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INTERTWINING OPERATOR AND h-HARMONICS
ASSOCIATED WITH REFLECTION GROUPS

YUAN XU

ABsTRACT.  We study the intertwining operator and h-harmonicsin Dunkl’s theory
on h-harmonics associated with reflection groups. Based on a biorthogonality between
the ordinary harmonics and the action of the intertwining operator V on the harmonics,
the main result provides amethod to compute the action of the intertwining operator V
on polynomials and to construct an orthonormal basis for the space of h-harmonics.

0. Introduction. With respect to a family of measures on S that are invariant
under a finite reflection group, a theory analogous to spherical harmonics has been de-
veloped by Dunkl [2-6] recently. The key ingredient of the theory is a family of com-
mutative differential-difference operators, which play the role of the partial differentials
in the classical theory. These Dunkl’s operators lead to a structure based on the connec-
tion between a L aplacian operator and orthogonality with respect to the group-invariant
measure. Among its many applications, this structure offers away to study orthogonal
polynomialson S with respect to alarge family of measures. Oneimportant tool in the
theory is the linear isomorphism on polynomials that intertwines the algebra generated
by Dunkl’s operators with the algebra of partial differential operators. This intertwin-
ing operator allows the transfer of results about ordinary harmonic polynomials to the
h-harmonics associated to refl ection groups. Closed formula of the intertwining operator
isknown only in afew cases; to find such aformulais a challenging problem.

Thepurposeof this paper isto study therel ation between the intertwining operator and
the h-harmonics. The study is based on abiorthogonality, previously unnoticed, between
the ordinary harmonics S,; and VS,;, the action of the intertwining operators on the
ordinary harmonics. Thisrelation allows one to compute the inner product of VS,; and
leads to a method to compute VS,; in terms of an expansion in S,;. The results offer
a simple formula for the action of V on polynomials when an orthonormal basis of the
h-harmonic polynomialsis known.

The paper is organized as follows. In Section 1 we review the basic definitions and
present the preliminary materials. In Section 2 we prove the fundamental formula and
study the action of the intertwining operator V on ordinary harmonic polynomials. In
Section 3 we consider the action of V when an orthonormal basis of the h-harmonicsis
known. In Section 4 we discuss examples that illustrate the resullts.
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1. Backgroundand preliminary. Forx,y € RYwelet (x,y) denotethe usual inner
product of R% and |x| = (x, x)/? the Euclidean norm. Let B¢ = {x : |x| < 1} bethe unit
ball in RY and let S+ = {x : |x| = 1} be the unit sphere in RY. We denote by dw the
surface measure on 1 and write wg_1 = fgi 1 dw = 2792 /T(d/2).

For anonzero vector v € RY define the reflection o, by

Xay i= X — 2((x,v)/|V[})v, x€R%.

Suppose that G is a finite reflection group on RY with the set {v; : i = 1,2,...,m} of
positiveroots; assumethat |vi| = |vj| whenever o; isconjugateto oj in G, wherewewrite
oi = oy, 1 <i < m. Then G is asubgroup of the orthogonal group generated by the
reflections {o; : 1 <i < m}. We consider weight functions of the form hgdw on §-1,
where

1.1 h,(x) := ﬁ [(x,vi)|*, o >0,
i=1

with o = o5 whenever o; is conjugate to oj in G. Then h, is a positively homogeneous
G-invariant function of degree|«|, = o +- - - + am. We denote by H,, the normalization
constant defined by H, ! = Jgi-1 h? dw. Notice that if o = 0, then h, = 1; in particular,
Hal = Wg—1-

The h-harmonics are orthogonal homogeneous polynomials on §*-1 with respect to
h2dw. The key ingredient of the theory is afamily of commuting first-order differential-
difference operators, D; (Dunk!’s operators), defined by

m  f(x) — f(Xo; .
(1.2 Dif(x)::ai+§aj(X)ij(>XUJ)<vj,a>, 1<i<d,

whered; istheordinary partial derivativewith respecttox; andey, . .., eq arethe standard
unit vectors of RY. The h-Laplacian, which plays the role similar to that of the ordinary
Laplacian, is defined by

(1.3) Ay=D2+...+D3.

We keep the notation A for the ordinary Laplacian. Thefundamental relation between the
h-L aplacian and the orthogonality isasfollows. Let P 8 denotethe space of homogeneous
polynomials of degreeninx = (xg, ..., Xq). If P € P4, then

n—1
/ PQR2dw=0, vQe |JP¢
I8 k=0
if and only if AP = 0. The polynomials P in P¢ that satisfy AnP = O are called h-

harmonic polynomials. When h,, = 1 the h-harmonics become the ordinary harmonics,
which satisfy the classical Laplacian equation AP = 0. We denote by

H,=Pdnkera and H"=PInkeray,
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respectively, the space of ordinary harmonic polynomials and the spaces of h-harmonic
polynomials of degree n. Here and in the following we take the dimension d as fixed,
and we omit the parameter d from the notation of H, and H.". We shall also write P,, in
place of P ¥ whenever thereis no danger of confusion. The dimension of H," isthe same
asthat of H,, which we denote by N,, = N(n, d); thus,

. . . n+d—1 n+d—3
Ny = dimH." = dimP,, — dimP,_, = ( o ) — ( i )
Analogousto the classical theory, it is shownin [2, p. 37] that there is a decomposition
Pn= @L'Zg] [X|%H.,; that is, if P € Py, then there is a unique decomposition

[n/2]
(1.4) PX) = > [X*Pra(X), Pnak € HM .
k=0

Theintertwining operator V is alinear operator uniquely defined by ([5])
(1.5) VP,cP, Vi=1DVv=ve 1<i<d.

