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A novel data-driven modal analysis method, reduced-order variational mode
decomposition (RVMD), is proposed, inspired by the Hilbert—-Huang transform and
variational mode decomposition (VMD), to resolve transient or statistically non-stationary
flow dynamics. First, the form of RVMD modes (referred to as an ‘elementary low-order
dynamic process’, ELD) is constructed by combining low-order representation and the
idea of intrinsic mode function, which enables the computed modes to characterize
the non-stationary properties of space—time fluid flows. Then, the RVMD algorithm
is designed based on VMD to achieve a low-redundant adaptive extraction of ELDs
in flow data, with the modes computed by solving an elaborate optimization problem.
Further, a combination of RVMD and Hilbert spectral analysis leads to a modal-based
time-frequency analysis framework in the Hilbert view, providing a potentially powerful
tool to discover, quantify and analyse the transient and non-stationary dynamics in complex
flow problems. To provide a comprehensive evaluation, the computational cost and
parameter dependence of RVMD are discussed, as well as the relations between RVMD
and some classic modal decomposition methods. Finally, the virtues and utility of RVMD
and the modal-based time-frequency analysis framework are well demonstrated via two
canonical problems: the transient cylinder wake and the planar supersonic screeching jet.
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1. Introduction

Modal decomposition has become fundamentally important in turbulence research in
terms of constructing a low-dimensional (low-order) representation in the Eulerian
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perspective and establishing an explicit connection of dynamic process between the
physical and phase space (Holmes et al. 2012). Since Lumley (1967, 1970) proposed the
proper orthogonal decomposition (POD) in the realm of turbulence, a large variety of
modal decomposition methods have been developed for more than 50 years. Coherent
structures — organised fluid elements of significant lifetime and scale — can be extracted by
these well-designed methods, enabling the mechanistic study of the essential dynamical
features inherent in complex flows. Modal analysis has demonstrated its powerful roles in
theoretical analysis and engineering applications (Taira ef al. 2017, 2020), for example,
shedding light on the potential mechanisms of the unsteadiness in shock wave/boundary
layer interactions (Priebe et al. 2016), self-similar behaviour in pipe flows (Hellstrom,
Marusic & Smits 2016) and providing insight into the dynamics of large-scale wavepackets
in turbulent jets (Schmidt ez al. 2018), among others.

Some general consensus has been reached on the direction of the development
of modal decomposition, even though various techniques are rooted in different
physical considerations and mathematical operations. As suggested by Noack (2016),
the first is to extend the information contained in the decomposed modes, i.e. improve
the capability in characterizing desired evolutionary properties by adopting a more
appropriate mathematical form for the modes. The second is to extract a sparse
description of the dominant feature in the original high-dimensional dynamic system
(Brunton, Proctor & Kutz 2016), which requires that we need to define what is called
‘dominant’ (maybe dynamically or in other senses) and determine how to extract these
dominant components. Although increasingly sophisticated experimental techniques and
high-performance computing have provided a huge mass of time-accurate flow field data,
namely, a prerequisite to explore the transient and intermittent behaviours in statistically
non-stationary flows, further development of modal-based time-frequency analysis is still
highly desired (Schmidt, Colonius & Breés 2017; Nekkanti & Schmidt 2021). It is due
to the fact that the conventional construction ideas of existing methods, such as time
averaging and linear approximation, limit their ability to characterize the time-frequency
information, which motivates us to introduce a new mathematical form of modal expansion
to overcome this difficulty.

The two most popular modal analysis techniques, POD and dynamic mode
decomposition (DMD; Schmid 2010), have demonstrated their good capabilities in a
wide range of problems, though improvements are still to be raised for other special
application scenarios. The core idea of POD is to find an orthonormal basis that spans
a finite-dimensional subspace, such that the L?-norm of the projected data onto this
subspace obtains its maximum in a time (or ensemble)-averaged sense (Holmes et al.
2012). This energy optimality makes it an efficient way to compress data, but the averaging
process may result in the loss of key dynamical information. DMD is proposed to extract
modes with temporal monochromaticity (spectral purity) through a linear approximation
of the original nonlinear system, which can also be regarded as a finite-dimensional
approximation of the Koopman operator (Rowley et al. 2009; Brunton et al. 2022). The
eigenvalues and corresponding eigenvectors of the approximated system comprise the
DMD modes, whose time coefficients are pure harmonics with exponential growth or
decay. For mean-subtracted data, Chen, Tu & Rowley (2012) have proved that DMD is
equivalent to the discrete Fourier transform (DFT). Different from POD, DMD allows
us to examine the spectral content of the system in a global manner. Nevertheless, the
exponential oscillatory formulation (e¥’) of the time coefficients limits its application
to describe general nonlinear, non-stationary processes (e.g. processes with amplitude
modulation or frequency modulation).
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Recently, various time-frequency analysis strategies have been attempted by
incorporating concepts in signal processing into the existing modal decomposition
methods. Kutz, Fu & Brunton (2016) presented a recursive algorithm called
multi-resolution DMD, in which the modes with the frequency characteristics localized
in time are obtained by a removal-splitting operation. Another interesting attempt was
made by Schmidt ez al. (2017), Towne & Liu (2019) and Nekkanti & Schmidt (2021) based
on the spectral proper orthogonal decomposition (SPOD; Towne, Schmidt & Colonius
2018). SPOD is a space—time formulation of POD, which inherits the basic idea of
Lumley (1967, 1970). For statistically stationary flows, it computes orthogonal modes that
diagonalize the estimated cross-spectral density matrix at each frequency. As summarized
by Nekkanti & Schmidt (2021), two approaches have been presented to recover the
time-frequency contents from the already computed SPOD modes: oblique projection
in the time domain and convolution in the frequency domain. For other methods and
examples, see Sieber, Paschereit & Oberleithner (2016), Mendez, Balabane & Buchlin
(2019) and Mendez et al. (2023). These frameworks mentioned above can serve as a
good pilot to guide the development of modal-based time-frequency analysis while further
efforts are required to improve performance and operability.

