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Abstract
Erdős, Gyárfás and Pyber showed that every r-edge-coloured complete graph Kn can be covered by
25r2 log r vertex-disjoint monochromatic cycles (independent of n). Here we extend their result to the
setting of binomial random graphs. That is, we show that if p= p(n)=�(n−1/(2r)), then with high proba-
bility any r-edge-coloured G(n, p) can be covered by at most 1000r4 log r vertex-disjoint monochromatic
cycles. This answers a question of Korándi, Mousset, Nenadov, Škorić and Sudakov.
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1. Introduction
An active line of current research concerns sparse random analogues of combinatorial theorems.
An early example of this type of result was given by Rödl and Ruciński [24], who proved a random
analogue of Ramsey’s theorem. Similar results have been obtained for asymmetric and hypergraph
Ramsey problems (see the survey of Conlon [7]). In this paper we investigate the random analogue
for monochromatic cycle partitioning.

Given an edge-coloured graph, how many vertex-disjoint monochromatic cycles are neces-
sary to cover its vertices? Such a collection of cycles is called a monochromatic cycle partition.a
The problem of finding a partition with few cycles was first investigated for edge-coloured com-
plete graphs. Erdős, Gyárfás and Pyber [9] proved that there is a function f (r) such that every
r-edge-coloured complete graph Kn admits a partition into at most f (r) monochromatic cycles
(independent of n). In particular, they showed that f (r)� 25r2 log r and further conjectured
that f (r)= r. The case r = 2 had already been conjectured by Lehel in 1979. Łuczak, Rödl and
Szemerédi [22] showed that f (2)= 2 for large n. The bound on n was then reduced by Allen et al.
[1] (though still large). Finally, Bessy and Thomassé [5] showed that f (2)= 2 for all n by an ele-
gant argument. For r = 3, Gyárfás, Ruszinkó, Sárközy and Szemerédi [12] showed that f (3)� 17.
For general r, the best known upper bound for f (r) is due to Gyárfás, Ruszinkó, Sárközy and
Szemerédi [13], who showed that f (r)� 100r log r (for large n). On the other hand, Pokrovskiy
[23] disproved Erdős, Gyárfás and Pyber’s conjecture by showing that f (r)> r for all r� 3. The
question of whether f (r) is linear in r is still open. There has also been considerable interest in
monochromatic cycle partitions of host graphs that are not complete, for instance graphs with
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few missing edges [11], small independence number [25], large minimum degree [4, 8, 20] and
bipartite graphs [14, 19]. See the survey by Gyárfás [10] for further information.

In this paper we consider monochromatic cycle partitions in binomial random graphs � ∼
G(n, p). The study of partitioning � ∼G(n, p) into monochromatic subgraphs was initiated
by Bal and DeBiasio [3], who showed that if p� C( log n/n)1/3, then with high probability
(w.h.p.), any 2-edge-coloured � ∼G(n, p) admits a partition into two vertex-disjoint monochro-
matic trees. Recently, Kohayakawa, Mota and Schacht [16] showed that the same holds for p=
ω(( log n/n)1/2). For more colours, Ebsen, Mota and Schnitzer (see [16, Proposition 4.1]) showed
that w.h.p. there exists an r-edge-colouring of � ∼G(n, p) with p� ( log n/n)1/(r+1) which cannot
be partitioned by r vertex-disjoint monochromatic trees. Covering � ∼G(n, p) by (not neces-
sarily vertex-disjoint) monochromatic cycles was studied by Korándi, Mousset, Nenadov, Škorić
and Sudakov [18], who showed that if p� n−1/r+ε , then w.h.p. any r-edge-coloured � ∼G(n, p)
can be covered by O(r8 log r) monochromatic cycles. The same authors asked whether one can
prove a random analogue of Erdős, Gyárfás and Pyber’s theorem, that is, any r-edge-colouring of
� ∼G(n, p) admits a partition into constantly many monochromatic cycles. In this paper we give
an affirmative answer for p=�(n−1/(2r)).

Theorem 1.1. Let r� 2 and p= p(n)� 29r5n−1/(2r). Then w.h.p. the random graph � ∼G(n, p)
satisfies the following property. Any r-edge-colouring of � admits a partition into at most
1000r4 log r monochromatic cycles.

It would be interesting to improve our bound on p. A construction of Bal and DeBiasio [3]
shows that for p= o((r log n/n)1/r) w.h.p. there exists an r-edge-colouring of � ∼G(n, p), which
requires an unbounded number of monochromatic components (and in particular, cycles) to
cover all vertices. In light of this, it seems natural to conjecture the threshold to be of order
( log n/n)1/r .

We did not attempt to optimize the number of cycles needed in Theorem 1.1. Thus it is likely
that our bound offers some room for improvement. Let fn,p(r) be the minimum number of cycles
needed such that w.h.p. every r-edge-colouring of � ∼G(n, p) admits a partition into at most
fn,p(r) monochromatic cycles. Bal and DeBiasio [2] showed that fn,p(2)> 2 if p� 1/2. Moreover,
Korándi, Lang, Letzter and Pokrovskiy [17] recently constructed r-edge-coloured graphs on n
vertices with minimum degree (1− ε)n which cannot be partitioned into fewer than �(ε2r2)
monochromatic cycles. Thus, together with our conjectured threshold, an immediate question
would be whether it is true that fn,p(r)= o(r2) for p=O(( log n/n)1/r).

We note that since the appearance of this article, the last question has been answered negatively
by Bucić, Korándi and Sudakov [6].

2. Notation
Let G= (V , E) be a graph and letU,W ⊆V be disjoint subsets of vertices. We denote the comple-
ment of U in G by U =V \U. We write G[U] for the subgraph of G induced by U and G−U for
G[U]. We write eG(U,W) for the number of edges in G with one vertex in U and one inW. For a
vertex v ∈V , we writeNG(v) for its neighbourhood in G and degG (v)= |NG(v)| for its degree. We
let NG(v,W) be the set of all neighbours of v inW in G and degG (v,W)= |NG(v,W)|. We denote
N∗
G(U,W)= ⋂

u∈U NG(u,W) and deg∗
G (U,W)= |N∗

G(U,W)|. We omit the subscript G when it
is clear from the context. For a collection C of graphs, we write V(C)= ⋃

C∈C V(C).
For a, b, c> 0, we write a= b± c if b− c� a� b+ c and a �= b± c otherwise. We write log a

for the natural logarithm of a. For the sake of exposition, we will omit ceiling and floor signs
whenever it is not important for the argument.
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3. Proof outline
We sketch the proof of Theorem 1.1. Consider an r-edge-coloured � ∼G(n, p). It is not difficult
to find a small family Calmost of vertex-disjoint monochromatic cycles covering all but at most εn
vertices. Indeed a standard approach, which was introduced by Łuczak [21] and uses the (sparse)
regularity lemma, allows us to reduce the problem of finding a large cycle in � to finding a large
matching in the reduced graph R of a regular partition of �. Thus we can obtain Calmost by finding
a large matching in the union of 4r2 monochromatic components of R.

