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Abstract

To each filter & on co, a certain linear subalgebra A (^) of R™, the countable product of lines, is assigned.
This algebra is shown to have many interesting topological properties, depending on the properties of
the filter &. For example, if & is a free ultrafilter, then A(^) is a Baire subalgebra of R" for which
the game OF introduced by Tkachenko is undetermined (this resolves a problem of Hernandez, Robbie
and Tkachenko); and if &x and ^2 are two free filters on a> that are not near coherent (such filters exist
under Martin's Axiom), then A(&{) and A(J?2) are two o-bounded and OF-undetermined subalgebras
of U." whose product A(^\) x A(^i) is OF-determined and not o-bounded (this resolves a problem
of Tkachenko). It is also shown that the statement that the product of two o-bounded subrings of R"
is o-bounded is equivalent to the set-theoretic principle NCF (Near Coherence of Filters); this suggests
that Tkachenko's question on the productivity of the class of o-bounded topological groups may be
undecidable in ZFC.

2000 Mathematics subject classification: primary 03E35,03E50,03E60, 22A05,54A35, 54D80, 54E52,
54G15, 54H11, 54H12, 54H13, 91A44.
Keywords and phrases: open-finite game, o-bounded group, filter game, near coherence of filters.

Introduction

In this paper we present a method for constructing examples of topological subgroups,
linear sublattices and linear subalgebras of Rw which possess various pathological
properties. The idea is to assign to a subset B of K" and a filter ^ on co a special
subspace ®(B; &) of R". The algebraic properties of this space ©(5; &) depend on
the choice of the set B, while the geometric and topological properties of ®(B; &)
depend on the choice of the filter &. In particular, if B is the set of all sequences of
polynomial growth, then the space ®(B; &), denoted by A(^) in this case, is a linear
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sublattice and subalgebra of U.w. If & is a non-principal ultrafilter, then the algebra
A(^) is Baire and OF-undetermined (this example resolves Problem 5 of [11]). If ^
and &2 are two filters on to that are not near coherent (such filters exist under Martin's
Axiom), then the algebras A ( ^ ) and A(&2) are o-bounded in W°, while their product
A(^)x A{&2) is not o-bounded in W* x W and their sum A{&x) + A{&2) coincides
with Ra (this answers Problem 3.2 of [22]). On the other hand, the near coherence of
all filters on co implies that the product X x Y of any o-bounded subrings X and Y of IR™
is o-bounded in I " x I" . This suggests that Problem 3.2 in [22] on the productivity
of the class of o-bounded topological groups may be equivalent to the principle NCF
(Near Coherence of Filters), and hence be independent of ZFC.

To give an idea of our subsequent considerations, we briefly explain the relation
of NCF to the productivity problem for the class of o-bounded subrings of Rm (the
definition and basic properties of near coherence will be given later). We shall see in
Proposition 2 that for each o-bounded subring of KL"\ there is a filter & with respect to
which the subring has a stronger boundedness property that we call ojr-boundedness.
The latter property, unlike the usual o-boundedness, is preserved by products. The
classes of o$- and o^-bounded subsets coincide for near coherent ultrafilters &, &',
and this is the reason why the product of two o-bounded subrings of W" is o-bounded
under NCF.

Now let us recall the definitions of a number of types of boundedness in topo-
logical groups. Given a topological group G, denote by jV{e) the family of open
neighborhoods of the identity e of G. A subset B of G is defined to be

• bounded if for any neighborhood U € jV{e) there is a finite subset F C G
such that B c F -U;

• a-bounded if B = [Jnew Bn is a countable union of bounded subsets Bn of G;
• ^-bounded if for any neighborhood U e ^V(e) there is a subset F of G with

\F\ < N o a n d f i c F ' ( / ;
• o-bounded if for any sequence {Un}nei0 c ^V(e) there is a sequence [Fn}new of

finite subsets of G such that B C \Jn€w Fn • Un.
Observe that the condition B C Une<u Fn • Un is equivalent to saying that the set

Nx — [n e co : x e Fn • Un} is non-empty for each x e B. Trying to impose more
control on the sets Â  for x € B, we arrive at the concept of an o$ -bounded set. First
we introduce some notation. Denote by ^(eo) (respectively [<D]W) the collection of
all (infinite) subsets of the set co of non-negative integers. Given a family & c £?{co)
and a function <p : co ->• co, let

<p[&] = {E c co : 3F e & with <p(F) C E}.

A function <p : co -*• co is called finite-to-one if the pre-image <p~l (n) is finite for every
n € co.

A subset B of a topological group G is called o&-bounded, where & C ^(co), if
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for any sequence {Un}new c <yV{e) there is a sequence {Fn}n€a> of finite subsets of G
such that B C U F S ^ Hne^F) ^« " ^« f°r some finite-to-one function <p : a; —>• co.
Here we assume conventionally that f]n€fd Fn • Un = G, so that every subset of G is
ojr-bounded if 0 e ^ .

Observe that a subset B c G is o-bounded if and only if it is ojr-bounded for the
collection & — {[n] : n e co} of singletons. Note also that any o^-bounded subset
B c G is o&> -bounded for any family &' C £?(co) and any finite-to-one function
<p : a) -> co with <p[&'] D &.

It is clear that each a -bounded subset B of G is o-bounded. In fact, a-bounded
subsets of G have a stronger property, which is called strict o-boundedness in [22]
and [10] and II-boundedness in [2]. We define a version of this property parameterised
by a collection & c 3?{(o), as follows. Given &, consider the following game OF^
(abbreviated from Open-Finite) on a subset B of a topological group G. Two players,
I and II, choose at every step n € co a neighborhood £/„ e jV(e) and a finite
subset Fn C G, respectively. At the end of the game, II is declared the winner if
B c U F S ^ finê fF) ^" ' ^n f°r s o m e finite-to-one function <p : co -> <w.

A subset fi of a topological group G is defined to be
• 11^ -bounded if the second player has a winning strategy in the game OF^ on B;
• l&-bounded if the first player has no winning strategy in the game OFj? on B;
• OF$ -determined if one of the players has a winning strategy in the game OF^

on B;
• O¥&-undetermined if G is not OF^ -determined (equivalently, if G is

\&-bounded but not 11^-bounded).
A topological group G is defined to be bounded (respectively a-bounded,

^-bounded, W.&-bounded, \& -bounded, o&-bounded, OF'&-determined, OFj? -un-
determined) if G has the respective property as a subset of G. If & is the collection of
all the singletons of co, then we shall omit the subscript & and shall speak about the
game OF and II-, I-, o-bounded, OF-determined and OF-undetermined sets in place of
the game OF^ and 11^-, Ijr-, o& -bounded, OF^-determined and OF^-undetermined
sets, respectively. It should be mentioned that in [1, 10, 11, 22, 23], II-bounded
groups are called 'strictly o-bounded', but we prefer the term 'II-bounded', accepted
also in [2].

We note that the definitions of all the boundedness conditions above are in fact
with respect to the left uniformity of the group G. Similar definitions can of course be
given with respect to the right uniformity and with respect to the two-sided uniformity.
Since however our focus in this paper is almost exclusively on abelian groups, in which
these distinctions are irrelevant, we shall work with definitions in the one-sided form
given.

Although we have defined the properties of 11^-, \&-, and o& -boundedness for
arbitrary families & C &{co), they behave especially nicely for the families & called
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semi-filters.
By a semi-filter, we understand a family & of infinite subsets of co closed under

taking supersets and such that F \ K € & for any F € & and any finite subset K
of a). A semi-filter & is called a filter if F n F' e ^" for any F, F ' e ^". It is easy to
see that a family of sets is a semi-filter if and only if it is a union of filters. Note that all
our filters & are free in the sense that C\& = 0. Note also that if & is a (semi-)filter
and (p : CD -» co is a finite-to-one function, then ^>[J^] is again a (semi-)filter. A
filter & is called an ultrofilter {{& = &' for any filter &' D ^". Ultrafilters are
maximal elements of the naturally ordered set of all filters. This set has a unique
minimal element—the Frechet filter 3>, consisting of all cofinite subsets of co. The
filter 3> is also the smallest element of the set of all semi-filters, which, unlike the
set of all filters, has a unique maximal element—the semi-filter [cof consisting of all
infinite subsets of co.

Identifying each subset of co with its characteristic function, we identify the power-
set &{co) of CD with the Cantor cube {0, 1}"", and thus introduce a metrizable compact
topology on ^(co). Referring to this topology, we can speak of a-compact, meager,
analytic or projective subspaces of £?{co) or [co]w.

The interplay between the properties of II?-, \&-, and o^-boundedness depends
to a large extent on the properties of the family &. We illustrate this thesis by the
following diagram, which holds for subsets of W°, the countable product of lines (see
Theorems 6 and 7). (In fact, this diagram holds more generally for subsets of Lindelof
Cech-complete groups [2].) In the diagram, & is a filter on co, while 3> and [co]" are
the smallest and the largest semi-filters described above, respectively.

a -bounded <$• IIffr -bounded & I5r-bounded & oSr -bounded

$ a- 4
11^-bounded => \& -bounded <fr o& -bounded

$ 4 4
II[(B]» -bounded =>• I[a)]» -bounded =• o[(U]» -bounded

§ 4 #
II-bounded =» I-bounded =>• o-bounded =» X0-bounded

In general, the non-equivalence implications from this diagram cannot be reversed:
the countable product of lines Rw is K0-bounded but not o-bounded [10, Example 2.6];
Kw contains a dense G^-subset ®([co]w) which is o-bounded but not I-bounded; this
Gj-set provides also an example of an' O[a]» -bounded subset which is neither
I[W]*-bounded nor o^c-bounded for a filter & (see Proposition 1); for any non-
meager filter & the space W* contains a Baire linear subspace A(&) which is
OF^-undetermined, that is, 1^-bounded but not 11^-bounded; this space A(&) is
also I-bounded but not II-bounded (see Theorem 8); under the negation of NCF there
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are two linear subspaces A\, A2 of IR** whose union Ai U A2 is 7[a)]«.-bounded but
not /^-bounded for a filter &\ these spaces A\, A2 are I-bounded in R01 but their
product Ai x A2 is not o-bounded in W" x W° and their sum A\ + A2 coincides
with K" (see Corollary 3). Finally, Kw contains an I-bounded subspace which is not
I[a)]»-bounded [2]. Besides these examples (which are all subsets of Kw), there is
also an example of a non-metrizable II-bounded group which is not a -bounded [10,
Example 3.1].