In this study, we will develop a novel data-driven modal analysis method
referred to as reduced-order variational mode decomposition (RVMD), which is
inspired by the Hilbert-Huang transform (HHT; Huang et al. 1998) and a
state-of-the-art signal-processing technique called variational mode decomposition
(VMD; Dragomiretskiy & Zosso 2014). It is well known that HHT can provide a feasible
path for dealing with nonlinear, non-stationary signals in the Hilbert view (Huang, Shen &
Long 1999), which is different from the Fourier-based methods such as short-time Fourier
transform and wavelet transform. HHT is implemented by decomposing the original time
series into intrinsic mode functions (IMFs) using empirical mode decomposition (EMD),
with each IMF reflecting a distinctive non-stationary property, and then applying Hilbert
spectral analysis to obtain the time-varying envelopes and instantaneous frequencies. IMF
represents a generalized Fourier expansion that can effectively characterize time-frequency
contents with superior resolution (Huang et al. 1999). Drawing on the construction of
VMD and combining the low-order representation, the proposed method can adaptively
extract time-frequency features from space—time data; each RVMD mode can be regarded
as an ‘elementary low-order dynamic process (ELD)’ which inherits the idea of IMF.
Notably, the appealing features of RVMD are in line with the outlook of Noack (2016),
as the direct result of a mathematically well-defined optimization problem. Two canonical
flow problems, the transient cylinder wake and the planar supersonic jet, are employed to
demonstrate the advantages of RVMD in revealing transient and non-stationary dynamics
from complex fluid flows.

The remainder of this paper is organized as follows. Section 2 introduces some basic
concepts, definitions and mathematical techniques in signal processing which constitute
the cornerstone of RVMD. Section 3 formulates the proposed method, presents a specific
algorithm and discusses the computational costs as well as the criteria for parameter
setting. Section 4 elucidates the relations between RVMD and several existing methods,
and presents a signal-processing analogous categorization of various modal techniques.
In § 5, two cases are used to validate the capabilities and advantages of RVMD. Finally,
concluding remarks are summarized in § 6.
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2. Theoretical basis

As we know, the conventional framework of modal analysis is to seek a low-order
representation of the space—time flow data g(x, ¢) written as

K
qx, ) = Y grx)er (1), @.1)

k=1

where ¢y (x) is called the (spatial) mode and cx(¢) is called the time-evolution coefficient;
this pair is referred to as the kth mode. Specific determination of the modes, usually
regarded as coherent structures, depends on the prior assumptions stemming from
physical considerations. As shown by (2.1), each mode’s spatial and temporal contents
are separated, enabling us to study them in isolation. Particularly, as suggested by
Schmid (2010), the temporal dynamics (frequencies) contained in ci(#) are crucial for
distinguishing the dynamic processes. Hence, to establish a modal decomposition method
that can extract dynamic processes from statistically non-stationary flows, we start by
considering the form of time-evolution coefficients. Since ci(¢) is just a time series,
examining the well-developed signal processing theory will help us to achieve that.

In the following, we first introduce the idea of time-frequency analysis for non-stationary
signals, illustrating the concept of non-stationary models and their applicability to fluid
dynamics (§ 2.1). Then we give the definition and properties of a specific model called
intrinsic mode function (§ 2.1.1) and, based on this, determine the form of modes (namely,
ELD) adopted in the present work (§2.1.2). Necessary mathematical definitions and
manipulations are reviewed in §2.2. We will convert the real-valued time-evolution
coefficients to corresponding analytic signals (§2.2.1) and extend the idea of Wiener
filtering (§2.2.2) to construct an optimization problem, leading to an adaptive filtering
procedure that yields the modes.

2.1. Models for characterizing non-stationarity

For non-stationary signals/flows in which we are interested, the statistical properties vary
with translation in time. Though an unbiased estimate of the time-varying statistics can
be achieved by performing an ensemble average on a number of realizations (Bendat &
Piersol 2011), it is usually difficult (or expensive) to conduct such repeated experiments or
simulations under statistically similar conditions. Therefore, we need techniques, usually
referred to as the time-frequency analysis, that recover the non-stationarity from an
individual record of the random processes/fields. Following Huang ef al. (1999), we
consider a time-frequency representation of signals in the Hilbert view — each signal
can be regarded as a combination of some elementary models, and each model reflects a
distinctive non-stationary property that is easy to understand. Notably, this idea coincides
with that in the modal analysis, dissecting a complex process into several representative
elements. We will show later that the underlying similarity leads to a smooth and natural
combination of the modal and signal-processing techniques.

As suggested by Bendat & Piersol (2011), three examples of such elementary
non-stationary models include signals with: (1) time-varying mean value; (2) time-varying
mean square value and (3) time-varying frequency structure. Interestingly, the underlying
physical meanings of these three models are also concerned in fluid dynamics (turbulence)
research as the first- and second-order statistics (mean and fluctuation) and the spectral
contents (temporal dynamics). Here, we present the following situations to illustrate the
capability of these models in characterizing non-stationary properties of fluid flows.
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For flow over an actively pitching/plunging airfoil, the mean flow is time-varying and
deterministic, so the whole flow field should be described by the first model. One may
also find this is consistent with the idea of triple decomposition suggested by Hussain
& Reynolds (1970). The intermittent behaviours common in various turbulent flows, as
well as the amplitude modulation in wall turbulence (Hutchins & Marusic 2007; Mathis,
Hutchins & Marusic 2009), can be characterized by the second model. The frequency
shifting in nonlinear wave evolution is a good example of the third model as discussed by
Huang et al. (1999). When a specific model has been adopted according to the physical
situation and combined with some prior assumptions, the time-varying statistics can
usually be estimated from a single record of non-stationary processes through a filtering
operation; see Bendat & Piersol (2011) for examples in signal processing and Mathis et al.
(2009) for an excellent example in wall turbulence.

