
UNION AND EXTENSION OF ARCS OF CYCLIC 
ORDER THREE 

K. D. SINGH AND N. D. LANE 

1. Introduction. In (2) Lane and Scherk discussed differentiate points 
of arcs in the conformai (inversive) plane. Arcs A% of cyclic order three were 
discussed in (3; 4). In the present note we give necessary and sufficient 
conditions for the union of two v43's to be an A3 (Theorem 1), and for an As 
to be extensible to a larger one (Theorem 2). The related problem of extending 
arcs in projective ^-space was dealt with by Haupt in (1) and Sauter in 
(5; 6). 

2. Prerequisites. P,Q, . . . denote points in the conformai plane. C de­
notes an oriented circle, C* its "interior", and C* its "exterior", the latter 
region lying to the right of C. Thus C* and C* will depend on the sense of 
direction we assign to the circle C. 

An arc A in the conformai plane is the continuous image of a real interval. 
(More than one function can map this interval into the same point set A, 
but the ordering of the points in A must be the same for all such functions 
under consideration.) The letters p, q, . . . will denote both the points of the 
parameter interval and their images in the plane. From our definition, distinct 
parameter values may be mapped into the same point of the plane. 

An arc A is called once conformally differentiable at p if it satisfies the follow­
ing: 

CONDITION I. There exists a point Q 9e p such that if the parameter s is 
sufficiently close to the parameter p, s ^ p, then the circle C(p, s, Q) through the 
points p, 5, and Q exists. It converges if s converges to p. 

Condition I implies that there is a neighbourhood of p on the parameter 
interval on which the mapping which defines A is 1-1. 

The limit tangent circle is denoted by C(r, Q). If Condition I holds for a 
single point Q 5e p, then it holds for all such points and the set r = r(p) of all 
the tangent circles of A at p is a parabolic pencil, i.e., any two circles of r 
meet at p and nowhere else (2, Theorem 1). At an interior point p of A which 
satisfies Condition I, the non-tangent circles all support or all intersect A at p 
according as A has or has not a cusp at p (2, Theorem 3). 

We call A conformally differentiate at p if it satisfies Condition I and 
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CONDITION II. n m c(r , s) exists. 
s^pi 
S9±P 

The limit osculating circle is denoted by C(p). 
We call C a general tangent circle of an arc A at p il there exists a sequence 

of triples of mutually distinct points t, uy Q such that t and u converge on A 
to p and lim C(t, u, Q) = C. If in addition, Q Ç A also converges to p, then 
we call C a general osculating circle of 4̂ at p. 

The arc 4̂ is strongly conformally differentiate at p if it satisfies 

CONDITION I'. If R ^ pt then Km C(Q, s, t) exists, 
s, t-^p ; 

Q->R 

and 

CONDITION II ' . i im c(s, t, u) exists. 
s, t ,u-$p ; 

Remark. Condition I I ' with lim C(s, t, u) ^ p, or Condition I I ' with p an 
end-point of A, implies Conditions I, I', and II. 

Let Az denote an arc of cyclic order three; thus no circle meets A3 more than 
three times. I t is well known that every Az satisfies Condition V at an interior 
point, and Conditions I' and II r at an end-point (3, Theorems 2 and 3). At 
an interior point p of A$, the general osculating circles belong to a closed 
interval of r(p) bounded by the one-sided osculating circles, and all of these 
circles intersect Aza.tp (3, 3.3). General osculating circles at distinct points of 
A 3 do not meet (4, Theorem 1). 

Unless the end-points of A% have a common tangent circle, an open arc Az 
retains the cyclic order three when the end-points are added and also when an 
end-point or an interior point is counted twice on any general tangent circle 
at that point, and three times on any general osculating circle there (3, 3.3). 
In the exceptional case, the common tangent circle at the end-points of A% 
is the only circle that meets the closure of Az with a multiplicity greater than 
three. 

Let p and e be the end-points of an open arc Az\ thus Â3 = p\J Az^J e. 
Let re denote the pencil of tangent circles of A 3 at e. We may assign to the 
circle through three points t, u, v of p\JAz the orientation defined by 
e G C(t, u, v)*. This orientation is continuous. I t can be extended to general 
tangent and osculating circles. I t can even be extended to Â3 if 

C(r,e) 9* C(re,p). 

