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Abstract

Precision medicine envisages the integration of an individual’s clinical and biological features
obtained from laboratory tests, imaging, high-throughput omics and health records, to drive a
personalised approach to diagnosis and treatment with a higher chance of success. As only up to
half of patients respond to medication prescribed following the current one-size-fits-all treat-
ment strategy, the need for a more personalised approach is evident. One of the routes to
transforming healthcare through precision medicine is pharmacogenomics (PGx). Around 95%
of the population is estimated to carry one or more actionable pharmacogenetic variants and
over 75% of adults over 50 years old are on a prescription with a known PGx association. Whilst
there are compelling examples of pharmacogenomic implementation in clinical practice, the
case for cardiovascular PGx is still evolving. In this review, we shall summarise the current status
of PGx in cardiovascular diseases and look at the key enablers and barriers to PGx implemen-
tation in clinical practice.

Impact statement

Pharmacogenomics, the study of the effect of inherited or acquired genetic variation on
differences in drug response or adverse effects. Around 95% of the population carry one or
more actionable pharmacogenetic variants and over 75% of adults over 50 years old are on a
prescription with a known PGx association. Pharmacogenomic evidence for cardiovascular
drugs is growing along with emerging evidence for efficacy and cost-effectiveness. Successful
pharmacogenomic implementation in healthcare requires strong scientific evidence, compre-
hensive and updated clinical guidelines, clinician champions and stakeholder engagement.

Introduction

An average one-size-fits-all approach is the foundation of the existing general healthcare
paradigm of therapeutic, and preventative interventions. Whilst this is a very practical and
effective strategy, only 40–50% of patients respond to treatment in this all-comers approach
prescribed as per current practice, indicating a large proportion of the populationmay be facing a
deficit in addressing their medical needs (Collins and Varmus, 2015). This requirement for a
transformation in the current paradigm of healthcare has motivated the emergence of precision
medicine as amore targeted approach to treatment (Goldberger andBuxton, 2013; Schork, 2015).
Precision medicine envisages an integration of an individual’s clinical and biological features
obtained from laboratory tests, imaging, high-throughput omics and health records, to drive a
personalised approach to diagnosis and treatment with a higher chance of success (Collins and
Varmus, 2015). The anticipated benefits of the precision medicine approach for patients are
quicker diagnosis and targeted treatment leading to higher treatment success with minimal to no
adverse drug reactions (ADRs), with wider benefits in terms of decreased healthcare costs and
increased economic productivity.

One of the routes to precision medicine is pharmacogenomics (PGx), the study of the effect of
inherited or acquired genetic variation on drug absorption, distribution, metabolism and
excretion (pharmacokinetics) or modification of drug target or biological pathways (pharmaco-
dynamics) resulting in variations in drug response or adverse effects. Around 95% of the
population carry one or more actionable pharmacogenetic variants and over 75% of adults over
50 years old are on a prescriptionwith a knownPGx association (Chanfreau-Coffinier et al., 2019;
Heise et al., 2020; Zhou and Lauschke, 2022; Zhou et al., 2023). The U.S. Food and Drug
Administration (FDA) lists around 499 drugs which have PGx biomarkers in the labelling, with
around a 100 of them linked to data supporting PGx-guided therapeutic recommendations
(FDA, 2023a, 2023b). PharmGKB (PharmGKB, 2023a, 2023b) and the Clinical Pharmacogen-
etics Implementation Consortium (CPIC) (Relling et al., 2020) publish evidence-based, peer-
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reviewed guidelines on applying PGx test results into actionable
prescribing decisions. PharmGKB Level 1 genes or gene–drug
combinations are considered pharmacogenomically significant
and are linked to specific prescribing guidance. Similarly, CPIC
Levels A and B indicate that genetic information should be con-
sidered before prescribing.

CPIC currently reports around 480 gene–drug interactions,
including 93 gene–drug pairs (24 genes with 75 drugs) that are
annotated with Level A evidence and prescription guidelines
(Crews et al., 2014; Ramsey et al., 2014; Hicks et al., 2015; Bell
et al., 2017; Johnson et al., 2017; Amstutz et al., 2018; Relling et al.,
2019; CPIC, 2022). Although integration of PGx into routine
clinical practice is not widespread, the recent PREPARE trial dem-
onstrated both efficacy and feasibility of implementation of a
12 gene pharmacogenomic panel across diverse European health-
care system organisations and settings (Swen et al., 2023) even if
only limited to current CPIC Level A drugs (Chanfreau-Coffinier
et al., 2019; Heise et al., 2020; Relling et al., 2020; Hicks et al., 2021;
Pritchard et al., 2022). Only a small subset of the roughly 15% of
medications that cite PGx information on their labels have action-
able pharmacogenes (Ehmann et al., 2015; Mehta et al., 2020). Of
the approximately 20,000 human genes, only 34 of them are con-
sidered clinically actionable with PGx (PharmGKB level 1)
(PharmGKB, 2023a, 2023b). The majority of PGx-labelled agents
are cancer therapies targeted for somatic mutations, rather than
germline variants. Actionable germline PGx variants are present for
around 7% of medications with CPIC Level A or B recommenda-
tions directing prescribing changes based on genotype (Relling
et al., 2020).