2.1.1. Intrinsic mode function and narrow-band property

Intrinsic mode function (IMF), an ingenious non-stationary model which is much
more general compared with the above three simple examples, was first proposed
together with empirical mode decomposition by Huang er al. (1998). Nowadays, it has
become the central concept of many modern time-frequency analysis techniques that
have been widely applied, such as synchrosqueezed wavelet transform (Daubechies,
Lu & Wu 2011) and empirical wavelet transform (Gilles 2013). A specific definition
of IMF suggested by Daubechies er al. (2011) is adopted in this work, which is
slightly different from the original one and is more restrictive: IMF is a real-valued
amplitude-modulated—frequency-modulated signal written as

c(t) = A(r) cos (1), 2.2)

with non-decreasing phase ¢(f) and non-negative envelope A(z). The envelope and the
derivative of the phase dg/dt should vary much slower than the phase.

As seen, neither ¢(#) nor A(¢) has an explicitly predefined form, reflecting the core
idea of Huang et al. (1998): for a nonlinear and non-stationary signal, we should adapt
the basis to data instead of adapt data to the basis. Thus, it is easy to find that all three
aforementioned elementary non-stationary models and the Fourier/normal modes can be
represented using IMFs. In addition, IMF always has a limited bandwidth, which means
that each IMF oscillates around a specific frequency (referred to as ‘central frequency’
hereafter) with a narrow band due to the slow-varying A(#) and dg/dr (see examples of
Sharpley & Vatchev 2006). Having been aware of the importance of the narrow-band
property, Dragomiretskiy & Zosso (2014) suggested a novel method called variational
mode decomposition (VMD), which seeks modes while each being band-limited around
the adaptively determined central frequency instead of explicitly using the formulation of
IMF (2.2). This narrow-band prior makes VMD a fully non-recursive variational approach
to extract scale-separated modes as components of a non-stationary signal, and becomes a
core idea we have adopted in the present work.

2.1.2. Elementary low-order dynamic process (ELD)

Now, combining the idea of modal analysis discussed previously and the concept of IMF,
we construct a space—time non-stationary model that can represent the dynamic processes
in nonlinear, non-stationary flows. The ELD is proposed and defined as a space—time field
which can be expressed in a low-order form, ¢ (x)c(¢), whose time-evolution coefficient
c(t) is an IMF. Since the spatial organization and temporal evolution of an ELD are
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separated, all the mathematical descriptions and the properties of c(f) are directly inherited
from IMF, and the narrow-band property is no exception. Hence, the ELD can also be
considered to some extent as an extension of the ‘dynamic modes’ extracted by DMD
(Schmid 2010), implying a basic understanding that the coherent structure usually evolves
at a specific time scale. However, the ELD is tonal with a narrow bandwidth around a
central frequency, while the dynamic mode evolves merely at a single frequency. Notably,
the limitation in time-frequency representation of DMD and other modal techniques with
spectral purity has already been noticed in recent studies on modal analysis (Sieber et al.
2016; Mendez et al. 2019). As suggested by Mendez et al. (2019), finite bandwidth rather
than single frequency leads to time localization capabilities, which again supports our idea
of constructing ELD.

Overall, after determining the form of modes — the ELD — we then seek a specific
algorithm to extract these dominant elements from flow data. The extraction can be
achieved through band-pass filtering using the narrow-band property, following the
methodology proposed by Dragomiretskiy & Zosso (2014).

2.2. Mathematical fundamentals

Before presenting the specific formulation of RVMD, we have to take a brief review
of some definitions and manipulations in signal processing which provide us with the
necessary mathematical tools. Consider a real-valued or complex-valued function c(r)
(also referred to as a signal or time series); its Fourier transform (or spectrum) in a unitary
form is

o0

tw) = Fle() = \/% c(t) exp(—iwt) dt, 2.3)

where i = 4/—1 is the imaginary unit. The two functions lc()|? and |¢(w)|?, referred
to as energy density and energy density spectrum, respectively, characterize the energy
distributions over time and frequency. According to Parseval’s theorem, we have

EE/OO |c(z)|2dt:fOO 16())? do, (2.4)

—0o0 —0o0

with E denoting the total energy of the signal.

2.2.1. Analytic signal and instantaneous frequency

If we focus on a real-valued c(¢#) (since all the data in the real world are, naturally, real),
which can be seen as an ‘oscillation’, a standard procedure that can obtain the information
about the oscillation’s amplitude and phase is to compute the analytic signal corresponding
to c¢(¢) using a Hilbert transform (Cohen 1995). The Hilbert transform of a real-valued
function c(¢) is a real-valued function defined by

Hic®)} = c(t) % — = Lpv. f T @ g 2.5)
Tt T

—0o0

where * denotes convolution and p.v. denotes the principle value. Then, the analytic
signal corresponding to (or the analytic representation of) real-valued c(¢) is defined as
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the following complex-valued function:
ca(t) = c(t) + 1H{c()}. (2.6)
An essential property of analytic signals is the unilateral spectrum

2¢(w) w=>0

calw) = {0 © <0 (2.7)

Remarkably, the analytic representation does not alter the spectral contents of the original
function as indicated by (2.7), and a recovery of c(f) can be easily made by taking the real
part of c4(#) as indicated by (2.6). Another useful property of the analytic signal is that
multiplying it with a pure exponential results in a simple frequency shifting

ca (1) exp(—iwot) PN ca(w) * 8(w + wo) = ca(w + wo), (2.8)

where 6(-) is the Dirac delta function. This formula stems from the basic modulation
property of the Fourier transform.