The main difficulty in proving Theorem 1.1 is to cover these leftover vertices with vertex-
disjoint cycles that are also disjoint from Calmost. Since these leftover vertices can only be
determined after edge-colouring �, we cannot fix their location prior to exposing the edges. We
note that this is one of the main differences between covering and partitioning with monochro-
matic cycles. In the following lemma, we show that every small vertex set can be covered by a
small number of vertex-disjoint monochromatic cycles. Moreover, almost all vertices used in this
process will be taken from a predetermined vertex set U.

Lemma 3.1. Let r� 2, 0<β < 1 and p= p(n)� 23r5(β2n)−1/(2r). Then w.h.p. the random graph
� ∼G(n, p) satisfies the following property. For any r-edge-colouring of � and any disjoint subsets
of vertices U and W with |U|� βn and |W|� (β/(400r))4n, there exists a collection C of at most
900r4 log r disjoint monochromatic cycles such thatW ⊆V(C) and |V(C) \ (U ∪W)|� 48r9/(βpr).

Note that under the assumption of Lemma 3.1, there might be a small set W′ ⊆W whose
neighbourhood does not behave in the expected way (e.g. there are too few edges between W′
and U ∪W). Hence, in order to coverW′, we will need to use some vertices outside U. We defer
the proof of Lemma 3.1 to Section 5. Our proof of Lemma 3.1 is based on arguments of Korándi
et al. [18]. However, new ideas are needed to ensure vertex-disjoint cycles. Our proof of Lemma 3.1
requires that p= p(n)=�(n−1/(2r)), which is the main reason for our bound in Theorem 1.1.

Recall that we require the cycles covering W to be disjoint from those covering the rest of the
vertices, i.e. Calmost. To deal with this, we ensure that Calmost is ‘robust’. Roughly speaking, even
after deleting a few vertices of Calmost, there is a small monochromatic cycle partition C′

almost on the
remaining vertices. This strategy was introduced by Erdős, Gyárfás and Pyber [9] and has become
fairly standard in the area. However, our ‘robustness’ property is more general in the sense that we
further allow the deletion of a small but arbitrary set outside U. This is crucial for our approach,
as we use such a small but arbitrary set to coverW, as stated in Lemma 3.1.

The next lemma is used to find the family Calmost.

Lemma 3.2. Let r� 2 and ε1 > 0. Then there exists C = C(r, ε1)> 0 such that, for p= p(n)�
C( log n/n)1/(r+1), w.h.p. the random graph � ∼G(n, p) satisfies the following property. For any
r-edge-colouring of �, there are disjoint vertex sets U and W with |U|� 2−12n and |W|� ε1n
such that the following holds. For any sets U ′ ⊆U and U+ ⊆V(�) with |U+|� 218r9/pr, the graph
� − (W ∪U+ ∪U ′) admits a partition into at most 4r2 + 1monochromatic cycles.

We will prove Lemma 3.2 in Section 6. (See the beginning of Section 6 for a sketch proof of
Lemma 3.2.) We now prove Theorem 1.1 using these two lemmas.

Proof of Theorem 1.1. Let β = 2−12 and ε1 = (β/(400r))4. Note that since p� 29r5n−1/(2r),
w.h.p. � ∼G(n, p) satisfies the conclusions of Lemmas 3.1 and 3.2. We will deduce the theorem
from these properties.

Consider any r-edge-colouring of �. By Lemma 3.2, there exist disjoint vertex sets U and W
with |U|� βn and |W|� ε1n. Moreover, for any sets U ′ ⊆U and U+ ⊆V(�) with |U+|�
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218r9/pr , the graph � − (W ∪U+ ∪U ′) admits a partition into at most 4r2 + 1 monochromatic
cycles. By Lemma 3.1, there exists a collection C1 of at most 900r4 log r monochromatic disjoint
cycles such thatW ⊆V(C1) and |V(C1) \ (U ∪W)|� 48r9/(βpr)� 218r9/pr . Let U ′ =V(C1)∩U
and U+ =V(C1) \ (U ∪W), so |U+|� 218r9/pr . By the choice ofW and U, the graph � − (W ∪
U+ ∪U ′) admits a partition C2 into at most 4r2 + 1 monochromatic cycles. Thus C1 ∪ C2 is a
partition of � into at most 900r4 log r + 4r2 + 1� 1000r4 log r monochromatic cycles.

4. Probabilistic tools
The exposition of our probabilistic tools follows that of Korándi et al. [18]. We will use the
following Chernoff-type bounds on the tails of the binomial distribution.

Lemma 4.1. ([15, Theorem 2.1]). Let 0<α < 3/2 and X ∼ Bin(n, p) be a binomial random
variable. Then P(|X − np|>αnp)< 2e−α2np/3.

Lemma 4.2. ([18, Lemma 3.8]). Fix 0<α, β < 1 and let C = 6/(α2β) and D= 9/α2. Then, for
every p= p(n) ∈ (0, 1), w.h.p. the random graph � ∼G(n, p) satisfies the following property. For
any two disjoint subsets X, Y ⊆V(�), satisfying either of

(1) |X|, |Y|�D log n/p, or
(2) |X|� C/p and |Y|� βn,
we have e(X, Y)= (1± α)|X||Y|p.

Lemma 4.3. ([18, Lemma 3.9]). For every p= p(n) ∈ (0, 1), w.h.p. the random graph � ∼G(n, p)
satisfies the following property. For every family L of � disjoint pairs of vertices and every set Y of 3�
vertices that is disjoint from each pair in L, we have

∑
{v,w}∈L

deg∗
G ({v,w}, Y)�

{
72� log n if �� 6 log n/p2,
6�2p2 otherwise.

The following lemma plays a key role in our proof. It says that given any sufficiently large vertex
set X, there exists a small vertex set Y such that every k-set S⊆ X ∪ Y has the expected number of
common neighbours in X.

Lemma 4.4. Let k� 1, α, β ∈ (0, 1). Let K = 12k/(α2β) and p= p(n)� (K log n/n)1/k. Then
w.h.p. the random graph � ∼G(n, p) satisfies the following property. For any vertex set X with
|X|� βn, there exists a set Y ⊆ X of size at most K/pk such that all k-sets S⊆ X ∪ Y have
deg∗ (S, X)= (1± α)pk|X|.

Proof. We first show that w.h.p. � ∼G(n, p) satisfies

(∗) for any set X of at least βn vertices and any familyM of at least K/(2kpk) disjoint k-sets in X,
it holds that

∑
S∈M deg∗ (S, X)= (1± α)pk|M| |X|.