The non-metrizability of the last counterexample is not merely incidental, in view
of the following theorem, whose proof can be found in [1, 2] or [20, Section 7].

THEOREM 1. Let G be a metrizable topological group.

(1) Each II-bounded subset BofG is a -bounded.
(2) Each analytic I-bounded subset BofG is a-bounded.
(3) IfG is an o-bounded SIN-group, then each analytic subset B ofG is a-bounded.

We recall that a topological group G is called a SIN-group if G has a neighborhood
base 38 at the origin such that g~xUg = U for any g e G and U e 38.

A topological space X is analytic if it is a metrizable continuous image of a Polish
(separable completely metrizable) space. In fact, the class E{ of analytic spaces is the
first member in the hierarchy of projective classes £,| and n*, n e N. These classes
are defined by induction. The class n j consists of all separable metrizable spaces X
whose complement X \ X in some metrizable compactification X of X belongs to
the class E,J, and the class E,J+1 consists of metrizable continuous images of spaces
from the class Tll

n (see [14, Section 37.A]). Spaces from the class \Jnea) Z
l
n U n j

are called projective. It should be mentioned that under the principle of Projective
Determinacy [ 14, Definition 38.15] (which is one of the so-called Strong Set-Theoretic
Hypotheses and follows from the existence of a suitable large cardinal [12, page 282],
[19]), the analyticity of the subset B in Theorem 1 can be replaced by the projectivity
of B. All of this shows that examples designed to demonstrate the difference between
the boundedness properties we are considering must of necessity have a complex
descriptive structure.

A reflection of this is the fact that the first claimed example of a metrizable o-
bounded non-II-bounded group H, presented by Hernandez in [10, Example 6.1]
(and exploited in [22, page 195], [1, Theorem 4] and [11, Example 2.12]), turned
out to be incorrect. (By [1], the group H is analytic, and being non-cr-bounded, is
not o-bounded, according to Theorem 1 (3).) The error was noted by the second
author; see also [16], [20, page 45]. Valid examples of o-bounded non-II-bounded
groups have been constructed under certain additional set-theoretic assumptions. In
particular, in [11] a (non-metrizable) OF-undetermined group was constructed under
the Diamond Principle O (afterwards, a similar example was constructed in ZFC [15]
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or [20, Section 6]). In [1] a Baire OF-undetermined subgroup was constructed in each
abelian non-locally compact Polish divisible group under Martin's Axiom. Finally,
it was shown in [2] that each abelian non-locally compact Polish group contains an
OF-undetermined subgroup (see also [9]). All these examples of OF-undetermined
groups were constructed by transfinite induction, and this led naturally to the problem
of finding more 'real' and palpable ZFC-examples distinguishing various sorts of
boundedness.

In this paper, many such examples are constructed using the filter approach (after
writing an initial version of this paper, we learned that a similar filter approach was
used also in [16] and [20]). All our examples are subsets of R", the countable product
of lines, endowed with the Tychonov product topology. The space R10 is a very
rich object and carries a wealth of algebraic structures. Besides the linear and group
operations, the space Kw has the operation of coordinatewise multiplication (that is, U."
is a linear topological algebra with unity) as well as the operations of coordinatewise
maximum and minimum (that is, HT is a linear topological lattice). We can thus speak
of algebraic subobjects of Kw of many different types, including subgroups, convex
sets, linear subspaces, sublattices, linear subalgebras.

It will be convenient to think of elements of W° as functions from co to IR. For
every n e co, consider the seminorm || • ||n on Rw defined by ||JC||B = max,<n \x(i)\
for x 6 W°. Given two functions f,g e Kw, we write f < g (respectively f < g)
if f(n) < g(n) (respectively f(n) < g{n)) for all n G co, and f <* g (respectively
f <* g) if there is m £ co such that f(n) < g(n) (respectively f(n) < g(n)) for all
n > m.

By the growth of a function / 6 W° we understand the function f / e K " defined
by f f{n) = Il/Hn for n 6 co. It is clear that f / is a non-negative non-decreasing
function. A subset A of WLW is defined to be absolutely symmetric if for any a € A and
b e R<" with f b < t a we have b e A.

The central objects of our study are the absolutely symmetric subsets of the form

®(B;&) = [x € r ° :3b € B 3F 6 9 Vn € F \\x\\n < \\b\\H),

where B c K " and & is a collection of subsets of co.
If B = {b} for some b e 1RW, then we write ®(b; &) in place of ®{{b}\ &). Also,

we write ®(j£") in place of ©(id; ^), where id 6 Kw is the identity function i H-> I
for i e co. Thus

{x e Or : 3F g 9 Vi G F \\x\\t < i}.

It is clear that if B c B' and & c &', then ®{B\&) C ®(B'\&'). If the
collection & consists of infinite subsets of co, then the set ®(B; &) can be equivalently
defined as

( i e r : 3 f c e B 3 F e ^ with |x| < bF],
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where bF e R™ is the non-decreasing step-function assigning to each i G co the number
bF(i) = min{||&||; : j € F D [/, oo)} = \\b\U^Fri[i,oo))-

For families &\,...,&n c &(co) and a function b e Rw, define by induction the
sets

for i < n. We shall write ®(<^ i , . . . , &n) in place of ©(id; &u ..., &n). It is easy to
see that ®(b; &,...,&) = ®(b; &) whenever the family & is a filter.

The sets of the form ®(b; &) play a fundamental role in the class of ojr-bounded
subsets of Rw.

THEOREM 2. (1) A subset B e t is o? -bounded, where & is a semi-filter on co,
if and only if B c ®(b\(p[J?]) for some increasing function b : u> —> co and some
finite-to-one map <p : co —> co.

(2) A subset B c K " w o-bounded if and only if B is o^-bounded if and only if
B C ®(b; [co]w)for some b € W".

Our interest in subsets of the form ®(B; &) can be explained by the following
theorem, which describes some algebraic and geometric properties of such sets, and
follows easily from the corresponding definitions.

THEOREM 3. Let B c W° and let & be a filter on co.

(1) If supx€B n€lu \\x ||n = oo, then ®(B; &) is a dense subset of W°.
(2) Ifforallx,y e Bandt e [0, 1] there exists z 6 Bwitht \ x + {\-t)\ y <* t z,

then ®(B; &) is a convex subset of W°.
(3) If for all x,y e B there exists z 6 B with maxft x, t y) <* t z, then ®(B; &)

is a sublattice of Kw.
(4) If for all x,y G B there exists z e B with f x + f y <* f z, then ®{B; &) is a

linear sublattice of W».
(5) If for all x,y e B there exists z G B with f(x • y) + f x + f y <* t z, then

®(B; &) is a linear subalgebra of R".

Next, we investigate the dependence of the topological and boundedness properties
of the set ®(B; &) on the properties of the set B and the semi-filter &.

THEOREM 4. Let B C K" and let & be a semi-filter on co.

(1) If the set B is a-bounded in W° (and & is a filter), then the set ®{B;&) is
o? -bounded (and I &-bounded) in Rm.
(2) If®(B; &) ^ W°, then B is o-bounded in W°.
(3) If the space B is analytic and & is a non-meager filter, then ®(B; J5") is

o$ -bounded ifand only if®(B;&) ^ Rw if and only if B is o-bounded.
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(4) The set ®(B; &) is a-bounded in W if and only if either supn£(U \\b\\n < oo for
each b e B or B is a-bounded and & is meager in [co\w.

Next, we study the topological and descriptive structure of the sets ®{B\ &). We
recall that a topological space X is Baire if the intersection of any countable family
of open dense subsets of X is dense in X; we say that X is hereditarily Baire if each
closed subspace of X is Baire. It is known that each Polish space is hereditarily Baire
and that a coanalytic space (that is, a space of the projective class n[) is hereditarily
Baire if and only if it is Polish (see [14, Corollary 21.21]).

THEOREM 5. Let B C R"" and let & be a semi-filter on co.

(1) The set ®(B; &) is a continuous image ofB x & x ( - 1 , 1)<".
(2) IfB, & e H\ for some n e N, then ®(B; &) € E,J.
(3) If c? is a non-meager filter on co, then the space ©(J^) is Baire; moreover, the

closure A of any subset A C ®CSr) in ®(&) is a Baire space.
(4) If' & is a non-meager P'-filter, then the space ®{&) is hereditarily Baire.
(5) The space ®(B; &) is not hereditarily Baire if B contains a function sequence

(ftn)new with t bn <* f bn+i far every n € co and such that for every b e B there is
n e co such that t b <* t bn.

