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§ 1. Introduction. In[1], p.132, itis shown that there
exist two disjoint subsets of a square each connecting a pair of
opposite vertices. Our interest in obtaining covers by infinite
collections of such sets was prompted by a question posed by
R.B. Reed in [3]. We are grateful also to Dr. M. Edelstein for
his guidance and encouragement of our work on the subject.

Our first theorem presents a cover by such sets, which
has the power of the continuum. The construction is shown in
Figures 1, 2 and 3. In brief, the points of [abcd) (see §2 for
notation) are joined to those of [fj) by a family of lines des-
cribed by a homotopic transformation of [aef] into [dlkj],
which sweeps out the figure abcdlkfe as t runs from 0 to 1;
each of these lines is connected to one of a family of lines simi-

1
lar to a graph of y = sin; , which family sweeps out efkl. This

construction is reflected in the origin, and corresponding lines
belong to the same set St . Each set St’ finally, contains one

point of [mn]. Fig. 1 shows a typical set, , as well as

S
3/16
So whose construction is atypical.

P. Erdds (oral communication to M. Edelstein) has ex-
pressed the opinion that a shorter proof of mere existence of a
cover as described in the theorem, could be given by transfinite
methods, but that the constructive proof given is interesting.

Our second theorem shows that if there are two (or more)
disjoint subsets each connecting antipodal points, then neither

may be closed. It remains an open question whether under any
conditions such subsets can be locally connected.

Canad. Math. Bull. vol. 9, no. 5, 1966

631

https://doi.org/10.4153/CMB-1966-076-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1966-076-8

§2. Notation and Definitions. Let Q be the closed set

in E2 bounded by the square with vertices ( ! 16, f16), with
the usual topology relativized. The points p = («,p) and

-p = (-,-p) will be called antipodal to one another. In §3, the
set {p: -p ¢ A} 1is written -A. The line segment from

p (included) to q (excluded) will be denoted [pq). We write

[pgr) for [pq)u[qr). Similarly we define (pq], [pqrst], etc.
The polygonal region whose successive vertices are p, q, r, S
is pqrs if open, and pqrs if closed. The set {x: x+r ¢ [pq)}
will be called [pq) - r, where + and - are vector addition
and subtraction. The letter t represents a scalar parameter.
The set {(ta, tB):(a,p) ¢ [pq)} will be called (t) [pqg). Simi-
larly we define (1 - t)([pq) - r), etc. Certain points of Q are
named as in the figures.

§3. THEOREM 1. There exists a family o of continuum-
many, pairwise disjoint, connected subsets of Q such that each
S ¢ A/ contains two and only two points of bd(Q), which more-

over are antipodal; and U = Q.

The detailed construction is as follows:

(3.1) For 0<t< 1/4, define
A = (b + (1 - 4t)([aef] - b)) U (f + (4t)([bg] - £)).

Ao= [aef]; and as t - 1/4, At*[bg].

For 1/4 <t< 3/4, define

A =[pq], where p=b+(2t- 1/2)(c - b), and
g +(2t-1/2)h - g).

q

A1/4=[bg]; and as t—> 3/4, At*[ch].

For 3/4<t< 1, define

At = [pq]U (c + (4t - 3)([dlk] - ¢)), where
p=c+ (4t - 3)k - c), and
q=h + (4t - 3)(j - h) .

A3/4 =[ch]; and A1 = [dlkj] .
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Each At is connected.

If t1 # tz , then by the homotopic nature of the construction,
At n At = ¢. As t runs from 0 to 1, {At} sweeps out
1 2
successively the figures abgfe, bchg, and cdlkh, and parts of
their boundaries, so that {At} sweeps out abcdlkfe.
(3.2) For 0<t< 1, define

BtzBi,tU BZ,tU ... U Bn,tU ... , where:

B, =i+~ t)({yf] - i) U ({yz] + ()(§-y DU (z+(t)([kr]- 2))

Ullzy] + (t)(s-y) U (s + (1-t)([yx] - s))
and for n> 1,

Bn,t ={(1/4 2,B): (a,B) ¢ B

n-i,t} . Bi,t is connected.