Note that VH,, c H.". In particular, if {S\1,..., S, } is an orthonormal basis of H,,
then {VS,1,...,VSn,} is a basis of th, although no longer an orthonormal one in
general. A closed form of V is known only for hy(x) = |xq|** - - - |[X4|*¢, associated with
the group 72 x --- x 72 ([13], the case d = 1 appeared early in [5]), and for h,(x) =
|(x2 — X2) (%2 — X3) (X1 — X3)|*, associated with the symmetric group S; ([6]). The formula
of V inthefirst casewill be given later in Section 4.1. The formulain [6] for S; israther
complicated. In general, the problem of finding a closed formula of V is very difficult.
In [14], it is shown that one can get rid of V if one takes the integral of Vf with respect
to h2dw.

Next let us recall abilinear form on P,, that plays an important role in the study of the
intertwining operator. It is defined by ([5, p. 1220]),

(1.6) [p.dlh = p(D)a(x), p.qe P,

where D = (Dy,...,Dy) isatuple of Dunkl’s operators and p(D) is acted on q(x). In
caseh, = 1, the bilinear form iswritten as[p, q], whichis classical (cf. [8, p. 139]), and
D inits definition is replaced by @ = (01, . .., dq4). The bilinear form is symmetric; that
is, [p,dln = [q, pln- We state one of its important property in the following lemma ([5,
Theorem 3.8, p. 1222)).

LEMMA 1.1. IfpeP,andq e H,", then

(1.7) [p.dln = 2(|a|1 +d/2)nHe /s, pah’, dw.

In[5] the formula (1.7) is stated for both p and ¢ in H,", but the proof of the theorem
there shows that one of the polynomial only hasto bein P,,.
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The ordinary harmonics have been under extensive studies because their many distin-
guished applications (cf. [8, 10]). An orthonormal basis of H,, has been given explicitly.
For later use we present the formulae here. Let C{V denote the standard Gegenbauer
polynomial of degreen (cf. [9, p. 80], where the notation P is used). The special cases
of A = 0and A = 1 correspond to the Chebyshev polynomials of the first and the sec-
ond kind, usually denoted by T, and Uy, respectively; these polynomials are defined by
Ta(X) = cosnd and Uy(x) = sin(n + 1)8/ sin6, wherex = cosf in [—1,1]. Ford = 2,
the ordinary harmonic polynomials are given as

(1.8) YO(xe, %) = MTa(xe /1) and Y@ (x1,%2) = r"xUn-1(x1 /1),

wherer = (3¢ +x3)%/2. For d > 2 and each n € Ny, an orthonormal basis of H, is given
by (cf. [10, p. 466])

(1.9 Y00 = A st|><d—J|k"_'<"“c(kj:1'+d Jz 2)( o )Y(kjj)f (X1, %2)

) =0 k=K1 |Xd7j | 2
where [Xg_j|? = x§+- - -+x§_j, n=Kko>ky > --- > Kyq_p. Thesymbol k here denotesthe
sequencek = (ki, ..., ky—2), and A} denotesanormalization constant. It isshownin[15]
that Y\, i = 1,2, are related to the orthogonal polynomialswith respectto 1/,/1 — |x|2
and /1 — |x|2, respectively, on the unit ball B4~1. We will discuss this connection in
Section 3.

2. Action of intertwining operator on ordinary harmonics. Throughout this sec-
tion we assume that an orthonormal basis for the space H,, of ordinary harmonics of
degree n is given by {Sy1,..., SN, }- For example, we can give an order among the
ordinary harmonicsin (1.9) and rename them as S, ;.

We start with asimple formula which is fundamental to the forthcoming development
in the entire paper.

THEOREM 2.1. Forp e P,andqe H,,
2 _
2.1) /SH PVA)N?, dw = Eqn [, , PO do.
where
d (d/2)nHo

Eoc,n = Erx,n = m.

PrROOF. We use the pairing (1.6) and Lemma 1.1. Since g € H,, impliesthat Vg €
H,", the assumption of Lemma 1.1 is satisfied with Vg in place of g. Hence,

2(jols +d/2)nHa [, VOIS de = p(D)Va(X)
= Vp(9)a(x)
= p(@)a(x)
= 2(d/2)aHo [, , pack
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where the first equality follows from (1.6) and (1.7), the second one follows from the
intertwining property of V, the third follows from the fact that p(d)q(x) is a constant and
V1 = 1, and the fourth follows from (1.6) and (1.7) with o = 0. ]

Animmediate consequenceof theformula(2.1) isthefollowing biorthogonal relation.