It is well-known that each ultrafilter on co is non-meager (see [14, Exercise 8.50]
or [26]). Moreover, there are models of ZFC containing non-meager filters of projec-
tive class S31 (see [3] or [13]). Repeating the argument of Talagrand [21] (see also
[24, page 32]), we can prove that a semi-filter & on co is meager if and only if & lies
in a o -compact subset of [co]w if and only if there is an increasing number sequence
(tnk)k€a> € of such that each F e ^ meets all but finitely many intervals [mk, mk+l).
A filter & is called a P'-filter if for any countable subcollection &' C & there is
F e ^ such that the complement F \ F' is finite for any F' e &'. Ultrafilters that
are P-filters are called P'-points. It is well known that P-points exist under Martin's
Axiom, while there exist models of ZFC without P -points [26]. Let us note that the
Frechet filter $r of all cofinite subsets of co is a meager P-filter. The problem of the
existence of a non-meager P-filter seems to still be open (see [4, page 230]).

Theorems 2 and 4 will allow us to prove the following two important results
describing the interplay between various boundedness properties.

THEOREM 6. For a subset B c Km, the following conditions are equivalent:

(1) B is o-bounded;
(2) B is 11-bounded;
(3) B is II& -bounded for some semi-filter &\
(4) B is ll& -bounded for any semi-filter &\
(5) B is op-bounded for some meager semi-filter &'.
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THEOREM 7. (1) If & is a filter, then each o?-bounded subset of R" is I&-
bounded.
(2) For any filters &u...,&nand any function b € R°>, the union ®(b; &x) U • • • U

®{b; &„) is I[u>Y.-bounded in W.

Now we apply Theorems 4 and 5 to sets of the form ®(#).

COROLLARY 1. Let & be a semi-filter on co.

(1) ®(J?) is an absolutely symmetric dense o& -bounded subset of Ra.
(2) / / & is a filter, then ®{&) is a 1^-bounded convex sublattice of Rw.
(3) ®(J?) is a-bounded in Ra if and only if the semi-filter & is meager.
(4) If' &is a non-meager filter on co, then the set ®(J?) is OF &-undetermined and

Baire.
(5) If & is a non-meager P'-filter, then the space ®(J?) is hereditarily Baire.

In the case when & = [co\w, the set ®{^) gives us an interesting example of an
o-bounded subset.

PROPOSITION 1. The set ®([co]a) has the following properties.

(1) ®([co]m) is a dense absolutely symmetric Gs-subset of Ra.
(2) ®([co]w) is o-bounded and o^y,-bounded.

(3) ®{[co]a>) is not I-bounded.
(4) For any filter &', the set ®([co]w) is not op-bounded.
(5) The product B x ®{[co]ai) with a subset B e t is o-bounded in IRW x Rm if and

only ifB is a-bounded in W.

As observed earlier, we have ®(®(^) ; &) = ® ( ^ \ &) - ®{&) for any filter &.
If & is a non-meager filter, then by Corollary 1 (4) the set B — ®{&) is OF^-
undetermined, that is, 1^-bounded but not 11^-bounded. In particular, B is not
CT-bounded, while ®{B;&) — ®(^) = B is I^-bounded. This shows that the
analyticity of the set B in Theorem 4 (3) is essential.

Now we apply Theorems 3-5 to subsets of the form A(&) = ®({id"}n€w; &),
where id" is the map i i->- i" for i e co. Note that when & = $r, the set A{&)
coincides with the set of all functions of polynomial growth. In the particular case of
the sets A(&), Theorems 3-5 imply the following.

THEOREM 8. Let F be a filter on co.

(1) A ( ^ ) is a dense absolutely symmetric linear sublattice and subalgebra of W°.

(2) A {&) is a I? -bounded subset of R".
(3) If' & is meager, then A(j£") is a a-bounded subset of R1*.
(4) If & is non-meager, then A(J?) is a Baire OF &-undetermined subset of Rw.
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(5) If & is a non-meager P'-filter, then A(^) contains the absolutely symmetric
dense convex hereditarily Baire sublattice ®{&).
(6) The space A(J?) is not hereditarily Baire.
(7) The space A(j£") is a continuous image of' & x N x ( - l , l)w.
(8) If& e H* for some n e N, then A(&) e T,\.

Since each ultrafilter is non-meager [26] and there are models of ZFC containing
non-meager filters of projective class Y*\ (see [3] or [13]), Theorems 8 implies the
following corollary, resolving Problem 5 of [11].

COROLLARY 2. The countable product U.w contains a Baire OF-undetermined linear
subalgebra. It is consistent to assume that this subalgebra belongs to the projective
class Sj .

It is interesting to remark that under the principle of Projective Determinacy, each
projective subset of a Polish group is OF-determined (this follows [1, Proposition 4]
and [14, Exercise 38.18]). Thus the existence of a projective OF-undetermined subset
of Ra is undecidable in ZFC.

Next, we consider Problem 3.2 of [22], concerning products of (strictly) o-bounded
groups. Answering a part of this problem, it was shown in [2] that the product G x H
of two II-bounded topological groups is II-bounded. Moreover, the product G x H
of a II-bounded group G and an o-bounded group H is o-bounded. For products of I-
or o-bounded groups the situation is different. Assuming the existence of two filters
that are not near coherent, we shall construct two I-bounded subalgebras of W° whose
product is not o-bounded in W x R™ and whose sum in Rw coincides with Kw.

Families &\,...,&n C &(a>) are called near coherent if there is an increasing
number sequence (mk)k€a> € co™ such that for any elements f\ € &u ..., Fn € &n

there is k e a> such that [mt_i, mk+i) fl F, ^ 0 for all i < n. Near coherence of
filters was introduced and studied in detail by Blass in [5, 6]. The statement that any
two filters on co are near coherent is known in set theory as NCF; NCF is false under
Martin's Axiom [5], but there are models of ZFC in which NCF is true [7, 8]. Note that
the Talagrand characterization [21] of meagerness quoted earlier implies that meager
(semi-)filters &\, . . . , &n are near coherent.

THEOREM 9. For (semi-)filters &\, . . . , &n, the following conditions are equiva-
lent.

(1) The (semi-)filters &\, ... ,&a are near coherent.
(2) For any function b e Rw the product ®(b; &{) x • • • x ®(b; &n) is o^-bounded

in {W)n for some (semi-)filter &.
(3) The product A(^,) x • • • x A(&n) is o-bounded in (lw)n.
(4) The product ®{&l) x • • • x ®{&n) is o-bounded in (W°)n.
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(5) The sum ®(^i) H f- ®(&n) is o-bounded in Rw.
(6) ®(^,) + • • • + ®(^n) jt R»

Moreover, if &u ...,&„ are filters, then the conditions (l)-(6) are equivalent to the
following.

(7) There is a permutation a of {1, . . . , n} SMC/I that for any Junction fee R" £fte se/
®(ft; ^ ( 1 ) , . . . , ^ff(n)) is op-bounded for some filter 3'.
(8) There is a permutation a of {1, . . . , n] such that ®(&am,..., &aW) ^ K1".
(9) The union © ( # , ) U • • • U ®(3?n) is o<?-bounded for some filter &'.

Theorems 9 and 7 imply the following.

COROLLARY 3. Under the negation ofNCF, there are two I-bounded subalgebras

Au A2 of W such that

(1) the product Ax x A2 is not o-bounded in W° x Km;
(2) the sum Ax + A2 coincides with Km;
(3) the union A{L) A2 is /[o)]»-bounded in Ra;
(4) the union A\ U A2 fails to be o& -bounded for all filters &'.

After writing this paper, we learned that a result similar to Corollary 3 had been
obtained in [16] and [20, Section 5]. Specifically, under CH two o-bounded linear
subspaces Lu L2 c US'" were constructed whose sum Lx + L2 equals K". In fact,
the spaces L\, L2 have the Menger property, which is stronger than o-boundedness.
Another result of this sort can be also found in [25].

It turns out that additional set-theoretic assumptions of some kind, such as those
in [16] and Corollary 3, are essential: under NCF the product of two o-bounded
subrings of IRW is o-bounded. Indeed, this result is true for what we call mixable
subsets of Kw.

We shall say that a subset X of Kw is mixable if there exists a non-decreasing
function / : [0, oo) -> [0, oo) such that for any x,y e X there is z € X such that
/ ° t z >* max{f x, f y}. Many examples of mixable subsets of Kw are supplied by
subsets of U.^ closed with respect to certain algebraic operations. For example, any
subring of Ka is mixable, because y/x7 + y2 > max{|;t|, \y\] for any x, y € Rw. An
additive subgroup G of W° is mixable if it is | - \-closed, that is, if \x\ e G for each
x € G. In its turn, since |JCj = max{jt, — x], each sublattice L of IR6" is | • |-closed
provided it is centrally symmetric in the sense that — x 6 L for each x € L. We do
not know however if every additive subgroup of Kw is mixable. Mixable o-bounded
subsets of W° have the following remarkable property.

PROPOSITION 2. A mixable subset X CW" is o-bounded in Kw if and only if it is
o^-bounded in W° for some filter & on co.
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This proposition will help us to characterize NCF in terms of preservation of o-
boundedness by products. It is interesting to compare our characterization (resulting
from Theorems 2, 7, 9) with the characterizations of NCF presented in [6].

THEOREM 10. The following conditions are equivalent.

(1) NCF is true (that is, any two filters on co are near coherent).

(2) The product X x Y of o-bounded mixable subsets X, Y C K" is 1'& -bounded in
R" x W° for some filter &.
(3) The product X x Y of o-bounded centrally symmetric sublattices X, Y C R" is

I?-bounded in Rw x Kw for some filter &.
(4) The product XxY of o-bounded \ • \ -closed sublattices X, Y C U.w is I? -bounded

in Kw x Rw for some filter &.
(5) The product XxY of o-bounded \ • \-closed additive subgroups X, F C K" is

I? -bounded in W x Kw for some filter &.

(6) The product XxY of o-bounded subrings X,Y C ^ i s I<? -bounded in R<" x Dfc<"

for some filter &.
(7) The product XxY of o-bounded linear subalgebras X, K C I " is l& -bounded

in Kw x W° for some filter &.