Pharmacogenomics

The broad clinical relevance of PGx is evident across the medical
spectrum from improving treatment efficacy to avoiding ADRs.
CYP2D6 genotype guided optimisation of opioid analgesia resulted
in a 30% reduction in pain intensity among 24% of patients (Smith
et al., 2019). Antidepressant prescribing guided by PGx variants
across eight genes (CYP1A2, CYP2C9, CYP2C19, CYP3A4,
CYP2B6, CYP2D6, HTR2A, SLC6A4) in the Genomics Used to
Improve DEpression Decisions (GUIDED) trial (Greden et al.,
2019) showed improved response and remission rates in difficult-
to-treat depression, but no difference between the study arms for
symptom improvement (primary outcome). A trial in a predom-
inantly white human immunodeficiency virus type 1 infected popu-
lation showed 100% elimination of immunologically confirmed
abacavir hypersensitivity syndrome in those randomised to pre-
emptive HLA-B*57:01-guided abacavir initiation (Mallal et al.,
2008). Similarly, pre-emptive DPYD genotype guided dosing
reduced from 73% to 28% the risk of fluoropyrimidine toxicity
and completely abolished fluoropyrimidine-related mortality
(Deenen et al., 2016). Whilst these examples are compelling, the
case for cardiovascular PGx is still evolving. In this review, we shall
summarise the current status of PGx in cardiovascular diseases
(CVDs) and look at the key enablers and barriers to PGx imple-
mentation in clinical practice.

Warfarin

The coumarin derivatives (warfarin, acenocoumarol and phenpro-
coumon) are a mainstay of CVD therapy due to their crucial role in
preventing or treating thromboembolism.

Coumarins inhibit vitamin K epoxide reductase complex sub-
unit 1 (VKORC1) and thence clotting factors II, VII, IX and X to
yield its pharmacological anticoagulant effect (Verhoef et al.,
2014). Coumarins are racemic mixtures with one dominant
pharmacological enantiomer. For warfarin, S-warfarin is 3–5
times more potent than R-warfarin and is preferentially metabo-
lised by CYP2C9 (Kaminsky and Zhang, 1997). Warfarin is
unique in that, unlike most other drugs, its dose titration is based
on coagulation levels in response to treatment. Warfarin has a
narrow therapeutic index and exceeding optimal anticoagulation
(measured by the international normalised ratio, INR) increases
the risk of bleeding, necessitating frequent monitoring and dose
titration (Landefeld and Beyth, 1993). One study found hospital-
isation due to bleeding and supra-therapeutic INRs was seen in
6–7% of patients prescribed warfarin (Hylek et al., 2007; Lau et al.,
2017), while conversely, decreased time in the therapeutic INR
range (TTR) was associated with increased ischaemic stroke, other
thromboembolic events and mortality (Jones et al., 2005; Cancino
et al., 2014).

There is substantial interpatient variability in warfarin response,
with warfarin doses necessary to attain target INR ranging from
<1 mg/day to >10 mg/day (stable dosing after loading dose)
(Pokorney et al., 2015). Genetic variation accounts for 55–60% of
this dose variability: VKORC1 (�25%), CYP2C9 (�15%),
CYP4F2*3 (�1–7%) (Zhou et al., 2023). Non-genetic factors col-
lectively account for <20%: age, body mass index (BMI), smoking
and drug interactions (Rost et al., 2004; Wadelius et al., 2009;
Verhoef et al., 2014; Bourgeois et al., 2016).

The CYP2C9*2, *3, *5, *6, *8 and *11 alleles reduce clearance of
the more active S-warfarin, thus decreasing dose requirements by
5–7 mg/week in those carrying *2, *8 and *11 alleles, and 14 mg/
week reported for the *3 and *5 alleles. Consequently, these variants
are also associated with increased risk of over-anticoagulation. The
*2 and *3 alleles are common among Europeans, while the *5, *6, *8
and *11 alleles occur almost exclusively in African ancestry popu-
lations (Johnson et al., 2017; Zhou et al., 2023).

VKORC1 regulatory variant c.�1639G>A (rs9923231) is asso-
ciated with reduced VKORC1 expression and lower warfarin dose
requirements, with the�1,639AA (high sensitivity) genotypemore
common among Asians and the �1,639 GG (reduced sensitivity)
genotype more common among Africans (Limdi et al., 2010; John-
son et al., 2017; Zhou and Lauschke, 2022). Consequently, warfarin
dose requirements are, respectively, lower and higher in Asian and
African ancestry patients, respectively, as compared to Europeans
(Limdi et al., 2010).

The CYP4F2 enzyme contributes to the variation in warfarin
dose requirements not by metabolising warfarin, but rather by
metabolising 75–90% of all vitamin K consumed by humans.
Vitamin K1 reduction to vitamin K hydroquinone is critical to
clotting factor activation. The *3 allele (rs2108622) is associated
with reduced CYP4F2 activity resulting in higher concentrations of
vitamin K1 and, consequently, higher warfarin dose requirements
compared to the *1 allele, but this affects only European and Asian
populations, with no impact on African ancestry individuals
(Danese et al., 2019; Zhou and Lauschke, 2022).

