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Abstract

Objective: Validate a public health model identifying patients at high risk for carbapenem-resistant Enterobacterales (CRE) on admission and
evaluate performance across a healthcare network.

Design: Retrospective case-control studies

Participants: Adults hospitalized with a clinical CRE culture within 3 days of admission (cases) and those hospitalized without a CRE culture
(controls).

Methods: Using public health data from Atlanta, GA (1/1/2016–9/1/2019), we validated a CRE prediction model created in Chicago. We then
closely replicated this model using clinical data from a healthcare network in Atlanta (1/1/2015–12/31/2021) (“Public Health Model”) and
optimized performance by adding variables from the healthcare system (“Healthcare System Model”). We frequency-matched cases and
controls based on year and facility. We evaluated model performance in validation datasets using area under the curve (AUC).

Results: Using public health data, wematched 181 cases to 764,408 controls, and the Chicagomodel performed well (AUC 0.85). Using clinical
data, wematched 91 cases to 384,013 controls. The Public HealthModel included age, prior infection diagnosis, number of andmean length of
stays in acute care hospitalizations (ACH) in the prior year. The final Healthcare System Model added Elixhauser score, antibiotic days of
therapy in prior year, diabetes, admission to the intensive care unit in prior year and removed prior number of ACH. The AUC increased from
0.68 to 0.73.

Conclusions: A CRE risk prediction model using prior healthcare exposures performed well in a geographically distinct area and in an
academic healthcare network. Adding variables from healthcare networks improved model performance.
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Introduction

Infections due to carbapenem-resistant Enterobacterales (CRE) are
difficult to treat and associated with significant morbidity and
mortality.1 Patients can also be colonized with CRE which can lead
to transmission of CRE to other patients, healthcare workers, and
the environment.2 The healthcare environment including hospital
sinks, countertops, and patient equipment can harbor CRE and
increase the risk of healthcare facility outbreaks.3–5

To minimize the risk of healthcare-associated transmission, the
US Centers for Disease Control and Prevention (CDC) recommends
that healthcare facilities have strategies in place to identify patients
with a history of CRE “carriage” (infection or colonization) on
admission.6 Prompt identification allows for initiation of infection
prevention measures including contact isolation and informs
appropriate antibiotic selection if directed therapy is needed.7,8

However, rapid identification of patients with CRE carriage on
admission requires obtaining perirectal cultures, which is labor-
intensive, expensive, and potentially uncomfortable for patients. In a
recent survey of clinicians involved in infection prevention through
the Emerging Infections Network, only 22% reported that their
primary facility performed routine active surveillance for CRE.9

Clinical risk prediction tools are increasingly used to aid in early
detection of patients with multidrug-resistant organisms (MDROs).10
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Risk factors for CRE carriage include prior healthcare exposures
(including recent hospitalizations and intensive care unit [ICU]
admissions), presence of indwelling medical devices, comorbidities
including diabetes, poor functional status, and prior receipt of
antibiotics.10–14 The CDC-funded Chicago Prevention and
Intervention Epicenter previously created a CRE prediction model
using a public health, statewide hospital discharge dataset to identify
patients at high risk for CRE carriage on admission.15 This model
performed well, however, performance of other models has been
variable.16 It is unknown howwell a public health model will perform
when it is applied in a single academic healthcare network. Therefore,
the objectives of our study, were to 1) externally validate the Chicago
Epicenter model using public health surveillance data from Atlanta,
GA and 2) evaluate the performance of a similar model using data
from a single academic healthcare system and determine if including
additional variables could improve the predictivemodel performance.

Methods

Study design, data sources

For both study objectives, because CRE culture is a rare outcome,
we used a retrospective case-control study design to create a
predictive model identifying patients at high risk for having a
clinical CRE culture on admission.