We then explain why the analytic signal is important for the subsequent problem
formulation by illustrating its physical meaning, and introduce a core concept of
time-frequency analysis in the Hilbert view — the instantaneous frequency. Since the
analytic signal is complex, it can be written in a polar form ca(f) = A*(¢) exp(ip™ (1))
with A*(f) = |ca(t)| and ¢*(¢r) = arg{ca(r)}. We have the following proposition: a
complex-valued function A*(¢) exp(ip*(¢)) is analytic if the spectrum of A*(¢) is contained
in (—wp, wp) and the spectrum of exp(ip*(¢)) is zero for w < wy (Cohen 1995). This is
the key that makes analytic signals distinctive from general complex-valued functions —
the spectral content of A*(z) is lower than the spectral content of expip* (7)), so the latter
can be regarded as a relatively high-frequency ‘oscillation’ while the former being the
slow-varying amplitude of this oscillation, which coincides with the physical consideration
when defining IMFs. In particular, for an IMF c(f) = A(¢) cos ¢(¢) as defined in §2.1.1,
Bedrosian’s theorem (Bedrosian 1963) implies that

ca(t) = c(t) +1H{c(H)} = A(®)[cos @(1) +1isinp(r)] = A(r) exp(ip(?)). (2.9)

Thus, the envelope and the phase of any IMF can be easily obtained by computing the
modulus and argument of the corresponding analytic signal. Moreover, the ‘instantaneous
frequency’ of c¢(¢) is defined as the derivative of the oscillation phase dg/d¢, indicating how
the spectral content varies with time. Examples and illustrations about the instantaneous
frequency are provided by Huang et al. (1999) and Cohen (1995).

2.2.2. Wiener filtering

Recall the idea of this work mentioned in § 2.1 — extracting modes by filtering; we then
show in practice how to construct an optimization problem that leads to frequency-domain
filtering. Consider an observed signal fy(f) consisting of the original signal f(#) and a
zero-mean (Gaussian) white noise 1. The inverse problem of recovering the original
signal from the observed data can be addressed by Tikhonov regularization, leading to
a minimization problem

min {1 —fol* + a1} (2.10)
where ||-|| denotes the L?-norm and « is a positive regularization parameter. If the
noise is Gaussian, then « can be optimally determined as the variance of the Gaussian
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noise; however, in VMD and the present work, « is determined empirically/posterior
(Dragomiretskiy & Zosso 2014). The first term in the above formula is the square error
and the second term is proportional to the square of root-mean-square bandwidth around
a zero frequency as defined by Cohen (1995). After being transformed into the frequency
domain, this problem can be solved through a standard variational procedure, leading to a
Wiener filtering on the observed data

. 1.
flw) = mfo(w)- (2.11)

As shown, the recovered signal f is a low-pass narrow-band selection of the input fy around
zero frequency. By using properties of analytic signals — shift the spectrum of the signal
from a specific central frequency to zero such that the low-pass filter becomes a band-pass
filter — Dragomiretskiy & Zosso (2014) extends the classic Wiener filter into multiple and
adaptive bands, namely VMD (see Appendix A). The proposed method inherits the idea of
VMD, further combined with the non-stationary model (ELD) defined previously to deal
with space—time flow data.

3. Reduced-order variational mode decomposition
3.1. Problem formulation

For flow data g(x, ) sampled from numerical simulations or experimental measurements,
the proposed method seeks a group of triplets with a finite number K, written as

[ (), cx(t), o }IE_, . (3.1)

The spatial modes ¢ (x), x € §2 and time-evolution coefficients ¢ (t), t € (—o0, 0o) form
a low-order approximation of g(x, ), with 2 denoting the spatial domain over which the
flow is defined. In addition, wy is the central frequency, around which the time-evolution
coefficient is band-limited (we will see later that ¢, () is computed by filtering around wy).
Note that the central frequency introduced here must be understood as an independent
variable rather than a property of the time-evolution coefficient. All these functions are
(locally) square-integrable due to the finite energy nature of the real fluid flows and can be
further assumed to belong to a Hilbert space with inner product (-, -) and induced norm
|I-]|. Following the formulation of POD (Holmes et al. 2012), specific definitions in space
and time are

lp(xX)lx = (¢, )V/?  with (¢1(x), p2(x)), = fg $1(xX)h2(x) dx, (3.2)
le@l: = (e, ¢)f"* with (c1 (1), c2()), = / c1(Dea (D) dt, (3.3)

respectively. These definitions are applicable to both real-valued and complex-valued
functions. Domains of ¢y (x), cx () and wy are

® = {¢(x) e LR | 1o @)llx = 1} , C=Lr%(—00,00), R*,  (34a-c)

respectively, where the subscript ‘loc’ implies that the L?-norm is finite on finite closed
intervals in time. Remarkably, all these components are defined in the real domain,
ensuring a straightforward flow field reconstruction and a clear physical meaning like that

966 A7-8


https://doi.org/10.1017/jfm.2023.435

https://doi.org/10.1017/jfm.2023.435 Published online by Cambridge University Press

Reduced-order variational mode decomposition

in POD. In addition, since the spatial modes are normalized, the energy of each mode is
reflected by its time-evolution coefficient, i.e.

Er = llex@)1? . (3.5)

Additionally, the energy ratio can be further defined to measure the relative strength of
each mode

~ E
B = —* (3.6)

=
2_Ei
i=1

The aim of RVMD is to adaptively seek K modes as described above to get a
low-redundant approximation of the space—time data g(x, r), with each mode being an
ELD as defined in § 2.1.2. Here, the term ‘low-redundant’ is used to stress the following
two aspects. First, when performing the RVMD, the number of modes (to quantify how
sparse an approximate description is desired to characterize the data) is predetermined
manually. This is different from the situation when using existing approaches (such as
POD, DMD and SPOD), for which one computes a number of modes and then selects some
representative, physically interpretable ones to aid the analysis of flow physics (Chen et al.
2012; Jovanovié, Schmid & Nichols 2014). In the RVMD, such a ‘selection’ is achieved
simultaneously with the ‘computation’ procedure, and the sparsity (low-redundancy) is
introduced at the very beginning. Second, since the temporal evolution of ELD is an
amplitude-modulated—frequency-modulated signal (IMF) rather than a pure harmonic, the
RVMD modes may represent dynamical behaviours in a more compact way. For example,
a flow process with amplitude modulation can be represented by only one RVMD mode
(see illustration in § 5.2). In contrast, for DMD/SPOD, one must combine several modes
to recover such time-varying amplitude property (Schmidt et al. 2017; Towne & Liu 2019;
Nekkanti & Schmidt 2021).