To see this consider a set X with |X|� βn and a family M of at least K/(2kpk) disjoint k-sets
in X. Let Z = ∑

S∈M deg∗ (S, X), that is, Z counts the number of pairs (S, x) ∈M × X for which x ∈
N∗(S). For each (S, x) ∈M × X, the probability that x ∈N∗(S) is pk. Since the events x ∈N∗(S, X)
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and x′ ∈N∗(S′, X) are independent for (S, x) �= (S′, x′), it follows that Z ∼ Bin(|M| |X|, pk). Thus
Lemma 4.1 implies that

P(Z �= (1± α)pk|M||X|)� 2 exp
(

−α
2

3
pk|M| |X|

)
� 2 exp

(
−α

2β

3
pkn|M|

)
.

By taking the union bound of these events over all such sets X and families M, we see that the
probability that (∗) fails is at most

n/k∑
m=K/(2kpk)

nkm · 2n · 2 exp
(

−α
2β

3
pknm

)

�
n/k∑

m=K/(2kpk)

exp
(
km log n+ n−α

2β

3
pknm

)

=
n/k∑

m=K/(2kpk)

exp
((

log n+ n
km

−α
2β

3k
pkn

)
km

)

�
n/k∑

m=K/(2kpk)

exp
((

log n+
(
2
K

−α
2β

3k

)
pkn

)
km

)

�
n/k∑

m=K/(kpk)

n−km

� n−1,

where the penultimate inequality uses the fact that α2β/3k= 4/K and pk �K log n/n. Thus we
can assume that � satisfies (∗). We will deduce the lemma from this property.

Suppose that we are given a vertex set X with |X|� βn. Let H− be an auxiliary k-uniform
hypergraph on vertex set X such that a k-set S is an edge in H− if deg∗ (S, X)< (1− α)pk|X|.
Similarly, let H+ be an auxiliary k-uniform hypergraph on vertex set X such that a k-set S is an
edge in H+ if deg∗ (S, X)> (1+ α)pk|X|. LetM− andM+ be matchings of maximum size in H−
and H+, respectively. Then (∗) implies that |M−| + |M+|�K/(kpk). Let Y = ⋃

S∈M−∪M+ S and
note that |Y|� K/pk. By maximality ofM− andM+, every k-set S in X ∪ Y satisfies deg∗ (S, X)=
(1± α)pk|X|, as desired.

5. Proof of Lemma 3.1
In this section we prove Lemma 3.1, that is, every small vertex set can be covered by few
monochromatic cycles. We start by setting up a few auxiliary lemmas.

Theorem 5.1. (Sárközy [25]). Let G be a graph of independence number α. Then any r-edge-
colouring of G admits a partition into at most 25(αr)2 log (αr)monochromatic cycles.

Lemma 5.1. ([18, Lemma 2.1] ). For every r� 2, β > 0, K = 4000r4/β, C = (100r/β)8 and n0
sufficiently large, the following holds. Let G be a graph on n� n0 vertices satisfying the following
properties for p� C( log n/n)1/2.

https://doi.org/10.1017/S0963548320000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000401


Combinatorics, Probability and Computing 141

(i) For any two disjoint X, Y ⊆V(G), such that |X|� 192r/(βp) and |Y|� βn/(2r), it holds that
e(X, Y)� 5p|X| |Y|/4.

(ii) For every family L of � disjoint pairs of vertices and every set Y of 3� vertices that is disjoint
from each pair in L, we have

∑
{v,w}∈L

deg∗ ({v,w}, Y)�
{
72� log n if �� 6 log n/p2,
6�2p2 otherwise.

Let U,W ⊆V(G) be disjoint with |U|� βn and |W|� β4n/(100r)4 and

(iii) deg (w,U)� (1− 1/r2)p|U| for every w ∈W.

Then, for any r-edge-colouring of G, there is a collection C of at most 3r2 monochromatic disjoint
cycles, which together cover all but at most K/p vertices of W and V(C)⊆U ∪W.

Note that Lemma 5.1 is a slight strengthening of Lemma 2.1 in [18], which was originally stated
for random graphs � ∼G(n, p). The proof of Lemma 2.1 in [18] only relies on the fact that w.h.p.
� ∼G(n, p) satisfies conditions (i)–(iii). Thus we omit its proof.

Lemma 5.2. Let r, t� 2 be integers and let G be a graph with disjoint vertex sets U ,W ⊆V(G) with
|W|� t. Suppose that

(i) for each r-set S⊆W, we have deg∗
G (S,U)� 6rr+1t, and

(ii) any disjoint subsets X, Y ⊆U with |X|, |Y|� t satisfy eG(X, Y)> 0.

Then, for any r-edge-colouring of G, there is a collection C of at most 400r4 log r monochromatic
disjoint cycles such that W ⊆V(C)⊆U ∪W and |V(C)|� 3|W|.

Proof. Consider any r-edge-colouring of G with colours [r]. Define an r-edge-coloured auxiliary
(multi)graph H on W as follows. For each j ∈ [r], we add an edge of colour j between vertices
v, v′ ∈W if one of the following holds.

(a) There are at least 2t vertices u ∈U such that vuv′ is a path of colour j.
(b) There is a matchingM of size 2t in U such that vuu′v′ (or vu′uv′) is a path of colour j for each

uu′ ∈M.

We claim that the independence number α(H) of H is bounded by 2r − 1. Let S be any 2r-set
of W. Partition S into two r-sets S1 and S2 with Si = {vi,j : j ∈ [r]} for i ∈ [2]. By (i), N∗(Si,U) has
size at least 6rr+1t. By averaging, there exists Ai ⊆N∗(Si,U) and colours ci,j for j ∈ [r] such that
|Ai|� 6rt and vi,ju has colour ci,j for all u ∈Ai and j ∈ [r]. If ci,j = ci,j′ for distinct j, j′ ∈ [r], then
vi,jvi,j′ is an edge inH by (a). Thus, without loss of generality, we may assume that ci,j = j for i ∈ [2]
and j ∈ [r]. LetA′

1 ⊆A1 andA′
2 ⊆A2 be disjoint, each of size 3rt. LetM be amatching ofmaximum

size between A′
1 and A′

2 in G. By (ii), M has size at least 2rt and thus contains 2t edges of some
colour j ∈ [r]. Then (b) yields that v1,jv2,j is an edge in H. Hence α(H)� 2r − 1 as claimed.

Theorem 5.1 implies that H can be partitioned into a collection {Fi}i∈[s] of
s� 25(2r2 − r)2 log (2r2 − r)� 400r4 log r

disjoint monochromatic cycles. By the definition ofH and as t� |W|, we can construct the desired
collection of cycles covering W greedily along the cycles {Fi}i∈[s]. More precisely, suppose that
v1v2 . . . vkv1 is a red cycle in {Fi}i∈[s]. Suppose we have already embedded vertices v1, . . . , vi on
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a red path Pi that starts with v1 and ends with vi such that |V(Pi)|� 3i. We extend this path
to vi+1 (with index modulo k) depending on whether case (a) or (b) holds for the (red) edge
vivi+1 ∈H. If (a) holds with vertex u, then let Pi+1 = Piuvi+1. If, on the other hand, (b) holds
with u and u′, then let Pi+1 = Piuu′vi+1. Note that this is possible as t� |W|� k. Using the same
construction for each of the Fi, we are able obtain mutually disjoint cycles C = {Ci}i∈[s] satisfying
|V(C)|� 3|W|.