External validation of the Chicago Epicenter Model
We used public health surveillance data from the CDC-funded
Georgia Emerging Infections Program (EIP) to identify cases from
1/1/2016 to 9/1/2019. Georgia EIP performs active, population-
and laboratory-based surveillance of CRE in the 8 counties of
Georgia Health District 3 in metropolitan Atlanta, GA. CRE cases
are identified by routine queries of laboratory automated testing
instruments for carbapenem-resistant Escherichia coli, Klebsiella
pneumoniae,Klebsiella oxytoca,Klebsiella aerogenes, and Enterobacter
cloacae isolated from a sterile site or urine clinical culture.17 We
identified controls from theGeorgiaHospitalDischarge datasetwhich
is a public health dataset that includes administrative data for all acute
care hospitals (ACH) and long-term acute care hospitals (LTACH)
encounters in Georgia.

Evaluation of Healthcare System Model
We used electronic health record (EHR) data and identified cases
and controls from 1/1/2015–12/31/2021 from four hospitals in a
single academic healthcare network in Atlanta, Georgia. Hospital
A is a 605-bed hybrid academic–community, tertiary-care hospital.
Hospital B is a 751-bed academic quaternary-care hospital that
performs solid organ and hematopoietic stem cell transplantation.
Hospitals C and D are 410-bed and 167-bed community hospitals,
respectively. In 2023, these hospitals had over 76,000 acute care
admissions combined. None of these hospitals perform routine
surveillance screening for CRE.

Case and control definitions

For both study objectives, we defined cases as ACH encounters for
adults (≥18 years) who had CRE identified from a clinical culture
within the first three days of admission. Only the first qualifying
encounter per patient was included. We defined CRE as growth of
E. coli, K. pneumoniae, K. oxytoca, K. aerogenes, or E. cloacae
resistant to meropenem, doripenem, or imipenem (MIC≥ 4 μg/
mL). For the external validation analysis, since EIP performs
surveillance in all healthcare settings (not only ACHs) we also

included individuals with CRE identified within 90 days prior to an
ACH encounter as a case, assuming these patients would still be
colonized with CRE on admission. For the external validation
analysis, we only had data on CRE cultures from normally sterile
sites or urine. For the evaluation of the healthcare system model,
we included clinical cultures from all body sites.

Controls were defined as ACH encounters for adults during the
same period who did not have CRE identified. We also excluded
from controls any patient who had a CRE culture at any time
during our study period. Patients with known CRE are usually
empirically isolated on hospital admission and would not be
representative controls. We frequency matched cases and controls
based on year of admission and healthcare facility. This allowed us
to control for potential confounding from temporal changes in
CRE prevalence, variation in the geographic distribution and any
facility-specific factors.

Statistical analysis and model development

For each study objective, we first used descriptive statistics
to characterize cases and controls based on demographics,
comorbidities, and key prior healthcare exposure variables using
unadjusted logistic regression. For each multivariable model, we
split the data into training (80%) and validation (20%) datasets.We
report adjusted odds ratios (OR) from the training datasets and
explore the impact of each predictor variable by standardizing the
model coefficients using a common scale and ranking them. We
evaluated model goodness of fit using Akaike Information
Criterion (AIC) in the training dataset and model performance
using Area Under the Curve (AUC) in both the training and
validation datasets.

External validation of the Chicago Epicenter Model
We replicated the Chicago Epicenter model using the available
independent risk factors identified in their model including age,
number of encounters in ACHs in the prior 365 days, mean length
of stay in ACHs in the prior 365 days, number of encounters in
LTACHs in prior 365 days, mean length of stay in LTACHs in the
prior 365 days, and prior hospital admissions with an infection
diagnosis in the prior 365 days. We used the Georgia Hospital
Discharge dataset to identify the number and length of ACH and
LTACH encounters within the state in the prior 365 days. Since our
aim was to create a model for admissions solely to ACHs, we
excluded the variable referring to current admission at an LTACH
which was used in the original Chicago Epicenters model. To
determine the prior infection diagnosis, we used a validated list of
infection diagnosis codes (ICD-9 and ICD-10) that were previously
demonstrated to be a surrogate for antibiotic exposure, provided to us
by the Chicago Epicenters group.15 Variable selection techniques
were not employed as we aimed to validate the original Chicago
Epicenters model.