COROLLARY 2.2. Let{S,;} bean orthonormal basisof H,,. Then {VS,;} and {S,; }
are biorthogonal. More precisely,

2.2) /Sj (VSIS M2 dw = Eundi, 1<1,j < Na.

The equation (2.2) follows from (2.1) by setting p = S,j and g = S;;. It should be
pointed out that the biorthogonality is restricted to elements of H,, and H," for the same
n. In general, S,; is not orthogonal to VSy; with respect to h2dw if m < nsince §; is
not an element of H,".

The following analog of the fundamental formula (2.1) turns out to be useful aswell.

THEOREM 2.3.  Forpe Pyandqg" € H,

(2.3) (VPG dw = Eon [, po" dw.

The proof of (2.3) follows in the same line as that of (2.1), we leave the detail to the
reader. We note that the requirement g € H," is needed in order to use Lemma 1.1.

From the intertwining property of V it follows that VS,; € H,!" provided that S,; €
H,. Hence, the biorthogonality may help us to construct a basisfor H. using VS, ;. For
that purpose, it is essential to be able to compute the inner product of VS,; and VS;;. In
order to do so we need some notations first.

Let usdenoteby S, and VS, respectively, the column vectors defined by

Sn=(Sit,...Sn)" and VSp = (VSut,...,VSin)"-

The use of vector notation is suggested by the recent study of orthogonal polynomials
in several variables (cf. [11]). We also define matrices M;; whose elements are inner
products of the ordinary harmonics with respect to h2dw,

Mi_j = Sigj-rhi dw,

Jg-t

where S| meansthe transpose of §; sothat SiS]" isamatrix of N x N; and the integral is
acted entry by entry. Similarly we define

My = [, VS(VS)Th du = ( S VSuVSyN dw)

whose elements are inner products of VS, ;. Furthermore, we use M;; as building blocks
to define a square matrix M, of size 2!1/02] Nn_2i,

IVln = (Mn—zi,n—zj)i[?fgy and Mn_l = (Mn—zi,n—zj)i[?fg

https://doi.org/10.4153/CJM-1998-010-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-010-9

198 YUAN XU

where Mi’j are matrices of the same sizeas M; ;. Evidently, M, is symmetric and positive
definite; henceit isinvertible.

Since S, as elements of an orthonormal basis for the ordinary harmonics of degree
n, can be written down explicitly asin (1.9), the matrix M;; and M, can be considered
asknown. The matrix MY whose elements are inner products of VS, ; iswhat we need to
figure out. Since VS, is homogeneous of degree n, by the unique decomposition of P,
in terms of H,, we can writeiit as

Nn Nn—2
VS = > al S+ X7 ) & PSp o,
=1 =1

where a}fj are real numbers. Using the notation S we can write the above expansion in
vector-matrix form as

(n/2]
(2.4) \&z%ﬁw%ﬁw%w+~=§AﬂmW%ﬂ,
where A, are matrices of the size N x N,_x. The basic formula (2.1) allows usto
determine these matrices as follows.

THEOREM 2.4.  The coefficient matrices A, n—y in (2.4) are given by
(2.5) Ann2 = ExnMnng, 0<j<[n/2].
Moreover, MY = Ay = EynMnp.
PROOF. Since VS,; € H,M"is orthogonal to al polynomials of lower degree with
respect to h2 dw, we have by (2.2) that
[ (VSh)Sh-2112 co = B0

for k > 0. Therefore, multiplying (2.4) by (Sh_2)" and integrating with respect to h2dw,

it follows that
[n/2]
ok0Ean = > An-2,nMn_gn-2

j=0
for 0 < k < [n/2]. We can rewrite these equations as
(An'An—Z,n, e 1An—2[n/2],n)Mn = (Eo(,nl y On e Yo)l

from which (2.5) follows upon using M, 1. Moreover, by the basic formula (2.1),
MY = /si L VSa(VS)Th dw = Egn [, Sn(VSH)" o

Therefore, using (2.4) to replace VS, it follows from the orthogonality of S,; that MY =
E. nAn. Thelast statement on A, is evident from (2.5). ]

The importance of this result liesin the fact that it shows away to compute VS,; and
the inner product of V§,; and VS,;, even though the closed formulaof V is not knownin
general. Once VS, ; isknown, an orthonormal basisfor H," can be constructed from them
right away. Indeed, since (MY)~! is positive definite, we can define its unique positive
definite square root matrix (MY)~%/2. Then, we have

https://doi.org/10.4153/CJM-1998-010-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-010-9

h-HARMONICS AND INTERTWINING OPERATOR 199

THEOREM 2.5. LetS) = (§,,..., )" bedefined by S} = (MY)~%/2VS;. Then
the homogeneous polynomials S,}i form an orthonormal basis for H,".