WhileVKORC1 andCYP2C9 variants have emerged as themain
genetic contributors to warfarin dose requirements in European
and Asian ancestry populations (Cooper et al., 2008), the associ-
ations in African ancestry populations include single nucleotide
polymorphisms (SNPs) in the chromosome 10 CYP2C cluster and
in chromosome 6 upstream of EPHA7 (Perera et al., 2013; De et al.,
2018; Zhou and Lauschke, 2022).
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Validation of PGx-based warfarin dosing

The complexity of estimating initial warfarin dosing has been
significantly diminished by the development of dosing algorithms,
which take into account not only an individual’s clinical features
(e.g., age, BMI and use of CYP2C9 inhibiting drugs), but also their
genotype (VKORC1�1639G>A, CYP2C9*2 and CYP2C9*3 alleles)
(Gage et al., 2008; International Warfarin Pharmacogenetics et al.,
2009). However, CYP2C9*5, *6, *8, *11 and rs12777823 are not
represented in the algorithms significantly reducing their utility in
patients of African ancestry. The Gage algorithm incorporates
CYP2C9*5, *6 and CYP4F2*3 allele (Gage et al., 2008; International
Warfarin Pharmacogenetics et al., 2009).

Three largemulti-site RCTs (EU-PACT, COAGandGIFT) have
evaluated the efficacy of genotype-guided warfarin dosing (Kimmel
et al., 2013; Pirmohamed et al., 2013; Gage et al., 2017) incorpor-
atingVKORC1�1639G>A andCYP2C9*2 and *3 variants in a PGx
algorithm, with CYP4F2 additionally included in the GIFT trial
(Gage et al., 2017). The primary endpoint was TTR for the
EU-PACT and COAG trials (Kimmel et al., 2013; Pirmohamed
et al., 2013) and clinical outcomes for the GIFT trial (Gage et al.,
2017). PGx-guided dosing showed significant improvement in the
primary endpoints for EU-PACT and GIFT, but not COAG trials.
EU-PACT (Pirmohamed et al., 2013) compared genotype-guided
warfarin dosing on days 1–5 followed by routine practice to routine
practice. At 12 weeks, TTR was 7% higher in the genotype-guided
arm (67.4% vs. 60.3%, P < 0.001). Conversely, TTR was similar in
both the genotype-guided and clinically guided dosing arms of the
COAG trial (4-week TTR 45.2% vs. 45.4%) (Kimmel et al., 2013). In
the GIFT trial (Gage et al., 2017), the primary composite endpoint
(INR ≥ 4, 30-day major bleeding, 30-day mortality death, 60-day
incident venous thromboembolism) was lower in the genotype-
guided group (10.8% vs. 14.7%, P = 0.02). Participants included in
both the EU-PACT and GIFT trials were predominantly European.
Although 27% of the COAG trial participants were African Ameri-
can, only the CYP2C9 alleles common in Caucasians (*2 and *3)
were genotyped. Thus, all the three trials were blind to African
ancestry-specific variants, and failure to account for these variants
resulted in substantial warfarin overdosing in African American
participants in the genotype-guided arm of COAG (Kimmel et al.,
2013). The reason is that CYP2C9*5, *6, *8 or *11 allele (present
in ~15% of patients of African ancestry) or rs12777823 A allele
(>40% of patients) may be misclassified as normal metabolisers
(e.g., *1/*1) and dosed accordingly (Drozda et al., 2015).

Patients with two or more CYP2C9 or VKORC1 variants are
more prone to rapid INR surges and supratherapeutic anticoagula-
tion at warfarin initiation. Thismay explain the differences between
EU-PACT which used a loading dose and COAG which did not
(Arwood et al., 2017).

Clinical implementation of warfarin PGx

CYP2C9*2, *3, *5, *6, *8, *11, and VKORC1 �1639G>A alleles
(Pratt et al., 2020) are the minimum set of panel variants supported
by cost-effectiveness data on the implementation of multigene
genotype-guided warfarin dosing (Zhu et al., 2020). Both the
FDA and Dutch Pharmacogenetics Working Group (DPWG)
genotype-guided dosing recommendations are limited to just
VKORC1 �1639G>A and CYP2C9*2 and *3 alleles. CPIC, in
contrast, provides African and non-African specific guidance, with
the former requiring CYP2C9*5, *6, *8 and *11 genotypes, and the
latter requiring on CYP2C9*2 and *3 and VKORC1 genotypes

(Johnson et al., 2017). Presence of CYP4F2*3 allele in non-African
individuals results in a 5–10% dose increase. For those of African
ancestry, rs12777823 variant, if available, results in an additional
15–30% dose reduction (Johnson et al., 2017).