In addition, since K is predetermined, it should be emphasized that RVMD does not
guarantee a complete reconstruction of the flow field (especially the broadband stationary
components induced by turbulence), which is different from existing methods such as
POD and DFT. However, as stated by Holmes et al. (2012) and Schmid (2022): the most
critical point of modal analysis is to extract and isolate the dominant dynamic behaviours,
then get a better understanding of the fundamental mechanisms based on these modal
results; accurately reproducing the data that have already been obtained is of secondary
importance. Moreover, when constructing a low-dimensional model, one only needs
to keep the dominant coherent structures (usually extracted by modal techniques) and
simulate or model the less energetic, apparently incoherent turbulent background (Lumley
& Yaglom 2001; Holmes er al. 2012). Hence, this ‘limitation’ does not compromise the
applicability of RVMD.

The goal is achieved by limiting the time-evolution coefficients to have a compact
bandwidth rather than explicitly using the formulation of IMF. Similar to the filtering
procedure shown in § 2.2.2, the RVMD modes are computed by minimizing the following
two components: the measure of the deviation between the original field and the
mode-reconstructed one, and the sum of the bandwidths of the coefficients. Following
the formulation of VMD and the theoretical basis discussed previously, the resulting
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unconstrained optimization problem is given by

K
min o ; 3 {[(6(0 + 1%) s ck(t)j| exp(—iwkt)}

{r(x),cr (1), o} 1K,
2

2

t

K

qx, ) = Y gr(x)en()

k=1

+ (3.7)

F

The convolution of §(f) 4+ 1i/7t and ck(¢) leads to the analytic representation of cy (%),
then an exponential with frequency wy is multiplied to shift the mode’s spectrum to the
baseband. The norm ||-||f for a space—time function f(x, ) in L>R(£2) x lef(—oo, 00) is
defined as

e D2 = /Q / e, 0F G D dedx, (3.8)

which corresponds to the Frobenius norm of matrices. The regularization parameter «,
referred to as the filtering parameter hereafter, reflects the relative importance of compact
bandwidth and better reconstruction. Both @ and K should be input in advance.

For mathematical simplicity, a frequency-domain alternative of (3.7) is used to compute
the RVMD modes. The detailed derivation is shown in Appendix B and, finally, we get the
following optimization problem:

K o0
min Zf 20(w — )2 |k (@) | dw
0
k=1

{dk ). &)} [}

b

As shown, the first term is proportional to the square of root-mean-square bandwidth
(Cohen 1995) of the time-evolution coefficient around the corresponding central
frequency. It can be understood as the second-order moment of w about wy with the energy
density spectrum of ck() as the weight. By minimizing this bandwidth term, the spectrum
of each mode will be compact around wy, which again explains why we term wy the central
frequency. The objective function is to be optimized over all the three components in their
feasible regions:

2
dodx ¢ . (3.9

K
Gx, ) = Y pr(x)er(w)
k=1

hx) € @, () € C = o) e LT (—00,00) | o(-0) = E@)],  wx e R,
(3.10a—c)

Particularly, the so-called adaptivity is achieved by optimizing over the central frequencies,
thanks to the mathematical properties of analytic signals that enable us to construct
band-pass filtering easily. Furthermore, the spatial modes ¢y (x) are not restricted to
be mutually orthogonal. That is, RVMD inherits the advantages of DMD that the
non-orthogonal modes provide the ability to capture the essential dynamical behaviours
in systems with non-normal dynamical generators (Trefethen et al. 1993; Schmid 2007,
Jovanovi¢ et al. 2014).

The intended use of RVMD is to discover the (hidden) nonlinear, non-stationary
dynamics expressed in a low-order form (the ELDs), which usually act as some ‘tonal’
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components of fluid flows. Since scale separation is achieved through this decomposition,
each mode is expected to reflect a distinctive evolutionary characteristic, improving our
ability to understand the dominant, coherent features in complex flows. Moreover, the
definition of ELD enables us to directly apply the well-established non-stationary signal
processing techniques to the RVMD results, forming a novel modal-based, quantitative
time-frequency analysis framework for fluid dynamics.

In addition, the scope of application may include: (1) the flow with a transition from
one state to another, in which transient dynamics localized in time and frequency exist
and (2) the flow with tonal components surrounded by broadband stationary noise induced
by turbulence. Since IMFs are amplitude-modulated—frequency-modulated signals which
remind us of the treatment in Landau’s theory of nonlinear stability analysis (Drazin
& Reid 2004; Landau & Lifshitz 2013), they are very suited for representing transient
dynamical evolutions (see § 5.1 for example). For the second type of problem, it should be
clarified that the tonal components in turbulent flows may not be non-stationary. However,
suppose someone believes that all the tonal components in turbulent flows are stationary or
approximately linear and, thus, characterize and model the dynamics using Fourier modes
or normal modes without careful verification. In this case, they will possibly miss some
non-trivial properties of the actual nonlinear evolutions, propose a failed modelling and
lose the underlying physical mechanisms (see § 5.2 for example). Overall, we believe that
RVMD, together with the related analysis framework in the Hilbert view, can become a
useful tool complementary to the classic methods such as the POD, DMD and SPOD,
which are commonly not suited for treating fluid flows especially featured by a transient or

non-stationary nature.