Evaluation of healthcare system model
We first created a “Public Health Model” which included the
variables from the Chicago Epicenters model that were available to
us using data from a single academic healthcare network. These
included age, number of encounters in ACHs in the prior 365 days,
mean length of stay in ACHs in the prior 365 days, and prior
hospital admissions with an infection diagnosis in the prior 365
days. Variables related to prior ACH encounters only included data
from encounters within the same academic healthcare network.
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We did not have data on prior LTACH admissions, so these
variables were excluded.

Next, we created a “Healthcare System Model” to evaluate if
adding other variables known to be risk factors for CRE would
improve the model performance.10–13,15 Candidate variables
included admission to an ICU in the prior 365 days, malignancy,
Elixhauser score, total antibiotics days of therapy (DOT) in the
prior 365 days, beta-lactam antibiotic DOT in the prior 365 days
and diabetes. The weighted Elixhauser score was calculated using
the “Comorbidity” package and “Elixhauser Score” option in R
Studio. ICD-9 billing codes were used prior to 2016 and ICD-10
codes were used after this. Malignancy was defined as any patient
meeting the metastatic cancer or solid tumor criteria of the
Elixhauser score, and diabetes was defined as any patient meeting
the uncomplicated or complicated diabetes definition in the
Elixhauser score. The same list of infection diagnosis codes used in
the validation analysis were used to determine the prior infection
variable. The antibiotic DOT variables were log-transformed to
account for skewness. All variables in the full model were checked
for collinearity based on the variance inflation factor which was less
than 3, indicating minimal multicollinearity. For variable selection,
we used Best Subset logistic regression (“bestglm” package in R
Studio) which is a technique that evaluates all possible
combinations of predictor variables and identifies the best
combination based on the AIC. The approach allows for assessing
the relative importance of variables and their joint predictive
power. ORs were estimated using penalized logistic regression to
account for the rare outcome.

IRB approval

The Emory University Institutional Review Board approved this
study with a waiver of the patients’ informed consent as all data was
collected retrospectively.

Results

External validation of the Chicago Epicenter Model

Using the Georgia EIP data, we identified 181 CRE cases that were
frequency matched to 764,408 controls. Cases were more likely to
be older and Black (Supplemental Table 1). Nearly two-thirds of
cases had a prior infection diagnosis as compared to a quarter of
controls (OR 5.9, 95% CI 4.3–8.0). Cases had an increased number
of ACH (OR 1.1; 95% CI 1.07–1.12) and LTACH (OR 5.4, 95% CI
4.3–6.8) admissions in the prior year and longer mean lengths of
stay (SD) in these respective facilities (11.4 [13.4] vs 2.4 [4.8] days
in ACH and 5.7 [15.1] vs 0.2 [2.9] days for LTACH) compared to
controls (Supplemental Table 1).

In the training dataset for the multivariable model, we included
145 cases and 611,527 controls. Nearly all the independent risk
factors identified in the Chicago Epicenters model were also
significantly associated with CRE in Georgia (Table 1). Prior
infection diagnosis (adjusted OR [aOR] 3.6, 95% CI 2.5–5.3),
age 65–79 years (aOR 2.5, 95% CI 1.6–3.9) and mean length of
stay in prior ACH encounters (aOR 1.03, 95% CI 1.02–1.03)
were the three most impactful variables in the model based on
standardized ranking of coefficients. The model performed well
with an AUC of 0.80 (95% CI 0.77–0.84) in the training dataset
and an AUC of 0.85 (95% CI 0.79-0.91) in the validation dataset
(Table 1).