Clopidogrel

Antiplatelet therapy is a cornerstone of atherosclerotic CVD man-
agement involving aspirin or a P2Y12 receptor antagonist (clopido-
grel, prasugrel and ticagrelor), either as single agent therapy for
secondary prevention or dual agents after percutaneous coronary
intervention (PCI) (Roffi et al., 2016; Ibanez et al., 2018). Prasugrel
and ticagrelor are more potent P2Y12 receptor antagonists with an
increased bleeding risk but are preferred over clopidogrel in high-
risk cases (Wallentin et al., 2009). Genetic variation is partly
responsible for the observed variability in effectiveness of antiplate-
let therapy (Angiolillo et al., 2017). Assessment of platelet function
status is time-consuming, lacks standard reference values and is
hence not clinically feasible for tailoring antiplatelet therapy. The
prospect of a genotype profile providing a measure of antiplatelet
efficacy and thus predicting adverse cardiovascular outcomes
makes a compelling case for the use of PGx to personalise treat-
ment.

Clopidogrel, the most commonly prescribed antiplatelet drug, is
a prodrug that undergoes a two-step transformation to its active
metabolite which irreversibly inhibits platelet activation (Kazui
et al., 2010). CYP2C19 is involved in both activation steps, and
thus, plays a crucial role in the bioactivation process of clopidogrel
(Sangkuhl et al., 2010). CYP2C19 is highly polymorphic with alleles
representing a range of metaboliser phenotypes (summarised in
Table 1; Kazui et al., 2010; Sangkuhl et al., 2010; Scott et al., 2013;
Pratt et al., 2018; Zhou and Lauschke, 2022; Zhou et al., 2023).

The CYP2C19 poor metaboliser (PM) and intermediate metab-
oliser (IM) phenotypes have higher on-treatment platelet reactivity
and an increased risk of ischaemic events compared to the normal
metaboliser (NM) phenotype (*1/*1 genotype) (Varenhorst et al.,
2009; Mega et al., 2009a). The equivalent of a 75 mg dose of
clopidogrel in NMs is 225 mg in IMs, but 300 mg is insufficient
in PMs (Mega et al., 2011; Price et al., 2012; Carreras et al., 2016).

Table 1. CYP2C19 allele dependent enzyme activity

CYP2C19 allele Enzyme activity Homozygous
Heterozygous
(with *1 or *17)

*1 Normal EM UM

*2 None PM IM

*3 None PM IM

*4 None PM IM

*5 None PM IM

*6 None PM IM

*7 None PM IM

*8 None PM IM

*9 Decreased PM IM

*10 Decreased PM IM

*17 Increased UM UM

Abbreviations: EM, extensive metaboliser; IM, intermediate metaboliser; PM, poor
metaboliser; UM, ultrarapid metaboliser.
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The antiplatelet drugs prasugrel and ticagrelor are not affected by
the CYP2C19 genotype, offering the option for switching IMs and
PMs to these drugs in preference to clopidogrel dose escalation in
the absence of contraindications (Varenhorst et al., 2009; Mega
et al., 2009b; Wallentin et al., 2010).

Several real-world studies showed a significantly higher risk of
major adverse cardiovascular events (MACE) in CYP2C19 PMs
and IMs compared to NMs (Hulot et al., 2010; Mega et al., 2010;
Holmes et al., 2011; Zabalza et al., 2012; Sorich et al., 2014; Cavallari
et al., 2018; Kheiri et al., 2020). However, the higher risk of MACE
in clopidogrel-treated PMs and IMs was less evident in lower-risk
populations, such as atrial fibrillation or medically managed acute
coronary syndrome (ACS) cases (Bauer et al., 2011; Holmes et al.,
2011). Two prospective trials, POPular Genetics (Claassens et al.,
2019) and TAILOR-PCI (Pereira et al., 2020) trials stratified IMs
and PMs to prasugrel or ticagrelor while NMs received clopidogrel.
The CYP2C19-guided approach reduced bleeding risk and was
non-inferior to treatment with prasugrel or ticagrelor in preventing
atherothrombotic events in the POPular Genetics study that
enrolled post ST-segment elevation MI patients undergoing PCI
(Claassens et al., 2019). In the TAILOR-PCI trial (Pereira et al.,
2020), patients with either stable coronary disease or ACS under-
going PCI showed lower rates of the composite cardiovascular
primary endpoint in the genotype-guided group compared to the
non-genotype-guided cohort at 1-year follow-up, but this did not
reach statistical significance (HR 0.66; 95% CI 0.43–1.02; P = 0.06)
(Pereira et al., 2020). A post hoc analysis indicated benefit in the
genotype-directed group during the first 3 months after PCI
(HR 0.21; 95% CI 0.08–0.54; P = 0.001) (Pereira et al., 2020). Other
indications for clopidogrel include stroke prevention and periph-
eral arterial disease. PMs and IMs show reduced rates of stent
patency after endovascular treatment for peripheral arterial disease
(Guo et al., 2014; Diaz-Villamarin et al., 2016). For stroke, a large
randomised controlled trial (RCT) showed that absence of the
CYP2C19 no-function allele in patients with a minor ischaemic
stroke or transient ischaemic attack (TIA) predicted better effect-
iveness of clopidogrel plus aspirin over aspirin alone (Wang et al.,
2016). A meta-analysis including nearly 5,000 clopidogrel-treated
patients with ischaemic stroke or TIA confirmed higher risk of new
stroke in PMs and IMs (Pan et al., 2017).