ProOF. From the definition
oy, SAENTHE o = (M) 72 [, Vn(vS0)ThE do(MY) /2
= (M)~ 2MI(M) 2 =1,
which gives the desired result. ]

The Theorem 2.4 deals with the action of V on the ordinary harmonic polynomials.
In order to understand the action of V on other polynomials, we need to know the action
of V on polynomials|x|S,_x, according to the unique decomposition (1.4). Using the
formula (2.3), one may find the expansion of V(| - [S,,_) in terms of Sy asin (2.4). In
stead of deriving a formula for the coefficients in such an expansion, which will be of
little use in actual computation, we will deal with amore practical casein the following
section.

Together, Theorems 2.4 and 2.5 offer away to computethe action of V onthe ordinary
harmonics and an orthonormal basis for H,". It should be pointed out, however, that the
formula (2.5) may not be very useful in practical computation, since it may be difficult
to compute the integralsin M j, not to say the inverse of M, for even moderate size of
n. For agiven reflection group, one may usethese formulae to generate, perhapswith the
help of a computer, h-harmonics of lower degree.

3. Intertwining operator and h-harmonics. Inthe previoussection wewrite VS,
in terms of the ordinary harmonics S,; and use VS,; to construct an orthonormal basis
for h-harmonics. For some weight functions h2, one may be able to find a basis for H,"
by some other means. For example, if h2 isalso S-symmetric, then an orthonormal basis
for H." may be given in terms of orthonormal polynomials on B4~ (see discussion after
Corollary 3.3 below). In such acase, the basic formula (2.1) allows us to write down the
action of V on the ordinary harmonics rather easily. We discuss the related formula in
this section.

Let usassumethat {S) ,..., S } is an orthonormal basis of H,". We also use S}} to
denote the column vector with components ;.

THEOREM 3.1 If{S),..., S, } formsanorthonormal basisof H ", then the action
of V on the ordinary harmonicsis given by the formula

(3.1) VS, = MiS" where M! = E,, s Sn(SMT dw,
and ME isamatrix of size N, x N,. Furthermore,
(3.2) (M)~ = Eop |, , Sa(Sn)Thi dw.
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PROOF.  Since the componentsof S form an orthonormal basisfor H,.", we canwrite
VS,; in terms of them. Hence, there exists a matrix M such that VS, = MISf. The
orthonormality of S implies that

Mh = [, VSu(ETh2 dw = Eqa [, Sn(Sh) dw

where the second equality follows from (2.1). Multiplying (3.1) by S] and integrating
with respect to h2dw, it follows from the biorthogonality (2.3) that

Eanl =M} [, ShEWHE do

from which the desired formula (3.2) follows. ]

Aswe mentioned in the end of the previous section, in order to understand the action
of V on other polynomials than ordinary harmonics, it is essential to know the action of
V on polynomials of the form |x|2kSn,2k,i. If abasisfor th is known, then this action
can be computed rather easily.

THEOREM 3.2 1f{S;,..., S, } formsan orthonormal basisof H,)", then

(3.3 V(| - [*Sn) = Bﬁ,ngﬂ + Bﬁfz,n|x|25272 Tt Bﬁfzk,n|x|2kgﬂfzk

k

where BY ., , arematrices of the size N,_a X Nn—2i; moreover, these matrices are given

by

/ > ( J / )J Ea,n—Zj /31—1 Sn72k(S272j)T dw.

K _
Br-20=\j ) feal *n— 2 +d/2)

PROOF.  Since V(| - [*S,_2;) is a homogeneous polynomial of degree n, it follows
from the decomposition (1.4) that there exist matrices Bﬁ'n_zj such that

(n/2 .
V(| - [*Sn-2) = BYSh + B _onlX[?Sh o+ -+ = 2) Bﬁ_z,-,nIXIZJSE_zJ-
J:

by the unique decomposition (1.4). We will prove that Bﬁ_zjyn are given by the stated
formulae for j < k and that B2, = O for j > k. From the orthogonality of Sﬂ and the
formula (2.3), the first coefficient matrix is determined by the formula

@4 Biy= [, V(- PShad©N M dw = Eqn [, SraSH) dw

which is the desired formula for j = 0. Moreover, it follows from the orthogondity of

S 4 that
Bﬁfzj,n = ./SH V(- |2kgn72k)(g272j )Thfzx dw.

We note that the formula (2.3) cannot be used to remove the intertwining operator V in
the aboveintegral, sincej > 0 means that the degree of Sl—zu is less than the degree of
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V(| - |*S,_2;)- To evaluate the last integral, let proanf1 be the projection operator from
P, to H. From [2, p. 38] we havethat for g € P,

va -
o) = > IXI?
p=0

1
4Pp! (laf1 +n—2p+d/2),

Projy n . APg.

Using this formulawith g = V(| - [*S, ;) and the orthogonality of S ;| with respect
to h2dw, we obtain that

./éj’l V(l : |2kS”I—2k,i)$sz,| hi dw =
1
4jt (Jafs +n—2j +d/2),

/sH ProjH (Ath(| P S—aki) ) Sh_gi NG dw

Moreover, from [2, p. 38] we have that for f € Py,

(n/2 1

i - 2ppP
Projp f pgo 4rp! (—|oly —m+2— d/2)p|x| Baf ().