(8) For any filters &\, J^2 on co, the product A{&\) x A(J?2) of the I-bounded

subalgebras A{&x), A(&2) of Kw is o-bounded in R™ x Rw.
(9) For any filters &x, &2 on co, the sum A(&x) +

Finally, let us ask a question suggested by the above results. We have explored
subrings of W°, but we know nothing about subrings of the countable product C° of
the complex plane C.

QUESTION 1. Is every o-bounded subgroup (subring) of C° mixable? I-bounded?
o? -bounded for some filter & ?

Filter games and properties of the sets © ( 6 ; •'?)

Now let us pass to proofs of our results. We start from the proofs of certain
statements concerning the interplay between the game OF^ on subsets of W° and the
filter games considered in [17] and [18].

First we make precise the notions of a game and of a strategy in a game. From
the most general point of view, the games we consider in this paper can be described
as follows. Suppose that we are supplied with sets X, Y and a subset <J> of the
product X" x F " ( $ can be thought of as some property of pairs of sequences
(0O> ( j J ) € Xw x Yw). Two players, I and II, choose at every step n € co a
point xn of the set X and a point yn of the set Y, respectively. At the end of the
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game, player II is declared the winner if the constructed sequences (xn)nea> and (yn)nea)

have the property <J> (equivalently, the pair ((xn)nea), (yn)new) belongs to the set <£);
otherwise, player I is declared the winner. The sets X and Y are called the sets of
admissible moves of I and II, respectively. Thus the game can be identified with the
subset O c T x T

A strategy of II in the game <J> C Xw x Yw can be thought as a function
$„: X<w ->• Y, where X<w = [Jneai X" stands for the family of all finite sequences of
elements of X (including the empty sequence). Player II plays according to a strategy
$ n : X<u> - + Y i f y k = $u(x0, . . . , x k ) f o r e a c h k e co a n d e a c h ( J C 0 , . . . x k ) e Xk+l. A

strategy $ n : X<a> —> Y of II is winning in a game <J> c X1" x Fw if for any infinite
sequence (xn)n€w e X" the pair ((xB)nea), (.yJneJ belongs to $ whenever II plays
according to the strategy $n.

Dually, a strategy of I in a game 4> c X™ x }"" is a function $[: F < w -> X, and
player I plays according to a strategy $T if xk = $i(y0,..., yk-i) for each k e co and
(jo. • • • - y*-i) € y*. A strategy $i: y<a> —>• X of I is winning if for any infinite
sequence (yk)kea) e Yw the pair ((xn)nea), (yn)nea>) fails to belong to 3> whenever I
plays according to the strategy $i.

Let X be a set. For a finite sequence CT = (x0,... ,xn) e X<w and a point x e X,
let |CT| denote the length n + 1 of a and write aAx = (x0, ..., xn, x). By [X]1" we
denote the family of all infinite subsets of X and by [X]<a> = &>(X) \ [Xf the family
of all finite subsets of X.

We shall reduce our game OFj? to the game (8(iT, M < w , 2f) considered in [17]
and [18]. Given subsets 3C, 2? C &(oS), the game <8(,2T, M < m , ̂ ) is defined as
follows. At every step k 6 co, two players, I and II, choose an element Xk € SC and a
finite subset st c Xk, respectively. At the end of the game, II is declared the winner

We shall exploit the following two results proven in [17, Theorems 2.11 and 2.15].
(We recall that 3> stands for the Frechet filter of all cofinite subsets of co.)

LEMMA 1 (Laflamme [17]). Let & be a filter on co.

(1) / has a winning strategy in the game (25(3r> [<w]<a\ &) if and only if the filter &
is meager.
(2) / has no winning strategy in the game <5(J^\ [a>]<a>, &) if and only if ^ is a

non-meager P'-filter.

To reduce the game OF^ on ®{b;^) to the game <5(3>- [w]<w, ^), we shall
consider two intermediate games: OC^ (abbreviated from Open-Compact) and LHj?
(abbreviated from Length-Height) on subsets of W°.

For a family & c ^(co), the game O C ^ on a subset B of a topological group G is
defined as follows. Two players, I and II, at every step n e co choose a neighborhood
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Un e JY(e) and a compact subset Kn of G, respectively. At the end of the game, II
is declared the winner if B c \JFe& Plne^) ^n ' ^n ^or s o m e finite-to-one function
q> : co -*• co (recall that Jf{e) is the family of all neighborhoods of the identity e of
the group G). We denote by X(G) the collection of all compact subsets of G.

LEMMA 2. For a family & C &{co), the player I has a winning strategy in the
game OF& on a subset B of a topological group G if and only if I has a winning
strategy in the game OC& on B.

PROOF. The 'if part is trivial and follows from the compactness of finite subsets
of G. To prove the 'only if part, assume that $: ([G]<w)<w ->• jV(e) is a winning
strategy of I in the game OFjr on B. Fix a function g: J/(e) -> jV(e) such
that g(U) • g(U) C U for any U e ^V{e) and, using compactness, fix a function
/ : JT(G) x jV(e) - • [G]<w such that K c f(K, U)U for any (K, U) 6 X(G) x

We define a strategy $: J(f(G)<w -*• Jf{e) of I in the game OC t̂ by induction, by
setting $(0) = g($(0)) and

...,Kn) = go $(f(K0, $(0)), /(AT,, $(ATo)), • • •, f(Kn, $(K0,..., ATn_i)))

for (Ko,..., Kn) € X(G)<W. Let us show that $ is a winning strategy. Fix any
infinite sequence (Kn)nea) e X(G)W of compact subsets of G. We need to show
that for any finite-to-one function <p e of, we have B <£ [jFeSi C\n€9{F) Kn • Un,
where Un = $(^o. • • •. Kn-{) for n 6 co. For every n e co consider the finite subset
Fv = f(Kn, Un) of G. Since $ is a winning strategy, B <£ \JF<=& Hn^n F« • VB,
where Vn = $(F0,..., Fn_i) for n e co. Observe that

g(Vn) = go $ (F 0 , . . . , Fn_,) = g o $(/(AT0, £/o),...,

Then for each F e # , w e have

Kn-Unc H (/(*„, t/n) • Un) • Un

ne<p(F)

= n ^
n€<p(F) ne<p(F)

and since B £ LU.i? fL^F) ^ • V « . we conclude that S ^ U F ^ f l n ^ n /i:'1-f/'1- D

Next, given a family Ĵ " C £?{co) we consider the game LH^ on a subset B c OS™,
defined as follows. Two players, I and II, choose at every step k e co two numbers nk

and mk, respectively. At the end of the game, II is declared the winner if there is a
finite-to-one function <p : co -> co such that for every x e B there is F € & such that
II* IL < m t f o r a l U 6 ^ ( F ) .
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LEMMA 3. Let & c &(co). If player I has a winning strategy in the game
on a subset B of W°, then I has a winning strategy in the game LH& on B.

PROOF. Fix a winning strategy $: X(W*)<0> -> ^V(0) of I in the game O C ^ on
a subset B of RM. Let / : ^ ( 0 ) —>• co be a function assigning to each neighborhood
£/ e ^K(O) a number /(£/) e a> such that Bm(0) C £/, where Bn(e) = {x e Kw :

\ M \ n < £}•
Define a strategy $: co<0> -> co of I in the game LHj? on B by setting

$(m0, . . . , »u) = / o $([-/n0, m o r , . . . , [-mk, mkT)

for (w0, . . . , mk) e <w<a). We claim that $ is a winning strategy for I in the game LH^r.
To show this, take an arbitrary infinite sequence (mk)k€ul e of and let n0 = $(0) and
nk = $(m0, • • •, mk_\) for k > 0. Given a finite-to-one map <p : a> —> co we have to
find a function f e B such that for any F e ^ there is a fc e ^ (F ) with | | / | | n t > mk.

For each F e & and yt € <p(F), let Ct = [-mk,mk]
w C Kw and t/t =

$ ( C 0 , . . . , Ct_i). Observe that /({/*) = / o $(C0, . . . , Q_i) = « t , and thus C* +
S,((/()(0) = |JC e K" : IU'||,U < m*}. Since $ is a winning strategy for I in the game
OCj?, there is / e B such that / £ f \ ^ ( F ) c * + Uk for any F e # . Hence there is
it e (p(F) with f <£Ck + UkDCk + Bl(Ut)(0), and it follows that | | / | | n t > mk. D

LEMMA 4. For any non-meager filter & on co and any function b € of, the first
player has no winning strategy in the game LH^ on the subset ®(b; &) of W°.

PROOF. Assume that $ : co<w —>• co is a strategy of I in the game LH^- on ®(b; &)
for some non-meager filter & on co. To show that $ is not winning we have to find
an infinite number sequence (mk)kew e of and a finite-to-one map <p : co -> co such
that for every function / € ®(b;&) there is F e & such that | | / | | n t < mk for all
k € <p(F), where «* = $(m0, • • •, »i*-i)- To construct such a sequence (wt), we
shall use the absence of a winning strategy for I in the game <8(3r, [<w]<a\ &) (see
Lemma 1(1)). Define a strategy $: ([co]<co)<w - • ^ for I in the game (5(fo, [<w]<w, J5")
by letting

• •, •?*) = {n 6 w : n

for each sequence (s0,..., sk) of finite subsets of &>. Since $ is not a winning strategy
for I in the game 0(3>, [w]<w, &), there is an infinite sequence (sk)keui of finite subsets
of co such that U*ea<x* e ^ a n ^ 5* C $ ( 5 0 , . . . , s*_i) for all k e co.