Clinical implementation of clopidogrel PGx

Since 2010, the FDA, EuropeanMedicine Agency (EMA) and other
regulatory bodies recommend alternative P2Y12 inhibitors to clo-
pidogrel in PMs (but not IMs) in their labels (Holmes et al., 2010).
The FDA table of gene–drug pairs includes therapeutic manage-
ment recommendations for IMs and PMs (FDA, 2023a, 2023b),
which is echoed by CPIC guidelines citing ‘strong’ evidence for IMs
and PMs with ACS or undergoing PCI, and ‘moderate’ evidence
PMs for all indications. In all of the above cases, alternative anti-
platelet agents are recommended (Lee et al., 2022).

Joint PCI guidelines from 2016 by the American College of
Cardiology (ACC) and the American Heart Association (AHA)
recommend against routine genotyping for all patients undergoing
PCI, but to consider testing high-risk patients and use either
prasugrel or ticagrelor for patients with the no-function allele.
The 2020 European Society of Cardiology (ESC) guidelines were
influenced by the POPular Genetics trial to recommend genotype-
guided de-escalation for post-PCI patients deemed to be at high
bleeding risk (Claassens and Sibbing, 2020; Collet et al., 2021).

CYP2C19-guided antiplatelet therapy after PCI is one of the
most common PGx tests in clinical practice (Empey et al., 2018)
conducted either for patients at high risk of MACE in line with
ACC/AHA guidelines or for all-comers (Empey et al., 2018). If
point-of-care genotyping is not available, a de-escalation approach
is proposed where patients are commenced on prasugrel or tica-
grelor initially pending genotype results and then switched to
clopidogrel if the genotype results indicate the NMphenotype. This
approach maximises benefit given the high risk of atherothrombo-
tic events early after ACS and PCI, while reducing the high risk of
bleeding with prasugrel and ticagrelor during long-term therapy
(Becker et al., 2011; Rollini et al., 2016; Angiolillo et al., 2017). The
case for implementing pre-emptiveCYP2C19 genotyping (Peterson
et al., 2016) is evident due to the impact of CYP2C19 genotype on
other drugs in addition to clopidogrel, such as proton pump
inhibitors (Lima et al., 2021) and selective serotonin reuptake
inhibitors (SSRIs) (Hicks et al., 2015).

Direct-acting oral anti-coagulants

Apixaban, dabigatran, edoxaban and rivaroxaban are direct-acting
oral anticoagulants (DOACs) with several advantages compared to
warfarin – wider therapeutic index, regular monitoring not
required, lower risk of intracranial haemorrhage, stroke or systemic
embolic events (Proietti et al., 2018). Despite the favourable profile
of DOACs, their higher cost, lower adherence rates, limited indi-
cations, and the high cost of reversal agents has limited uptake of
DOAC compared to warfarin (Zhu et al., 2018; Ho et al., 2020).
Pharmacokinetic variation related to genetic variation is indicated
but there is no data on clinical outcomes yet.

In a sub-study of the ENGAGE AF TIMI-48 trial (which com-
pared warfarin and edoxaban in atrial fibrillation patients; Mega
et al., 2015) warfarin-treated participants with a sensitive or highly
sensitive genotype (e.g., VKORC1 �1639AA or CYP2C9*1/*3)
spent a greater proportion of time within the supratherapeutic
INR range (i.e., INR >4) and had higher rates of bleeding in the
initial 90 days of treatment, as compared to those with non-
sensitive genotypes. In a genetic sub-study of the RE-LY trial
(dabigatran versus warfarin in atrial fibrillation), carriers of the
CES1 rs2244613 minor allele had a reduced risk of bleeding with
dabigatran than with warfarin (Shi et al., 2016).

Statins

Lipid lowering treatment by statins (HMG-CoA reductase inhibi-
tors) are used in the prevention of CVD (Catapano et al., 2016).
Statin-associated muscle symptoms (SAMS) (range from mild
myalgia without an elevation in creatine kinase to life-threatening
rhabdomyolysis or autoimmune-necrotizing myositis) are the
commonest reasons for treatment discontinuation (Alfirevic
et al., 2014). A number of enzymes and transporters are responsible
for intracellular skeletal myocyte entry that underlie disruption of
muscle function leading to SAMS (Turner and Pirmohamed, 2019).
Hepatic uptake and elimination of statins are mainly carried out by
the solute carrier anion transporter family 1B1 gene (SLCO1B1)
encoding the organic anion transporting polypeptide 1B1
(OATP1B1) (Shitara, 2011). The rs4149056 SNP in the SLCO1B1
gene (SLCO1B1*5) is linked to OATP1B1 function (Tirona et al.,
2001) with the C allele being associated with decreased OATP1B1
transporter function with greatest reduction in homozygous
patients resulting in significantly increased plasma concentrations
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of all statins, except fluvastatin (Tirona et al., 2001). Additionally,
the risk of myopathy increases by 2.6 and 4.3 per copy of
SLCO1B1*5 in patients, respectively, on simvastatin 40 mg and
80 mg daily (Tirona et al., 2001). The mechanism of SLCO1B1*5
variant causing statin-related myopathy is through the accumula-
tion of circulating simvastatin acid (the active form of simvastatin)
reflecting liver transport (Choi et al., 2015). This effect is most
prominent for simvastatin followed by pitavastatin, lovastatin and
atorvastatin (Ramsey et al., 2014). Each copy of the C allele of
rs4149056 increases the risk of statin-induced myopathy threefold
in genome-wide association studies (GWAS) (Carr et al., 2019).
Atorvastatin is partially metabolised by the CYP3A and UDP-
glucuronosyltransferase 1A1 (UGT1A) enzyme families. One study
showed the SNP rs45446698 just upstream ofCYP3A7 and another,
rs887829, located in multiple overlapping UGT1A genes, to be
associated with atorvastatin-to-metabolite ratios in patients with
ACS (Turner et al., 2020). Inconsistent associations with SAMS
have been reported for polymorphisms in CYP3A4, ABCB1, COQ2
(involved in coenzyme Q10 synthesis) and GATM (involved in
creatine synthesis) (Fiegenbaum et al., 2005; Hoenig et al., 2011;
Mangravite et al., 2013; Carr et al., 2019).