This implies that each B ¢ is connected. Furthermore, Bt

is connected; for let (8,qt) =j+ (1-t)(f-j). Then

5-2n ﬂ
(@ ’ nt)€ Bn,t Bn-i,t'

If t1 # t2 , then by the homotopic nature of the construction,

B NMNB = @¢. As t runsfrom 0 to 1, {B _} sweeps out
t1 t:2 n,t

the region {(41-n a,B):(a,B) e fkrx} . Therefore {Bt} sweeps
out efkl - [el].

AtU B, is connected, for Atﬂ B, = {(S,nt)} .

If 0¢t1¢1 and O#tz#i and tiftz,then

AtﬂBt =q.
1 2

(3.3) Define it =m + (t)(n - m).
Define SO = AoU Bo U(-A1) U (-Bi)U [em] UA1U B1U (-Ao)

U(-B )y [in].
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For 0< t< 1, define
St = AtU BtU{it} U (_At)u (—Bt) .

Then &f = {St: 0<t< 1} is the required family of sets.

(3.4) Proof. J has the power of the continuum, for it con-
tains a set corresponding to each te [0, 1).

The construction is such thatif t #t_ then S (1S =¢.
1 2 t1 tZ

That is, members of zf’ are pairwise disjoint.

Each St is connected. To prove SO connected, note
that:

Aoﬂ B = (ef], (-Ai)ﬂ(—B1) = - (lkj], and

Aoﬂ (—Ai)ﬂ [em] ={e} .

Therefore AOU BOU (-Ai) u (-Bi) U[em] is connected.

Similarly, A1 u B‘1 U (-Ao) U(—BO)U [ln] is connected. The

former contains m, an accumulation point of the latter, so
their union S is connected.
o

For t+# 0, to prove St is connected, note that AtU Bt
is connected, and its closure contains [mrn], to which it belongs.
Then AtU BtU {1t} lies between a connected set and its closure,
and so is connected ([4], p.13). Similarly (-At)U(-Bt)U{it} is
connected. These have a common point, so their union St is

connected,

Each St’ by construction, contains two and only two

points of bd(Q), and these are antipodal.

Ud = Q; for every point in Q either lies in one of the
regions swept out by {At} , {Bt} , {-At} or {-Bt} , orisin

[em]U[1n]U S, oris an it.
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§4. THEOREM 2.. Let A and B be connected subsets
of Q such that {c, -c}CA and {b, -b} & B, and suppose A
is closed. Then ANB # @.

Proof. Let R denote the unbounded component of
2
E - A, and suppose F is the boundary of R. Then F is con-
nected. See [2], p.124.
Moreover, F CA. Indeed, if we assume F ¢ A, then let
xe¢eF - A, Then because A is closed, there is an open disc O
2
such that x ¢« OCE - A. Because F 1is the boundary of R,

2
there are vy, ze¢ O suchthat yeR, z¢ E - R. Because O is
convex, [yz]CO. [yz]UR is connected. But then R is nota

2
maximal connected subset (component) of E - A, as postulated.

Clearly {c, -c} CF and {b, -b} CR. Constructin R
a cross-cut L = [c(2b)]U[(-c)(2b)]. See Fig. 4. This decom-
poses R into two components ([4], p.110), whose common
boundary GCF | L. Evidently b and -b lie in different com-
ponents, say b e C1 , -b e C2 . Because B is connected,

BNG# ¢ ([2], p-73). But BN L =¢, so BNF # ¢§. There-
fore BNADBNF # @.

The coordinates below refer to points in the following

figures:
a (0, 16) 1 ( 0,-8)
b (16, 16) m( 0, 4)
c (16,-16) n ( 0,-4)
d ( 0,-16)=-a o (0, 0)
e (0, 8) r (2,-8)
f (8, 8) s (2, 4)
g (8 1) x (2, 8)
h (8, 5) y (4, 8)
.j ( 8: 4) z ( 4:‘4)
k ( 8,-8)
635
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