3.2. Computing the RVMD modes

After establishing the optimization problem (3.9), we provide a viable path to solve
it iteratively using the block coordinate descent algorithm (see Liu et al. 2020). Each
component in each mode is successively updated (from k = 1 to K, from ¢y, ¢x to wy) in
one iteration according to the following equations:

Re {/oo ()i (x, w) dw}
0

¢Z+1(x) — = s (311)
Re {/ ()i (x, o) da)}
0 X
4 () = () /Q@':“(x)?z(n w)dx,  (©=0) G12)
[ olariof a
wn-‘,—l _Jo (313)

.
gt @) do

kT T oo
/o
In these formulae, the filtering function for the kth mode at iteration step » is defined as

() =1/[1 4+ 2a(w — a)Z)z], (w=>0) (3.14)
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and the residual function f’,’(’ (x, ) for the kth mode at iteration step n is defined as the
remaining portion of the original data after excluding other modes

k—1 K
Mx, o) = 4x,0) = Y ¢ @ @) = Y 60 (@) (3.15)
i=1

i=k+1

The meaning of each formula is straightforward. The spatial mode is updated as the
normalized, real part of the frequency-domain inner product of residual function and
coefficient. The time-evolution coefficient is updated as the space-domain inner product of
the residual function and spatial mode, and then filtered by g;. Next, the central frequency
is updated as the average value of the frequency weighted by the energy density spectrum
of ¢ (1), which coincides with the definition of ‘average frequency’ by Cohen (1995). That
is, though the central frequency is not defined as the property of cx(f), the resulting value
of wy does reflect the intrinsic spectral property of the resulting ¢, (¢). Remarkably, all these
manipulations are not constructed artificially as in some recursive modal decomposition
methods, but are the direct result of solving the optimization problem (see Appendix C for
the detailed derivation).

Some technical issues about the solving procedure are clarified below. First, since the
problem at hand is a highly nonlinear, multivariate optimization, the proposed algorithm
does not guarantee to converge to the unique global minimum theoretically, and the results
(the local minimum), indeed, depend on parameters and initialization to some extent.
Discussion on the parameter setting can be found in § 3.4, and a series of tests are included
in § 5.2.2 to illustrate the parameter dependence practically. Second, the solving procedure
is operated over the positive half of the frequency domain, and the time-evolution
coefficient ¢ () can be reconstructed directly at the end using the Hermitian symmetry.
Third, though the data have been defined in the infinite time domain, we actually deal
with a short-time discrete sample. Therefore, the sample should be implicitly considered
as a one-period extraction from infinite, periodic data. Based on this point, one may find
that the energy ratio of a transient mode (which is finite in time) would decrease linearly
versus the window size. In practice, as demonstrated by the example of transient cylinder
wake (see § 5.1), the transient process can be captured by RVMD, providing the window
size is not extremely long with respect to the characteristic time scale of this process.
More importantly, the proposed method is capable of resolving the instantaneous mode
energy (envelope), which is independent of the window size and thus reliably facilitates
our understanding of these transient dynamics. Fourth, the Gibbs phenomenon arises due
to the discontinuity at the signal boundaries, also referred to as the ‘end effects’ in IMF
extraction and Hilbert transform (Huang et al. 1998). Although we can not eliminate this
effect, several remedies exist. A simple, commonly used pre-processing technique that can
considerably (but not completely) suppress the end effects, mirror extension, is adopted in
the present work. Prior to the computation, the sampled data are extended by half its length
at each side, and the extended part is mirror-symmetrical with the original data about each
end. When the coefficient ¢ (f) has been reconstructed from its spectrum, the extended
part at both ends is discarded to get the final result.

The complete algorithm in matrix form for computing the RVMD modes is outlined as
follows. After performing the mirror extension, the flow field snapshots are collected as
the data matrix

Q e RS T, (3.16)
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where S and 7" denote the numbers of sampling points in space and time, respectively. The
RVMD modes are represented as column vectors

¢, R, ¢ eRl. (3.17a,b)

We then use superscript ()T to denote the transpose, (-)* to denote the conjugate, and (HH

to denote the conjugate transpose of matrices and vectors. Another two diagonal matrices

are further defined: the non-negative frequency matrix W = diag(®) with elements w; =

ifs /T,i=0,1,2,...,7/2, where fs is the sampling frequency; and the filtering matrix
= dlag(gk) w1th elements = 1/[1 4+ 2a(w; — a)Z)z], i=0,1,2,...,T/2.

Algorithm (Reduced-order variational mode decomposition, RVMD)

(1) Initialize {@, ¢k, a)k}|kK:1 and set iteration step n < 0.
(2) Loop:
Setn < n+1,fork=11to K do:
(a) update the residual matrix for the kth mode using

k—

AZ _ Z n-i-lf\n-HT Z ¢n'\n T’ (318)

i=1 i=k+1

(b) update the spatial mode using

¢t ; (3.19)
|re {f*”‘” |
(c) update the Fourier transform of the time-evolution coefficient using
(d) update the central frequency using
An+1,H yp,~n+1
ntl _ G Ve
Until convergence:
An+1 _an
Z M <e, witha) =¢leT, (3.22)
[alis

k=1

i.e. the iteration difference (the left-hand side) is less than a given tolerance €.
(3) Reconstruct the time-evolution coefficient ¢ from ¢ using the Hermitian symmetry
and inverse Fourier transform to obtain the RVMD modes {¢,, cx, wk}|kK:1-

A specific implementation of RVMD is available at https://github.com/ZimoLiao/rvmd.
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Figure 1. Computation time scale with K.

3.3. Assessment of computational cost

The proposed large-scale multivariate optimization is solved iteratively and, therefore,
may take much longer time than that in traditional modal decomposition methods such as
POD and DMD. This is natural since the proposed method pursues something non-trivial
— adaptive extraction of nonlinear, non-stationary dynamics — instead of the properties
inherent in linear algebra or linear dynamical systems (e.g. eigenvalues and eigenmodes).
Here we present a quantitative assessment of the computational cost of the proposed
algorithm. Particularly, considering the fact that the actual computation time depends on
both software and hardware, we focus on a more general problem — how the cost scale with
the problem size.