Validation of PGx-based statin dosing

The pragmatic SLCO1B1 genotype-informed statin therapy (GIST)
trial randomised patients who had discontinued any statins due to
myalgia to SLCO1B1 genotype guided therapy (rosuvastatin, pra-
vastatin, or fluvastatin for SLCO1B1*5 carriers and any statin for
non-carriers) or standard care (Peyser et al., 2018). At the end of
8-month follow-up, increased statin re-initiation, reduced LDL-C
levels, and no change in self-reported medication adherence were
seen in those randomised to genotype guided (Peyser et al., 2018).
Whilst these results are interesting, the inclusion of patients who
developed myopathy from any statins in the trial limits the trans-
lational potential of the results. This is because the impact of
SLCO1B1 variation is highest for simvastatin and variable for other
statins, hence the results of the trial do not present a clear case for
genotype-guided simvastatin therapy.

Clinical implementation of statin PGx

The SLCO1B1*5 variant (rs4149056) shows wide population dif-
ferences (1%, 8% and 16% in African, Asian and European popu-
lations, respectively). CPIC recommends not exceeding a dose of
simvastatin 20 mg/day or, prescribing another statin (rosuvastatin
or pravastatin) in patients who carry at least one rs4149056 C allele
(Voora et al., 2009; Danik et al., 2013; Ramsey et al., 2014; Lamour-
eux et al., 2017). The French National Network of Pharmacogen-
etics recommends commencing statins in patients with risk factors
for myopathy only after rs4149056 genotyping (Lamoureux et al.,
2017). The DPWG recommends that homozygotes avoid simvas-
tatin entirely and individuals with other clinical risk factors for
SAMS avoid atorvastatin (de Keyser et al., 2014; Bank et al., 2019;
Linskey et al., 2020; Turner et al., 2020).

Beta blockers

β-Adrenergic receptor antagonists, or beta blockers, are indicated
for treatment of heart failure, hypertension, and secondary preven-
tion of myocardial infarction. CYP2D6 is responsible for biotrans-
formation of 70–80% of an oral dose of metoprolol and has

negligible effects on other beta blockers (Ingelman-Sundberg
et al., 2007; Baudhuin et al., 2010; Blake et al., 2013; Zisaki et al.,
2015; Vieira et al., 2018). There is only weak evidence for PGx-
guided prescribing of beta blockers (PharmGKB level 2–3, CPIC
level B/C). Compared to EMs, IMs and PMs are associated with a
decreased heart rate (Bijl et al., 2009; Batty et al., 2014; Anstensrud
et al., 2020) and lower diastolic BP (Bijl et al., 2009; Batty et al., 2014;
Hamadeh et al., 2014; Anstensrud et al., 2020). These studies have
not studied the entire spectrum of major variations in CYP2D6 and
have not been independently validated.

Three other genes (ADRB1, ADRB2 and GRK5) have been
associated with the beta blocker pharmacodynamics rather than
pharmacokinetics, but there is no evidence of clinical utility for
using these variants to guide prescribing (White et al., 2003; Paca-
nowski et al., 2008; Magvanjav et al., 2017; Huang et al., 2018).

FDA and DPWG have slightly different recommendations on
metoprolol dosing. The FDA recommends caution with
co-administration of strong CYP2D6 inhibitors (SSRIs, anti-
psychotics) or substrates. The DPWG recommend cautious dose
titration and reduced maximal doses in CYP2D6 IMs and PMs
supramaximal metoprolol dose or an alternative beta blocker in
UMs (Brouwer et al., 2022).

Hydralazine

Hydralazine is a direct vasodilator seldom used in the treatment of
hypertension (Whelton et al., 2018). Hydralazine is metabolised
primarily by hepaticN-acetyltransferase type 2 (NAT2) acetylation.
The common NAT2*4 genetic variant defines a ‘rapid acetylator’
phenotype with decreased hydralazine levels after drug adminis-
tration (Gonzalez-Fierro et al., 2011; Han et al., 2019). Homozygous
NAT2*5, *6, and *7 indicate a ‘slow acetylator’ phenotype, while
heterozygous individuals (e.g., *4/*5) are ‘intermediate acetylators’.
One study of resistant hypertension patients demonstrated that
only those with the slow acetylator phenotype showed notable
blood pressure reductions in response to hydralazine (Spinasse
et al., 2014).