Now we are ready to prove Lemma 3.1.

Proof of Lemma 3.1. Let K = 24r9/β . We claim that w.h.p. � ∼G(n, p) satisfies the following.

(a) For each k ∈ {1, r}, every k-set S⊆V(�) satisfies deg∗ (S)� (1− 1/r4)pkn.
(b) For two disjoint vertex sets X, Y ⊆V(�), satisfying either of

– |X|, |Y|� 144 log n/p, or
– |X|� 768r/(βp) and |Y|� βn/(8r),
we have e(X, Y)= (1± 1/4)p|X| |Y|.

(c) For every family L of � disjoint pairs of vertices and every set Y of 3� vertices that is disjoint
from each pair in L, we have

∑
{v,w}∈L

deg∗ ({v,w}, Y)�
{
72� log n if �� 6 log n/p2,
6�2p2 otherwise.

(d) For any vertex set X of size |X|� βn, there is a set Y ⊆ X of size at most K/pr such that, for
each k ∈ {1, r}, each k-set S⊆ X ∪ Y satisfies deg∗ (S, X)= (1± 1/r4)pk|X|.

Here (a) is a straightforward consequence of Lemma 4.1, (b) follows from Lemma 4.2 with
1/4, β/(8r) playing the roles of α, β , (c) follows from Lemma 4.3, and (d) follows by the choice
of K from two applications of Lemma 4.4 with k ∈ {1, r} and α = 1/r4. We will deduce the lemma
from these properties.

Consider any r-edge-colouring of � and any disjoint subsets of vertices U and W with |U|�
βn and |W|� (β/400r)4n. By (d), there is a set Y ⊆U such that W1 :=W ∩ Y has the following
properties. It holds that |W1|�K/pr and, for each k ∈ {1, r}, every k-set S⊆W \W1 satisfies

deg∗ (S,U)� (1− 1/r4)pk|U|. (5.1)

We first coverW1. Let t1 =K/pr . By the choices of K, r and p, we have

prn� 100rr+1t1.

As |W1|�K/pr = t1, it follows that, for any r-set S⊆W1, we have

deg∗ (S,W1)� deg∗ (S)− |W1|
(a)
� (1− 1/r4)prn− t1 � 6rr+1t1.

Note that (b) implies e(X, Y)> 0 for all disjoint X, Y ⊆V(�) with |X|, |Y|� t1. By Lemma 5.2
with W1,W1, t1 playing the roles of U,W, t, there exists a collection C1 of at most 400r4 log r
monochromatic disjoint cycles, such thatW1 ⊆V(C1) and |V(C1)|� 3|W1|.

LetW2 =W \V(C1) and U ′ =U \V(C1). Note that
|U \U ′| = |V(C1)∩U|� 2|W1|� 2K/pr � pr|U|/r5 (5.2)

as the definition of p implies that p2r|U|/r5 � 26rr10r/β � 2K. We pick a random partition
{U2,U3} of U ′ by assigning each u ∈U ′ independently at random to U2 with probability 1/2 and
to U3 otherwise. A standard application of Lemma 4.1 shows that w.h.p. the following holds for
i= 2, 3:
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(c1) |Ui|� (1− 1/r4)|U ′|/2� βn/4, and
(c2) deg∗ (S,Ui)� (1− 1/r4) deg∗ (S,U ′)/2 for each k ∈ {1, r}, every k-set S⊆W \W1.

We fix a partition {U2,U3} ofU ′ with these properties. For each k ∈ {1, r}, every k-set S⊆W \W1
satisfies

deg∗ (S,Ui)
(2)
� (1− 1/r4) deg∗ (S,U ′)/2
� (1− 1/r4)( deg∗ (S,U)− |U \U ′|)/2

(5.1), (5.2)
� (1− 2/r4 − 1/r5)pk|U|/2
(1)
� (1− 1/r2)pk|Ui|. (5.3)

Now we cover the majority of the vertices of W2 using U2. We apply Lemma 5.1 with
U2,W2, β/4 playing the roles of U,W, β . (This is possible as conditions (i), (ii) and (iii) of
Lemma 5.1 are satisfied by properties (b), (c) and (5.3).) Thus there is a collection C2 of at most
3r2 monochromatic disjoint cycles, which together cover all but at most 16000r4/(βp) vertices of
W2 and V(C2)⊆U2 ∪W2.

It remains to coverW3 =W2 \V(C2). Let t2 = 16000r4/(βp). For any r-set S⊆W3,

deg∗ (S,U3)
(5.3)
� (1− 1/r2)pr|U3|

(1)
� prβn/8� 6rr+1t2,

where the last inequality holds by our choice of p. Thus, as above, by Lemma 5.2 with U3,W3, t2
playing the roles of U,W, t, there exists a collection C3 of at most 400r4 log r monochromatic
disjoint cycles such thatW3 ⊆V(C3)⊆U3 ∪W3.

Hence there are at most 400r4 log r + 3r2 + 400r4 log r� 900r4 log r disjoint monochromatic
cycles C := C1 ∪ C2 ∪ C3, which together coverW. Note that

V(C) \ (U ∪W)=V(C1) \ (U ∪W)=V(C1) \W1

and hence

|V(C) \ (U ∪W)| = |V(C1) \W1|
(5.2)
� 2K/pr = 48r9/(βpr).

This finishes the proof of Lemma 3.1.

6. Proof of Lemma 3.2
In this section we prove Lemma 3.2, that is, we find a collection of monochromatic cycles that
robustly partitions most of the vertices. Before we set up definitions and tools, let us outline
the approach. Consider an r-edge-coloured graph � ∼G(n, p). We apply the sparse regularity
lemma to obtain a balanced vertex partition V = {Vi}i∈[t] of � in which almost every pair (Vi,Vj)
is (sparsely) regular. This allows us to define an r-edge-coloured reduced graph R on [t], that
encodes which pairs are regular and dense in one (or more) of the colours. An easy calculation
shows that (by deleting some edges) we may assume R to be the union of at most 4r2 monochro-
matic components with δ(R)� 2t/3. Thus R contains a perfect matching R′. Our aim is to find
a monochromatic cycle Ci for each monochromatic component Ri of R, such that the edges of
Ci are contained in pairs (Vj,Vj′) with jj′ ∈ E(Ri). The union of these Ci will form a monochro-
matic cycle partition. We use the sparse blow-up lemma of Allen, Böttcher, Hán, Kohayakawa and
Person [1] (Lemma 6.4) to find these cycles. As usual, there is a small set W ⊆V(�) whose ver-
tices do not behave well enough to be included this way. For example, we would need to remove
vertices so that (Vi,Vj) is super-regular for all ij ∈ E(R′) for our application of Lemma 6.4. (In the
grand scheme, the setW will be covered by Lemma 3.1, so we can ignore it in the following.) We
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define the set U by selecting each vertex of V(�) \W with probability 2−11. It remains to show
that for any small set U+ ⊆V(�) and U ′ ⊆U, the graph � − (W ∪U+ ∪U ′) admits a partition
into roughly 4r2 monochromatic cycles. By the choice of U and as U+ is small, the remainder of
V is still regular and fairly well balanced for our application of Lemma 6.4.

