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Abstract
In this article, we provide a comprehensive analyses of two continuous review lost sales inventory system based
on different replenishment policies, namely (𝑠, 𝑆) and (𝑠, 𝑄). We assume that the arrival times of demands form a
Poisson process and that the demand sizes have i.i.d. exponential distribution. We assume that the items in stock
may obsolete after an exponential time. The lead time for replenishment is exponential. We also assume that the
excess demands and the demands that occurred during stock out periods are lost. Using the system point method
of level crossing and integral equation method, we derive the steady-state probability distribution of inventory
level explicitly. After deriving some system performance measures, we computed the total expected cost rate. We
also provide numerical examples of sensitivity analyses involving different parameters and costs. As a result of
our numerical analysis, we provide several insights on the optimal (𝑠, 𝑆) and (𝑠, 𝑄) policies for inventory systems
of obsolescence items with positive lead times. The better policy for maintaining inventory can be quantified
numerically.

1. Introduction

According to the Food and Agriculture Organization of the United Nations in 2011, one-third of world
food production was wasted (see [14]). In the supply chain, disbursed production occurs in various parts
of the process, such as primary production, processing, distribution, retail, and consumption. A point of
interest is how retailers order their perishable goods. In essence, if they order too many, there is a high
chance that the products will perish and waste will result. A lack of enough inventory may result in lost
sales, that is, having empty shelves for part of the day. Corsten and Gruen [10] indicated the worldwide
average of out-of-stock (OOS) is 8.3%. A manager’s real challenge is to avoid large inventories and
frequent OOS for perishable goods. There have been a number of mathematical models proposed for
dealing inventory system with perishable products.

Ghare and Schrader [12] introduced the concept of decaying in inventory systems. Several researchers
then worked on the perishable inventory theory. See Nahmias [19], Raafat [24], Goyal and Giri [13],
Karaesmen et al. [18], Bakker et al. [2], Janssen et al. [16], and Chaudhary et al. [9] for a detailed
review of perishable inventory theory. Nahmias [20] gives a great overview of all the types of perishable
inventory models. He classified finite lifetime inventories into three major categories according to the
nature of lifetimes: decay, obsolescence, or perishability. According to decay or exponential decay, a
certain percentage of inventory is lost every planning period. In continuous time, this translates to the
size of the inventory decreasing at an exponential rate. A perishable item is one that has constant utility
up until an expiration date which may be fixed or random, at which point the utility drops to zero.
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Packaged foods, dairy products, canned goods, human blood, all pharmaceuticals, and photographic
film are all included in this category.

Inventory that is subject to obsolescence is another problem. Obsolescence can be distinguished from
perishability by the following characteristics. Obsolescence typically occurs when an item has been
superseded by a better version. In this work, we concentrate on inventory models with obsolescence. A
portion or all of the inventory on hand may lose its value as a result of obsolescence. Throughout this
paper, we only consider the case of sudden obsolescence, which means that items held in inventory have
no salvage value and lose all their value suddenly.

The literature contains plenty of examples regarding the obsolescence phenomenon, such as Hadley
and Whitin [15] studies about the spare parts management for military aircraft, Joglekar and Lee [17]
studies about Swiss watches, music records, and David et al. [11] studies about military maps. A
number of other sectors are also prone to obsolescence, including avionics and military products, high-
tech products, communications, construction, medical devices, transportation, and supply chains (see
[4,8,25] and reference therein).

In this paper, we analyze two continuous review inventory systems based on the replenishment
policies. In the first model, we assume the (𝑠, 𝑆) policy to replenish the stock and, in the second one,
we use the (𝑠, 𝑄) policy for stock replenishment. We use the system point (SP) method of level crossing
theory, introduced by Brill [5], to derive the governing system of integral equations and these integral
equations are used to derive the exact form of stationary probability of the inventory levels. The governing
system of equation for the (𝑠, 𝑆) policy is same as Baron et al. [3]. Using the differential equation method,
they converted the system of integral equations to four linear equations with four unknowns. Moreover,
Baron et al. [3] pointed out that “these four linear equations with four unknowns can be solved in closed
form (which is too cumbersome to include here).” Instead of using the differential equation method, in
the present work, we use the integral equation method, which leads to a nice closed form solutions for
the stationary probability for the inventory level. The main advantage of the integral equation method
is to extend the same procedure to the (𝑠, 𝑄) inventory policy which will be studied in Section 4.

The plan of the article is as follows: In Section 2, we give a brief introduction about the system-point
level-crossing (SPLC) method. In Section 3, we provide the complete description of the assumptions
of the models. In Section 4, we derive the necessary integral equations for the inventory system (𝑠, 𝑆)
replenishment policy, solution procedure for computing the limiting probability distribution and related
performance measures. In Section 5, we derive total expected cost rate for the inventory system with
(𝑠, 𝑄) policy. In Section 6, we give numerical results and some insights from them.

2. Brief introduction of the level crossing method

In this section, we will give a brief introduction to stochastic level crossing using the SP method. In 1975,
Brill developed the level crossing method for obtaining probability distributions in stochastic models as
part of his PhD thesis. A more general method of SPs was used by him to develop the level crossing
method in his thesis (see [5,7]). When analyzing stochastic models using the SPLC, it is often sufficient
to use intuitive notions of sample path transitions. For some models, we need to define transitions with
more precision. In terms of sample path transitions, downcrossings, upcrossings, and tangents of state
space levels are of particular importance.

Consider a continuous time stochastic process {𝑋 (𝑡), 𝑡 ≥ 0} with continuous state space 𝐸 . Assume
that the upward jumps of {𝑋 (𝑡)} occur at Poisson rate 𝜆𝑢 and downward jumps occur at a Poisson rate 𝜆𝑑 .
Assume that these jumps are independent of each other and the state of the system. The corresponding
upward and downward jump magnitudes should have cumulative distribution functions (cdfs) 𝐵𝑢 and
𝐵𝑑 , and the corresponding complementary cdfs should be, respectively, 𝐵̄𝑢 and 𝐵̄𝑑 . Depending on the
model dynamics, other jumps may also be possible depending on the state of the system. Assume that
the model parameters are such that the steady-state distribution of 𝑋 (𝑡) exists as 𝑡 → ∞, and let 𝐹 and 𝑓
denote the steady-state cdf and pdf, respectively. In SPLC, the main goal is to obtain integral equation(s)
for 𝑔 and then solve for 𝑔 in terms of model input parameters.
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First, we construct a typical sample path to deduce the integral equation. A sample path of the process
{𝑋 (𝑡)} is a single realization of the process over time. Brill refers to the leading point of an evolving
sample path as the SP. The sample path value at time point 𝑡 is an outcome of the random variable 𝑋 (𝑡),
say𝑌 (𝑡).We denote an arbitrary sample path by the function𝑌 (𝑡), 𝑡 ≥ 0, which is a bounded real-valued
and right-continuous function. The function 𝑌 has jump or removable discontinuities on a sequence of
strictly increasing time epochs {𝜏𝑛, 𝑛 = 0, 1, . . . , }. Without loss of generality, we assume that 𝜏0 = 0.
The time epochs {𝜏𝑛} may represent input or output epochs of the system under consideration.

In SPLC, the state space consists of continuous and discrete states. A continuous state {𝑦} is
characterized by having probability 0. That is 𝑃(𝑌 (𝑡) = 𝑦) = 0, 𝑡 ≥ 0, and lim𝑡→∞ 𝑃(𝑌 (𝑡) = 𝑦) = 0. A
discrete state or atom is a singleton {𝑦} characterized by having positive probability. That is 𝑃(𝑌 (𝑡) =
𝑦) > 0 for some 𝑡 ≥ 0 and lim𝑡→∞ 𝑃(𝑌 (𝑡) = 𝑦) > 0.

We first examine the continuous states. The following notions will be used in this section.

Definition 1 [6]. A jump downcrossing of level 𝑦 occurs at time points 𝑡0 > 0 if lim𝑡→𝑡−0 𝑌 (𝑡) > 𝑦 and
𝑌 (𝑡0) ≤ 𝑦.

Similarly, we can define jump upcrossing of level 𝑦.
Let 𝐷 𝑗

𝑡 (𝑦) and 𝑈 𝑗
𝑡 (𝑦), respectively, the total number of jump downcrossing of level 𝑦 during (0, 𝑡)

due to the Poisson rate 𝜆𝑑 and the total number of jump upcrossing of level 𝑦 during (0, 𝑡) due to the
Poisson rate 𝜆𝑢 . The following results hold.