For every it e <y, let w t = ||&||maxil and n t = $(m0, - - -, ntk-i). Then from the
fact that sk C $(so. • • • - Sk-\), we have m i n ^ > max{«t, max^_!) for all k e co.
Therefore, the family {sk}keu> is disjoint and we can find a finite-to-one function
<p : co ^ co such that sk C <p~\k) for every k e co.

https://doi.org/10.1017/S1446788700014348 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700014348


336 Taras Banakh, Peter Nickolas and Manuel Sanchis [16]

Fix any function / e ®{b;&), and choose F e & such that | | / | | , < ||fc||, for
all i e F. Since & is a filter and \Jkea)sk e &, we can assume that F c [jkS(Osk.
Then for any k e <p(F) we can find i e skn F and conclude that | | / | | n , < | | / | | , <
\\b\\i < ll&llmaxii = "1*. This means that the strategy $ of I is not winning in the
gameLH^. •

We say that a space is nowhere locally compact if none of its points has a compact
neighborhood. For the proof of Theorem 4 (3) we shall need the following.

LEMMA 5. If the set B is a closed nowhere locally compact subset of WLW, then
®(B; &) — W° for every non-meager filter & on co.

PROOF. Assume that & is a non-meager filter and B is a closed nowhere locally
compact subset of W. To show that ®{B; &) = W°, fix any function x e R" and
find a function / e of such that \\x\\n < | | / | | n for all n e co. For a subset A C W°
andrc € OJ, letdiamB(A) = sup^>eA \\x - y\\n and ||A||n = supa£A ||a||n.

Repeating the standard inductive argument (see [14, Section 7.C]), assign to each
finite number sequence a e OJ<O> an open subset Ua c B and a number l{o) e co so
that for every a e w<a) and i € co the following conditions hold:

(1) Ua»,cUa;
(2) diam,(ff)(£/„.,) < 2~M and ||f/^,||,(ff) > i + 1;
(3) /(CTA/) > / (a) anddiam/(ffA0([/^,) = oo.

Next, define a strategy $: ([a)]<a))<<u -+ 5 r for I in the game <5(5"r, [o)]<w, J2") by
letting

$(*o, • • •, sk) = [n e co : n > Z(||/|UX,O, . . . , ll/ILax.j}

for each sequence (s0,..., sk) of finite subsets of co. By Lemma 1 (1), $ is not a
winning strategy. This means that there exists a sequence (sk)k€ul of finite subsets of co
such that {Jk(ka)sk e & and sk C $(s0, • •., s*-i) for all k e co. For every k e co, let
"U = 11/IImaxjt and ok = (m0,..., mk). Since B is closed in the complete space W°,
the intersection f\k^w Uat contains a point b € B. We claim that | | / | | n < \\b\\n for
all n e [Jkeusk. Indeed, given n e [Jk€ajSk, find k £ co such that n e sk. Since
s* C $(50. • • •. sk-i) = [l{Ok-\), oo), we find n > /(at-i) and

lln > 11611/̂ .0 >
-|CT'-'' > m* = | |/ | |maxJ l >+ 1 - 2-|CT'-'' > m* = ||/||maxJl >

Thus H/lln < ||ft||„ for all n e [jkea>sk, as claimed. Finally, since we have ||jc||n <
||n for all n e co, it follows that x € ®(B; J5"), as required. •

We now prove another difficult lemma, which will be used in the proof of statements
(3) and (4) of Theorem 5.
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LEMMA 6. Assume that & c &' are two filters on co such that I has no winning
strategy in the game <5(^, [co]<o>, &'). Then for any subset A C ®(&), the closure
A of A in ®{&') is a Baire space.

PROOF. We have to verify that the intersection f\€N Uk of any decreasing sequence
(Uk)keN of dense open subsets of A is dense in A. It suffices to verify that for any
non-empty open subset Uo C A, the intersection f]keio Uk is non-empty.

Fix any function h® e Uo n A. Since Uo is a neighborhood of ha in A, there
are /(0) € co and e(0) > 0 such that x e Uo for any function x e A satisfying
II* - he\\m < £(0). Since h0 e A c ® ( ^ ) , we can find a subset F(0) e ^ such
that F(0) C [Z(0) + 1, oo) and ||/i0||n < n for all n e F(0).

By induction over the tree a><u>, assign to every finite sequence a e co<a> a function
ha e A, a set F(cr) 6 ^ , a number / (a) € a>, and real positive numbers e{o), 8(a)
such that the following conditions hold for every a e co<a> and i e co:

(1) S(aAi) < S(a) and S(aAi) < \ minjeF(CT)n[o,,](; - H M ; ) ;
(2) ha«, eAH U^n and ||AffAl- - ftJI, < 2-|ffA/| min{e(a), S(aA0};

(3) e(rrAi) < e(ff);
(4) for all n e A , ||A: - ft<,«,-||/(^0 < £(CTA/) implies x e Uw,i};

(5) | | ^ ,H , <jfaraHjeF(o*i);
(6) max{j, /(<TAi)} < min F(crA/).

Define a strategy $: (M<tu)<a) -^ ^ for I in the game <8(^\ [co]<<o, &') letting
$ ( 5 0 , • • •, Sk) = F(maxs0,..., m a x 5 t ) f o r (s0, • • -,sk) € ([co]<<o)<w. A c c o r d i n g t o

our hypothesis, $ is not a winning strategy of I. Hence there is a sequence (sk)keio of
finite subsets of co such that |J*6(U

 sk e &' and st C $(so>..., s*_i) for all t e a
For every it € co, let m* = maxst and ok = ( m 0 , . . . , mk). Consider the function

sequence (hat)k€w C A. The condition (2) implies that this sequence is Cauchy in Kw,
and thus has a limit hoo € K". Let us show that \\hoo ||, < i for all i e [Jkea> sk. Given
arbitrary i e F' = U*£w

 5*' ^n<^ ̂  e w w*t n z e 5*- Since / e sk c $ ( 5 0 , . . . , 5t-i) =
F(ok-x) and i < maxs* = mk, we have

llfcooII,-< IIV. Hi-

<IIV,l l . -+>;^rT«(O<IIV.II i +

-

and thus ft,*, € ®(«^')- Since h^ is the limit of the sequence (hat)kea) C A, we have

fcoo e A.
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Now it remains to verify that hx e Uk = f/|fft_,| for all k € co. By (4), it
suffices to show that \\hoo — hak_K ||((CT,_,) < s(ak_i). But using the fact that
min F{ok_\) < mir\sk < mk, we find

II^, - hap_x h(ot-ti < 2 ^ Wh"p ~ '

1
——-e(CTp_i) < >
2

p=k p=k

and the proof is complete. •

In our subsequent considerations, we shall often need the following simple but
useful result.

LEMMA 7. For any a-bounded subset B c R", there is an increasing function
b 6 of such that ®(B; &) C ®(b; &)for every semi-filter &.

PROOF. Write B = [Jn€0) Bn, where (fin)nsw is an increasing sequence of bounded
subsets of K". Let b(— 1) = 0, and for every n € co fix by induction any b(n) >
b{n — 1) with b(n) > sup{||^:||n : x e Bn}. Clearly, b is validly defined. To prove
that ®{B\&) c ®(b;^) for any semi-filter ^, fix any function x e ®(B;^)
and, by the definition of ®(B\^), find a function y e B and a subset F e &
such that H*II,- < ||y||, for all i e F. Next, find n e N such that y e Bn and let
F = FH [n, oo) 6 &. Then ||x||, < ||y||, < b(i) = \\b\\, for all i € F, and thus

D

In the sequel we shall need a characterization of meager semi-filters which gener-
alizes the Talagrand characterization of meager filters [21] and can be proved by the
same argument (see [24, page 32]).

PROPOSITION 3. For a semi-filter &', the following conditions are equivalent:

(1) & is meager in £?{co)\
(2) & lies in a a-compact subset of{co\w',
(3) there is an increasing number sequence (m, ) such that each F e # meets all

but finitely many intervals [/n,, m , + i ) .

Proofs of main results

PROOF OF THEOREM 2. (1) First, assume that the set B is o^-bounded in Rw. For
every n e co consider the open neighborhood Un = [x e R" : ||jc||n < 1} of the origin
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of Rw. Since the set B is oj?-bounded in W" there is a sequence (Fn)new of finite subsets
of W° and a finite-to-one function <p e of such that B C U/MEJ? Clne^F) Fn + Un. We
claim that B c ®(b;(p[#]), where fc(n) = 1 + max{||x||n : x e Fn], n e co.

Take any x e B, and find F e & such that for every n e <p(F) we have* e Fn + C/n.
Then ||jc||n < b(n), and hence x € ©(fo;^[^"]).

Next, assuming that B c ©(ft, <p[<^]) for some function k E " and some finite-
to-one function <p e of, we shall show that the set B is o^-bounded in W°. Let
(Uk)keu, be a sequence of neighborhoods of the origin of Rw. For every k e co, find
n t 6 w and ek > 0 such that #„,(£*) C £/*, where Bn(e) = {x e Kw : ||x||n < e}. We
can assume that nk+i > nk for all k e a>. Now for every k e co find a finite subset
Fk c R" such that [ - f 6(nt + 1) , 16(n*+i)]" C F t + flB,(et). Let ^ e ^ be the
finite-to-one function defined by ijf~l(k) = [nk, wi+1) for k e co.