Therefore, using this formulawithm=n—2jandf = Ath(| - |*S,_x) and using the
orthogonality of S,_;, again, we obtain

/31,1 V(l : |2kgn—2k)(g2_2j )Thi dw
1

= J . |2 h T2
= @i (el g +dj2), Jo AV FS20Ghg) e doy

where we have changed back to the vector notation. Using the identity
A(X[*Py) = 4k(n+k — 1+d/2)|x|*2P, + x| *AP,
for P, € Py, and the intertwining property of V it follows that

AV( - *Sh-a) = V{A(| - |*Sn-2)}
|

(k—J)!
whereoy; = 1if j < kandoy; = 0if j > k. Therefore, we conclude that

=4 (n—k—j+d/2V( - [*FS, a0,

SV - [80-20(Sh-5)ThE d
_ (kY (n—k—j+d/2) 2] h  \Tp2 _
B (1) Qo+ n=2+/2) Jos V(70200 ) o
B /k) (n—k—j+d/2)
\J
using the first equation of formula (3.4) for Bﬁ,ni the desired result follows from the
second equation of (3.4). n

. B on
(Jafs +n—2j +d/2); nan-27ki
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From the unique decomposition (1.4) of P, interms of H .1, the result in Theorem 3.2
can be used to get the action of VV on any polynomial P € P,,. In particular, we can take
n = 2k in the formula (3.3) so that it gives aformulafor V(| - [%).

The formula (3.3) shows, in particular, that V(| - [*S,_ ;) is orthogonal to H, with
respect to h2dw for | < n — 2k. Therefore, it follows from the unique decomposition of
P in (1.4) that V(| - [*S,_;) is orthogonal to all polynomials of degree < n— 2k — 1.
We formulate this fact as a corollary sinceit seemsto be of independent interest.

COROLLARY 3.3. For eachk, 2k <n,and1 <i < Np_x,

n—2k—1

/31—1 V(- *S-xi)ahidw =0, qe U P;
j=0

For alarge family of weight functions on S™1, including many reflection invariant
ones, it is shown in [15] that an orthonormal basis can be expressed in terms of or-
thogonal polynomials on the unit ball B4~1. Comparing to orthogonal structure on the
spheres, orthogonal structure on balls seemsto be better understood at present time and
it is relatively simple. For example, an orthonormal basis on B4~ can be constructed
by the standard Gram-Schmidt process. Hence, this connection provides a possible way
to obtain a basis of H,". For results about orthogonal polynomials in several variables,
including some recent developments, we refer to the survey [12]. In the following we
describe the construction of h-harmonics in terms of orthogonal polynomials on B4—1
which appearsin [15].

A weight function H defined on RY is called S-symmetric if it is even in yg and is
centrally symmetric with respect to variablesy’ = (y1, ..., Yq_1); that is, H satisfies

HY', Ya) = HY',—ya) and HY',ya) = H(—=Y',ya) Y= (Y,ya) € R".

Examples of S-symmetric functions are h2 whenever h,, is even in each of its variables.
We shall restrict our discussion to the case that H = h? is reflection invariant as well
as S-symmetric. In associate to an S-symmetric weight function hZ on RY we define a
weight function W, on B4~1 by

Wh(x) = h2(x,\/1— [x[2), xeB*™

Theassumption on h, impliesthat W, iscentrally symmetric on B4~1. Wedenoteby {P}}
and {Qp} systems of orthonormal polynomialswith respect to the weight functions

3.5 WX =2Wh(x)/y/1—|x2 and W2(x) = 2Wh(x)/1 — |x[2,

respectively, where we adopt the convention that the superscript n means that P and Qy
are polynomials of degree n; the subindex k hasthe range 1 < k < rd so that {P}}, or
{Qg}, forms an orthonormal basis for orthogonal polynomials of degreen.

In this connection we fix the following notation: Fory € RY, we write

(3.6)  y=(u...,Yo-1.Yd) = Y,ya) =rx=r(x,xg), xeS1 x eB*?
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wherer = |y| = /y2+---+yiand x’ = (X1, ...,X4—1). Keeping in mind this notation
we define

3.7) Ve (y) = r"PR(<) and YEP(y) = rixaQf X)),

where1 < k < r3~%, 1 <j < rd-} and we define Y5"(y) = 0. The following theorem
isprovedin [15] for all S'symmetric weight functions.

LEMMA 3.4. Let h2 be a Ssymmetric weight function on RY. Then the functions
YED(y) and Y& (y) defined in (3.7) are homogeneous polynomials of degree n on RY
and they form an orthonormal basis for H,".

When h, = 1 we are back to the ordinary harmonics. In fact, since the polynomials
T, and Uy, are orthogonal polynomials on [—1, 1] with respect to the weight function
1/ V1 —x2and /1 — x2, respectively, theformula (1.8) providesan illustrating example
for thisconstruction. More generally, we can derive formulae for orthogonal polynomials
with respect to 1/\/1— |x|? and \/1 — |x|?, respectively, from the ordinary harmonic
polynomialsin (1.9).