Theorem 1 [7] Thm. 6.4 p. 325. With probability 1,

lim
𝑡→∞

𝐷 𝑗
𝑡 (𝑦)
𝑡

= 𝜆𝑑

∫ ∞

𝑤=𝑦
𝐵̄𝑑 (𝑤 − 𝑦)𝑔(𝑤) 𝑑𝑤 (∀𝑦). (1)

lim
𝑡→∞

𝑈
𝑗
𝑡 (𝑦)
𝑡

= 𝜆𝑢

∫ 𝑦

𝑤=−∞
𝐵̄𝑢 (𝑦 − 𝑤)𝑔(𝑤) 𝑑𝑤 (∀𝑦). (2)

Theorem 2 [7] Thm. 6.4 p. 325.

lim
𝑡→∞

𝐸 (𝐷 𝑗
𝑡 (𝑦))
𝑡

= 𝜆𝑑

∫ ∞

𝑤=𝑦
𝐵̄𝑑 (𝑥 − 𝑤)𝑔(𝑤)𝑑𝑤 (∀𝑦). (3)

lim
𝑡→∞

𝐸 (𝑈 𝑗
𝑡 (𝑦))
𝑡

= 𝜆𝑢

∫ 𝑦

𝑤=−∞
𝐵̄𝑢 (𝑦 − 𝑤)𝑔(𝑤)𝑑𝑤 (∀𝑦). (4)

For the proofs for the above theorems, we refer Brill [7].
Brill [7] Sect. 1.6.2 p. 16 also proved that for every state space level 𝑥 and every sample path, the

following conservation law holds. In the long run,

Total downcrossing rate = Total upcrossing rate.

Using this, and from Eqs. (3) and (4), we get

𝜆𝑑

∫ ∞

𝑤=𝑦
𝐵̄𝑑 (𝑤 − 𝑦)𝑔(𝑤) 𝑑𝑤 = 𝜆𝑢

∫ 𝑦

𝑤=−∞
𝐵̄𝑢 (𝑦 − 𝑤)𝑔(𝑤) 𝑑𝑤. (5)

Next, we consider a discrete state {𝑦} ⊂ 𝐸. Let O𝑡 ({𝑦}) and I𝑡 ({𝑦}), respectively, denote the number
of SP exits and the number of SP entrances of {𝑦} during (0, 𝑡). Similar to the continuous states, we
have the following rate balance equations for atoms.

K. Preethi et al.780

https://doi.org/10.1017/S0269964822000171 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964822000171


Theorem 3 [7, p. 36]. For every atom {𝑦} ⊂ 𝐸 ,

lim
𝑡→∞

O𝑡 ({𝑦})
𝑡

= lim
𝑡→∞

I𝑡 ({𝑦})
𝑡

(with probability 1).

lim
𝑡→∞

𝐸 (O𝑡 ({𝑦}))
𝑡

= lim
𝑡→∞

𝐸 (I𝑡 ({𝑦}))
𝑡

.

In addition to the jump downcrossing, a continuous downcrossing is also possible in SPLC. But in
the present work, we only have jump downcrossing and jump upcrossing. In the present section, we
gave a brief introduction about SPLC for real-valued stochastic process. This may be generalized to
vector-valued stochastic process also. For a detailed study of SPLC, we refer Brill [7].

3. Model description

We consider a stochastic inventory system which is monitored continuously for its various events such
as demand occurrences, placement and receipt of orders. We assume that the demands arrive according
to a Poisson process with rate 𝜆 and that the demand sizes are exponentially distributed with parameter
𝜇. The obsolescence time is assumed to be exponential with parameter 𝜂. At the time of perishability,
all the available items are failed and the inventory level drops to zero. We develop two models which
are different by the way the stock is replenished.

Model 1: In the first model, we assume (𝑠, 𝑆) policy to maintain the inventory. That is, we assume that
the maximum inventory level is 𝑆 and when the inventory level drops to or below 𝑠, we place an order.
At the time of replenishment, it reaches its maximum level.
Model 2: In this model, we assume (𝑠, 𝑄) policy to control the inventory. That is, when the inventory

level drops to or below 𝑠, we place an order for 𝑄 items. For this model, we assume that 𝑄 > 𝑠.

These are two most common ordering policies in connection with inventory management. These
two policies are same, if we assume unit-sized demand and the fixed ordering quantity in model 1 (see
[1]). But in the current article, the demand size is exponential and the ordering quantity in model 1 is
variable, hence these two policies differ. For both models, we assume that the lead time exponential
with parameter 𝜎. The excess demands that cannot be met from the stock for want of items and those
that occur during stock-out are assumed to be lost.

4. Analysis of the (𝒔, 𝑺) inventory system

Let 𝐿(𝑡) denote the on-hand inventory level at time 𝑡. From our assumptions, it is clear that the stochastic
process {𝐿(𝑡), 𝑡 ≥ 0} is a continuous time Markov process with state space Ω = {𝑤 : 0 ≤ 𝑤 ≤ 𝑆}.

Define the cumulative probability function

Λ(𝑡, 𝑤) = Pr[𝐿(𝑡) ≤ 𝑤] for 𝑤 ∈ [0, 𝑆], 𝑡 > 0.

Since the demand is a compound Poisson process and the lead times and the obsolescence times are
independent exponential distributions, the time intervals between these epochs constitute a regenerative
process. Therefore, the limiting distribution of 𝐿(𝑡) as 𝑡 → ∞ exists (see [28]). We are interested in the
stationary cumulative distribution function, 𝐹 (𝑥) = lim𝑡→∞ Λ(𝑡, 𝑥) which has two atoms, one at 0 and
another at 𝑆. Let Π0 and Π𝑆 denote, respectively, the stationary probability mass at level 0 and 𝑆. The
continuous parts of the distribution 𝐹 (𝑤) are defined over the intervals 0 < 𝑤 < 𝑠 and 𝑠 ≤ 𝑤 < 𝑆. The
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respective density functions are denoted by 𝑓1(𝑤) and 𝑓2(𝑤), respectively. Thus, we write

𝐹 (𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 𝑤 < 0,
Π0, 𝑤 = 0,

Π0 +
∫ 𝑤

0
𝑓1(𝑦) 𝑑𝑦, 0 < 𝑤 < 𝑠,

Π0 +
∫ 𝑠

0
𝑓1(𝑦) 𝑑𝑦 +

∫ 𝑤

𝑠

𝑓2(𝑦) 𝑑𝑦, 𝑠 ≤ 𝑤 < 𝑆,

Π0 +
∫ 𝑠

0
𝑓1(𝑦) 𝑑𝑦 +

∫ 𝑆

𝑠

𝑓2(𝑦) 𝑑𝑦 + Π𝑆 = 1, 𝑤 ≥ 𝑆.

4.1. Integral equations for steady-state pdf for the (𝒔, 𝑺) policy

In this subsection, we use SPLC to derive the equations for Π0,Π𝑆 , 𝑓1(·), and 𝑓2(·). The following
theorem provides the system of integral equations used to compute the steady-state pdf of the model
under consideration.

Theorem 4. The system of integral equations for the steady-state probability distribution of the
stochastic process {𝐿(𝑡), 𝑡 ≥ 0} is given by

For 0 < 𝑤 < 𝑠,

𝜂

(∫ 𝑠

𝑤

𝑓1(𝑦) 𝑑𝑦 +
∫ 𝑆

𝑠

𝑓2(𝑦) 𝑑𝑦 + Π𝑆

)
+ 𝜆Π𝑆𝑒−𝜇 (𝑆−𝑤) + 𝜆

∫ 𝑠

𝑤

𝑒−𝜇 (𝑦−𝑤) 𝑓1(𝑦) 𝑑𝑦

+ 𝜆
∫ 𝑆

𝑠

𝑒−𝜇 (𝑦−𝑤) 𝑓2(𝑦) 𝑑𝑦 = 𝜎
∫ 𝑤

0
𝑓1(𝑦) 𝑑𝑦 + 𝜎Π0. (6)

For 𝑠 < 𝑤 < 𝑆,

𝜂

(∫ 𝑆

𝑤

𝑓2(𝑦) 𝑑𝑦 + Π𝑆

)
+ 𝜆Π𝑆𝑒−𝜇 (𝑆−𝑤) + 𝜆

∫ 𝑆

𝑤

𝑒−𝜇 (𝑦−𝑤) 𝑓2(𝑦) 𝑑𝑦

= 𝜎
∫ 𝑠

0
𝑓1(𝑦) 𝑑𝑦 + 𝜎Π0. (7)

(𝜆 + 𝜂)Π𝑆 = 𝜎
∫ 𝑠

0
𝑓1(𝑦) 𝑑𝑦 + 𝜎Π0, (8)

with the normalizing condition

Π𝑆 +
∫ 𝑠

0
𝑓1(𝑦) 𝑑𝑦 +

∫ 𝑆

𝑠

𝑓2(𝑦) 𝑑𝑦 + Π0 = 1. (9)

Proof. The stochastic process {𝐿(𝑡), 𝑡 ≥ 0} has sample path similar to Figure 1. From Figure 1, we
note that the upcrossing a level is due to replenishment of stock and drowncrossing a level is due to
demand and perishability. Let D𝑑

𝑡 , 𝐷
𝑝
𝑡 , and 𝑈𝑡 , respectively, denote the number of downcrossing of 𝑤

due to demand, the number of downcrossing of 𝑤 due to the obsolescence and number of upcrossing of
𝑤 due to replenishment during the time interval (0, 𝑡). The SP downcrossing due to demand into level
𝑤 ∈ (𝑠, 𝑆) at rate

lim
𝑡→∞

𝐸 (D𝑑
𝑡 (𝑤))
𝑡

= 𝜆Π𝑆𝑒
−𝜇 (𝑆−𝑤) + 𝜆

∫ 𝑆

𝑤

𝑒−𝜇 (𝑦−𝑤) 𝑓2(𝑦) 𝑑𝑦.
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Figure 1. Typical sample path for (𝑠, 𝑆) policy. The dotted lines represent replenishment, dashed lines
represent obsolescence, and downcrossing lines demand epoch.