Evaluation of healthcare system model

Using data from a single academic healthcare network, we
identified 91 cases that were frequency matched to 384,013
controls. Cases and control were similar in terms of race and sex
(Table 2). In the unadjusted analysis, individuals requiring ICU
admission in the prior year (OR 8.1, 95% CI 5.0–13.0) and those
with a prior infection diagnosis (OR 8.1, 95% CI 5.4–12.2) were
8 times more likely to have a clinical CRE culture on admission.
Other significant variables included age (OR 1.02, 95% CI 1.01-
1.03), number of encounters in ACHs in the prior year (OR 1.1,
95% CI 1.1–1.2), mean length of stay in the prior ACH
encounters (OR 1.03, 95% CI 1.02–1.04), malignancy (OR 3.0,
95% CI 1.7–5.4), Elixhauser score (OR 1.05, 95% CI 1.04–1.07),
diabetes (OR 2.2, 95% CI 1.4–3.3), antibiotic DOT (OR 1.8, 95%
CI 1.6–2.0) and beta-lactam antibiotic DOT (OR 2.2, 95% CI
1.9–2.5) (Table 2).

In the multivariable analysis, we included 73 cases and 307,211
controls in the training dataset. In the “Public Health Model,”
designed to be similar to the Chicago Epicenter model, all variables
remained independently associated with clinical CRE culture. The
AUC for this model was 0.80 (95% CI 0.75–0.85) in the training
dataset and 0.68 (95% CI 0.53–0.83) in the validation dataset
(Table 3 and Figure 1).

To improve the Public HealthModel, we created the Healthcare
SystemModel where additional variables were eligible for model
inclusion. The final most parsimonious model for predicting
clinical CRE culture on admission included the following
variables, ranked by order of importance: Elixhauser score,
antibiotic DOT in prior year, prior infection diagnosis, diabetes,
age, admission to the ICU in the prior year, and mean length of
stay in ACH encounters in the prior year (Table 3). The AUC of
this model was 0.86 (95% CI 0.82–0.91) using the training
dataset and 0.73 (95% CI 0.60–0.87) using the validation dataset
(Table 3, Figure 1).

Table 1. Validation of the Chicago Epicenter model predicting Carbapenem-
Resistant Enterobacterales carriage using Georgia public health data

aORa 95% CI Rank

Prior infection diagnosisb 3.6 2.5 5.3 1

Age: 65-79 vs 18–49 years 2.5 1.6 3.9 2

Mean LOS (days) in prior acute care
hospitalizationsb

1.03 1.02 1.03 3

Age:≥ 80 vs 18–49 years 1.5 0.8 2.7 4

Prior no. acute care hospitalizationsb 1.05 1.00 1.10 5

Age: 50–64 vs 18–49 Years 1.2 0.8 2.0 6

Prior no. LTACH admissionsb 2.8 2.0 3.9 7

Mean LOS (days) in prior LTACH admissionsb 1.0 1.0 1.0 8

Training Model AIC 2502.8

Training Model AUC (95% CI) 0.80 (0.77, 0.84)

Validation Model AUC (95% CI) 0.85 (0.79, 0.91)

Abbreviations: Adjusted odds ratio (aOR); Akaike Information Criterion (AIC); Area Under the
Curve (AUC); Confidence Interval (CI); Long-Term Acute Care Hospitalizations (LTACH); Length
of Stay (LOS).
aAdjusted odds ratios and 95% confidence intervals were estimated using the training dataset
(145 cases; 611,527 controls).
bIn prior 365 calendar days.
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Discussion

Here we demonstrated that a model developed using public health
data from Chicago, IL performed reasonably well at identifying
patients at high risk for having a clinical CRE culture on admission
when applied to public health data from a geographically distinct
area and to clinical data from a single academic healthcare network.
Applying the model to an academic healthcare network and adding
commonly available variables in the EHR improved the model
performance. All covariates included in the final multivariable model

(Elixhauser score, antibiotic DOT in the prior year, infection in the
prior year, diabetes, age, ICU admission in the prior year, and mean
length of stay in ACH encounters in the prior year) were
independently associated with clinical CRE culture. The original
Chicago Epicenter model focused on capturing patients’ prior
healthcare exposures, particularly those related to infection and
antibiotic use. These variables were also found to be associated with
CRE when the model was applied to Georgia. This is consistent with
prior literature demonstrating healthcare exposures are important

Table 2. Key characteristics and univariable associations using data from an academic healthcare network

