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The current practice of identifying defects in microscopy images and deriving metrics such as 
dislocation density and precipitates/voids diameter remains largely in the purview of human analysis. 
The lack of automated defect analysis for statistically meaningful quantification of a variety types of 
crystallographic defects is causing an increasingly large bottleneck for rational alloy design. The first 
and most important step of automating defect analysis is perceptual defect identification. In terms of 
digital image processing, semantic segmentation best emulates human recognition of defect features – it 
tells what defects are in an image and where they are located. In this work, we developed a novel deep 
convolutional neural network (CNN) model, called DefectNet, for robust and automated semantic 
segmentation of three crystallographic defects including line dislocations, precipitates, and voids 
commonly observed in structural metals and alloys [1]. Defect semantic segmentation in TEM 
micrographs is a challenging deep learning task due to the nature of the image itself. Unlike everyday 
photographs, the interpretation of image contrast in TEM micrographs is usually not straightforward; 
multiple contrast mechanisms often contribute to the observation of defect features. Here, we aim at 
resolving this image-induced challenge by optimizing the image quality. In previous work, we 
established an experimental protocol for a diffraction contrast imaging scanning transmission electron 
microscopy (DCI STEM) technique and tailored it specifically for imaging defects in popular iron-based 
structural alloys [2]. Thus, the DefectNet was trained on a small set of high-quality DCI STEM defect 
images obtained from HT-9 martensitic steels. The performance of the resulting model for each defect 
was assessed quantitatively by standard semantic segmentation evaluation metrics, and the resulting 
defect density and size measurements compared to that from a group of human experts.  
 
Figure 1 presents the DefectNet semantic segmentation predictions for the development and test sets of 
the three crystallographic defects. Compared to the ground truth label, the deep learning predicted defect 
maps show excellent resemblance. In the comparison maps color-coded by the confusion matrix at the 
pixel level, we can see that the majority of pixels in the prediction map are in black and turquoise and 
thus correctly classified as the background and the corresponding defect. Table 1 summarizes the 
semantic segmentation performance of the DefectNet on the test sets. The current DefectNet was trained 
over a limited number of labeled DCI STEM images, but it has achieved an excellent prediction 
performance on the test sets, with an overall averaged pixel accuracy of 94.61±1.13%, precision of 
72.12±2.73%, recall of 79.22±3.27%, and region intersection over union (IU) of 61.79±2.13%, 
comparable to state-of-the-art deep learning semantic segmentation algorithm. The success and source 
of error in DCNN prediction was analyzed for each defect features in terms of the feature representation 
and quality, and the design of deep CNN architecture. Compared with the defect quantification results 
produced by human experts, computer-based defect analysis is overall more accurate, reproducible, and 
at least two orders of magnitude more efficient.  
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Figure 1.  Pixelwise DefectNet semantic segmentation prediction of line dislocations, precipitates and 
voids using DCI STEM images. The comparison maps are color-coded based on the confusion matrix 
including True Positive (turquoise), True Negative (black), False Positive (red) and False Negative 
(yellow) at each pixel for both development and test sets. 
 

DefectNet Performance Pixel accuracy Precision Recall IU 

Dislocations 91.60±1.77% 55.37±2.22% 69.10±1.93% 44.34±0.63% 
Precipitates 93.39±1.00% 72.06±4.44% 78.38±2.05% 59.85±2.07% 

Voids 98.85±0.56% 89.17±1.28% 90.17±5.84% 81.19±3.68% 
Defect Overall 94.61±1.13% 72.12±2.73% 79.22±3.27% 61.79±2.13% 

Table 1. Semantic segmentation performance of the DefectNet for the crystallographic defects in steel. 
The number reported here are averaged metrics with standard deviation over test sets.  
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