The SP downcrossing due to obsolescence into level 𝑤 ∈ (𝑠, 𝑆) at rate

lim
𝑡→∞

𝐸 (D 𝑝
𝑡 (𝑤))
𝑡

= 𝜂

(∫ 𝑆

𝑤

𝑓2(𝑦) 𝑑𝑦 + Π𝑆

)
.

Hence, the total SP downcrossing the level 𝑤 is

𝜂

(∫ 𝑆

𝑤

𝑓2(𝑦) 𝑑𝑦 + Π𝑆

)
+ 𝜆Π𝑆𝑒−𝜇 (𝑆−𝑤) + 𝜆

∫ 𝑆

𝑤

𝑒−𝜇 (𝑦−𝑤) 𝑓2(𝑦) 𝑑𝑦.

The SP upcrossing due to replenishment from a level below 𝑤 to a level above 𝑤 is

lim
𝑡→∞

𝐸 (U𝑡 (𝑤))
𝑡

= 𝜎
∫ 𝑠

0
𝑓1(𝑦) 𝑑𝑦 + 𝜎Π0.

By the theory of SP level crossing (see [7]), the total SP downcrossing is equal to the total SP upcrossing,
we have, 𝑠 < 𝑤 ≤ 𝑆,

𝜂

(∫ 𝑆

𝑤

𝑓2(𝑦) 𝑑𝑦 + Π𝑆

)
+ 𝜆Π𝑆𝑒−𝜇 (𝑆−𝑤) + 𝜆

∫ 𝑆

𝑤

𝑒−𝜇 (𝑦−𝑤) 𝑓2(𝑦) 𝑑𝑦 = 𝜎
∫ 𝑠

0
𝑓1(𝑦) 𝑑𝑦 + 𝜎Π0.

Applying a similar SP level-crossing arguments, we derive Eqs. (6) and (8). �

4.2. Solution procedure for the (𝒔, 𝑺) inventory model

Using the following procedure, we find the solution to the system of integral equations in Theorem 4:
First, we differentiate Eq. (7) with respect to 𝑤, we get

𝜆𝜇

(
𝑒 (−𝑆+𝑤)𝜇Π𝑆 −

∫ 𝑤

𝑆

𝑒 (𝑤−𝑦)𝜇 𝑓2(𝑦) 𝑑𝑦
)
= (𝜂 + 𝜆) 𝑓2(𝑤).

The solution of the above integral equation (see [21] p. 144) is

𝑓2(𝑤) = Π𝑆𝑒
(−𝑆+𝑤 )𝜂𝜇

𝜂+𝜆 𝜆𝜇

𝜂 + 𝜆 . (10)
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Substituting the value of 𝑓2(𝑤) in Eq. (6) and differentiate with respect 𝑤, on simplification, we get

𝜆𝜇

(
𝑒−

(𝑆𝜂+𝑠𝜆−𝑤 (𝜂+𝜆) )𝜇
𝜂+𝜆 Π𝑆 −

∫ 𝑤

𝑠

𝑒 (𝑤−𝑦)𝜇 𝑓1(𝑦) 𝑑𝑦
)
= (𝜂 + 𝜆 + 𝜎) 𝑓1(𝑤). (11)

Solving the above integral equation, we get

𝑓1(𝑤) = 𝑒
− 𝜇 (𝑠𝜆𝜎−𝑤 (𝜂+𝜆) (𝜂+𝜎)+𝑆𝜂 (𝜂+𝜆+𝜎) )

(𝜂+𝜆) (𝜂+𝜆+𝜎) Π𝑆𝜆𝜇
𝜂 + 𝜆 + 𝜎 .

Substitute the value of 𝑓1(·) and 𝑓2(·) in Eqs. (8) and (9) and solving, we get

Π0 =
𝜂 + 𝜆 − 𝑒

− 𝜇 (𝑠𝜆𝜎+𝑆𝜂 (𝜂+𝜆+𝜎) )
(𝜂+𝜆) (𝜂+𝜆+𝜎) (−1+𝑒

𝑠𝜇 (𝜂+𝜎)
𝜂+𝜆+𝜎 )𝜆𝜎

𝜂+𝜎

𝜂 + 𝜆 + 𝜎 + 𝜆𝜎
𝜂 − 𝑒

(𝑠−𝑆)𝜂𝜇
𝜂+𝜆 𝜆𝜎
𝜂

. (12)

Π𝑆 =
𝜂𝜎

𝜂2 − (−1 + 𝑒 (𝑠−𝑆)𝜂𝜇
𝜂+𝜆 )𝜆𝜎 + 𝜂(𝜆 + 𝜎)

. (13)

4.3. System performance measures

In this subsection, we derive some system performance measures and using these system performance
measures we calculate the stationary total expected cost rate.

4.3.1. Expected inventory level
Let 𝜁𝐼 denote the expected inventory level in the steady state. This is given by

𝜁𝐼 =
∫ 𝑠

0
𝑦 𝑓1(𝑦) 𝑑𝑦 +

∫ 𝑆

𝑠

𝑦 𝑓2(𝑦) 𝑑𝑦 + 𝑆Π𝑆 .

Substituting the values of Π𝑆 , 𝑓1(·), and 𝑓2(·) from (13), (12) and (10), respectively, and on
simplification, we get

𝜁𝐼 =
𝜆(−𝜂 − 𝜆 + 𝑆𝜂𝜇 + 𝑒 (𝑠−𝑆)𝜂𝜇

𝜂+𝜆 (𝜂 + 𝜆 − 𝑠𝜂𝜇))𝜎
𝜂𝜇(−𝑒 (𝑠−𝑆)𝜂𝜇

𝜂+𝜆 𝜆𝜎 + (𝜂 + 𝜆)(𝜂 + 𝜎))
+ 𝑆𝜂𝜎

𝜂2 − (−1 + 𝑒 (𝑠−𝑆)𝜂𝜇
𝜂+𝜆 )𝜆𝜎 + 𝜂(𝜆 + 𝜎)

+ 𝜂𝜆𝜎(𝑒
− 𝜇 (𝑠𝜆𝜎+𝑆𝜂 (𝜂+𝜆+𝜎) )

(𝜂+𝜆) (𝜂+𝜆+𝜎) (𝜂 + 𝜆 + 𝜎) + 𝑒 (𝑠−𝑆)𝜂𝜇
𝜂+𝜆 (−𝜂 − 𝜆 − 𝜎 + 𝑠𝜇(𝜂 + 𝜎)))

(𝜂 + 𝜎)2(−𝑒 (𝑠−𝑆)𝜂𝜇
𝜂+𝜆 𝜆𝜇𝜎 + (𝜂 + 𝜆)𝜇(𝜂 + 𝜎))

.

4.3.2. Expected obsolescence rate
Let 𝜁𝑂 be the expected obsolescence rate.

𝜁𝑂 = 𝜂
∫ 𝑠

0
𝑦 𝑓1(𝑦) 𝑑𝑦 + 𝜂

∫ 𝑆

𝑠

𝑦 𝑓2 (𝑦) 𝑑𝑦 + 𝑆𝜂Π𝑆 = 𝜂𝜁𝐼 . (14)
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4.3.3. Expected reorder rate
Let 𝜁𝑅 be the expected reorder rate.