6.1 Sparse regularity and the blow-up lemma
Our exposition of sparse regularity and the blow-up lemma closely follows that of Allen et al.
[1]. Let G= (V , E) be a graph and let A and B be disjoint subsets of V . For 0< p< 1, we define
the p-density of the pair (A, B) to be dG,p(A, B)= eG(A, B)/(p|A| |B|). The pair (A, B) is (ε, d, p)-
lower-regular (in G) if we have dG,p(A′, B′)� d − ε for all A′ ⊆A with |A′|� ε|A| and B′ ⊆ B with
|B′|� ε|B|. Similarly, we say that (A, B) is (ε, d, p)-fully regular if dG,p(A′, B′)= d ± ε for allA′ ⊆A
with |A′|� ε|A| and B′ ⊆ B with |B′|� ε|B|.b We define a pair to be a sparse super-regular pair if
it is a sparse lower-regular pair and satisfies a minimum degree condition.

Definition 6.1. (sparse super-regularity). A pair (A, B) in G⊆ � is called (ε, d, p)-super-regular
(in G) if it is (ε, d, p)-lower-regular and, for every u ∈A and v ∈ B, we have

degG (u, B)> (d − ε) max{p|B|, deg� (u, B)/2},
degG (v,A)> (d − ε) max{p|A|, deg� (v,A)/2}.

For our purpose, � will often beG(n, p). We remark that the term (d − ε)p|B| is a natural lower
bound in the above minimum degree condition by the following fact, which easily follows from
the definition of regularity.

Fact 6.1. Let (A, B) be an (ε, d, p)-lower-regular pair. Then degG (a, B)< (d − ε)p|B| for at most
ε|A| vertices a ∈A.

The next lemma also follows from the definition of regular pairs.

Lemma 6.1. (slicing lemma). Let (A, B) be an (ε, d, p)-lower-regular pair and let A′ ⊆A, B′ ⊆ B
be sets of sizes |A′|� α|A|, |B′|� α|B|. Then (A′, B′) is (ε/α, d, p)-lower-regular.

We say that a graph G with density p is (η,D)-upper-uniform with density p if, for all disjoint
setsU andW with |U|, |W|� η|V(G)|, we have eG(U,W)�Dp|U| |W|. We will use the following
sparse regularity lemma.

Lemma 6.2. (sparse regularity lemma [1, Lemma 6.3]). For any real D, ε > 0, integers r and t0,
there exist η= η6.2(D, ε, r, t0)> 0 and t1 = t6.2(D, ε, r, t0) with the following property. Let � be an
r-edge-coloured, (η,D)-upper-uniform graph with density p on at least t0 vertices. Then there is a
partition V = {Vi}i∈[t] of V(�) with the following properties:
(a) t0 � t� t1,
(b) ||Vi| − |Vj||� 1 for all i, j ∈ [t],
(c) all but at most εt2 pairs (Vi,Vj) are (ε, d, p)-fully regular in each of the r colours for some

possibly different d.

The sparse blow-up lemma has the (reasonable) requirement that neighbourhoods of vertices
inherit regularity.

b Note that Allen et al. [1] use the name regular pair to denote what we call a lower-regular pair. On the other hand, the
standard term for a fully regular pair is just a regular pair.
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Definition 6.2. (regularity inheritance). Let A, B and C be vertex sets in G⊆ �, where A and B
are disjoint and B and C are disjoint, but we do allow A= C. We say that (A, B, C) has one-sided
(ε, d, p)-inheritance if, for each u ∈A, the pair (N�(u, B), C) is (ε, d, p)-lower-regular.

The next lemma states that there are only a few vertices inG(n, p) that do not inherit regularity.

Lemma 6.3. (one-sided regularity inheritance in G(n, p) [1, Lemma 1.26]). For each ε′, d> 0,
there are ε0 = ε6.3(ε′, d)> 0 and C = C6.3(ε′, d) such that, for all 0< ε < ε0 and 0< p< 1, w.h.p.
� ∼G(n, p) has the following property.

Let G⊆ � be a graph and let X, Y be disjoint subsets of V(�). If (X, Y) is (ε, d, p)-lower-regular
in G and

|X|� Cmax (p−2, p−1 log n) and |Y|� Cp−1 log (en/|X|),
then there are at most Cp−1 log (en/|X|) vertices z ∈V(�) such that the pair (N�(z, X), Y) is not
(ε′, d, p)-lower-regular in G.

The setting in which the blow-up lemma works is as follows. Let G and H be two graphs on
the same number of vertices. Let V = {Vi}i∈[t] and X = {Xi}i∈[t] be partitions of V(G) and V(H),
respectively. We call the parts Vi of G clusters. We say that V and X are size-compatible if |Vi| =
|Xi| for all i ∈ [t]. Moreover, for κ � 1, we say that V is κ-balanced if there exists m ∈N such that
we havem� |Vi|� κm for all i ∈ [t]. Our goal is to embed H into G respecting these partitions.

We will have two reduced graphs R and R′ ⊆ R, where R′ represents super-regular pairs and R
regular pairs. More precisely, we require the following properties of R and R′ and the partitions V
and X of G and H.

Definition 6.3. (reduced graphs and one-sided inheritance). Let R and R′ be graphs on vertex
set [t].

• (H,X ) is an R-partition ifH[X] is empty for all X ∈X and ij ∈ E(R) whenever eH(Xi, Xj)> 0.
• (G, V) is an (ε, d, p)-regular R-partition if (G, V) is an R-partition and the pair (Vi,Vj) is
(ε, d, p)-lower-regular for all ij ∈ E(R).

In this case we also say that R is a reduced graph of the partition V .

• (G, V) is (ε, d, p)-super-regular on R′ if the pair (Vi,Vj) is (ε, d, p)-super-regular for all ij ∈
E(R′).

Suppose now that (G, V) is an (ε, d, p)-regular R′-partition.

• (G, V) has one-sided inheritance on R′ if (Vi,Vj,Vk) has one-sided (ε, d, p)-inheritance for all
ij, jk ∈ E(R′).

Next we define the so-called ‘buffer sets’ of vertices in H. The purpose of these buffer sets
in the context of the blow-up lemma is to ensure that H, the graph which we intend to embed, is
sufficiently dense in the pairs corresponding to R′. Note that we restrict ourselves to the case when
H is triangle-free.