For the S.symmetric weight function, we can simplify Theorem 3.1 by taking into
account the additional symmetry. We need some notations first. Let h2 be S-symmetric,
and Y, li‘) be the h-harmonics given in terms of orthogonal polynomialsonB%1in (3.7).
We denote by Y& and YW, respectively, the vectors

h h h h
40 = 0 YT, and YD = (O, YD )T

When h2 = 1, we write Y0 as YO, which consists of the ordinary harmonic polyno-
mials. We note that for d = 2 the vector Y{) becomes a scalar, and we have Y{) = YO,
So the notation agrees with that in (1.8). In view of the previous notationS,, and Sf!, we
haveS] = (Y{, Y@)T.

THEOREM 3.5.  If hZ is Ssymmetricin addition, then

(3.8) VYO = MEDYED  MED = E, / YOI dw, =12,

where MM is a matrix of size rd=* x rd=* and M@" is a matrix of size rd=} x rd-}
Furthermore,

(3.9) MEOY = Egf [, YOS R dw, i =1,2.

PROOF.  Since h2 is Ssymmetry, it is even with respect to yq. By the definition in
(3.7), Y& iseveninyg and Y& is odd in yg; moreover, the same holds for the ordinary

harmonics. Therefore, it follows that
Jo YOWEN do=0 and [ vOEEY) M dw =0
Hence, writing ST = ((Y®)T, (YP)") andasimilar formulafor S}, we seethat the matrix

MP in (3.1) takes the form of the block diagonal matrix, from which the desired result
follows from Theorem 3.1. ]

Similarly, we have the following simplified version of Theorem 3.2.
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THEOREM 3.6.  If h2 is Ssymmetricin addition, then
BA0) V- PV, = BEYEY # B P B X
where B“'n = Bf;t, and the matrices BY' , | are given by

ki (k) _(h—k—j+d/2) , 0
Pran = \,—) (oal+n—2+d/2) "2 Js Yo

(V)T dw.

From the formulafor BY in Theorem 3.2, it is evident that the same argument asin the
proof of Theorem 3.6 works in this case. We omit the details. As an special case of this
theorem, we formulate the the following corollary.

COROLLARY 3.7.  If h2 is Sssymmetric in addition, then
V(| - P9(x)

(3.11) ~ Ho &g (K (d/2)(d/2)y N N
SR \J) @D+ /Dy o5 2] 5700

To get (3.11), we substitute the formula of B},

constants are rewritten using the formulafor Eqn—3.

into (3.10) and take n = 2k. The

4. Examples. Inthissectionweuseexamplestoillustrate theresultsin the previous
sections. Because of the difficultiesin computation, the examplesare mostly givenin the
cased = 2. We note that Y{:" becomes a scalar for d = 2 so that Theorems 3.5 and 3.6
become particularly simple.

4.1 Product weight function. Thisisthe weight function associatedto Z, x - - - X Zy; it
is defined by
ho(X) = [xa|** - 4|, @ >0, x € S,

where o > 0. The h-harmonics and the intertwining operator are known in this case;
they are studied as examples of the general theory in [3] for d = 2 and later in [13] in
more detail. The intertwining operator turns out to be an integral operator given by

d d
(4.1) VE(X) = / f(Xaty, ..., Xata) [T(L + ) T Cop (1 — )L,

Jl-1¢ i=1 i=1
wherethe constant ¢, isdefined by c;* = J;(1—t?)*~1 dt. To describe the h-harmonics,
we introduce the orthonormal polynomials with respect to the weight function
42 W) =w (1) TE X, —1<x <1 A p>—1/2
wherew, , is the normalization constant so that the integral of wi**) on[—1,1] is 1;

O\ +pu+1)

Y = PO r(u+1/2)
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The orthonormal polynomial of degree n with respect to wt#) is denoted by D$#); it can
be given in terms of the classical Jacobi polynomials P? (cf. [9]) as

(4.32) DSI(X) = oA PSP (2 — 1),
A+ +1\1/2 1,41
(4.3b) D) = Ca(A, 1 + 1)(#1/2) xPO B (02 1y,

where

Mu+ Hrov+ %))1/2((2n+ A+ @M+ A+ @)r(n+ 1))1/2_

(4.4) C”O"“):( FOA+p+1) r(n+u+%)r(n+)\+%)

We note that if ;= 0, then D{9 = CW is the orthonormal Gegenbauer polynomial,
whichisaconstant multiple of C{V. For d = 2, an orthonormal basisfor H," with respect
to the normalized H,hZdw is given by

artox+l

1/2
singD*1*122) (cos),
o+ 1/2 ) n-1 ( )

YA () = "D cos), Y () = 1"
where we use the polar coordinatesx = (r sind, r cos#).