We claim that B c L U * f l t ^ ^ F ) F* + ut- T a k e any x e B C ®(6; <p[&~\) and
find F e & such that t ^ ( 0 < t ^ O ) f° r all i e (p(F). Since ^" is a semi-filter
and <p is finite-to-one, we can assume that min^(F) > n0. In this case, for every
k € V ° V(F) we can find a number i 6 [n*, n t + i ) n (p(F). Then

e [ - t b(i), t &(i)]" + B,(0) C [ -

C F . + Bnt(ek) + Bnk(0) = Fk + Bnt(sk)

Hence B c U f e ^ Hken^n) Fk + ^ ^ ^"^ s o B i s o
(2) In light of the previous item, to prove the second statement of Theorem 2,

it suffices to verify that each o-bounded subset B c KB is o[iu]«--bounded. Fix a
sequence (£/„)„<=„ of neighborhoods of the origin of Kw. Since the set B is o-bounded
inH™, for every k e co there is a sequence (F*)n>t of finite subsets of U.a such
that B c (Jn>* Fn + U*- F o r e v e r v k € co, let Fn = \Jk<n Fk

n, and note that
B C (Jn>* F* + UnC \Jn>k Fn + Un. Then for every x & B there is an infinite subset
5 C co such that x € Fn + Un for each n e S. Hence B c UseM- fines Fn + £/„,
which means that the set B is o[wj<* -bounded. •

PROOF OF THEOREM 4. Let B c KM and ^ be a semi-filter on co. It will be
convenient to start with the last assertion of the theorem.

(4) We must show that ®(B; J?") is cr-bounded if and only if either supn6w \\b\\n < oo
for all b e B or B is a -bounded and & is meager.

If supnew \b\n < oo for all b e B, then the set ®(b, &) consists of bounded
functions and hence is cr-bounded in Rw. Next, assume that the set B is cr-bounded and
the semi-filter & is meager. By Lemma 7, ®(B; &) C ®(b; &) for some increasing
function b : co —> co. Using Proposition 3, find an increasing number sequence (m,)
such that each element F e ^ meets almost all half-intervals [m,, m,+i). Consider
the increasing function / : co -*• co defined by f(i) — b{mi+2) for i e co. The
cr-boundedness of the set ®{b;&) will follow as soon as we show that f x <* /
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for every x e ®(b;^). Indeed, given any x e ®(b\&), find F e & such that
||x||, < b(i) for all i e F. Next, find i0 e co such that F n [m,, mi+x) ^ 0 for all
/ > i0. Then for any k > w,0 there is a number j > i0 with k e [/n,, w,+1) and an
element n e F 0 \mi+\, m,+2)- Observing that

11*11* < \\x\\n < b(n) < b(mi+2) = f(i) < f(mt) < / (*) ,

we conclude that \ x <* f.
Now assume that the set ®{B;&) is cr-bounded and supn€(U \\b\\n = oo for some

b e B. We have to show that the set B is a -bounded and & is meager. Using the
a-boundedness of the set ®{B\ &), find an increasing function / : co -*• co such that
t x <* / f°r any x e ®(B; &). Let m0 — 0, and by recursion define an increasing
number sequence (w,) by setting mi+l — min{fc e co : \\b\\k > 2/(m,)}. We claim
that each element F e # meets almost all half-intervals [m,, mi+l). Replacing F by
F n[n,oo) for sufficiently large n, if necessary, we can assume that ||£||, > 0 for all
i e F. Then the function bF/2, where bF{i) = HfcHminFnfi.oo), belongs to ®(B;&),
and thus ftf /2 <* / . Find i0 6 co such that fcf ()k) < 2f(k) for all it > mio. We claim
that for every i > i0 the set F meets the half-interval [m,-, m,+1). Indeed, assuming
that F n [m,, mi+1) = 0 for some i > i0 we would get b(mi+i) < bF(mi) < 2/(m,),
which contradicts the definition of mi+\. Therefore F meets all the half-intervals
[m,, w,-+i) for i > i0, and by Proposition 3, the semi-filter & is meager.

It remains to show that the set B is a -bounded. Observe that for any b e B the
function b/2 belongs to ®(b, &), and thus b/2 <* f. This is equivalent to saying
that b <* 2 / for each b e B, and we conclude that B is a-bounded in W°.

Now we are able to prove the first item of Theorem 4.
(1) If the set B is a -bounded in RM, then we can apply Lemma 7 to find an

increasing function b € of with ®(B\&) C ®{b;&). Applying Theorem 2, we
conclude that the set ®(b; J^), and therefore the set ®(B; J^), is o^-bounded.

Now we show that ®(b; &) is /^-bounded if & is a filter. If the filter & is
meager, then ®(b; &) is a -bounded according to item (4). Consequently, the set
®(B;#) C ®(b;&) is a -bounded and hence is /^-bounded. If the filter & is
non-meager, then Lemmas 2-4 imply that the first player has no winning strategy in
the games LH^, OCjr and OF^ on ®(b; &). This implies that the set ®(b; &), and
hence the set ®(B; &), is /^-bounded.

(2) To prove the second item of Theorem 4 it suffices to verify that a subset B c W
is o-bounded provided ®(B;3r) ^ Kw. Fix any function f e Rw \ ®(B;$r). We
claim that B c ®( | / | + 1; [co]w). Indeed, let b e B. Then for each cofinite set F c co
there exists n e F such that | | / | |n > \\b\\n, and it follows that there exists an infinite
set F' C (o such that | |/ | |n > \\b\\n for all n e F'. This implies immediately that
b € ©(I/I + l;[tuH, and so we have B c ®( | / | + 1; Mw), as claimed. It follows
from this, by Theorem 2, that the set B is o-bounded.
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(3) Assume that B is an analytic subspace of W° and & is a non-meager filter. If
the set B is CT-bounded, then by item (1), the set ®(B; &) is o^-bounded in W°, and
thus ®(B; &) £ W°. If B is not cr-bounded, then B contains a subset B' C B which
is nowhere locally compact and is closed in W° (see [14, Corollary 21.23]). In this
situation we can apply Lemma 5, and conclude that

and that in particular ®(B; c?) is not ojr-bounded. D

PROOF OF THEOREM 5. Let B c W" and & be a semi-filter on co.
(1) Recall that for b e t w a n d F e [tof, we denote by bF the function in Redefined

by bF(i) = ||̂ ||min(Fn[i,oo)) for all i e co. It is easy to check that the mapping Kw x
[cof ->• W" defined by (b, F) h-> bF is continuous, and it then follows immediately
that the map * : T x [co]10 x ( - 1 , 1)<" ->• R<" defined by * : ( i , F, r) H* f • 6 f is
also continuous, where f • bF is the coordinatewise product of the functions t and bF.
Clearly, the space ©(£ ; ^ ) is the image of the product B x # x ( - 1 , l )w under * .

(2) If B, ^ 6 T,ln for some « e N, then B x ^ x ( - 1 , 1)" 6 E^ (see [14,
Proposition 37.1]), and ®(B;^), being a continuous image of B x j£" x (—1, l)w,
also belongs to the class E,J.

(3) If & is a non-meager filter, then by Lemma 1 (1) the first player has no winning
strategy in the game (5(3>, [&>]<U), &). Applying Lemma 6, we conclude that the
closure A of any subset A C ©(3v) in ®{^) is a Baire space. In particular, the space
© ( ^ ) , being the closure of ©(3>), is Baire.

(4) If & is a non-meager F-filter, then by Lemma 1 (2), the first player has no
winning strategy in the game <5(^", [&>]<a\ &). Applying Lemma 6, we conclude
that the closure of any subset A c ®(&) in ®{&) is a Baire space. The space ®{^)
is thus hereditarily Baire.

(5) Suppose that (bk)keui C B is a sequence of unbounded functions such that
•[ bk <* t &it+i for all k € &> and such that for every b € fi there is & e &> such that
\b <* ^ bk. Let /0 = 0. By induction, construct an increasing number sequence
(h)k€a> € co™ such that for every k € co and every i > lk we have f t>k-\(i) < t ^*(0
(which is equivalent to | | ^ - i | | , < 11̂ *11,)- It follows that for every k < n and every
i >/„ we have | |M; < II^IL-

Given a subset A of w, consider the function fA e Kw defined for i e co by / A ( 0 =
||i* ||i, where Jfc e w is chosen to satisfy the condition max([0, i']n(AU{0})) 6 [lk,h+i).
We claim that /A € ®(B; &) if and only if the set A is finite.

Assuming that A is finite, find k € co such that max(A U {0}) 6 [lk,h+\), and
observe that | /A( j ) | = | |^ | | , < ||fc*+i||,- for all i > lk+l. This yields fA e ®(B;&).

Next, assume that the set A is infinite. To show that fA <£ ®(B;&) it suffices
for every b e B to find m € co such that | | /AI| , > \\b\\t for all i > m. Given
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arbitrary b € B, find p 6 co such that \ b <* f bp. Next, find q > p such that
Afl [ ! , , J,+1) ^ 0 and f &(0 < t M O for all i > lq. Given arbitrary i > /,+1, find
k <= co such that max([0, i] f l (AU {0}) € [/*, Z*+i), and observe that k > q > p and

II/AII.- > I/A(01 = 116*11/ > IIMi ^ 11*11.--
Now consider the map ^ : £?(a>) —> Kw assigning to each subset A c w the

function fA. It is easy to see that the map * is continuous. We have already proved
that * ( ^ ( w ) ) n ®(B;&) = *([<w]<<u), and thus *([<y]<a>) is a countable closed
subset of ®(B;&) because the set *(^(o>)) is compact. It remains to observe
that the space *([<y]<w) has no isolated points and that V([co]<a>) is thus a closed
meager subspace of © ( 5 ; &). This implies that the space ®(B; &) is not hereditarily
Baire. •

PROOF OF THEOREM 6. The implications (1) implies (5), (1) implies (4), (4) im-
plies (3), and (3) implies (2) are trivial.

Though the implication (2) implies (1) follows from Theorem 1 (1) we give a short
proof to make the paper self-contained. So, suppose that B is a II-bounded subset
of W" and let $ : J^(0)<a> -» [Ra>]<a< be a winning strategy of the second player in
the game OF on the set B. For every n <= co, let Un = {x € K" : ||^||n < 1}.

