recently,
Bekaert et al. (2020) derive an equilibrium model for VRP based on a habit
formulation.

Yet, there is a widespread among researchers that predictable variation in asset
returns is consistent with equilibrium-based models. Bollerslev et al. (2009) and
Drechsler and Yaron (2011) derive models explicitly aimed at explaining predict-
able variation, but it is also implied elsewhere in the predictability literature. For
example, Bollerslev et al. (2015) derive an option-based TI used to predict returns
and maintain that “‥the new nonparametric jump risk measures proposed and
analyzed here are all economically motivated, with direct analogs in popular
equilibrium consumption-based asset pricingmodels.”Kelly and Jiang (2014) state
that “…tail risk plays an important role in the marginal utility of investors and in
determining equilibrium asset prices” (p. 2866).

In this paper, I document that equilibrium justifications for the predictability of
long- or medium-horizon returns are inconsistent with the typical equilibrium
models proposed in the literature. There are two essential problems: First, equilib-
rium models based on persistent state variables and Epstein–Zin (EZ) preferences
generate impulse responses in prices where i) the contemporaneous price impact of
an increase in expected returns is negative and ii) the decay rate of the price shock is
the same as the decay rate of the risk–shock. As such, any model of risk/expected
return that generates a monotonically decaying impulse response will generate
predictability R2s for 1-period returns that decrease monotonically with the fore-
casting horizon. Both are testable implications, and in this paper, I provide a
framework for testing. The results show that variables, such as VRP, option-
implied, and RV measures, fail the test, while the TI studied simply does not show
much predictive power.

The following are potential resolutions to these predictability puzzles: i) One
can attempt to refine rational expectations equilibrium models to more carefully
match the correlation and predictive correlations of priced state variables at all
horizons. One such potential avenue is the decomposition of shocks to state
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variables into high- and low-frequency components in the hope that either will have
empirical properties that match the aforementioned correlation patterns. ii) Models
based on limited rationality may be useful in matching some of the features of the
data. Yang (2022) proposes a model where agents are slow to update their beliefs
about increases in volatility. This, along with a highly persistent state variable,
provides a potential resolution of the apparent lack of aggregate return predictability
from variance measures. iii) It is also conceivable that evidence of return predict-
ability is spurious. The results in Section II can be used to derive a general-purpose
test of multihorizon predictability and will be pursued elsewhere. In particular,
Theorem 2 can be used to derive standard errors for overlapping regression slopes.
The results can also be extended to construct a test of the null of no predictability at
any horizon along the lines of Boudoukh et al. (2006) and Ang and Bekeart (2007)
(see Appendix B).

This paper contains results that could be useful in comparing unconstrained
OLS forecasting regressions with ones produced by VARMA or VARmodels. This
is a topic considered in Marcellino et al. (2006) in the context of a univariate time
series. Jordà (2005) studies the performance of forecasts produced by VARMA
models relative to direct, regression-based forecasts (dubbed local projections).
Since the DGP in Jorda admits a linear state-space representation, there is an
asymptotic equivalence between the VARMA forecast and the local projections
(Plagborg-Møller and Wolf (2021)). This literature is silent on the overlapping
observation problem that has been well-studied in finance. However, many eco-
nomic time series, including standard measures of output, have features that resem-
ble financial market data in that the levels or log levels contain a unit root, in which
case the forecasters are typically concerned with forecasting growth rates or log
growth rates. Hence, the forecaster is faced with the same choice as in the finance
literature as to whether to forecast time-series cumulative or single-period growth
rates. Model comparisons can then be carried out by testing for statistically signif-
icant differences between VAR (say) implied forecasting parameters and uncon-
strained estimates. I leave this topic for future research.

Appendix A. Returns, Capital Gains, and Predictable Dividend
Growth

The paper makes two simplifying assumptions related to dividend growth and
capital gains versus returns. First, I assume that expected dividend growth does not
depend on xt, and second, I treat capital gains as equivalent to returns. I am going to
argue that these approximations do not alter the outcome of the analysis. To see this,
consider first the addition of an expected dividend growth rate term

lnDt + 1� lnDt ¼ μ+ωxt + εt + 1(A-1)

where a nonzeroω implies that the state variable drives expected dividend growth, as in
Bansal—Yaron (2004).
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The slope coefficient in the regression of cumulative log returns rt:t + h on the state
variable xt then satisfies

bh ¼ ω
ρh+ 1�ρ
ρ�1

+ β ρh�1
� �� �

:(A-2)

i.e., it has the additional term ωρh + 1�ρ
ρ�1 relative to the baseline specification.