One of the rare side effects of hydralazine is the occurrence of
lupus-like symptoms, with indirect evidence suggesting slow acet-
ylators are more prone to developing this ADR (Weber and Hein,
1985; Mazari et al., 2007; Schoonen et al., 2010). However, clinical
utility and cost-effectiveness data are lacking.

Antiarrhythmic drugs

Inhibition of the rapid component of the delayed rectifier potas-
sium current, Ikr, encoded by KCNH2 is the commonest cause of
drug induced long QT syndrome (LQTS) and torsades des pointes
(TdP; ventricular tachycardia (Roden and Viswanathan, 2005;
Wada et al., 2022).

Similar to beta blockers, the class 1 antiarrhythmic drugs flecai-
nide and propafenone are metabolised by CYP2D6 (PharmGKB
level 2A, CPIC level B/C; Doki et al., 2015; Rouini andAfshar, 2017)
with CYP2D6 genotype-related differences in QTc interval (Lim
et al., 2010). The FDA recommends caution in the use of propafe-
none in patients with CYP2D6 deficiency when combined with
CYP3A4 inhibition. The DPWG recommends a dose reduction of
50% and 30%, respectively, for flecainide and propafenone in
CYP2D6 PMs.

Quinidine- or dofetilide-induced QT prolongation and drug-
induced TdPwas significantly associated with a polygenic risk score
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constructed from 61 SNPs excluding the CYP2D6 locus (Arking
et al., 2014; Strauss et al., 2017). Though not validated, this high-
lights the potential for using polygenic risk scores in predicting
drug-induced arrhythmias.

PGx implementation

Successful pharmacogenomic implementation in healthcare
require strong scientific evidence, comprehensive and updated
clinical guidelines, clinician champions and stakeholder engage-
ment (Manolio et al., 2013).

Laboratory

Characterisation of pharmacogenomic variants in patients requires
a certified molecular pathology laboratory to ensure analytical
accuracy, precision, sensitivity and specificity of the results
(Tayeh et al., 2022). Most clinical PGx tests based on selected panel
of clinically relevant variants (single gene or multigene) are more
cost-effective than sequencing panels. It is likely that the decreasing
cost of sequencing will make sequencing cost-competitive over
multi-gene panels in the future (Figure 1).

Guidelines and clinical decision support systems

Effective pharmacogenomic guided prescribing requires evidence
from multiple sources to be distilled into guidelines and made
available through clinical decision support systems (CDSS) that
distil information on drug–gene interactions from published guide-
lines or prescribing labels. Clinical Pharmacogenetics Implemen-
tation Consortium (CPIC) and the Dutch Pharmacogenetics
Working Groups (DPWG) have published guidelines covering
66 medications across several drug classes. However, the major
PGx guideline and recommendation sources are not completely
concordant in terms of their advice. A recent study found incon-
sistencies in clinical PGx recommendations (48.1%) and in 93.3%
of recommendations from CPIC, FDA and clinical practice guide-
lines (Shugg et al., 2020). These inconsistencies were spread across a
range of domains – recommendation category (29.8%), the patient
group (35.4%) and routine screening (15.2%), suggesting a poten-
tial barrier to rapid PGx implementation until this is resolved.

CDSS is an effective tool to guide clinicians with limited PGx
knowledge (van der Wouden et al., 2017). In pre-emptive PGx,
patient-specific CDSS alerts prompt and guide clinicians to use
genetic information when prescribing drugs with known
genetically-determined ADRs (Overby et al., 2014; Dunnenberger
et al., 2015).

Figure 1.Pharmacogenomic implementation. The top panel shows the range of stakeholders, technology, knowledge and evidence that need to be harnessed to realise the value of
PGx. The middle panel depicts the uses of PGx in the clinical prescribing pathway. The bottom panel presents the applications of PGx. CPIC, the Clinical Pharmacogenetics
Implementation Consortium; DPWG, Dutch Pharmacogenetics Working Groups; PharmGKB, the Pharmacogenomics Knowledge Base.
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PGx may be implemented either reactively on a gene-by-gene
basis at the time of prescribing a drug, or pre-emptively where a
single sample is assessed for several pharmacogenes simultaneously
with the results stored for future prescribing encounters. Reactive
implementation is expensive and has a slow turnaround time and is
unsuitable in situations where rapid drug initiation is required. In
contrast, pre-emptive screening ofmultiple pharmacogenes is likely
to be more cost-effective and provides the patient with a lifetime’s
worth of test results readily available whenever a drug is prescribed,
especially when integrated into electronic health records (EHRs)
and drug prescription systems (Relling and Evans, 2015). This
further underlines the importance of efficient interoperability
between different healthcare systems. A patient may be screened
for CYP2C19 prior to being prescribed clopidogrel. These results
could inform the prescription of an SSRI or proton pump inhibitor
in the future – but only if the results have been stored in an EHR in
an accessible format and trigger a CDSS alert at the point of
prescription.