Our crucial observation is that

be U p | $(£/„„..., Unt,Um) + Um

for every b e B. Indeed, assuming that this is false, we can construct by induction an
infinite sequence (nk)keat e of such that b $ $(£/„ , , . . . , Unt) + Unk for every k € co.
Then b £ U*€w ̂ (Uni,..., Unk) + Unt, which shows that the strategy $ is not winning,
a contradiction. Hence B is contained in the set

(J f]$(Uni,...,Unt,Um)

which is the countable union of the bounded subsets f]meQJ $(£/„, , . . . , £ / „ , , Um) + Um

of Or for ( n i , . . . , « t) 6<w<a).
(5) implies (1): Assume that a set B C Kw is o^-bounded for some meager semi-

filter &. By Theorem 2, B c ®(b; <p[J?]) for some b e of and some finite-to-one
function <p e of. The cr -boundedness of the set ®{b\<p[^\) will therefore follow
from Theorem 4 (4) as soon as we prove that the semi-filter <p[^] is meager.

By Proposition 3, the semi-filter #, being meager, lies in a cr-compact subset
X C M w . Consider the map 9>(<p) : &>{co) -+ &>{OJ) defined by &(<p){A) = <p(A)
for A € &>(co). Since ^ is finite-to-one, ^>((p)([co]u>) c M m . The continuity of &>(<p)
implies that the set _5f = {(p(F) : F e &\ is a-compact in [co]w. Finally, observe that

C f.S? = {£ C co : 3L e i f with L C £}
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and that the set \J£ is a -compact in [cof. Applying Proposition 3 to the semi-filter
], we conclude that it is meager. •

PROOF OF THEOREM 7. (1) Suppose that B c Kw is o^-bounded for some filter^".
Applying Theorem 2, find a function b e of and a finite-to-one function <p : co —> co
such that B c ®{b; cp[^]). Since <p[^] is a filter, we can apply Theorem 4 (1) to
conclude that the set ®(b\(p[&]) is /^ j -bounded and hence /^-bounded, and that
the subset B c ®{b\(p[^}) is therefore also /^-bounded.

(2) Suppose that ^ , ...,&„ are filters and ft e of. According to Lemmas 2-3,
to prove that the union U = ®(b; &x) U • • • U ®(b; J?n) is I[a>r-bounded, it suffices
to verify that the first player has no winning strategy in the game LH|ffl]» on U. To
show this we shall use the argument from the proof of Theorem 2.12 of [17]. Suppose
that the first player has a winning strategy $ : co<a> —> co in the game LH[a)]» on U.
Without loss of generality, we can assume that n > 2, that the function b is increasing
and takes positive integer values, and that the strategy $ is monotone in the sense
that $(m0, • • •, mk) > mk for any finite sequence (m0, . • •, mk) e co<a. To beat the
strategy $ of I, the second player will simultaneously play (3n + 1) games, and will
win in one of these games.

For every p e { 0 , . . . , 3n}, define a number sequence (mpj)jea) by letting

mo,o = b o $(0),

mp+ij = bo $(mp,o, • • •, mpj) for p < 3n, and

mo,j+i =bo $(/n3 n ,0 , . . . , m3nJ) for j e co.

The sequence (mpj)jeio will be interpreted as the moves of the second player in the
pth game.

It follows from our assumption on b and $ that

mo,o < ffii.o < • • • < m3nfi < mo,i < mul < • • • < m3nA < mo,2 < • • • .

Let M3n = \JJeJ
m3nj, mOj+i) and Mp = \J^Jmp,j, mp+hJ) for 0 < p < 3n.

Since Mo U • • • U M3n = co for every i e {1, . . . , n) there is a number p(i) e
{0 , . . . , 3n} such that \Mp(i) D F\ = oo for each F € ^",. It follows by an elemen-
tary combinatorial argument that there is a number p e { 1 , . . . , 3w — 1} such that
I/7 ~ P(OI > 1 for every i e { 1 , . . . , n).

We claim that the moves (mpj)j€w of the second player beat the strategy $ of I in
the game LH[a)1«. on U. Let nk+\ = $ (m p , 0 , . . . , /np,t) for k > 0. To show that the
strategy $ is not winning, it suffices to find for each x e U an infinite subset / c w
such that 11*11,,, < mpk for all k e J2*'.

Given arbitrary x e U, find i 6 { 1 , . . . , n} such that x 6 ®(b; &{). Next, find an
element F, 6 ^ such that ||JC||; < b(j) for all j e Ft. It follows from the choice of
the number p that the set J^ = [k e co : F, D [mp+ik-\, mp_1A:) ^ 0} is infinite.
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W e c l a i m t h a t \ \ x \ \ n t < m P i k f o r e a c h k € J ? . I n d e e d , g i v e n a n y k e y , find a
number j € Ft D [mp+ltk-i, mp_lik). Note that

nk = $(mPi0, • • •, tnpk^i) < b o $ (m P i 0 , . . . , mpk-i) = "if+i,*-i.

Then

IWL < II*L,+U-, < 11*11; < b(j) < b(mp.lk)
<bo$(mp-uo,...,mp-uk)=mp,k. •

PROOF OF PROPOSITION 1. (1) To see that ®([co]a>) is a dense G«-subset of Rw,
notice that IR" \ ©([©]") = Un£w Mn, where the sets Mn, defined by Mn = {* € W° :
I* (01 > ' for all j > n) for all n e co, are closed nowhere dense subsets of W°.

(2) Theorem 2 implies that the set ®([co]w) is o[a)]*-bounded and hence o-bounded.
(3) The set ®([cu]m), being a dense G^-subset of W", is not a-bounded, because

a -bounded subsets of Kw are meager. By Theorem 1 (2), I-bounded analytic subsets
of IR"" are cr-bounded. Consequently, ®([co]'°), being analytic and not <7-bounded, is
not I-bounded in W.

(4) Assuming that ©([a)]1") is ojr-bounded for some filter &, and applying Theo-
rem 7, we conclude that ©([0;]") is /^-bounded and thus /-bounded, which contradicts
the previous item.

(5) If B is a a -bounded subset of W°, then the product B x ©([&>]'") is o-bounded
in Ra x IR", by [11, Theorem 2.7] or Theorem 9 (2) applied to the near coherent
semi-filters [co\u> and 3V• Next, suppose that the product B x ®([co]a) is o-bounded
for some subset B c W°. Let * : W° x W° -» Rw be the isomorphism mapping a
pair of sequences ((*,•), (y,)) e IR" x IRffl onto the sequence (z,) such that 22i = *; and
22i+1 = y, for i e co. Then the image * ( f i x ®([o/T)) is o-bounded in IR". Applying
Theorem 2, we conclude that the set *I>(5 x ©([o>]0')) is o[a>]»-bounded and lies in
© ( / ; [&>]'") for some increasing function / 6 of. Consider the increasing functions
g,h : co -» (o defined by g(i) = f(2i + 2) and h(i) — g(g(i) + 1) for 1 e co.

The <r-boundedness of B will follow as soon as we prove that \b <* h for any
b e B. Assuming that this is false, we would find a function b € B and an infinite
subset N c co such that ||fc||n > h(n) = g(g{n) + 1) for every n e N. Without loss
of generality we can assume that TV D [n, g(n)] = {n} for any n e N. Let {nk}kew

be the increasing enumeration of the set N. Consider the function c e of defined
by c(i) = min (g(N) n [i — 1, 00)) and observe that c € ®([co]w). Let us show that
max{||i||j, ||c||,} > g(i) for any i > n0. Indeed, given arbitrary i > n0, find a unique
number k such that nk < i < nk+l. The choice of the set N implies that g(nk) <
Iff < g(nk) + 1, then

max{||fc||,-, Hell,-} > ll̂ ll,- > \\b\U > g(g(nk) + 1) > g(i),
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while if i > g{nk) + 1, then

||c||,} > ||c||,- = ming(JV) n [i - 1, oo)

> ming(N) n (g(/it), oo) = g(nk+l) > g(i).

Consider the function a = ty(b, c), and note that

a e V(B x ©([wf) c © ( / ; [cof).

On the other hand, given any k > 2n0, find the smallest / e o> with 2i > k, and observe
that i > n0 and hence ||a||* > max{||Z>||,, ||c||,} > g(i) = f(2i + 2) > / ( * ) . Now
the inequality / <* f a contradicts the fact that a e ©(/ , [co]w). This contradiction
completes the proof of the cr-boundedness of B. •

PROOF OF THEOREM 9. We shall prove the implications (1) implies (2) implies (3)
implies (4) implies (5) implies (6) implies (1), (1) implies (7) implies (8) implies (1),
and (1) implies (9) implies (4). In fact, the implications (7) implies (8) and (2) implies
(3) implies (4) are trivial. To see (4) implies (5) note that ©(J^) + • • • + ® ( ^ J
is the image of ©(j^) x • • • x ®(&n) under the continuous group homomorphism
h : (W)n -+ R"\ h : (xu ..., xn) t-+ x{ H \-xn, and use a result of [10] asserting
that o-bounded groups are preserved by homomorphic images.

(1) implies (2): Assume that the (semi-)filters &\,..., &n are near coherent, and
let b G of be an increasing function. Using the near coherence of the semi-filters
&\,..., J?n, find an increasing sequence (mk)kew such that m0 = 0 and such that for
any F, € J^,, for 1 < i < n, the set

J(FX, ...,Fn) = {kea): [mk, mk+2) n F,> ^ 0 for all i < n}

is non-empty. Consider the (semi-)filter

& = I F C (o : [ J [nmk, nmk+l) c F for some Fx e &x,... ,Fn e &n\.
I t€^(F, F.) J

Next, define the function / : a> ->• a> by / : j h->- b(mk+2), where i; is chosen to satisfy
the condition _/ 6 [n/nt, nmk+\).