To assess the impact of shocks to returns, note that the linearized log return is

rt + 1 ¼ κ0 + κ1 α + βxt + 1ð Þ�α�βxt +ωxt + μ+ εt + 1(A-3)

¼ const:+ κ1β xt + 1� xtð Þ� β 1�κ1ð Þ�ωð Þxt + εt + 1(A-4)

In the case that κ1 is close to unity, which is the case in many applications, and
especially in high-frequency data, the log returns are approximately

rt + 1 ≈ const:+ β xt + 1� xtð Þ�ωxt + εt + 1(A-5)

A noteworthy feature of dividend yield data is how little variation there is relative
to capital gains. In Table A1, I compute the ratio of the variances of the forward-looking
log dividend yield and variance of returns. It shows that at the daily frequency, dividend
yield variation accounts for about five thousandths of the total variation. This is an upper
bound on the R2 that we could get from running a regression of total returns onto some
predictor, which predicts only dividend yield variation. In other words, if the forward-
looking log dividend yield was perfectly predictable, it could not explain more than five
thousandths of the variation in returns. The numbers are larger for longer horizons, but
nevertheless so small that it is clear that return predictability cannot come from the
predictability of dividends at short horizons. For this reason, I assume ω¼ 0.

Appendix B. VAR(1) Representation of ARMA(p,q)

The VAR(1) is

X t ¼AX t�1 +Wt(B-1)

TABLE A1

Dividend Growth Variance Ratio

Table A1 reports the fraction of variation in dividend growth relative to total return variation Var ytð Þ=Var lnRt + 1ð Þ, where
yt ¼ ln 1+ Dt +1

Pt + 1

� �
. The variance ratio is shown in percentage at various sampling frequencies.

Day 1 M 1Q 1Y

0.049% 0.159% 0.157% 0.501%
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where the elements of X t are

X t ¼

xt
xt�1

…

xt�p+ 1

wt

wt�1

…

wt�q+ 1

266666666666664

377777777777775
:(B-2)

The matrix A is has submatrices

A¼ A1,1 A1,2

A2,1 A2,2

� �
,(B-3)

given by

A1,1 ¼

ρ1 ρ2 … ρp
1 0 … 0

0 1 … 0

⋮ … ⋱ ⋮
0 0 ⋮ 1 0

26666664

37777775
p× p

, A1,2 ¼

θ1 θ2 … θq
0 0 … 0

⋮ ⋮ ⋱ ⋮
0 0 … 0

26664
37775
p× q

,(B-4)

A2,1 ¼ 0q× p, A2,2 ¼

0 0 … 0

1 0 … 0

⋮ ⋱ ⋮
0 … … 1 0

26664
37775
q× q

:(B-5)

For example, for an ARMA(1,1), A1,1 ¼ ρ1, A1,2 ¼ θ1, and A2,1 ¼A2,2 ¼ 0. For an
ARMA(2,2),

A1,1 ¼
ρ1 ρ2
1 0

� �
, A1,2 ¼

θ1 θ2
0 0

� �
, A2,1 ¼

0 0

0 0

� �
, A2,2 ¼

0 0

1 0

� �
:(B-6)

and so on.
The shock vector Wt has elements Wt ¼ wt,0,…,0,wt, ::,0ð Þ, where the second

occurrence of the scalar shock wt occurs in the p+ 1th position provided q≥ 1 provided
q> 0. If q¼ 0, we have Wt ¼ wt,0,…,0ð Þ. Finally, note that if the process is a pure
moving average process (p¼ 0), these equations still apply as if p¼ 1 and ρ1 ¼ 0.
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Appendix C. Proofs

Proof of Theorem 1. Consistency: Consider the DGP studied by Stambaugh (1999)
where rt + 1 ¼ αh + βhxt + u

h
t + 1, xt + 1 ¼ ρxt +wt + 1 with Cov w,uð Þ¼ σu,w. Stambaugh

gives the expression:

E β̂1�β1
� �

¼ σw,u1

σ2w
ρ̂�ρð Þ(C-1)

for the bias in the 1-period-ahead OLS slope. Note that
σw,u1
σ2w

¼ β0, which is assumed
known. As such, the bias vanishes as limT!∞ ρ̂�ρð Þ¼ 0.