Definition 6.4. (buffer sets). Let H be a triangle-free graph with vertex partition X = {Xi}i∈[t].
Let R′ ⊆ R be graphs on vertex set [t]. Suppose that (H,X ) is an R-partition. We say the family
X̃ = {X̃i}i∈[t] of subsets X̃i ⊆ Xi is an (α, R′)-buffer for H if
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• |X̃i|� α|Xi| for all i ∈ [t], and
• for each i ∈ [t] and each x ∈ X̃i, the first and second neighbourhoods of x go along R′, that is,
for each xy, yz ∈ E(H) with y ∈ Xj and z ∈ Xk, we have ij, jk ∈ E(R′).

Now we are ready to state the blow-up lemma. Note that the general version of Lemma 6.4
applies also to graphs H that contain triangles.

Lemma 6.4. (blow-up lemma for G(n, p) [1, Lemma 1.21]). For all t1,�� 2,�R′ , α, d> 0, κ > 1
there exist ε= ε6.4(�,�R′ , α, d, κ)> 0 and a constant C = C6.4(�,�R′ , α, d, κ , t1) such that, for
p> C(log n/n)1/�, w.h.p. the random graph � ∼G(n, p) satisfies the following.

Let R be a graph on t� t1 vertices and let R′ ⊆ R be a spanning subgraph with �(R′)��R′ .
Let H and G⊆ � be graphs with κ-balanced size-compatible vertex partitions X = {Xi}i∈[t] and
V = {Vi}i∈[t], respectively, which have parts of size at least m� n/(κt1). Let X̃ = {X̃i}i∈[t] be a family
of subsets of V(H). Suppose that

(i) H is triangle-free,
(ii) �(H)��, (H,X ) is an R-partition, X̃ is an (α, R′)-buffer for H, and
(iii) (G, V) is an (ε, d, p)-regular R-partition, which is (ε, d, p)-super-regular on R′ and has one-

sided (ε, d, p)-inheritance on R′.

Then there is a graph embedding ψ : V(H)→V(G) such that ψ(Xi)=Vi for each i ∈ [t] and
ψ(v)ψ(v′) ∈ E(G) for each vv′ ∈ E(H).

6.2 Preliminaries
The next lemma allows us to assume that the reduced graph consists of a bounded number of
monochromatic components by reducing its minimum degree.

Lemma 6.5. Let δ � γ > 0 and let G be an r-edge-coloured graph on t vertices with δ(G)� δt.
Then G contains a spanning subgraph R with δ(R)� (δ − γ )t, which is the union of at most r2/γ
monochromatic components.

Proof. Define R to be the union of all monochromatic components of G of size at least γ t/r. Note
that, for each colour, there are at most r/γ such components. Hence R consists of at most r2/γ
monochromatic components. Since each vertex v is in at most rmonochromatic components and
each component not in R has at most γ t/r edges touching v, we have degR (v)� δ(G)− r · γ t/r.
In particular, R spans G.

Let R′ be a perfect matching in R. Suppose that (�, V) is a regular R-partition and a super-
regular R′-partition. Recall that we aim to find a small monochromatic cycle partition of � using
Lemma 6.4. The following lemma will enable us to define the graph H needed in the hypothesis
of Lemma 6.4. Since R′ is a (perfect) matching and H consists of disjoint cycles, verifying the
existence of an (α, R′)-buffer for H reduces to showing that, for each ij ∈ E(R′), there is a long
path in H[Xi, Xj].

Lemma 6.6. Let s, t,m ∈Nwith m� 90t3s and t even. Let R be a graph on [t]with δ(R)� 2t/3 and
let R′ ⊆ R be a perfect matching. Suppose that R is the union of edge-disjoint connected subgraphs
R1, . . . , Rs. Let {xi}i∈[t] be a family of integers satisfying m� xi � 10m/9. Then there is a graph H,
a partition X = {Xi}i∈[t] of V(H) and a family X̃ = {X̃i}i∈[t] of subsets of V(H) with the following
properties:
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(i) |Xi| = xi for each i ∈ [t],
(ii) H is triangle-free,
(iii) X̃ is a (1/50, R′)-buffer for H, and
(iv) H is the union of vertex-disjoint cycles C1, . . . , Cs and at most one isolated vertex such

that (Ck,X ) is an Rk-partition for each k ∈ [s]. In particular, (H,X ) is an R-partition and
�(H)� 2.

Proof. Let X = {Xi}i∈[t] be a family of disjoint vertex sets satisfying |Xi| = xi. For each k ∈ [s], let
Gk be the graph on

⋃
i∈V(Rk) Xi which contains an edge vw precisely when v ∈ Xi and w ∈ Xj for

some edge ij ∈ E(Rk). So Gk is complete between Xi and Xj for every edge ij of Rk. It follows that
G := ⋃

k∈[s] Gk is a union of edge-disjoint graphs and (G,X ) is an R-partition.
First we claim that there exists a collection of disjoint cycles C′ = {C′

1, . . . , C′
s} in G such that,

for each k ∈ [s],

• C′
k ⊆Gk and C′

k is triangle-free,• for each edge ij ∈ E(Rk), there is a path Pij ⊆ C′
k which alternates between Xi and Xj and has

order

|V(Pij)|�
{
4m/45� (|Xi| + |Xj|)/25+ 4 if ij ∈ E(R′),
4 otherwise,

• |V(C′)|� 2t3s+ 2tm/45� tm/15.

To see that such cycles exist, note that, by the connectivity of Rk, any two vertices of Gk are con-
nected by a path of order at most t. Thus at most t3 vertices are needed for a cycle C′

k inGk to ‘visit’
all edges of Rk, that is, for the cycle C′

k to contain an edge between Xi and Xj for each ij ∈ E(Rk).
Moreover, by replacing each edge of C′

k with a path of length 3 (between the same clusters), we can
guarantee triangle-freeness. Thus, for each k ∈ [s] and ij ∈ E(Rk), C′

k contains a path Pij of length 3
alternating between Xi and Xj and |V(C′)|� 2t3s. Since |Xi|�m� 2t3s+ 2m/45 and R′ is a per-
fect matching, we further extend each Pij with ij ∈ E(R′) to have length at least 4m/45. Thus our
claim holds.

Let G′ =G− ⋃
k∈[s] V(C′

k), so |V(G′)|� 14tm/15. Recall that δ(R)� 2t/3 and |Xi|� 10m/9.
Hence

δ(G′)� |V(G′)| − t/3 · 10m/9� |V(G′)|/2.

By Dirac’s theorem, G′ contains a matching M, which misses at most 1 vertex. For each
k ∈ [s], we obtain a cycle Ck from C′

k by extending each path Pij (with ij ∈ E(Rk)) to
include all edges of M between Xi and Xj. To be precise, if the edges in M between Xi
and Xj are xi,1xj,1, xi,2xj,2, . . . , xi,pxj,p with xi,q ∈ Xi and xj,q ∈ Xj, then we attach the path
xi,1xj,1xi,2xj,2 . . . xi,pxj,p to either the start or end of Pij (and define Ck accordingly).