Health informatics

PGx implementation in healthcare can be developed in-house if
there is availability of capabilities in laboratory and informatics
infrastructure and expertise or outsourced to commercial partners.
Due to the considerable diversity in commercial PGx products, it is
essential to ensure the clinical, IT integration and interoperability
requirements along with robust and continuous updating of evi-
dence are rigorously assessed before deciding on the PGx service
provider. The significant costs associated with the use of PGx in
clinical practice are now in the domain of decision support, IT
integration and interoperability, rather than in laboratory genetic
testing (Dunnenberger et al., 2015; Relling and Evans, 2015; van der
Wouden et al., 2017). Informatics builds within the EHR are easier
for a single gene–drug pair as opposed to the multiple pairs and
networks that form as drug interactions and clinical factors are also
considered. However, the cost-effectiveness data on the pre-
emptive panel approach must be assessed, particularly when con-
sidering implementation early in life.

Patient and provider acceptability

Patient and healthcare professional acceptability is critical for
effective and successful PGx implementation. This requires early
and continuous engagement with both clinicians and patients,
preferably with champions who are committed (Dressler et al.,
2018; McDermott et al., 2022). The main barriers to be tackled in
the route to implementation are demonstrating that the system will
not overburden the physicians, seamlessly integrate into hospital
cornerstone systems, provide sufficient support for the users of the
system to navigate the pharmacogenetic evidence base through
education and decision support systems, demonstrate utility and
cost-effectiveness (Stanek et al., 2012; Just et al., 2019; Bagautdinova
et al., 2022; Scheuner et al., 2023).

Pharmacists are crucial in the PGx service for evaluating appro-
priate patient eligibility, providing informative post-test counsel-
ling, or leading a PGx consult service (Crews et al., 2011; Brown
et al., 2021; Bagautdinova et al., 2022; Krause and Dowd, 2022).

Health economics

Implementation of PGx in clinical practice requires demonstration
of its value and cost-effectiveness to key decision makers and a lack

of RCTs that compare genotype-guided prescribing with conven-
tional therapy has not helped. Conducting RCTs for each single
drug–gene pair across different ethnicities is not a viable option. Big
data analysis of EHRs has the advantage of being able to study
diverse populations, limiting concerns about external validity of
data and health equality (as is exemplified by the warfarin dosing
algorithms that fail to serve patients of African descent). There is
limited data on cost-effectiveness multiplexed pre-emptive strat-
egies which are likely to be the preferred solution and the majority
of existing cost-effectiveness PGx data are from single gene–drug
pair studies (Roden et al., 2018). Most of the cost-effectiveness
studies have been conducted separate from implementation initia-
tives and they indicate that PGx testing results in a reduction in per-
patient treatment cost (Winner et al., 2015; Deenen et al., 2016),
lower cost-per-QALY (Mitropoulou et al., 2015) and cost savings in
long-term care (Saldivar et al., 2016). A recent systematic appraisal
of economic evaluations of PGx testing to prevent ADRs found a
number of deficiencies in the quality of data used in cost-
effectiveness and cost-utility analyses (Turongkaravee et al.,
2021). Of the 14 economic evaluation studies of CYP2C9 and
VKORC1 testing, 10 studies showed that CYP2C9 and VKORC1
testing would be a variably cost-effective and four studies suggested
otherwise (Turongkaravee et al., 2021). In contrast, all nine eco-
nomic evaluation studies of CYP2C19 testing before prescription of
clopidogrel ACS patients undergoing PCI showed that CYP2C19
testing would be a potentially cost-effective treatment strategy for
avoiding MACE.

The clopidogrel–CYP2C19 implementation successes need to be
contrasted with the difficulties faced in the implementation of
warfarin–CYP2C9/CYP4F2/VKORC1 PGx. The key enablers for
clopidogrel–CYP2C19 implementation include a discrete patient
population (post-PCI), single-gene testing, a high frequency of
actionable results, clinically well-established alternative therapies,
and a focused group of providers (interventional cardiologists)
(Crisamore et al., 2019).

Implementation in diverse health care systems

Whilst the above discussion related to healthcare systems in high-
income countries, the specific challenges in implementing PGx
low- and middle-income countries need to be recognised – lack
of clinical efficacy and effectiveness data, under-resourced clinical
settings, socio-cultural issues and the identification of population
specific pharmacogenomic markers (Tata et al., 2020; Magavern
et al., 2022; Sukri et al., 2022). The lack of consistent and widely
accepted definitions of race, ethnicity and ancestry in genomics and
clinical research has resulted in erroneous, inconclusive or absent
data on non-European ancestry populations (Popejoy et al., 2020).
Initiatives such as Human Heredity and Health in Africa
(H3Africa) Consortium and the African Pharmacogenomics
Research Consortium attempt to increase the representativeness
of pharmacogenomic panels (Matimba et al., 2016). It is imperative
that progress in pharmacogenomic research and implementation
occurs at pace in diverse populations so that health disparities are
not amplified when PGx becomes more mainstream in clinical
practice.
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