Next, in deriving the expression for the covariance estimator for the slope coef-
ficients I derive an expression for the function F T 1,T2,T 3,T 4ð Þ. By repeated applica-
tion of the law of iterated expectations, direct computation yields

F T1,T 2,T 3,T 4ð Þ
≔E xT1xT2xT3xT4ð Þ
¼E xT1xT2xT3ET3 xT4ð Þð Þ
¼E xT1xT2x

2
T3

� �
ρT4�T3

¼E xT1xT2 x2T2
ρ2 T3�T2ð Þ + σ2T2:T3

� �� �
ρT4�T3

¼E xT1 x3T2
ρ2 T3�T2ð Þ + xT2σ

2
T2:T3

� �� �
ρT4�T3

¼E xT1 x3T2
ρ2 T3�T2ð Þ + xT1ρ

T2�T1σ2T2:T3

� �� �
ρT4�T3

¼E xT1 x3T1
ρ3 T2�T1ð Þ + 3xT1ρ

T2�T1σ2T1:T2

� �
ρ2 T3�T2ð Þ + xT1ρ

T2�T1σ2T2:T3

� �� �
ρT4�T3

¼E x4T1
ρ3 T2�T1ð Þ + 3x2T1

ρT2�T1σ2T1:T2

� �
ρ2 T3�T2ð Þ + x2T1

ρT2�T1σ2T2:T3

� �� �
ρT4�T3

¼ E x4T1

� �
ρ3 T2�T1ð Þ + 3E x2T1

� �
ρT2�T1σ2T1:T2

� �
ρ2 T3�T2ð Þ +E x2T1

� �
ρT2�T1σ2T2:T3

� �
ρT4�T3

¼ E x4T1

� �
ρ3 T2�T1ð Þ + 3E x2T1

� �
ρT2�T1σ2T1:T2

h i
ρ2 T3�T2ð Þ +E x2T1

� �
ρT2�T1σ2T2:T3

� �
ρT4�T3

¼ 3E x2T1

� �2
ρ3 T2�T1ð Þ + 3E x2T1

� �
ρT2�T1σ2T1:T2

� �
ρ2 T3�T2ð Þ +E x2T1

� �
ρT2�T1σ2T2:T3

� �
ρT4�T3

¼ 3E x2
� �

ρT2�T1 E x2
� �

ρ2 T2�T1ð Þ + σ2T1:T2

h i
ρ2 T3�T2ð Þ +E x2

� �
ρT2�T1σ2T2:T3

� �
ρT4�T3

¼E x2
� �

ρT2�T1 3 E x2
� �

ρ2 T2�T1ð Þ + σ2T1:T2

h i
ρ2 T3�T2ð Þ + σ2T2:T3

� �
ρT4�T3

where we now use that E x4T1

� �
¼E x4ð Þ¼ 3E x2ð Þ2 and E x2ð Þ¼ σ2x= 1�ρ2ð Þ, and

σ2T :S ¼ σ2
1�ρ2 T�Sð Þ

1�ρ2
(C-2)

is the conditional variance Var xT jF Sð Þ.
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The covariance matrix has elements:

Cov bh,blð Þ¼E
1P
tx

2
t

� �2X
t

X
s
xtxs β0 xt + h� xt + h�1ð Þ�βhxtð Þ β0 xs + l� xs+ l�1ð Þ + εs + l�βlxsð Þ

 

+ εt + h β0 xs+ l� xs + l�1ð Þ+ εs+ l�βlxsð Þ
!

¼E
1P
tx

2
t

� �2X
t

X
s

xtxs β0 xt + h� xt�h�1ð Þ�β1xtð Þ β0 xs+ l� xs + l�1ð Þ�βlxsð Þ
 

+
1P
tx

2
t

� �2E X
t
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X
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X
s
ðβ20 F t,s, t + h,s + lð Þ�F t,s, t + h,s+ l�1ð Þ½

�F t,s, t + h�1,s + lð Þ +F t,s, t + h�1,s+ l�1ð Þ�
�β0βl F t,s,s, t + hð Þ�F tð ,s,s, t�h�1Þ½ �
�β0βh F t,s,s, t + lð Þ�F tð ,s,s, t� l�1Þ½ �
+ βhβlF t, t,s,sð Þ+ Tρ∣l�h∣σ2x

σ2ε
1�ρ2

Þ

(C-3)

Q.E.D.