Let H be the graph on V(G) with E(H)= ⋃
k∈[s] E(Ck). By our construction, (i), (ii) and (iv)

hold. Recall that for each ij ∈ E(R′), there exists a path Pij inH alternating between Xi and Xj with
|V(Pij)|� (|Xi| + |Xj|)/25+ 4. Let P′

ij be the path obtained from Pij, by deleting the two vertices
on each end of Pij. It follows that |V(P′

ij)|� (|Xi| + |Xj|)/25. Moreover, the first and second neigh-
bourhoods of each vertex v ∈V(P′

ij)∩ Xi are contained in Xi and Xj, respectively, and vice versa.
Hence we can choose a (1/50, R′)-buffer X̃ = {X̃i}i∈[t] for H, namely X̃i =V(P′

ij)∩ Xi for each ij
in R′.
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6.3 Proof of Lemma 3.2
This subsection is dedicated to the proof of Lemma 3.2. We begin by setting up the following
constants. Let

ε6.4 =min{2−8, ε6.4(2, 1, 1/50, 1/r, 10/9)}, ε6.3 = ε6.3(ε6.4/2, 1/r),
C6.3 = C6.3(ε6.4/2, 1/r), ε=min{2−10, ε21, ε6.4, ε6.3}/4,
t0 = 1/ε2, η= η6.2(2, ε2, r, t0),
t1 =max{t6.2(2, ε2, r, t0), 1/(2η)}, C = C6.4(2, 1, 1/50, 1/r, 10/9, t1),

where the functions ε6.4, C6.4 are given by Lemma 6.4, ε6.3, C6.3 by Lemma 6.3, and η6.2, t6.2 by
Lemma 6.2.

Properties of the random graph

Let p= p(n)� C( log n/n)1/(r+1). Let � ∼G(n, p). Note that w.h.p. � satisfies the conclusions of
Lemmas 6.3 and 6.4. (In particular the conditions on the each of the p hold as r + 1� 2=�.) By
Lemma 4.2 with ε/2, 1/(2t1) playing the roles of α, β , w.h.p. � satisfies the following property:

e�(X, Y)= (1± ε/2)p|X||Y| for all disjoint X, Y ⊆V(�)
with |X|� 48t1/(ε2p) and |Y|� n/(2t1). (6.1)

We will derive the lemma from these properties.

Defining regular partition and reduced graph

Consider any r-edge-colouring of � with colours [r]. By (6.1), any disjoint sets X, Y ⊆V(�) of
cardinality at least ηn� n/(2t1) satisfy e�(X, Y)� 2p|X||Y|. This implies that � is (η, 2)-upper-
uniform with density p. Therefore Lemma 6.2 (with ε2 playing the role of ε) guarantees a vertex
partition V = {Vi}i∈[t′] of V(�) such that:

(a1) t0 � t′ � t1,
(a2) ||Vi| − |Vj||� 1 for all i, j ∈ [t′],
(a3) all but at most ε2t′2 pairs (Vi,Vj) are (ε2, d, p)-fully regular in each of the r colours for some

possibly different d.

We define a reduced graph T′ on [t′] such that ij is an edge in T′ if and only if (Vi,Vj) are
(ε2, d, p)-fully regular in each of the r colours for some possibly different d. So T′ contains all but
ε2t′2 edges by (a3). By deleting all vertices with degree less than (1− ε)t′ (and possibly one vertex
more), we obtain a subgraph T of T′ on some even t� (1− 2ε)t′ vertices with δ(T′)� (1− 3ε)t.
Without loss of generality, we can assume that V(T)= [t].

For a colour c ∈ [r], we let �c denote the subgraph of � which contains all edges of colour c. We
now edge-colour T as follows. Consider an edge ij of T. By (6.1), e�(Vi,Vj)� (1− ε/2)p|Vi| |Vj|.
Hence there exists some colour c ∈ [r] such that e�c(Vi,Vj)� (1/r − ε/2)p|Vi| |Vj|. Moreover,
(Vi,Vj) is an (ε, 1/r, p)-lower-regular pair in �c as ε� ε/2+ ε2 and ij ∈ E(T). We colour the edge
ij (ofT) with such a colour c (if there is more than one such colour, then we choose one arbitrarily).

We apply Lemma 6.5 with γ = 1/4 to obtain a spanning subgraph R of T with δ(R)� 2t/3
and which is the union of at most 4r2 monochromatic components. Since t is even, R contains a
perfect matching R′.

Define G′ to be the spanning subgraph of �[
⋃

i∈[t] Vi] obtained by keeping an edge vw
precisely when there is an edge ij in R such that v ∈Vi, w ∈Vj and vw has the same colour as ij.
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Defining W

The set W will consist of four vertex sets
⋃

i/∈[t] Vi, Vexc, Vdeg and V inh. Each of these four sets
presents an obstacle to the application of Lemma 6.4. The vertices i /∈ [t] are not covered by R and
hence the set

⋃
i/∈[t] Vi lies beyond the scope of Lemma 6.4. The set Vexc will contain the vertices

which do not behave typically with respect to the regularity of the pairs of R′. The set Vdeg will
contain the vertices which do not behave typically with respect to the random graph � and the
partition V . The removal of Vexc ∪Vdeg then ensures that (G, V) is super-regular on R′. Finally,
the setV inh contains the vertices that do not inherit regularity with respect to R′. We now formally
define Vexc, Vdeg and V inh.

First we define Vexc. For each i ∈ [t] with ij ∈ E(R′), set
Vexc
i = {v ∈Vi : degG′ (v,Vj)< (1/r − ε)p|Vj|},

that is, Vexc
i consists of all vertices in Vi that have less than the expected number of neighbours

in Vj in G′. Note that
|Vexc

i |� ε|Vi|
by Fact 6.1. Let Vexc = ⋃

i∈[t] Vexc
i and V ′

i =Vi \Vexc
i for all i ∈ [t].

Next, we define Vdeg. For each i ∈ [t], let Vdeg
i be the set of vertices v ∈V(�) \V ′

i with
deg� (v,V ′

i ) �= (1± ε)p|V ′
i | and set Vdeg = ⋃

i∈[t] V
deg
i . So (6.1), together with the fact that |V ′

i |�
n/(2t1), gives |Vdeg

i |� 48t1/(ε2p). Therefore we can bound

|Vdeg|� 48t21/(ε
2p).

Consider any i ∈ [t], and let ij ∈ E(R′). Lemma 6.1 implies that (V ′
i ,V ′

j ) is (2ε, 1/r, p)-lower-
regular in G′. Since n is large, we have

|V ′
i |� C6.3 max (p−2, p−1 log n) and |V ′

j |� C6.3p−1 log (en/|V ′
i |).