Cases (N= 91) Controls (N= 384,013) Unadjusted OR 95% CI

Age, median (IQR) 67 (58-75) 60 (44-72) 1.02 1.01 1.03

Male sex 50 (55) 170,848 (45) 1.5 1.0 2.3

Race and ethnicity

Non-Hispanic Black 35 (39) 145,779 (38) 1.2 0.7 1.9

Non-Hispanic White 33 (36) 160,953 (42) Ref

Othera 23 (25) 77,281 (20) 1.5 0.9 2.5

Prior no. acute care hospitalizations, median (IQR)b 1 (0-3) 0 (0-1) 1.1 1.1 1.2

Mean LOS (days) in acute care hospitalizations, mean (SD)b 10.5 (12.8) 2.5 (5.5) 1.03 1.02 1.04

Previous admission to ICUb 23 (25) 15,426 (4) 8.1 5.0 13.0

Malignancy 13 (14) 20,125 (5) 3.0 1.7 5.4

Prior infection diagnosisb 44 (48) 39,747 (10) 8.1 5.4 12.2

Diabetes 38 (42) 94,616 (25) 2.2 1.4 3.3

Previous antibiotic DOT, median (IQR)b 14 (0-38) 0 (0-0) 1.8 1.6 2.0

Previous beta-lactam DOT, median (IQR)b 1 (0-16) 0 (0-0) 2.2 1.9 2.5

Elixhauser score, median (IQR) 23 (11-34) 10 (0-20) 1.05 1.04 1.07

Abbreviations: Days of Therapy (DOT); Intensive Care Unit (ICU); Inter Quartile Range (IQR); Standard Deviation (SD).
Values are number (%) unless otherwise stated. Data includes all cases and controls.
aOther race and ethnicity includes: Hispanic (3%); Asian, Native Hawaiian or Other Pacific Islander, American Indian or Alaskan Native, Multiple Race (4%); and Unknowns (14%).
bIn the prior 365 calendar days.

Table 3. Comparison of multivariable models predicting carbapenem-resistant Enterobacterales carriage using data from an academic healthcare network

Public Health Model Healthcare System Model

aORa 95% CI Rank aORa 95% CI Rank

Prior infection diagnosisb 6.3 4.0 10.1 1 3.0 1.8 5.0 3

Age 1.02 1.01 1.03 2 1.01 1.00 1.03 5

Prior no. acute care hospitalizationsb 1.2 1.1 1.3 3

Mean LOS (days) in acute care hospitalizationsb 1.02 1.01 1.03 4 1.01 1.01 1.03 7

Previous admission to ICUb 2.4 1.4 4.1 6

Elixhauser score 1.04 1.02 1.06 1

Previous antibiotic DOTb 1.4 1.2 1.7 2

Diabetes 1.8 1.2 2.9 4

Training Model AIC 1240.3 1161.8

Training Model AUC (95% CI) 0.80 (0.75, 0.85) 0.86 (0.82, 0.91)

Validation Model AUC (95% CI) 0.68 (0.53, 0.83) 0.73 (0.60, 0.87)

Abbreviations: Adjusted odds ratio (aOR); Akaike Information Criterion (AIC); Area Under the Curve (AUC); Confidence Interval (CI); Length of Stay (LOS); Days of Therapy (DOT); Intensive Care
Unit (ICU).
aAdjusted odds ratios and 95% confidence intervals were estimated using the training dataset (73 cases and 307,211 controls).
bIn prior 365 calendar days.
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predictors of CRE infection.10–14,16 In the final Healthcare System
Model, mean length of stay in ACH encounters and prior diagnosis of
infection were variables originally included in the Chicagomodel that
were retained. However, the most impactful variable in the model
became the Elixhauser score, a marker of individual comorbidity
burden. In this final model, we did not have data on prior LTACH
encounters, and data onpriorACHencounterswas limited to those in
the same healthcare network. These differences may help explain the
change in the relative importance of the predictor variables and why
the number of prior ACH encounters was dropped from the final
Healthcare SystemModel. One hypothesis is that data on prior ACH
and LTACH admissions captures a similar risk for CRE as the
Elixhauser score, representing a patient’s medical complexity.