In the following, the computation time scaling of the RVMD method is estimated based
on extensive tests of the data matrix sampled from the first example problem (the transient
cylinder wake). Specifically, we performed 120 tests to compute the RVMD modes by
choosing the number of modes K = 5, 10, 15, 20, based on various sample sizes with
the number of spatial sampling points S = 512, 1024, 2048, 4096, 8192, 16 384 and the
number of snapshots T = 32, 64, 128, 256, 512. For each test, the ‘computation time per
step’ is obtained as an average of the 500-step iterating time of the RVMD optimization.
All the results are obtained by single-core computing using an open-source C++ library
Eigen on an AMD EPYC 7282 16-core processor. Finally, an empirical scaling relation is
fitted between the cost and the sample sizes.

Figure 1 shows the computation time per step for different numbers of modes K. Each
red line represents a group of tests at the same (S, T), and the results are normalized
by the value at K = 5. The results obtained indicate that the computation time per step
is approximately linearly related to K, which is in line with our expectation since each
(kth) RVMD mode is computed identically in the proposed algorithm. Consequently, we
then concentrate on the relationships between the computation time per mode per step
(averaged for different K) and the spatial/temporal size (S, T); the results are fitted in
log-log coordinates (see figure 2). Accordingly, a simple, fully empirical scaling relation
can be approximated as

computation time per step ~ K1 711, (3.23)

In addition, the total time of computing all the RVMD modes is proportional to the number
of iteration steps. It should be noted that the number of iteration steps depends strongly on
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Case K S T Tolerance ¢  Steps  Time (min)  Time per step (s)
1 10 16384 600 0.2% 343 4.76 0.834
2 24 50000 1600 0.1% 1923 4.90 x 10% 15.27

Table 1. Computational cost for the two examples.

the parameters (tolerance € and filtering parameter «), the initialization and the flow data
themselves. Here, the computation times and related parameters for the two cases in § 5 are
listed in table 1, providing a quantitative, practical acquaintance with the computational
cost of the proposed algorithm. Notably, since the updates in the proposed algorithm are
all matrix calculations, it could be accelerated using some well-developed parallel linear
algebra libraries.

3.4. Criteria for parameter setting

As stated, there are two input parameters, the number of modes K and the filtering
parameter «, on which the RVMD results depend. In addition, the initialization of
central frequencies also affects what ELDs the RVMD will find. Here we discuss
the parameter dependence theoretically and provide some criteria/recommendations for
determining these quantities. A detailed parametric study can be found in § 5.2, practically
demonstrating the following discussions and showing how a posterior selection of the
parameters is achieved.

First, consider the most critical input of RVMD - the filtering parameter «, which
determines the shape of the filter and further affects the tradeoff between accurate
reconstruction and limited bandwidth. According to (3.14), the bandwidth A for the
filtering function can be derived from o

A=/2V2-2)/a. (3.24)

This is the frequency interval between the filter’s two half-power points (cutoff
frequencies), following the standard definition of the bandwidth of a band-pass filter
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Figure 3. The filtering functions in RVMD with different filtering parameter o and central frequencies wy.
The bandwidths of the filters are indicated using a light-red background.

(different from the abovementioned root-mean-square bandwidth of a signal). Figure 3
depicts filtering functions with different o and central frequencies wy, providing an
illustration of the above statements. Two criteria that restrict the upper and lower bound
of the filter bandwidth (and, hence, the filtering parameter «) are: (1) A should be
greater than the frequency resolution of the observed snapshots since we actually handle
discrete samples. Otherwise, the resulting RVMD time-evolution coefficients approach
pure harmonics and thus can not characterize non-stationary properties; (2) A should be
small enough to distinguish different tonal dynamics in the considered flow. If A is too
large, e.g. spans the whole frequency domain, the time-evolution coefficients may contain
multiple characteristic frequencies like that in POD and reflect no insight into distinctive
dynamics.

Second, the setting of K is relatively arbitrary. The number of modes does not alter the
adaptivity of RVMD or the dynamic properties of the resulting modes, so this parameter
is merely the expected number of the ELDs contained in the specific fluid flow. Notably, it
is challenging to accurately predetermine the number of ELDs in a complex flow problem.
As shown by VMD, for too large or too small K, one may get over-decomposing or
under-decomposing results, which may depart from our expectation — scale separation,
low-redundancy and physical interpretability. It is no different from the shortcomings of
classic segmentation or characteristic extraction techniques. However, in both situations,
when over- or under-decomposing, VMD and the proposed RVMD produce predictable
results, and a posterior adjustment on K can be made. Finding a criterion for the automatic
determination of the number of modes (the low-order dynamics) is a significant and
difficult problem that is beyond the scope of this work.

Third, since the block coordinate descent algorithm cannot guarantee to find the
global minimum for the constructed optimization problem, different central frequencies
initialization strategies may lead to different local minima, i.e. the RVMD modes. When
we know very little about the frequency characteristics of the flow, initializing the central
frequencies to be uniformly distributed over the entire frequency domain is recommended.
In this situation, no prior knowledge or assumption is required. Furthermore, when
a qualitative or quantitative understanding of the frequency characteristics has been
established, e.g. through the PSD of the probed signals or the prediction based on
theoretical analysis, a user-defined central frequencies initialization may lead to better
performance — faster convergence and a smaller number of modes that is enough to capture
the dominant dynamics — of the proposed algorithm.
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4. Relation to existing methods

This section expounds on the relations between RVMD and some classic modal
decomposition methods. We show that the proposed method can be converted into POD
when the filtering parameter equals zero; similarities and differences between RVMD
and some recently presented methods are also discussed. In addition, we present a
signal-processing analogous categorization of existing modal decomposition methods
based on their abilities in time-frequency representation.