𝜁𝑅 = 𝜂
∫ 𝑆

𝑠

𝑓2(𝑦) 𝑑𝑦 + 𝜂Π𝑆 + 𝜆
∫ 𝑆

𝑠

𝑒−𝜇 (𝑦−𝑠) 𝑓2(𝑦) 𝑑𝑦 + 𝜆𝑒−𝜇 (𝑆−𝑠)Π𝑆 ,

𝜁𝑅 =
𝜂(𝜂 + 𝜆)𝜎

𝜂2 − (−1 + 𝑒 (𝑠−𝑆)𝜂𝜇
𝜂+𝜆 )𝜆𝜎 + 𝜂(𝜆 + 𝜎)

.
(15)

4.3.4. Expected shortage rate
Let 𝜁𝐿 be the expected shortage rate.

𝜁𝐿 = 𝜆Π𝑆

∫ ∞

𝑥=0
𝑥𝑒−𝜇 (𝑆+𝑥) 𝑑𝑥 + 𝜆

∫ 𝑆

𝑦=𝑠
𝑓2(𝑦)

(∫ ∞

𝑥=0
𝑥𝑒−𝜇 (𝑦+𝑥) 𝑑𝑥

)
𝑑𝑦

+ 𝜆
∫ 𝑠

𝑦=0
𝑓1(𝑦)

(∫ ∞

𝑥=0
𝑥𝑒−𝜇 (𝑦+𝑥) 𝑑𝑥

)
𝑑𝑦 + 𝜆Π0

∫ ∞

𝑥=0
𝑥𝑒−𝜇𝑥 𝑑𝑥,

𝜁𝐿 =
𝑒−

𝜇 (𝑠𝜆𝜎+𝑆𝜂 (𝜂+𝜆+𝜎) )
(𝜂+𝜆) (𝜂+𝜆+𝜎) 𝜂𝜆(−𝑒 𝑠𝜇 (𝜂+𝜎)

𝜂+𝜆+𝜎 𝜆𝜎 + 𝑒 𝜇 (𝑠𝜆𝜎+𝑆𝜂 (𝜂+𝜆+𝜎) )
(𝜂+𝜆) (𝜂+𝜆+𝜎) (𝜂 + 𝜆)(𝜂 + 𝜎) + 𝜎(𝜂 + 𝜆 + 𝜎))

𝜇2(𝜂 + 𝜎)(𝜂2 − (−1 + 𝑒 (𝑠−𝑆)𝜂𝜇
𝜂+𝜆 )𝜆𝜎 + 𝜂(𝜆 + 𝜎))

.

4.3.5. Expected total cost
Let 𝑇𝐶1 (𝑠, 𝑆) denote the total expected cost rate which is given by

𝑇𝐶1 (𝑠, 𝑆) = 𝑐ℎ𝜁𝐼 + 𝑐𝑟 𝜁𝑅 + 𝑐𝑜𝜁𝑂 + 𝑐𝑠𝜁𝐿 , (16)

where 𝑐ℎ , 𝑐𝑟 , 𝑐𝑜, and 𝑐𝑠 denote, respectively, the holding cost per unit time per unit item, the setup cost
per order, obsolescence cost per unit time, and shortage cost per unit time.

5. Analysis of the (𝒔, 𝑸) inventory system

Let 𝐿̃(𝑡) denote the on-hand inventory level at time 𝑡. From the model assumptions, it is clear that the
stochastic process {𝐿̃(𝑡), 𝑡 ≥ 0} is a continuous-time Markov process with state space Ω̃ = {𝑤 : 0 ≤
𝑤 ≤ 𝑠 +𝑄}.

Define the cumulative probability function

Λ̃(𝑡, 𝑤) = Pr[𝐿(𝑡) ≤ 𝑤] for 𝑤 ∈ [0, 𝑠 +𝑄], 𝑡 > 0.

Since the demand is a compound Poisson process and the lead times and obsolescence times are
independent exponential distributions, the time intervals between these epochs constitute a regenerative
process. Therefore, the limiting distribution of 𝐿(𝑡) as 𝑡 → ∞ exists (see [28]). We are interested in the
stationary cumulative distribution function, 𝐺 (𝑤) = lim𝑡→∞ Λ̃(𝑡, 𝑤) which has two atoms, one at 0 and
another at 𝑄. Let Φ0 and Φ𝑄 denote, respectively, the stationary probability mass at level 0 and 𝑄. The
continuous parts of the distribution 𝐺 (𝑤) are defined over the intervals 0 < 𝑤 < 𝑠, 𝑠 ≤ 𝑤 < 𝑄, and
𝑄 < 𝑤 ≤ 𝑄 + 𝑠. The respective density functions are denoted by 𝑔1(𝑤), 𝑔2(𝑤), and 𝑔3(𝑤). Thus, we
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write

𝐺 (𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 𝑤 < 0,
Φ0, 𝑤 = 0,

Φ0 +
∫ 𝑤

0
𝑔1(𝑦) 𝑑𝑦, 0 < 𝑤 < 𝑠,

Φ0 +
∫ 𝑠

0
𝑔1(𝑦) 𝑑𝑦 +

∫ 𝑤

𝑠

𝑔2(𝑦) 𝑑𝑦, 𝑠 ≤ 𝑤 < 𝑄,

Φ0 +
∫ 𝑠

0
𝑔1(𝑦) 𝑑𝑦 +

∫ 𝑄

𝑠

𝑔2(𝑦) 𝑑𝑦 +Φ𝑄, 𝑤 = 𝑄,

Φ0 +
∫ 𝑠

0
𝑔1(𝑦) 𝑑𝑦 +

∫ 𝑄

𝑠

𝑔2(𝑦) 𝑑𝑦 +Φ𝑄 +
∫ 𝑤

𝑄

𝑔3(𝑦) 𝑑𝑦, 𝑄 < 𝑤 < 𝑠 +𝑄,

Φ0 +
∫ 𝑠

0
𝑔1(𝑦) 𝑑𝑦 +

∫ 𝑄

𝑠

𝑔2(𝑦) 𝑑𝑦 +Φ𝑄 +
∫ 𝑆

𝑄

𝑔3(𝑦) 𝑑𝑦 = 1, 𝑤 ≥ 𝑠 +𝑄.

5.1. Integral equations for steady-state pdf for the (𝒔, 𝑸) policy

We apply SPLC to obtain equations for Φ0,Φ𝑄, 𝑔1(·), 𝑔2(·), and 𝑔3(·). The following theorem provides
the system of integral equations used to compute the steady-state pdf of the model under consideration.

Theorem 5. The system of integral equations for the steady-state probability distribution of the
stochastic process {𝐿̃(𝑡), 𝑡 ≥ 0} is given by

(𝜆 + 𝜂)Φ𝑄 = 𝜎Φ0. (17)

For 0 < 𝑤 < 𝑠,

𝜂

(∫ 𝑠

𝑤

𝑔1(𝑦) 𝑑𝑦 +
∫ 𝑄

𝑠

𝑔2(𝑦) 𝑑𝑦 +Φ𝑄 +
∫ 𝑠+𝑄

𝑄

𝑔3(𝑦) 𝑑𝑦
)
+ 𝜆Φ𝑄𝑒−𝜇 (𝑄−𝑤)

+ 𝜆
∫ 𝑠

𝑤

𝑒−𝜇 (𝑦−𝑤)𝑔1(𝑦) 𝑑𝑦 + 𝜆
∫ 𝑄

𝑠

𝑒−𝜇 (𝑦−𝑤)𝑔2(𝑦) 𝑑𝑦 + 𝜆
∫ 𝑠+𝑄

𝑄

𝑒−𝜇 (𝑦−𝑤)𝑔3(𝑦) 𝑑𝑦

= 𝜎
∫ 𝑤

0
𝑔1(𝑦) 𝑑𝑦 + 𝜎Φ0. (18)

For 𝑠 < 𝑤 < 𝑄,

𝜂

(∫ 𝑄

𝑤

𝑔2(𝑦) 𝑑𝑦 +Φ𝑄 +
∫ 𝑠+𝑄

𝑄

𝑔3(𝑦) 𝑑𝑦
)
+ 𝜆Φ𝑄𝑒−𝜇 (𝑄−𝑤)

+ 𝜆
∫ 𝑄

𝑤

𝑒−𝜇 (𝑦−𝑤)𝑔2(𝑦) 𝑑𝑦 + 𝜆
∫ 𝑠+𝑄

𝑄

𝑒−𝜇 (𝑦−𝑤)𝑔3(𝑦) 𝑑𝑦 = 𝜎
∫ 𝑠

0
𝑔1(𝑦) 𝑑𝑦 + 𝜎Φ0. (19)

For 𝑄 < 𝑤 < 𝑠 +𝑄,

𝜂

(∫ 𝑠+𝑄

𝑤

𝑔3(𝑦) 𝑑𝑦
)
+ 𝜆

∫ 𝑠+𝑄

𝑤

𝑒−𝜇 (𝑦−𝑤)𝑔3(𝑦) 𝑑𝑦 = 𝜎
∫ 𝑠

𝑤−𝑄
𝑔1(𝑦) 𝑑𝑦, (20)

with the normalizing condition

Φ𝑄 +
∫ 𝑠

0
𝑔1(𝑦) 𝑑𝑦 +

∫ 𝑄

𝑠

𝑔2(𝑦) 𝑑𝑦 +
∫ 𝑠+𝑄

𝑄

𝑔3(𝑦) 𝑑𝑦 +Φ0 = 1, (21)
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and the boundary condition is