Then we readily verify that 

Az C C(J>)* H C(r, e)* H C(T„ p)* r\ C(<0* (cf. Figure 1). 
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FIGURE 1 

3. A property of Az. Assume that Â3 has cyclic order three. Let u and v 
be distinct points on A%. As x runs continuously and monotonically from 
p to e on Â3, the circle C(x, u, v) moves continuously and monotonically from 
C(p, u, v) to C(u, v, e) in the family of circles through u and v. Hence if 
t G -4 3, one has 

C(/, #, «;)* D C(£, u, v)* C\ C(u, v, e)*. 

Here the symbol 3 denotes proper inclusion. This relation remains valid if 
u and v are any (not necessarily distinct) points on Â3, provided that we 
interpret C(p, p, s) as C(T, S), and so on. 

Let q, r, s G A$. By a sequence of applications of the extended relation above 
we obtain 

C(q, r, s)* D C(£, r, 5)* Pi C(V, 5, e)* 

D {C(T, S ) * H C(£, 5, eh} n \C(p, s, eh n C(je, s)*} 

= C(T, 5)* n c(£, 5, c)* n C(T6> 5)* 

D {C(£)* H C(r, e)*} H {C(r, eh n C(r6, £)*} 

n|c(T«#)*ncw*) 
= c(ph r\ c(r, *)* n c(re, £)* n cw*. 

Since g G C(p)*, one has C(£)* C C(r, e)* and C(T6J ph C C(e)*. Hence 
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C(q, r, s)* D C(p)* H C(re} ph. 

The last relation remains valid if qf r, s lie on Â3: cf. (3 ; 4). 

4. Union of ^43's. 

4.1. Let A% and A1\ be open arcs of cyclic order three with a common 
end-point p. Let 

I 7 ; = ë U ;! '8 U p, A~z = pUAzUe, 

and let A = AZ\J p\J A\\ À = ë \J A\J e. Assume that ~Âl and Z7^ are 
also of cyclic order three ; thus 

C(T6, p) * C{T, e) and C{je,, p) * C(r\ ë), 

where r is the family of tangent circles of A'\ at p. Let C(p) and C(p) denote 
the osculating circles of A3 and A\ respectively at p. We may assume that 
e G C(p)*. This induces a continuous orientation on all the circles through 
three points of A 3 and also on r. 

If A has cyclic order three, the following conditions will hold ; cf. Figure 2. 
(i) A satisfies Condition I at p. Thus the two pencils of tangent circles of 

Az and A'% at p coincide. We denote this common pencil by r. 
(ii) C(T, ë)* C C'(p)* C C(ph C C(T, eh. Thus A\ C C'(p)* Q C(ph 

and ,4 3 C C ( ^ ) * Ç C'(p)*. 
(iii) i43[i ;3] does not meet C(re>, p)[C(re, p)]. 
(iv) As yj p[A'z U />] dtfes wtf£ m ^ C{je>, e)[C(re, ë)]. 

FIGURE 2 
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We wish to prove 

T H E O R E M 1. Conditions ( i ) - ( iv) are not only necessary but are also sufficient 
for A to have cyclic order three. 

We observe t ha t Â will also have cyclic order three if we add the condition 
COv, e) 7* C(re, e'). 

Remark. I t is clear t h a t Condition (ii) implies Condition (i). However, 
Conditions (ii), (iii), and (iv) are independent, as may be shown by examples. 

4.2 . LEMMA. Assume Conditions (i), (ii), and (iv). Then Condition (iii) is 
equivalent to A having no cusp at p. 

Proof. T h e following discussion is easiest to follow if we designate p as the 
point a t infinity. Then C(T, ë), C(p), C(p), and C(r, e) will be represented by 
four parallel s t ra ight lines. By (ii) and §2, Az C C(p)* H C(j} e)* and 
A'z C C'(p)* C\ C(T, e'Y. Thus by (ii) 

As VJ A\ C C(r, e)* H C(r, ë)* = R, say (cf. Figures 3, 4 ) . 

Since C(re, p) ^ C(T, e), they intersect a t e. Hence C(re, e') also intersects 
C(T, e) a t e. Fur thermore , since C(rej e') does not meet A'z \J p and since 
A'z is of cyclic order three, C(re, e') will intersect C(r, ë) a t e'. Symmetrical ly 
C(re', e) intersects C(r, ë) a t ë and C(r, e) a t e. 