Since the intertwining operator is an integral transform in this case, the relation be-
tween VY and the h-harmonicsleads to an integral formula of the Gegenbauer polyno-
mials, which includes a classical formula of Feldheim and Vilenkin. Indeed, using (1.8)
and applying Theorem 3.5 to Y- implies that
(4.5)

1 .
D12 (cosf) = by, ./71 ./71(@ sin? g + t2 cos? A)"/2

( t, cosf
"\ (€ cos? 6 + 2 sin? §)1/2

Jartaw -t -ty b,

where by, is a constant which can be determined by setting 6 = 0. In particular, if we let
a2 — 0 by using the relation

. 1 _ f(1) +f(-1)
_ $2\p—1 _
limc, (/71f(t)(1 eyt = o
and write o; = «, then (4.5) becomes
- 1 cosd
(o) — 2 2 n/2 _ t2ya—1
C{*(cos#) bn./_l(t sin? 6 + cos’ 6) Tn((c0326+t23in20)1/2)(1 t2)* L dt.

By setting # = O the constant by, is seen to equal to c,C(). Hence, changing variable
t1 = cosy and then ¢ — (7/2) — ¢, we concludethat (4.5) with o, = 0and a1 = v is

equivalent to
C{®(cos#) /2 oo cosf . _
2 — 2, 1—sin?gsin ”/ZT( )sm G
Cs]a)(l) /0 ( ¢) n (1 _ S.nz ¢Sin2 6)1/2 ( ¢) ¢
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Thisformulais aspecia case of aformuladueto Feldheim and Vilenkin (cf. [1, p. 24]),
which has Gegenbauer polynomial C{) in place of T, in its general form.

The same consideration with the explicit formula of V alows us to write down the
h-harmonics on RY in terms of an integral transform of the ordinary harmonics. Let us
consider aspecial caseof h, = Hy|Xg|* On S1withd > 3; that is, wetake oy = -+ - =
ag_1 = 0and ag = a. Fromthe formulain [13], an orthonormal basisof H," for thish,
is given by formulae similar to those of the ordinary harmonics; in fact, we only need to
replace Cgﬁild_gl’“) in (1.9) by Dg‘jﬁ%‘“) (of course, the normalization constant changes
as well). It follows from Theorem 3.4 and the explicit formula of V (which reduces to
only onefold integral in this case) that we have

(k+452,0) R L P n/2 (k+%2)( tcosd )
D, > “(cosb) = bn/_1(sm 0 +t?cos? 0)"2C,", G0+ o 0]

x (1+t)(1—t3)*Ldt,

where by, is a constant. In particular, let k = 0, n = 2mand use (4.3a), we end up with
the following interesting formula

-3

(%2 a-1) [T 2 \m(%52)
Pm (00529)_am/0(1 cos’ 0 sin? ¢)™C ((1_

2m

cos# cos¢ )
co? fsin? ¢)/2
X (sing)**~* dg,
where the constant a,, can be determined by setting § = 0. Using quadratic transform
d—2 d—3 _1
to change C(ZmT) to Pl ), it can be seen that the above integral is a special case of a

formula on Jacobi polynomialsfirst derived by Askey and Fitch (see[1, p. 20, (3.10)]),
which also followsfrom aformulaof hypergeometric function of Bateman (cf. [1, (3.5)]).

4.2 Dihedral group D4. Theweight function is
(4.6) ha(X) = [2x%e* X§ — 33", Hao =W, /2,

where w, , is given in (4.2) and we write oy = A and o, = p. In this case, a closed
formula of the intertwining operator V is not known.
An orthogonal basisfor H." can be derived using Lemma3.4. It is easy to verify that

HaMl)(t) _ 22A+2;,,WA,#|t|2A(1 o t2)/\|t2 _ 1/2|2u — WE‘A,/:,)(»[)’

and 1, V\éﬁ"")(t) dt = 1. Hence, by Lemma 3.4, to derive an orthonormal basis for H,",
we need to find orthonormal polynomials for V\/Eﬁ"‘) and (1— tz)m@""), respectively.

It turns out that an orthonormal basis for H.! can be given rather easily. Indeed, in
terms of polar coordinatesx = (X1, x2) = r(cos#, sind), it is easy to verify that

A+p+1l

1/2
Tl/Z) sin 26D ) (cos 26).

Y5 (x) = rPDEM) (cos26), YD (x) = rzn(

The formulae for Y, are much more involved; for example,

(M) (x) = anr?™* cos#[DS ) (cos26) — bn cos? D14 (cos 20)],
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where a, and b, are constants and their formulae are different for n being even and odd.
Theformulafor Y2 takesasimilar form. We will not give them explicitly but refer the
reader to [2], where acomplete basisfor H," is derived by solving A,P = 0 and the basis
is given in terms of Jacobi polynomials (see (4.3)).

Using Theorem 3.5 or by elementary consideration it is easy to concludethat VYY) is
aconstant multiple of YU, Theimportance of the results in the previous section is that

Theorem 3.5 shows away to compute the constant. Indeed, we have that
VY00 = MEPYED, N = B [ VEDYD d
Therefore, let Y{*) denote the leading coefficient of D{*), we derive easily that

r2n+1)
1) — ) (up)
VYD (x) FANT 100 YOmMDW (cos26),

r@2n+1) X+p+1 o410 .

2) (v — (A1) (A+L,p)

VYR(x) = 2L+ A+ @) A+1)2 Yoyt sin20Dy 1 (cos 20).