𝑔1(0) = 𝜎Φ0. (22)

Proof. The balance equations are derived using the arguments similar to Theorem 1. To derive the
boundary condition, we note that all hits at level 0 are due to sample path which has continuous
entrances into level {0} from (0, 𝑠 +𝑄]. Since every hit from above of each level 𝑥 > 0 is a continuous
downcrossing of level 𝑥, the hit rate of level 0 from above is the entrance rate of state {0}, namely 𝑔1(0).
We note that the SP egress rate from level 0 above is the exit rate from discrete state {0}. The rate 𝜎Φ0
gives the rate at which an order arrive when the inventory level is 0. Equating the exit and entrance rate
of the atom {0} yields the boundary condition. �

5.2. Solution procedure for the (𝒔, 𝑸) inventory model

In order to solve the integral equations derived in Theorem 5, we use the following method. First, we
differentiate Eq. (19) with respect to 𝑤, which gives

𝜆𝜇

(∫ 𝑠

𝑤

𝑔1(𝑦)𝑒𝜇 (𝑤−𝑦) 𝑑𝑦 +
∫ 𝑄

𝑠

𝑔2(𝑦)𝑒𝜇 (𝑤−𝑦) 𝑑𝑦 +
∫ 𝑄+𝑠

𝑄

𝑔3(𝑦)𝑒𝜇 (𝑤−𝑦) 𝑑𝑦 +Φ𝑄𝑒
𝜇 (𝑤−𝑄)

)
= 𝑔1(𝑤)(𝜂 + 𝜆 + 𝜎). (23)

Equating Eqs. (18) and (23), we get

𝜂𝜇

(∫ 𝑠

𝑤

𝑔1(𝑦) 𝑑𝑦 +
∫ 𝑄

𝑠

𝑔2(𝑦) 𝑑𝑦 +Φ𝑄 +
∫ 𝑠+𝑄

𝑄

𝑔3(𝑦) 𝑑𝑦
)
+ 𝑔1(𝑤)(𝜂 + 𝜆 + 𝜎)

= 𝜎𝜇
∫ 𝑤

0
𝑔1(𝑦) 𝑑𝑦 + 𝜎Φ0. (24)

Differentiate Eq. (24) with respect to 𝑤, we get

𝜇(𝜂 + 𝜎)𝑔1(𝑤) = (𝜂 + 𝜆 + 𝜎)𝑔′1(𝑤). (25)

Solving the above differential equation with boundary condition (22), we have

𝑔1(𝑤) = 𝑒
𝑤𝜇 (𝜂+𝜎)
𝜂+𝜆+𝜎 Φ0𝜎. (26)

Next, differentiate Eq. (20) with respect to 𝑤, and substitute 𝑔1(𝑤), we get

Φ0𝜎
2𝑒

𝜇 (𝜂+𝜎) (𝑤−𝑄)
𝜂+𝜆+𝜎 = (𝜂 + 𝜆)𝑔3(𝑤) + 𝜆𝜇

∫ 𝑤

𝑄+𝑠
𝑒𝜇 (𝑤−𝑦)𝑔3(𝑦) 𝑑𝑦. (27)

Solving the above integral equation, we get

𝑔3(𝑤) = − 𝑒
− (𝑄−𝑤 )𝜇 (𝜂+𝜎)

𝜂+𝜆+𝜎 Φ0𝜎(−𝜎 − (−1 + 𝑒 (𝑄+𝑠−𝑤 )𝜆𝜇𝜎
(𝜂+𝜆) (𝜂+𝜆+𝜎) ) (𝜂 + 𝜆 + 𝜎))

𝜂 + 𝜆 . (28)
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Substituting the values of 𝑔1(𝑤) and 𝑔3(𝑤) in Eq. (19) and differentiate the resulting equation, we
have

𝜆𝜇Φ𝑄𝑒
−𝜇 (𝑄−𝑤) − 1

𝜇

(
Φ0𝜎(𝜂 + 𝜆 + 𝜎)𝑒𝜆𝜇 (−𝑄) ( 1

𝜂+𝜆+𝜎 + 1
𝜂+𝜆 )

×
(
𝜇𝑒𝜇 (−

𝑄 (𝜂+𝜎)
𝜂+𝜆+𝜎 + 𝜆𝑄𝜂+𝜆 +𝑤) − 𝜇𝑒 (𝜇 ( 𝜆𝑄

𝜂+𝜆+𝜎 + 𝜆𝑠𝜎−𝜂𝑄 (𝜂+𝜆+𝜎)
(𝜂+𝜆) (𝜂+𝜆+𝜎) +𝑤))

))
= 𝜆𝜇

∫ 𝑤

𝑄

𝑔2(𝑦)𝑒−𝜇 (𝑦−𝑤) 𝑑𝑦 + (𝜆 + 𝜂)𝑔2(𝑤). (29)

Solving the above integral equation, we get

𝑔2(𝑤) =
𝑒

(−𝑄+𝑤 )𝜂𝜇
𝜂+𝜆 (Φ𝑄𝜆𝜇 + (−1 + 𝑒 𝑠𝜆𝜇𝜎

(𝜂+𝜆) (𝜂+𝜆+𝜎) )Φ0𝜎(𝜂 + 𝜆 + 𝜎))
𝜂 + 𝜆 . (30)

From Eq. (17), we get
Φ𝑄 = 𝜎Φ0/(𝜆 + 𝜂). (31)

Substituting Φ𝑄, 𝑔1(·), 𝑔2(·), and 𝑔3(·) on the normalizing condition (21), and solving we get

Φ0 = 1/Γ, (32)

where

Γ =

(
1 + 1

𝜂(𝜂 + 𝜆)𝜇 𝑒
−𝑄𝜇 (𝜂+𝜎)

𝜂+𝜆+𝜎 𝜎
(
𝑒
𝑄𝜇 (𝜂+𝜎)
𝜂+𝜆+𝜎 (𝜂 + 𝜆)(−𝜂 − 𝜆 + 𝜇 − 𝜎)

+ 𝑒 (𝑄+𝑠)𝜇 (𝜂+𝜎)
𝜂+𝜆+𝜎 (𝜂 + 𝜆)(𝜂 + 𝜆 + 𝜎) − 𝑒

𝜇 ( 𝑄𝜆𝜎𝜂+𝜆 +𝑠 (𝜂+𝜎) )
𝜂+𝜆+𝜎 (𝜂 + 𝜆)(𝜂 + 𝜆 + 𝜎)

+ 𝑒
𝜇 (𝑠𝜂+ 𝑄𝜆𝜎

𝜂+𝜆+𝜎 )
𝜂+𝜆 (𝜂2 + 𝜂(2𝜆 + 𝜎) + 𝜆(𝜆 − 𝜇 + 𝜎))

))
.

5.3. System performance measures

In this subsection, we derive some system performance measures and using these system performance
measures we calculate the stationary total expected cost rate.

5.3.1. Expected inventory level
Let 𝜓𝐼 denote the expected inventory level in the steady state. This is given by

𝜓𝐼 =
∫ 𝑠

0
𝑦𝑔1 (𝑦) 𝑑𝑦 +

∫ 𝑄

𝑠

𝑦𝑔2 (𝑦) 𝑑𝑦 +𝑄Φ𝑄 +
∫ 𝑠+𝑄

𝑄

𝑦𝑔3 (𝑦) 𝑑𝑦,

𝜓𝐼 = Φ0𝜎
�
� 𝑄

𝜂 + 𝜆 −
(𝜂 + 𝜆 −𝑄𝜂𝜇 − 𝑒 (−𝑄+𝑠)𝜂𝜇

𝜂+𝜆 (𝜂 + 𝜆 − 𝑠𝜂𝜇))( 𝜆𝜇𝜂+𝜆 + (−1 + 𝑒 𝑠𝜆𝜇𝜎
(𝜂+𝜆) (𝜂+𝜆+𝜎) ) (𝜂 + 𝜆 + 𝜎))

𝜂2𝜇2

− 1
𝜂2𝜇2(𝜂 + 𝜎)2 𝑒

−𝑄𝜇 (𝜂+𝜎)
𝜂+𝜆+𝜎 (𝜂 + 𝜆 + 𝜎)

(
𝑒
𝜇 (𝑄𝜂+ (𝑄+𝑠)𝜆𝜎

𝜂+𝜆+𝜎 )
𝜂+𝜆 (−𝜆 + 𝜂(−1 +𝑄𝜇))(𝜂 + 𝜎)2

− 𝑒 𝑄𝜇 (𝜂+𝜎)
𝜂+𝜆+𝜎 𝜂2(−𝜆 + 𝜂(−1 +𝑄𝜇) + (−1 +𝑄𝜇)𝜎) − 𝑒 (𝑄+𝑠)𝜇 (𝜂+𝜎)