Proof of Theorem 2. Since

bh ¼
Xh
i¼1

βi,(C-4)

Cov bh,bkð Þ¼Cov
Xh
i¼1

βi,
Xh
j¼1

βj

 !
(C-5)

¼
Xh
i¼1

Xh
j¼1

Cov βi,βj
� �

(C-6)
Q.E.D.

Proof of Theorem 3. The dynamics of x can be written

xt + h ¼ ρhxt +w
h
t(C-7)

¼ ρhxt +
Xh�1

i¼1

ρh�iwt + i(C-8)
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Notice that we can also write

xt + h ¼ ρhxt +w
h
t(C-9)

where ρh is defined to be the autocorrelation over h periods. It is clear that—ρh ¼ ρh the
autocorrelation in x sampled at h intervals equals the 1-period autocorrelation raised to
the power of h. It is also clear that the estimated h-period autocorrelation ρ̂h does not
have the same bias as the 1-period autocorrelation raised to the power of h:

E ρ̂hð Þ ≠E ρ̂h
� �

.
Stambaugh (1999) derives the following expression for the 1-period (h¼ 1) bias:

E β̂1�β1
� �

¼Cov u1t + 1,wt + 1

� �
σ2w

E ρ̂�ρð Þ(C-10)

We can now prove the statement for h. The “multiplier” in Stambaugh’s expression
for the bias equals the contemporaneous coefficient β0 relating the shocks in returns to
changes in x,

σw,u1

σ2w
¼ β0:(C-11)

Combining with the definition of the empirical bias, we get

E β̂1�β1 ρ̂,β0ð Þ
� �

¼ b1 + β0 E ρ̂ð Þ�ρð Þ�β1 ρ̂,βð ÞÞ(C-12)

¼ β1 + β0 E ρ̂ð Þ�ρð Þ�β0 E ρ̂ð Þ�1ð Þ(C-13)

¼ β1�β0ρ+ β0 ¼ 0(C-14)

Since the -hperiod regression can be reinterpreted as one with h defined as a unit of
time, it also follows that

E β̂h�βh
� �

¼Cov uht ,w
h
t

� �
Var whð Þ E ρ̂h�ρh

� �
:(C-15)

The return process is

rt:t + h ¼ μh+ β0 xt + h� xtð Þ+
Xh
i¼1

εt + i(C-16)

¼ μh+ β0 ρh�1
� �

xt + β0
Xh�1

i¼1

ρh�iwt + i +
Xh
i¼1

εt + i(C-17)

which combined with the regression

rt + h ¼ αh + βhxt + ut + h,(C-18)

implies that

αh ¼ μh(C-19)

Eraker 39

https://doi.org/10.1017/S0022109024000218  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109024000218


βh ¼ β0 ρh�1
� �

(C-20)

ut + h ¼ β0
Xh�1

i¼1

ρh�iwt + i +
Xh
i¼1

εt + i(C-21)

by matching terms. Thus, it also holds in the h> 1 case that

Cov uht ,w
h
t

� �
Var whð Þ ¼ β0(C-22)

as in the h¼ 1 case. Combining the definition of the empirical bias with (C-15) gives

E β̂h�βh ρ̂,β0ð Þ
� �

¼ βh + β0 E ρ̂hð Þ�ρh
� ��E βh ρ̂,βð Þð Þ(C-23)

¼ β0 ρh�1
� �

+ β0 E ρ̂hð Þ�ρh
� ��E β0 ρ̂h�1

� �� �
(C-24)

¼ β0E ρ̂h� ρ̂h
� �

:(C-25)

Since β̂h ¼
Ph

i¼1b̂i, we get

E b̂h�bh ρ̂,β0ð Þ
� �

¼E β̂h�βh ρ̂,β0ð Þ
� �

�E β̂h�1�βh�1 ρ̂,β0ð Þ
� �

(C-26)

¼ β0E ρ̂h� ρ̂h�1� ρ̂h� ρ̂h�1
� �� �

(C-27) Q.E.D.
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