Hence, we have the explicit formulafor the action of V on the ordinary harmonic polyno-
mials of even degree; the formulain the case of odd degree can be derived in asame way,
but it is cumbersome. Moreover, using (3.7) we can derivethe formulae for V(- [ Y, ).
In particular, since by (4.3)

1,h) . 1 (A\—3 p+3) 2 dx .
Alan+2dw—C°”§L1XPn 2 (2x 1)m_0,
it follows from (3.11) that we have
Ho W2 [k (2 +1)y
V(| - PY%) = r&Xr(k+ 1) —> =9\, u
(1000 =t D - 2 3 B+ Dy 0 )

21 1,1 —5HT3
x [P 219 (cos4g) dpP 22 (cos ),

where (), ) isdefinedin (4.3) integral of [Pj(A_l/ 21=1/212 with respect to the normal-
ized weight function wy, ,(1 — x)*~/2(1 + x)*~%/2. It is conjectured by Dunkl that V is
always positive. If the conjecture were proved, then the above would give a nonnegative
sum of Jacobi polynomials.

Still, we do not know a closed formula of V for thisweight function. It would be very
interesting if V can bewritten asan integral operator asin the caseof Z,. One approachis
to derive an integration formula for the reproducing kernel PR and make the connection
to V through the general formula (see[5] and [14])

PO Y) = YD) (y) + YED 0 Y (y)
n+2X\+2u
T T 2a+2p
Such an approach is used in [13] to derive a formula of V in (4.1) for the case of

Zy x -+ X Z,. Based on the product formulae of D) in [13] and ad hoc transforms,
we can follow this approach to prove that

[VEE* 2, y)Ied, Iyl < Ix| =1,
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ProPOSITION 4.1.  For h, in (4.6),if A+ >3/2and A\, u > 0O, then for all n > 0

[V((-, ¥y (x)
= C/\C#O\ + ,u)(/\ +u— 1)7'(73/2 /B3(1 _ |u|2)/\+y,72 du

2n
Lot [ [Vt /S VS w
{/1 /1 (X —@Ul \/%uz+ \/Egsus} y| ®(ts)dtds

+,/;1./t (X |:—\/¥U2+\/§U3 \/?u]. :|y) CD(t,S)dtdS},

where d(t,s) = (L +t)(1+9)(1 — t?)* (1 — )L

This formula indicates that there should be an integral formula for the intertwining
operator V in this case. Unfortunately, the obvious choice hinted by this formula does
not seem to work in general. Becauseit is only a partial result and the proof is rather ad
hoc and long, we will not give the proof here. Although the formulalooks complicated,
aformula of similar type with 6-fold integrals has been conjectured by Dunkl (private
communication) based on some consideration using integration over the unitary group.

4.3 Other Dihedral groups. We can apply Theorem 3.5 and 3.6 to other Dihedral group
Dy since an orthogonal basis for the h-harmonics associated with Dy can be given ex-
plicitly (cf. [2, 4]). To get M{:? in (3.8) we need to normalize the basis; that is, we need
to compute J[Y®M]?h2 dw, which could be complicated. For example, for Dz whose cor-
responding weight function is given by h,(cos#,sinf) = | sin36|* in polar coordinates,
we know form [2, p. 52] that
Y&, = r¥1cos20C P (cos38) — cosdCE D (cos36)].

Thenorm of thisfunction is not easy to compute. Other than this computation, we should
have no problem to write down the action of V on ordinary harmonics using (3.8).

4.4 Remarksonthecaseof d > 2. Naturally, we would like to get results on the inter-
twining operator for d > 2. In thisregard, the resultsin Section 2 may not be practical; it
requiresto compute M, 1, where M, containsinner product of ordinary harmonicswith
respect to h2dw. Theseinner products can be difficult to compute. Take, for example, the
octahedral group, which is the symmetric group of the unit cube {£1, 41,41} in R3,
with the weight function h,(x) = |(}¢ — X3)(X3 — X3)(x3 — x2)|*. For d = 3 the ordinary
harmonics are given by

Y& = ek (cosg) cosks, Y@ = e/ (cos¢) sinks,

0 < k < n, under the standard spherical coordinatesx; = rsingsin ¢, X = r sinf cos¢
and x3 = rcosé, where0 < ¢ < 2r and 0 < @ < . In order to work out M, we then
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need to compute integrals such as
Ji YRR, du
21 T + i .
= /0 ‘ /o cle1/2 (cos¢)Cﬂ:j/ 2 (cos¢) coskd cosjé
X | Sin? § cos2¢(sin? § sin 2¢ — cos? A)(sin? § cos2¢ — cos® 0)[>* df dé.

A moment reflection tells that thisis rather difficult even for moderate m and n.

On the other hand, the results in Section 3 are workable provided a basis for H." is
known. So far, however, such a basis has been constructed only for the product weight
functions in 4.1. We note that for S-symmetric function, we can work with orthogonal
polynomialson B4 with respect to the weight functions defined in (3.5). For small n, at
least, we can find the basisfor orthogonal polynomials using the standard Gram-Schmidt
method.
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