𝜂+𝜆+𝜎 𝜎(−2𝜂𝜆 + 𝜂2(−1 + (𝑄 + 𝑠)𝜇)

−𝜆𝜎 + 𝜂(−1 + (𝑄 + 𝑠)𝜇)𝜎)) + (𝜂 + 𝜆 + 𝜎)(𝜂 + 𝜆 + 𝜎 + 𝑒 𝑠𝜇 (𝜂+𝜎)
𝜂+𝜆+𝜎 (−𝜂 − 𝜆 − 𝜎 + 𝑠𝜇(𝜂 + 𝜎)))

𝜇2(𝜂 + 𝜎)2

)
.
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5.3.2. Expected obsolescence rate
Let 𝜓𝑂 be the expected obsolescence rate which is given by

𝜓𝑂 = 𝜂
∫ 𝑠

0
𝑦𝑔1(𝑦) 𝑑𝑦 + 𝜂

∫ 𝑄

𝑠

𝑦𝑔2 (𝑦) 𝑑𝑦 +𝑄𝜂Φ𝑄 + 𝜂
∫ 𝑠+𝑄

𝑄

𝑦𝑔3 (𝑦) 𝑑𝑦. (33)

5.3.3. Expected reorder rate
Let 𝜓𝑅 be the expected reorder rate.

𝜓𝑅 = 𝜂
∫ 𝑄

𝑠

𝑔2(𝑦) 𝑑𝑦 + 𝜂
∫ 𝑠+𝑄

𝑄

𝑔3(𝑦) 𝑑𝑦 +𝑄𝜂Φ𝑄 + 𝜆
∫ 𝑄

𝑠

𝑒−𝜇 (𝑦−𝑠)𝑔2(𝑦) 𝑑𝑦

+ 𝜆
∫ 𝑠+𝑄

𝑄

𝑒−𝜇 (𝑦−𝑠)𝑔3(𝑦)𝑑𝑦 + 𝜆𝑒−𝜇 (𝑄−𝑠)Φ𝑄,

𝜓𝑅 = Φ0𝜎
�
� 𝜂

𝜂 + 𝜆 + 𝑒
(−𝑄+𝑠)𝜇𝜆
𝜂 + 𝜆 + 𝑒

𝜇 (−𝑄 (𝜂+𝜆) (𝜂+2𝜆+𝜎)+𝑠 (𝜂2+𝜂 (2𝜆+𝜎)+𝜆(𝜆+2𝜎) ) )
(𝜂+𝜆) (𝜂+𝜆+𝜎) (𝑒 𝑄𝜆𝜇

𝜂+𝜆+𝜎 − 𝑒 𝜆𝜇 (𝑄 (𝜂+𝜆)−𝑠𝜎)
(𝜂+𝜆) (𝜂+𝜆+𝜎) ) (𝜂 + 𝜆 + 𝜎)

𝜇

+ 𝑒
−𝑄𝜇 (𝜂+𝜎)

𝜂+𝜆+𝜎 (𝜂 + 𝜆 + 𝜎)(𝑒 𝑄𝜇 (𝜂+𝜎)
𝜂+𝜆+𝜎 𝜂 + 𝑒 (𝑄+𝑠)𝜇 (𝜂+𝜎)

𝜂+𝜆+𝜎 𝜎 − 𝑒 𝜇 (𝑠𝜆𝜎+𝑄 (𝜂+𝜆) (𝜂+𝜎) )
(𝜂+𝜆) (𝜂+𝜆+𝜎) (𝜂 + 𝜎))

𝜇(𝜂 + 𝜎)

−
(−1 + 𝑒− (𝑄−𝑠)𝜂𝜇

𝜂+𝜆 )( 𝜆𝜇𝜂+𝜆 + (−1 + 𝑒 𝑠𝜆𝜇𝜎
(𝜂+𝜆) (𝜂+𝜆+𝜎) ) (𝜂 + 𝜆 + 𝜎))

𝜇

+
𝑒−

(𝑄−𝑠) (2𝜂+𝜆)𝜇
𝜂+𝜆 (𝑒 (𝑄−𝑠)𝜇 − 𝑒 (𝑄−𝑠)𝜂𝜇

𝜂+𝜆 )( 𝜆𝜇𝜂+𝜆 + (−1 + 𝑒 𝑠𝜆𝜇𝜎
(𝜂+𝜆) (𝜂+𝜆+𝜎) ) (𝜂 + 𝜆 + 𝜎))

𝜇

��� .
5.3.4. Expected shortage rate
Let 𝜓𝐿 be the expected shortage rate.

𝜓𝐿 = 𝜆Φ𝑄

∫ ∞

𝑥=0
𝑥𝑒−𝜇 (𝑄+𝑥) 𝑑𝑥 + 𝜆

∫ 𝑄

𝑦=𝑠
𝑔2(𝑦)

(∫ ∞

𝑥=0
𝑥𝑒−𝜇 (𝑦+𝑥) 𝑑𝑥

)
𝑑𝑦

+ 𝜆
∫ 𝑠

𝑦=0
𝑔1(𝑦)

(∫ ∞

𝑥=0
𝑥𝑒−𝜇 (𝑦+𝑥) 𝑑𝑥

)
𝑑𝑦 + 𝜆

∫ 𝑠+𝑄

𝑦=𝑄
𝑔3(𝑦)

(∫ ∞

𝑥=0
𝑥𝑒−𝜇 (𝑦+𝑥) 𝑑𝑥

)
𝑑𝑦

+ 𝜆Φ0

∫ ∞

𝑥=0
𝑥𝑒−𝜇𝑥𝑑𝑥,

𝜓𝐿 =
Φ0

𝜇3

(
𝜆𝜇 + 𝑒

−𝑄𝜇𝜆𝜇𝜎
𝜂 + 𝜆 − (−1 + 𝑒− 𝑠𝜆𝜇

𝜂+𝜆+𝜎 )𝜎(𝜂 + 𝜆 + 𝜎)

+ 𝑒−(𝑄+ 𝑠𝜆
𝜂+𝜆 )𝜇 (𝑒 𝑄𝜆𝜇𝜂+𝜆 − 𝑒 𝑠𝜆𝜇𝜂+𝜆 )𝜎

(
𝜆𝜇

𝜂 + 𝜆 + (−1 + 𝑒 𝑠𝜆𝜇𝜎
(𝜂+𝜆) (𝜂+𝜆+𝜎) ) (𝜂 + 𝜆 + 𝜎)

))
.

5.3.5. Expected total cost
Let 𝑇𝐶2 (𝑠, 𝑄) denote the total expected cost rate which is given by

𝑇𝐶2 (𝑠, 𝑄) = 𝑐ℎ𝜓𝐼 + 𝑐𝑟𝜓𝑅 + 𝑐𝑜𝜓𝑂 + 𝑐𝑠𝜓𝐿 , (34)

where 𝑐ℎ , 𝑐𝑟 , 𝑐𝑜, and 𝑐𝑠 denote, respectively, the holding cost per unit time per unit item, the setup cost
per order, obsolescence cost per unit time, and shortage cost per unit time.
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Figure 2. Influence of input parameters on the expected inventory level.

6. Numerical illustrations

The objectives of this section is twofold: we first study the effect of input parameters on the performance
measures. Next, we will numerically investigate the optimization of the total cost functions for (𝑠, 𝑆)
and (𝑠, 𝑄) policies and we numerically justify the best policy.

6.1. Influence of input parameters on the system performance measures

We will examine the influence of input parameters on the system performance measures in this subsec-
tion. The numerical work is performed using Wolfram Mathematica 12.2. As a first step in studying the
impact of input parameters on the system performance measures of the (𝑠, 𝑆) inventory system, we set
the following parameters and values: 𝜎 = 0.2; 𝜇 = 1; 𝜆 = 10; 𝜂 = 0.03; 𝑠 = 126; 𝑆 = 282. Figures 2–5
illustrate how system parameters affect the specific performance measures. There are four subfigures in
each figure. We fix the other parameters and values and change only one parameter on the subfigure that
is plotted on the 𝑥-axis of the corresponding subfigure. This leads to the following results.

• As the demand rate increases, the mean inventory level 𝜁𝐼 and the mean obsolescence rate 𝜁𝑂
decrease while the mean reorder rate 𝜁𝑅 and the mean shortage rate 𝜁𝐿 increase. The shortage rate
increases linearly with demand. For small values of 𝜆, the increasing rate of mean reorder rates is
low, but for high values of 𝜆, it is high.

• When the demand size parameter 𝜇 increases, 𝜁𝐼 and 𝜁𝑂 increase and 𝜁𝑅 and 𝜁𝐿 decrease.
• When 𝜎 increases, 𝜁𝐿 decreases and the remaining performance measures are increase. When 𝜂

increases 𝜁𝐼 decreases and the remaining performance measures are increase.