Orient C{re, ef) and C ( T V , e) such tha t p G C(re , e')* ^ C ( T V , * ) * ; thus 

A'* c c(re, <o* r\ c(r, g')* n c(/>)* 
and 

AzC C(re,,e)*nC(T,e)*r\C(p)*. 

Hence A% U A'% has no points in common with 

C(rej ë)* r\ C(Te>, e)*r\R = R0} say. 

T h e boundary of R0 decomposes R into three disjoint regions of which R0 

is one. Let Ri and R2 be the other two; thus A 3 U i ' 3 U f t U jR2. 

Case 1. A has a cusp atp; cf. Figure 3. Then Az and A'z both lie ini^i or both 

FIGURE 3 
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FIGURE 4 

of them lie in R2. Say they lie in Rt) then both e and e' will lie on the bound­
ary of Rt. Since C(re) p) and C(T6, e') are tangent circles at e, C(r6, £) will de­
compose Ri into two disjoint regions and A'z will have points in both of 
them. Hence C(rei p) will intersect A'z. 

Remark. If Conditions (i), (ii), and (iv) are satisfied and A has a cusp at p, 
then C(T61 e') = C(TV, e). 

Case 2. i4 &as wo cws/> atp; cf. Figure 4. Here Az lies in i?i, say, and Af
z lies 

in i?2. Thus e[e'] lies on the boundary of Ri[R2]. 

Then C(rtf, p) C\ R lies in Rx and C(re>, p) C\ R lies in i?2. Hence 

C(r e ,£) [C(7v,£)] 
does not meet ^ l ^ ] . 

COROLLARY. Conditions (i)-(iv) imply that A has no cusp at p. 

Remark. Conditions (i), (ii), (iii) do not imply (iv), even if we assume A has 
no cusp at p. 

4.3. We shall assume Conditions (i)-(iv) in this and the next section. Let 
{g, r, . . .} C Az and {g', r', . . .} C A'z. The orientation of circles through 
three points of Az [A'z] is that induced by e G C(p)* [e' G C'(p)*]. 

LEMMA. A'Z \J e' C C(g, r, 5)* a ^ i 3 W ^ C C(g', r', 5')*. 

Here, two or all three of g, r, 5 or of g', r', s' can coincide so that these 
relations also apply to tangent and general osculating circles of A3 and A'z. 

Proof. Since e 6 C(p)*, §3 implies that 

C(q, r, s)* D C(p)* r\ C{re, £)*. 
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Since C(re, p) $ r, the Corollary of 4.2 implies that C(rei p) intersects A at p. 
Now Az C C(re, p)*, and by (iii) and (iv), A'z \J e' does not meet C(re, p). 
Hence A'z \J ef C C(T9, p)*. Altogether, 

Af
z \J ef C C(p)* O C(r«, £)* C C(g, rf 5)*. 

Symmetry yields the other relation. 

4.4. Proa/ 0/ Theorem 1. Let t, u £ AZ\J p, t' £ A'ZV p. Using 4.3 and 
assumption (iv), we prove successively that the following circles do not meet A 
elsewhere: C(je>,i) and symmetrically C(reit

f); C(e',t,e) and C(e',t',e); 
C(e', /', 0 and C(t', t, e) ; C(t\ t, u). Put 

Ci(t) = 

Cfcv, t) 
C(e', t, e) . 
C{t',t,e) ^ 

1, 
2, 
3, 

14. {C(t',t,u) 

Now Ci(p) does not meet A again. If t moves continuously on A 3 from 
p to e, Ci(t) cannot pass through p, cannot increase the multiplicity with 
which it meets e or e', and cannot support A% U A'% at a new point. Hence 
Ci(t) does not meet A elsewhere. 

5. Extension of an Az. We wish to prove 

THEOREM 2. An open arc Az can be extended through an end-point p to a larger 
arc of cyclic order three if and only if C(p) 7̂  p and A% is of cyclic order three. 