Let V inh
i be the set of vertices z ∈V(�) such that the pair (N�(z,V ′

i ),V ′
j ) is not (ε6.4/2, 1/r, p)-

lower-regular in G′ and set V inh = ⋃
i∈[t] V inh

i . Recall our choice of ε6.3, C6.3 and note that 2ε <
ε6.3. We apply Lemma 6.3 with 2ε, ε6.4/2 and 1/r playing the roles of ε, ε′ and d, respectively. This
yields that |V inh

i |� C6.3p−1 log (2et′) for each i ∈ [t]. It follows that

|V inh|� C6.3tp−1 log (2et′).
Finally, setW = ⋃

i/∈[t] Vi ∪Vexc ∪Vdeg ∪V inh. In summary, for each i ∈ [t] with ij ∈ E(R′) we
have

(b1) |W|� ε1n and |W ∩Vi|� 3ε|Vi|� 6ε|V ′
i |,

(b2) for all v ∈V ′
i , degG′ (v,Vj)� (1/r − ε)p|Vj|,

(b3) for all u /∈W ∪V ′
i , deg� (u,V ′

i )= (1± ε)p|V ′
i |, and

(b4) for all z /∈W, the pair (N�(z,V ′
i ),V ′

j ) is (ε6.4/2, 1/r, p)-lower-regular in G′.

Since t� (1− √
ε)t′ and n is large, we have | ⋃i/∈[t] Vi|�√

εt′�n/t′
� ε1n/2. We deduce that
(b1) holds. Note that (b2), (b3) and (b4) hold as v ∈Vi \Vexc

i , u /∈V ′
i ∪Vdeg and z /∈V inh

i ,
respectively.

Defining U

For i ∈ [t], we pick a random set Ui by selecting each v ∈V ′
i \W with probability 3 · 2−12 (i.e.

halfway between 2−11 and 2−10). A standard application of Lemma 4.1 shows that w.h.p. U :=⋃
i∈[t] Ui has the following properties:
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(c1) Ui ⊆Vi \W,
(c2) 2−11|V ′

i |� |U ∩V ′
i |� 2−10|V ′

i |, and
(c3) for each v ∈V(�) \ (W ∪V ′

i ), we have

deg� (v,U ∩V ′
i )� 2−10 deg� (v,V ′

i ).

Let us fix U = ⋃
i∈[t] Ui with these properties. Note that 2−12n� |U|� 2−10n. Moreover, (b3)

yields that

(c′3) for each v ∈V(�) \ (W ∪V ′
i ), we have

deg� (v,U ∩V ′
i )� 2−9p|V ′

i |.

Finding amonochromatic cycle partition

We now verify that the lemma holds with our choices of W and U. Consider any U ′ ⊆U and
U+ ⊆V(�) with

|U+|� 218r8/pr � 2−10p|V ′
i |. (6.2)

(Here we used the fact that |Vi|� n/t1 and p� ( log n/n)1/(r+1).) LetQ=W ∪U+ ∪U ′. To finish
the proof, we will show that � −Q admits a partition into at most 4r2 + 1 monochromatic cycles.

Let G=G′ −Q and define a partition V∗ = {V∗
i }i∈[t] with V∗

i =Vi \Q for i ∈ [t]. By (b1), (6.2)
and (c2), we have

|V∗
i |� |Vi| − |W ∩Vi| − |U ∩Vi| − |U+|� (1− 2−8)|Vi|� 10n/11t1. (6.3)

Hence there is some integerm withm� |V∗
i |� 10m/9 for every i ∈ [t]. So V∗ is (10/9)-balanced.

Denote the monochromatic components of R by R1, . . . , Rs with s� 4r2. We apply Lemma 6.6
with |V∗

i | playing the role of xi to obtain a graph H, a partition X = {Xi}i∈[t] of V(H) and a
family X̃ = {X̃i}i∈[t] of subsets of V(H) with the following properties:

(d1) X is size-compatible with V∗,
(d2) H is triangle-free,
(d3) X̃ is a (1/50, R′)-buffer for H, and
(d4) H is the union of vertex-disjoint cycles C1, . . . , Cs with at most one isolated vertex such

that (Ck,X ) is an Rk-partition for each k ∈ [s]. In particular, (H,X ) is an R-partition and
�(H)� 2.

To find a monochromatic cycle partition of G into at most 4r2 + 1 cycles, it suffices to show that
there exists an embedding ψ of H into G with ψ(Xi)=V∗

i for each i ∈ [t]. Therefore it suffices to
show that we can apply Lemma 6.4 with 2, 1, 1/50, 1/r, 10/9 playing the roles of�,�R′ , α, d, κ .

Verifying the conditions of the blow-up lemma

Note that (d2)–(d4) imply conditions (i) and (ii) of Lemma 6.4. Moreover, each V∗
i has the desired

size by (6.3). It remains to show that condition (iii) of Lemma 6.4 is satisfied, which is covered by
the following two claims. Note that for all i ∈ [t] and v ∈V(G) \Vi, we have

deg� (v,V∗
i )� deg� (v,V ′

i )
(b3)
� (1+ ε)p|V ′

i |� (1+ ε)p|Vi|
(6.3)
� 3p|V∗

i |/2. (6.4)

Claim 1. (G, V∗) is an (ε6.4, 1/r, p)-regular R-partition, which is also (ε6.4, 1/r, p)-super-regular
on R′.
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Proof of Claim 1. Recall that for any ij ∈ E(R), the pair (Vi,Vj) is (ε, 1/r, p)-lower-regular in G′
and ε� ε6.4/2. So Lemma 6.1 together with (6.3) implies that (V∗

i ,V∗
j ) is (ε6.4, 1/r, p)-lower-

regular in G′. Hence (G, V∗) is an (ε6.4, 1/r, p)-regular R-partition.
Consider any ij ∈ E(R′) and v ∈V∗

i . Then

degG (v,V∗
j )� degG (v,V ′

j )− deg� (v,V ′
j ∩U)− |U+|

(b2), (c′3), (6.2)
� (1/r − ε− 2−9 − 2−10)p|V ′

j |
� (1/r − ε6.4)p|V∗

j |
(6.4)
� (1/r − ε6.4) max{p|V∗

i |, deg� (v,V∗
j )/2}.

Therefore (G, V∗) is (ε6.4, 1/r, p)-super-regular on R′.

Claim 2. (G, V∗) has one-sided (ε6.4, 1/r, p)-inheritance on R′.

Proof of Claim 2. Fix ij ∈ E(R′) and z ∈V(�) \ (W ∪V ′
i ). Note that

deg� (z,V∗
i )� deg� (z,V ′

i )− deg� (z,V ′
i ∩U)− |U+|

(b3), (c′3), (6.2)
� (1− ε− 2−9 − 2−10)p|V ′

i |
� 3p|V∗

i |/4
(6.4)
� deg� (z,V ′

i )/2.

In particular, deg� (z,V∗
i )� deg� (z,V ′

i )/2 for every z ∈V∗
j . By (6.3), |V∗

i |� |V ′
i |/2. Recall that

by (b4) the pair (N�(z,V ′
i ),V ′

j ) is (ε6.4/2, 1/r, p)-lower-regular in G′. So Lemma 6.1 implies
that (N�(z,V∗

i ),V∗
j ) is (ε6.4, 1/r, p)-lower-regular in G′ as well as in G, which yields the desired

inheritance.
This finishes the proof of Lemma 3.2.
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