Next, we will study the influence of system parameters on the system performance measures of
the (𝑠, 𝑄) inventory system. For this, we first consider the following values for the input parameters,
𝜎 = 0.2; 𝜇 = 1; 𝜆 = 10; 𝜂 = 0.03; 𝑠 = 82; 𝑄 = 180. From Figures 6–9, we observe the following:

• The behaviour of the mean inventory level 𝜓𝐼 , 𝜓𝐿 , and 𝜓𝑅 are similar to the model 1.
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Figure 3. Effect of input parameters on the expected obsolescence rate.

Figure 4. Sensitivity of input parameters on the expected reorder rate.

• For the expected obsolescence rate 𝜓𝑂 case, it increases with 𝜆 and 𝜂 and decreases with increase in
𝜇 and 𝜎. We also note that the 𝜓𝑂 increase linearly with 𝜂.
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Figure 5. Influence of input parameters on the expected shortage rate.

Figure 6. Influence of input parameters on the expected inventory level.

6.2. Optimal cost analysis

In this subsection, we will investigate the cost functions numerically. Since the cost functions derived in
the previous sections are complex, it is not practical to establish its convexity in an analytical sense by
using the calculus method. Researches use a wide range of meta-heuristic algorithms to study such cost
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Figure 7. Effect of input parameters on the expected obsolescence rate.

Figure 8. Sensitivity of input parameters on the expected reorder rate.

functions, including genetic algorithms, ant colony optimizations, etc. In our study, we use differential
evolution (DE), a meta-heuristic search algorithm that optimizes a problem by iteratively improving a
candidate solution over time. Price [22] developed the Genetic Annealing algorithm that lead to DE.
DE has proven to be a powerful global optimizer since it was conceived. Despite using relatively low
resources, this optimization algorithm achieves the real optimum. For a detailed overview of DE, see
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Figure 9. Influence of input parameters on expected shortage.

Figure 10. A typical three-dimensional plot of cost function. 𝜎 = 3.6, 𝜇 = 0.35, 𝜆 = 0.15, 𝜂 = 0.25,
𝑐ℎ = 0.01, 𝑐𝑟 = 50, 𝑐𝑠 = 15, 𝑐𝑜 = 0.2, 𝑠∗ = 0.972071, 𝑆∗ = 18.9006, 𝑇𝐶1 (𝑠∗, 𝑆∗) = 15.1472.

Price et al. [23]. In order to find optimal values, we use Wolfram Mathematica 12.2 DE solver. To ensure
the solution provided by Mathematica is optimal, we plot the objective function in the neighborhood
of the values given by Mathematica. The three-dimensional plots of the cost functions are shown in
Figures 10 and 11 which show that convex (possibly local) nature of the cost functions.

Sensitivity analysis of the optimal values perturbing different parameters and values are presented in
Tables 1–4. For Tables 1 and 2, we allow the optimal values of (𝑠, 𝑆) and (𝑠, 𝑄) to be positive and real.
But in Tables 3 and 4, we restrict the decision variable to be integer.
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Figure 11. A typical three-dimensional plot of cost function. 𝜎 = 3.6, 𝜇 = 0.35, 𝜆 = 0.015, 𝜂 = 0.25,
𝑐ℎ = 0.01, 𝑐𝑟 = 50, 𝑐𝑠 = 15, 𝑐𝑜 = 0.2, 𝑠∗ = 6.0878, 𝑄∗ = 11.8799, 𝑇𝐶2 (𝑠∗, 𝑄∗) = 11.9599.

Table 1. Influence of parameters on optimal values.

𝜆 𝜂 𝜇 𝜎 𝑠∗ 𝑆∗ 𝑇𝐶1 (𝑠∗, 𝑆∗) 𝑠∗ 𝑄∗ 𝑇𝐶2 (𝑠∗, 𝑄∗)
0.14

0.25

0.35

0.6

0.738285 18.32256 14.7626 21.3315701 24.3926791 9.28367
0.19 1.814752 21.09616 16.6808 22.9444102 27.2629577 9.31911
0.24 2.729359 23.65211 18.5897 24.3398248 29.9674947 9.35148
0.29 3.550875 26.06555 20.4927 25.6091863 32.5665167 9.38201
0.34 4.313739 28.37602 22.3912 26.7985558 35.0881623 9.41131

0.15

0.2 1.707516 20.71881 12.9759 21.1740584 26.0636642 7.97281
0.22 1.392735 19.91871 13.8765 21.3958966 25.5833009 8.51904
0.24 1.106157 19.21906 14.7338 21.5903442 25.1707191 9.03977
0.26 0.843424 18.60043 15.5509 21.7623063 24.8114384 9.53669
0.28 0.601113 18.04825 16.3304 21.9155482 24.4947973 10.0114

0.25

0.26 3.885725 26.35211 19.8919 30.4918289 31.8985482 9.43616
0.28 3.013483 24.2584 18.4431 28.006066 30.0200835 9.3958
0.3 2.294741 22.45804 17.2688 25.8740605 28.3672249 9.36086
0.32 1.696316 20.89425 16.3034 24.0268266 26.9006847 9.33032
0.34 1.193596 19.52394 15.4996 22.4120644 25.5898918 9.3034

0.35

0.3 1.050511 18.97906 15.8816 24.5974476 24.7245844 7.26738
0.5 0.991229 18.91981 15.3269 22.4210199 24.9348749 8.79667
0.7 0.956916 18.88546 15.0053 21.0637167 25.01866 9.68117
0.9 0.934507 18.86305 14.7954 20.0816119 25.0572028 10.2571
1.1 0.918716 18.84726 14.6477 19.3126167 25.0750376 10.6616

𝑐ℎ = 0.01, 𝑐𝑟 = 50, 𝑐𝑠 = 15, 𝑐𝑜 = 0.2.

We observe the following from the tables of the (𝑠, 𝑆) policy inventory model:

• The optimal inventory level 𝑆∗ and the optimal reorder point 𝑠∗ increase with the arrival rate 𝜆 and
decrease with increase in 𝜂, 𝜇, and 𝜎. The optimal cost increase when 𝜆 and 𝜂 increase and decrease
with increase in 𝜇 and 𝜎.

• As 𝑐𝑠 increases, the optimal reorder point 𝑠∗ also increases, and as 𝑐ℎ , 𝑐𝑠, and 𝑐𝑜 increase, 𝑠∗ decreases.
• The optimal maximum stock level 𝑆∗ increase with 𝑐𝑟 and 𝑐𝑠 and decrease when 𝑐ℎ and 𝑐𝑜 increase.
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Table 2. Sensitivity of cost values to optimal values.

𝑐ℎ 𝑐𝑟 𝑐𝑠 𝑐𝑜 𝑠∗ 𝑆∗ 𝑇𝐶1 (𝑠∗, 𝑆∗) 𝑠∗ 𝑄∗ 𝑇𝐶2 (𝑠∗, 𝑄∗)
0.015

50

15

0.2

0.951946 18.54442 15.2076 20.15937 23.07451 9.45768
0.017 0.944045 18.40971 15.2315 19.68692 22.48494 9.52077
0.019 0.93619 18.27904 15.2551 19.26567 21.96123 9.58221
0.021 0.928454 18.15218 15.2786 18.88547 21.49019 9.64217
0.023 0.920753 18.02893 15.3019 18.53892 21.06225 9.70079

0.01

31 2.437662 18.38608 11.7725 21.68355 22.85956 5.92314
36 1.984183 18.54467 12.6615 21.68175 23.52218 6.81018
41 1.585965 18.68442 13.5498 21.68044 24.10023 7.69661
46 1.230902 18.80937 14.4374 21.67947 24.61294 8.58259
51 0.910446 18.92238 15.3246 21.67875 25.07363 9.4682

50

14 0.740583 18.66911 14.7772 21.42406 24.96743 9.28853
16 1.188657 19.11721 15.5165 21.91699 25.00131 9.29351
18 1.583995 19.51254 16.2535 22.35091 25.02977 9.2979
20 1.937688 19.86624 16.9888 22.73834 25.05416 9.30181
22 2.257681 20.18623 17.7227 23.08821 25.07541 9.30535

15

0.13 1.047022 20.44125 14.9246 21.66385 24.98806 9.27346
0.15 1.024802 19.94334 14.9902 21.66815 24.98723 9.2785
0.17 1.00326 19.49608 15.0541 21.67244 24.9864 9.28354
0.19 0.982327 19.09025 15.1165 21.67673 24.98557 9.28858
0.21 0.96195 18.71888 15.1776 21.68102 24.98474 9.29363

𝜆 = 0.15, 𝜇 = 0.35, 𝜂 = 0.25, 𝜎 = 0.6.