5.1. Sufficiency. (The necessity part of the proof follows from properties 
of arcs of cyclic order three discussed at the end of §2.) A reflection in a circle 
followed by a reflection in an orthogonal circle is a conformai transformation 
which leaves both of these circles invariant. Given an A3 with end-points p and 
e> C(p) 5* p, and C(T, e) 7* C(rei p), we construct an arc Af

z by first reflecting 
A 3 in C(p) and then reflecting the resulting arc in any circle D through p 
which is orthogonal to C(p), and which does not meet AZ\J e. We finally 
choose a suitable subarc Bz C. Az with image B'$ C Ar

z and verify that 
A = B'z \J p \J Az is of cyclic order three. 

Since both reflections leave C(p) invariant, the arc A is conformally 
differentiate at p. I t is clear that Conditions (i) and (ii) will hold. It remains 
to show that Conditions (iii) and (iv) hold. 

In the following, e, e',f, a n d / ' are the end-points 5^p of A3, A'z, Bz, and B'z 

respectively. We may assume that e 6 D* and use the orientation of D to 
orient the family of circles which are tangent to D at p. The orientation of the 
circles through three points of Az [A'z] is the usual one induced by e G C(p)* 
W 6 C'(p)* = C(£)*].Thus 

AzUeCC(p)*nD* and A\ \J e' C C(p)* H Z>*. 
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FIGURE 5 

5.2. Condition (iii ) (cf. Figure 5). Let F be the circle orthogonal to r through 
p and a point of As, and let F' be its image under the reflections in C(p) and D; 
thus Ff* C D* C F*. If F is sufficiently small, it will meet A 3 at only one point / 
and it will intersect Az there. Let 5 3 = i 3 n ^ * ; thus Wz = p\J BZ\J f. 
Hence 5 ' 3 C 4 ' 3 H F'*. Furthermore, 5 ' 3 C C(r,f')* H F'*. Hence 

C(r r , £) C C( r , /0* U ^'* W / ' U K C(£)* ^D*\Jp. 

Since 4 3 C C(£)* Pi £>*, 4 3 does not meet C{jr, p). 
By shortening B''3, if necessary (e.g., by choosing 5 3 in C(7v, £)*), we can 

assume Br% does not meet C(r6, p). 

5.3. Condition (iv) (cf. Figure 6). In the following it is convenient to 
take e as the point at infinity. Then C(re,f) and C(re, p) will be represented 
by parallel straight lines and C(r, e) and C(f, p, e) by lines through p. As 
usual, the orientation of the circles through three points of As induced by e Ç 
C(£>)* implies that A 3 C C(re, £)* P\ C(T, e)*. Since C(re, £) does not meet B''3, 
I^3 will lie in C(r6, £)*. Hence ^43 will not meet C(r e , / ' )• We orient C(re,f) 
such that 43 C C ( T 6 , / ' ) * . 
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FIGURE 6 

If Br z is chosen small enough, then C(re,f) will be close to C(re, p), while, 
by strong conformai differentiability, a circle through e and two points of Bf'3 

will be close to C(T, e). Since C{je, p) ^ C(T, e), however, C{re,f) does not 
meet B\ \J p. Hence Wz U p C C(r e , / ' )*. 

Next, C(Jf, p, e) is close to C(T, e), while a circle which meets J3'3 three times 
is close to C(p). Hence C(f', py e) cannot meet B''3 again. 

Since 

/ ' C C(T, e) C\ C(rej />)*, 

we have 

C(f, P,e)C{ C(T, eh H C(rei p)*} \J {C(r, e)* H C(ré> £)*} U ^ U e . 

As Az C C(r, e)* Pi C(re, £)*, CCf, £, e) does not meet ^43. We may assume 
that ,4 3C C(j',p,e)*\\ïiwB\C C(J',p,e)*. 

By strong differentiability, C(Tf>, e) is close to C(T, e), while C(re,f') is close 
to C(re, p). Hence 

C(rrje) * C(re,f). 

Furthermore, C{jr,e) = C(f,p,e) would imply that C(Tf>, e) = C(ry,p). 
Since C(rr,p) is close to C(p), however, we obtain C{jf,e) ^ C(jf,p,e). 
Since B'z C C(f',p, e)* H C(re , / ' )*, one has 

C(rf>,e) C {C(f',p,e)*nC(T6,f')*} V {C(f',p,e)* H C(r.,/')*} U / U « . 

Finally, as ^43 C C(f',p, e)* H C(re , / ' )*, we obtain that C(T/>, e) does not 
meet ^43 U £. 

The authors wish to thank Peter Scherk for reading their manuscript and 
making many valuable suggestions. 
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