Consider the linear isomorphism * : W ->• R" assigning to an n-tuple of functions
(xu ..., xn) € Kw the function y = * (*! , . . . , xn) defined by y(nq + i) = xi+l(q) for
all <7 e a) and 0 < i < n. We claim that *(®(6; ^ i ) x • • • x ®(b; &„)) C © ( / ; &).
Take any functions x, e ©(fc; ^ , ) for 1 < i < «, and let y = ^(xu . . . , xn). For
every /, find Ft e J5"/ such that ||JC,- ||; < \\b\\j for all j e Ft, and let

F= [J [nmk,nmk+i) e
F.)
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We claim that \\y\\j < \\f\\j for all j G F . We have to verify that \y(p)\ < \\f\\j for

every p < j . Write p = nq + i, where q G o> and 0 < i < n. Next, find k G a> such

that j e [nmk, nmk+i). Since p < 7, we have q < mk. Because k G <?{F\,..., Fn) ,

there is a point g ' G F , + 1 D [m t , m t + 2 ) . Then q < mk < q' < mk+2 and

\y(p)\ = \xi+x(q)\ < \\xi+l\\q. < \\b\\q, = b(q') < b(mk+2) = r

Thus y G ®(/;^") and *(n"=i ®(&;^/)) C ® ( / ; ^ ) . By Theorem 2, the
set ® ( / ; ^ ) is ojr-bounded in R10. Since * is a group isomorphism, the product

?; ^"0 x • • • x ®(b; &„) and its subset ®(B,; «^) x • • • x ®(fin; ^ n ) are therefore
?-bounded in Kw.
(6) implies (1): Assume that ®(^)H \-®{&n) ^ Kw. First we show that the set

•+®(^n) is absolutely symmetric in IRM. Fixany^: G ®(^"i)+-
and any y e 1° with ^ y < f x. Write A; = X\ + • • • + xn, where J:, G
i < n. Then \y\ < \y < fx < f xt + • • • + \ xn, and we can find functions
yi, . . . , yn G Kw such that y = y{ + • • • + yn and |y,| < \xt for all i < n. By
the absolute symmetry of the sets ®(^,), we have y, G ®(^,) for all /, and thus
y = y\ + • • • + yn ^ ®(«^"i) + • • • + ®{&n)-

Fix any / ^ ®(^"i) + • • • + ®(^«). Because the set ®(^i) + • • • + ®(^n) is
absolutely symmetric, we can assume that / = f / and that / is thus a positive
non-decreasing function. Let m0 = 0 and mk+i = f(mk) + I for k € a>. We claim that
for any sets Ft e &\,..., Fn G #„, there is a it G <w such that [mk, mk+2) H F, ^ 0
for all i < n. Without loss of generality, 0 ^ F, for all / < n.

For every 1 < 1 < n, consider the function xt = idf. — 1 e ® ( ^ ) , by which
notation we mean the function xt: j h-> min(F, n [_/, 00)) — 1. Then the function
y = xi + - • -+xn belongs to ®(^"i) + - • • + ®{&n). As / ^ ®(^"i) + - • - + ®(^n), we
conclude that f y(y) < t f(j) for some j e 00. Find /c G 10 such that 7 G [mk, mk+i).
Then for any 1 < / < n, we have

min(F, n [j, 00)) - 1 = Xi(j) < t y(j) < t / ( ; )

= fU) < f(mk+i) = mk+2 - 1.

Hence minC/̂  D [mk, oo)) < min(^ D [j, oo)) < mt+2 and Ft n [/nt, mi+2) ^ 0 for
all 1 < i < n. This means that the semi-filters &u ..., &n are near coherent.

(1) implies (7): Assume that &\,..., &n are near coherent filters, and fix an
increasing number sequence (mk) such that for any F\ G &\,..., Fn G J?n there is a
£ G a; such that [mk, mk+2) n F, ^ 0 for every i < n. For every permutation a of the
set {1, . . . ,«} and elements F, G ^ , for i < n, let

• • • > Pn with pi G [mk, mk+2) n FCT(0 for 1 < i < n},
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and also let &a — {Ka(Fam,..., Fa(n)) : F, e Ĵ ",- for 1 < i < n}. It is easy to see
that for some permutation o of {1,.. . ,«} the collection &„ is centered, and hence
can be completed to a filter &. (A collection &/ is centered if D1^ ^ 0 for any finite
subcollection ¥? C si/).

We shall show that the set ®(b; &am,..., &aW) is o^-bounded for this permuta-
tion a and for any function b e R0*. To do this, fix any increasing function / : co -> co
such that f(mk) > \\b\\mM. We claim that ®(b; &am,..., $a(n)) C © ( / ; &).

Fix any function x e ®(b; &a(\), • • •, &„&))• Let xn = x, and find by induction,

for every i e [n, n — 1 , . . . , 2}, a function *,-_i G ©(ft; ^ d ) , . . . , ^ ( , - - i ) ) and an

element Fa(i) e ^ ( o such that ||x, | | ; < |JJC,_I | | ; for every j e FCT(i). Finally, find a set

^V(i) <= ̂ 7(i) such that llx,!!^ < ||6II; for every j e FaW.

We claim that ||jc||mt < f(mk) for every mk e Ka(Fa(l),..., Fff(n)) 6 &. Indeed,

given such an mk, we can find numbers pi > • • • > pn such that pt e [mk, mk+2) n Fa(i)

for every 1 < i < n. Then

< \\b\\Pl < \\b\\mt+2 < f(mk),

and thus x e ©(/, &). By Theorem 2, the set ©(&; &am,..., &a(n)), being a subset
of ©(/ ; &), is o^-bounded.

(8) implies (1): Assume that ©(J^d) , . . . , ^aw) ^ ^w for some permutation a
of {1 , . . . , n}. We have to show that the semi-filters &x,...&n are near coherent.
Without loss of generality, assume that a(i) ~ i for every i.

Fix any function / i ®{&\, ..., &n). Since the set ©( J^ , . . . , &n) is absolutely
symmetric, we can assume that / is increasing and takes positive integer values.
Let m0 — 0 and mk+i = f(mk) + 2 for k > 0. The near coherence of the filters
&x , . . . , # „ will follow as soon as we show that for any Fx e ^ , . . . , Fn e &n there
is a number k € o> such that [mk, mk+2) n F, 5̂  0 for every i < n.

Consider the sequence of increasing functions gQ, ..., gn e Rw, where go(j) = j
and gt(j) = -l/n + min Fn n [g,-i(j), 00) for j 6 w. It is easy to see that
gi e ®(&u ..., &i) for every / < n. It follows from / £ ®{&u ...,&„) 3 gn

that gn(j) < f(j) for some j e co. For this number j , find a unique k such that
j e [mk,mk+i).

It follows from the definition of the number gn(j) < f{j) that there is a number
]a e Fn such that gn-i(j) < in < /(; ') + l/n. Similarly, for the function gn_{

there is a number ;„_, € Fn_i such that gn-i(j) < jn-i < in + l/n < /(; ') + 2/n.
Proceeding in this way, for every i e {n, n — 1, . . . , 1} we find a number jt e F, such
thatg^ij) < ji < f(j) + (n-i + l)/n. Then

mk< j = go(i) < ji,...,jn< fU) + I < f(mk+i) + I < mk+2,

and thus each set Ft, for ! < / ' < « , meets the half-interval [mk, mk+2).
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(1) implies (9): If the filters &\,..., &n are near coherent, then the product
©G^"i) x • • • x ®{&n) is o^-bounded in (W)n for some filter &, by the implication
(1) implies (2). Hence the image ®(^i) + • • • + ®(&n) D ®{&{) U • • • U ®(&n)
of this product under the continuous homomorphism h : (Kw)" ->• Rw defined by
h : (xu ..., xn) i-> Xi + • • • + xn is also o^-bounded in Rw.

(9) implies (4): Assume that the union ®(&x) U • • • U ®(&n) is o?-bounded from
some filter &. Then the sets ®(<^i),..., ®(&n) are o^-bounded in Kw, and hence
their product ®(&\) x • • • x ®(^n) is o-bounded, according to the implication (1)
implies (2) of Theorem 9 applied to n copies of the filter &. •

PROOF OF PROPOSITION 2. Given an o-bounded mixable subset X c lw, find a non-
decreasing function / : [0, oo) -> [0, oo) such that for any x, y e X there is a z € X
such that f o f z >* max{t;c, fy}. Replacing f(t) by ma.x{f(t),t} if necessary,
we can assume that f(t) > t for all t e [0, oo). Let fl = / , and by recursion let
/"+ 1 = / o / " for n > 1. Take any increasing function g : [0, oo) —> [0, oo) such that
g >* / " for all /i > 1. Then by induction it can be shown that for any x\,..., xn e X
there is a z e X such that g o t z >* max{t xu ..., •f xn}.

Using the o-boundedness of the set X and Theorem 2, find a non-decreasing
function b e W such that X c ®(b; [co]™). For each x e X, let Fx — {n e co :
tx(n) < g ob(n)}, and consider the collection ^ = [Fx : JC e X}. We claim that
this collection is centered. Indeed, assuming the converse to hold, we would find
points xu ..., xn e X such that FXl n • • • D FXn = 0. The last equality implies that
maxft-Xi,..., t-**} > g°b- It follows from the choice of the function g that there is an
element z € X such that go f z >* max(t *i, • • •, 't xn] > g ob. Taking into account
that the map g is increasing, we get f z >* b, which contradicts z e ®(b; [a>]w).

Therefore the collection ^ is centered, and can be completed to a filter & D ^.
Then X c ®(g o b; <&) C ®(g o b; &), and by Theorem 2, X is o^-bounded. •
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