Table 3. Influence of parameters on optimal values.

𝜆 𝜂 𝜇 𝜎 𝑠∗ 𝑆∗ 𝑇𝐶1 (𝑠∗, 𝑆∗) 𝑠∗ 𝑄∗ 𝑇𝐶2 (𝑠∗, 𝑄∗)
2

0.03

1

0.2

19 83 5.31435 25 72 2.64948
7 83 212 14.586 63 147 4.57344
12 155 327 23.5568 93 199 5.92395
17 230 437 32.4246 120 240 7.03312
22 307 545 41.2379 145 275 7.99747

10

0.01 145 320 11.6649 77 197 5.19636
0.06 104 239 30.0571 86 161 5.68722
0.11 80 191 42.4978 88 139 6.00759
0.16 64 159 51.4749 87 124 6.23506
0.21 52 136 58.2588 85 112 6.40552

0.03

0.55 298 513 55.0068 167 263 8.23997
1.05 117 269 18.4934 77 174 5.25415
1.55 63 186 10.3124 48 138 4.14769
2.05 38 144 7.090514 35 116 3.55116
2.55 25 118 5.45101 26 102 3.1704

1

0.5 58 214 11.6284 39 175 4.967
1 32 188 8.4263 23 174 4.79935
1.5 23 179 7.30507 17 174 4.7379
2 18 174 6.73325 14 173 4.70492
2.5 15 171 6.38669 12 173 4.68396

𝑐ℎ = 0.02, 𝑐𝑟 = 35, 𝑐𝑠 = 10, 𝑐𝑜 = 0.15.
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Table 4. Sensitivity of cost values to optimal values.

𝑐ℎ 𝑐𝑟 𝑐𝑠 𝑐𝑜 𝑠∗ 𝑆∗ 𝑇𝐶1 (𝑠∗, 𝑆∗) 𝑠∗ 𝑄∗ 𝑇𝐶2 (𝑠∗, 𝑄∗)
0.05

35

10

0.15

107 214 24.1445 50 126 8.64152
0.35 57 100 45.1666 33 43 21.6736
0.65 41 73 56.1255 27 29 28.5124
0.95 32 59 63.4863 23 24 33.4727
1.25 26 49 68.8921 20 21 37.4571

0.02

30 129 274 19.6942 83 170 5.12239
40 123 289 20.2663 80 190 5.70968
50 118 302 20.8027 78 207 6.25886
60 114 314 21.3128 77 222 6.77979
70 110 324 21.8023 76 236 7.27883

35

15 144 300 26.8882 95 184 5.72982
17 149 305 29.6147 100 185 5.82819
19 154 310 32.3281 104 186 5.91669
21 159 315 35.0312 107 187 5.99713
23 163 319 37.7257 111 187 6.071

10

0.22 124 274 20.3237 82 180 5.42378
0.82 112 230 22.9015 82 180 5.44206
1.42 103 204 25.0952 82 180 5.46034
2.02 96 186 27.0407 82 180 5.47862
2.62 91 172 28.8046 82 180 5.4969

𝜆 = 10, 𝜇 = 1, 𝜂 = 0.03, 𝜎 = 0.2.

Table 5. Effect of the obsolescence rate on optimal values for (𝑠, 𝑄) policy.

𝜂 𝑇𝐶2 (𝑠∗, 𝑄∗) 𝑠∗ 𝑄∗

0.01 5.70406 77 197
0.02 6.32872 80 187
0.03 6.94028 83 178
0.04 7.54073 85 171
0.05 8.13166 86 165
0.06 8.71445 87 159
0.07 9.29008 88 154
0.08 9.85947 89 149
0.09 10.4234 89 144
0.1 10.9824 90 140
0.11 11.5371 90 137
0.12 12.0878 90 133
0.13 12.6351 90 130
0.14 13.1793 89 127
0.15 13.7205 89 124
0.16 14.2591 89 121
0.17 14.7954 89 118
0.18 15.3295 88 116
0.19 15.8616 88 113

𝜆 = 10, 𝜇 = 1, 𝜎 = 0.2, 𝑐ℎ = 0.02, 𝑐𝑟 = 35, 𝑐𝑠 = 10, 𝑐𝑜 = 0.15.
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Table 6. Influence of the obsolescence cost on optimal values for (𝑠, 𝑄) policy.

𝑐𝑜 𝑇𝐶2 (𝑠∗, 𝑄∗) 𝑠∗ 𝑄∗

10 5.72176 82 180
20 6.02641 82 179
30 6.33107 82 179
40 6.63573 82 179
50 6.94028 83 178
60 7.2448 83 178
70 7.54933 83 178
80 7.85385 83 178
90 8.15833 84 178
100 8.46273 84 177
110 8.76712 84 177
120 9.07151 84 177
130 9.37591 84 177
140 9.68022 85 176
150 9.98449 85 176
160 10.2888 85 176
170 10.593 85 176
180 10.8973 85 176
190 11.2015 86 175

𝜆 = 10, 𝜇 = 1, 𝜎 = 0.2, 𝜂 = 0.03, 𝑐ℎ = 0.02, 𝑐𝑟 = 35, 𝑐𝑠 = 10.

We observe the following from the tables of the (𝑠, 𝑄) inventory policy:

• The optimal reorder point 𝑠∗ increase with the demand rate 𝜆 and the obsolescence parameter 𝜂 and
decrease with increase in the lead time parameter 𝜎 and the demand size quantity parameter 𝜇. The
optimal order quantity 𝑄∗ increase with 𝜆 and 𝜎 and decrease with increase in 𝜂 and 𝜇. As 𝜆 and 𝜇
increase, the optimal cost increase and the optimal cost decrease when 𝜇 and 𝜎 increase.

• As 𝑐𝑠 increases, the optimal reorder point 𝑠∗ also increases, and as 𝑐ℎ , 𝑐𝑠, and 𝑐𝑜 increase, 𝑠∗ decreases.
• The optimal order quantity 𝑄∗ increase with 𝑐𝑟 , 𝑐𝑜, and 𝑐𝑠 and decrease when 𝑐ℎ increases.
• But the integer-valued decision variables, the influence of 𝑐𝑜 on 𝑠∗ and 𝑄∗ is very low compared to

the corresponding continuous decision variable model (see Tables 5 and 6).

For both the replenishment policies, the optimal costs increase when the 𝑐ℎ , 𝑐𝑟 , 𝑐𝑠 , and 𝑐𝑜 increase. In
both replenishment policies, integer-valued decision variables exhibit the same behavior as real-valued
decision variables, except when obsolescence parameters influence 𝑠∗ for the (𝑠, 𝑄) inventory policy.
The optimal reorder point 𝑠∗ behaves as a convex function of 𝜂 for the (𝑠, 𝑄) policy inventory model
(see Table 5).

6.3. Management insights of the models

Using our analysis and results, we can gain several insights about the managing inventory system with
obsolescence. We have to pointed out that in the literature of the continuous review inventory system,
the continuous review (𝑠, 𝑆) (with variable lost size) inventory model is more suitable for the vendor
managed inventory system and the continuous review (𝑠, 𝑄) (with fixed lot size) inventory is more
suitable for the retailer managed inventory system. From tables, we observe:

• Despite the fact that the (𝑠, 𝑆) inventory policy is widely used in vendor managed inventory systems
and the (𝑠, 𝑄) inventory policy is used in retailer managed inventory systems, the numerical results
indicate that (𝑠, 𝑄) policy will result in the lowest cost.
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• As a arrival rate increases the optimal reorder point in both models increase and the optimal inventory
level in model 1 and optimal ordering quantity in model 2 increase. The optimal inventory level in
model 1 grows slowly compared to optimal ordering quantity in model 2 when the arrival rate increase.

• As the time to obsolescence increases 𝑠∗ and 𝑆∗ increase in the first model and 𝑄∗ increases and 𝑠∗
decreases in the second model.

7. Conclusion and future works

In this article, we have studied the effect of obsolescence on two continuous review inventory systems
with positive lead times. We provided closed-form expressions for the total expected cost rate and
analyzed them numerically. In both models, we have assumed the exponentially distributed demand
size. These models may be suitable to analyze the behaviour of the inventory system of continuous type
(fluid type inventory), such as chemical products and 3D-printing inks. We used SPLC and the integral
equation method to get the closed-form expressions.

The SPLC method is one of the effective method to model continuous type inventory models. Due to
the deterministic nature of lifetimes of perishable items and the stochastic nature of other parameters,
using other methods to analyze the inventory level may be more complex. As a result, the SPLC method
can be used to analyze continuous type inventory with perishable items but we leave their investigation
for future work. We have also restricted our work to lost sales case only. Including backlog may give
some complication. Also for the second model, we allowed atmost one is pending at a time. One can
also relax this assumption for the obsolescence inventory model.
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