Identifying which patients have CRE carriage on admission is
an important public health initiative but remains challenging
for hospitals to implement. Our work demonstrates that a model
originally developed by the Chicago Epicenter is broadly
applicable. Tailoring the model to an individual academic
healthcare network using additional data improved model
performance by an increase in AUC of 0.05. However, whether
this increase is clinically meaningful is unknown. Even hospitals
with limited data analytic capabilities could start using the
original public health model to identify patients at high risk for
CRE. To replicate our study, healthcare systems would still
ideally need to have access to a dataset of CRE cases to determine
the model coefficients. Future work is needed to standardize
model coefficients.

As a practical next step, we have integrated the Healthcare
System Model into our EHR. We are prospectively evaluating this
model by running it on all new admissions and testing patients
determined to be at high risk for CRE. In the future, hospitals could
determine their own model thresholds that would trigger

additional actions such as screening for CRE and/or empiric
contact isolation. These thresholds may vary based on the
community prevalence of CRE and the resources or preferences
of healthcare systems. Ideally, this proactive approach would limit
the transmission of CRE within a hospital or healthcare network
and decrease healthcare-associated outbreaks of CRE. Prior work has
shown that predictive models used to identify and screen patients at
high risk for CRE can decrease the incidence of CRE colonization but
have the most impact on public health when also combined with a
statewide registry identifying patients with known CRE.18

This study’s strengths include that we used multiple datasets,
including one that includes population-based surveillance of CRE,
to externally validate a previously created model predicting
patients with clinical CRE cultures. Our study also has limitations.
First, clinical CRE culture is a rare outcome, and so our datasets
had substantially more controls than cases. The large number of
controls could have led to many covariates being identified as
statistically significant and potential overestimation of model fit
statistics, including AUC. This may explain why the AUC in the
external validation of the Chicago model increased in the
validation dataset and the wide confidence intervals observed in
the AUC values. Second, while ideally we would identify all
patients with CRE carriage (infection and colonization), we only
had data from clinical and not surveillance cultures to determine
who had CRE on admission. We therefore could have misclassified
some patients with asymptomatic carriage of CRE as controls.
Third, the evaluation of the Healthcare System model only
included data on prior ACH encounters from the same healthcare
network and we do not have data on how often patients move
between healthcare networks in this region. Lastly, our definition
of CRE did not include patients with isolates only resistant to
ertapenem, which differs from the current CDC surveillance

Figure 1. Receiver Operating Characteristic (ROC) Curves. The ROC curves illustrate the performance of the Healthcare System Model (HSM) (blue line) and Public Health Model
(PHM) (red line). The x-axis represents the false positive rate (1-specificity), while the y-axis represents the true positive rate (sensitivity). Panel A displays the ROC curves using the
training dataset and Panel B displays the ROC curves using the validation datasets. In Panel A, the area under the curve (AUC) for the HSM is 0.86 (95%CI 0.82–0.91), and the AUC for
the PHM is 0.80 (95% CI 0.75–0.85). In Panel B, the AUC for the HSM is 0.73 (95%CI 0.60–0.87) and the AUC for the PHM is 0.68 (95%CI 0.53–0.83). A higher AUC indicates better overall
model performance. Abbreviations: HSM: Healthcare System Model; PHM: Public Health Model; AUC: Area Under the Curve.
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definition, though is more specific for patients with carbapene-
mase-producing CRE, the most concerning CRE.19,20

In conclusion, we demonstrated that prediction models
incorporating variables related to prior healthcare exposures and
individual comorbidity burden can identify patients at high risk for
CRE and are likely broadly applicable across the U.S. These models
can be used to help healthcare facilities identify patients that may
warrant surveillance testing for CRE. Future work is needed to
determine the best strategies for real-time implementation of the
model and to prospectively evaluate model performance when
used in combination with active surveillance testing. The use of
predictive modeling to inform surveillance testing could also be
applied to other MDROs that are public health threats, including
Candida auris or carbapenem-resistant Acinetobacter baumannii.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/ice.2025.7
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