4.1. Proper orthogonal decomposition

As the filtering parameter « is set as zero, the bandwidth term in (3.7) vanishes and the
optimization problem turns into

2

K
qlx, 1) = Y dre(x)er ()

k=1

min
{or(x),cr (D)}

’

F
st gk =1, k=1,2,...,K.

4.1)

Here the normalization constraint on ¢ is explicitly written. This problem can be
converted to the following minimization over the spatial modes:

K 2

(). gx. 1)
965, 1) k:Zl i ™

st gk =1, k=1,2,....K.

min

(o)} 4.2)

F

For discrete data, the Frobenius norm is equivalent to a (spatial) L?-norm combined with a
summation over time (time average multiplied by a constant), so the optimization problem
(4.2) is exactly what POD solves (Holmes et al. 2012). Since both RVMD and POD are
based on a similar optimization framework and the modes are defined in the real domain,
the interpretation of the modes (spatial function and the temporal coefficients) and the
flow field reconstruction procedure in RVMD are the same as that in POD.

4.2. Sieber’s method and multiscale POD

As stated, based on the discussion about non-stationary models and the narrow-band
property of ELDs, we adopt a filtering procedure to extract and isolate coherent structures.
The concept of ‘extracting by filtering/scale separating’ is not unfounded in the realm
of fluid dynamics: originated from the Fourier analysis, progressed by the well-known
dynamic mode decomposition (Schmid 2010), and recently extended and generalized by
Sieber et al. (2016) and Mendez et al. (2019). The method of Sieber et al. (2016) is referred
to as the so-called Sieber’s SPOD hereafter, following the statements of Mendez et al.
(2019), to distinguish it from another popular method named SPOD (Towne et al. 2018).
Since the eigenbasis of a Toeplitz circulant matrix is a Fourier basis (Grenander & Szego
1958), Sieber achieves a direct interpolation between the POD and DFT by performing a
diagonal low-pass filtering on the temporal correlation matrix K. The temporal coefficients
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¢y of Sieber’s SPOD are computed as the eigenvectors of the filtered matrix

Ny

Sci = Qe with §; ; = Z &Ktk jrk, (4.3)
k:—Nf

where gj is a symmetric finite impulse response filter with length 2Ny + 1; the spatial
modes are obtained by projecting the snapshots onto the temporal coefficients. The
multiscale POD (mPOD) proposed by Mendez et al. (2019) takes the idea of Sieber’s
method — computing coefficients through the temporal correlation matrix — a step further
by introducing the multi-resolution analysis (MRA) from wavelet theory. First, the
temporal correlation matrix is split into the contributions of different scales using MRA;
second, the optimal basis is extracted from each scale using POD. Since both methods
implicitly include the ‘narrow-band’ prior, they can (for proper filtering or splitting)
produce temporal coefficients that resemble the IMFs. Therefore, the instantaneous
frequencies of the mode coefficients can be computed for analysis (Liickoff et al. 2019)
as we do in the present work.
As a comparison, the filtering procedure in RVMD can be written as

k(@) = Prgr(w) / [ /Q Fr(x, ')k (x, ©) dX] C(@) da', (4.4)

o0

c(t) = Prai() * /

—00

[/ re(x, Drr(x, 1) dx] c(f)dr, (4.5)
2

in the frequency domain and time domain, respectively. For the kth RVMD mode, S is a
constant that contributes to the magnitude of ¢ (r); F{gr (1)} = gr(w) = 1/[1 + 2a(|w| —
wy)?] is the filtering function with an even extension (defined in the whole frequency
domain). Here, we assume that the iterative optimization has reached convergence (at
least, in a numerical sense) and denote ¢; = GZH ~ ¢}, so do other components. The
derivations are shown in Appendix D. Though the basic ideas of RVMD and the above
two methods exhibit similarities, the differences in the mathematical manipulation can
immediately be found by comparing (4.4), (4.5) and (4.3). In RVMD, the filter acts on
the time-evolution coefficient, so the filtering parameter « directly controls the spectral
property of the extracted low-order modes and the physical meaning is straightforward;
while in Sieber’s SPOD and mPOD, the filter acts on the temporal correlation through a
matrix convolution, complicating its relation to the mode coefficients.

4.3. A signal-processing analogous categorization

According to the ability to describe temporal evolution, the existing modal techniques
can be generally divided into three categories: time-domain, frequency-domain and
time-frequency methods. First, since POD does not isolate the dynamics, it should be
regarded as a fully time-domain method. Second, while both DMD and SPOD modes
oscillate at a single frequency, they can be categorized as frequency-domain methods.
Third, according to Huang et al. (1999), the time-frequency methods can be further
divided into two classes: the Fourier view and the Hilbert view. As mentioned previously,
short-time Fourier transform and wavelet transform are the two popular Fourier-based
frameworks for carrying out time-frequency analysis. The multi-resolution DMD (Kutz
et al. 2016) lies in this hierarchy, which adopts wavelet-based multiscale analysis, splitting
the time-frequency domain into multiple sub-domains in advance to perform DMD.
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The proposed RVMD belongs to the time-frequency methods in the Hilbert view,
obviously. Although Sieber’s SPOD and mPOD produce modes with coefficients
resembling the IMFs, both works did not identify or establish the underlying connection
between modal analysis and non-stationary signal processing. In this paper, the concept
of ELD is defined explicitly based on an in-depth understanding of non-stationary signal
processing in the Hilbert view; and the corresponding time-frequency analysis framework
is smoothly and naturally introduced into the realm of fluid dynamics research in a
well-defined way.

5. Applications

In this section, we apply RVMD to two examples of canonical flow problems: the transient
cylinder wake and the planar supersonic jet, and both are contained in the scope of
application as stated in § 3.1. The first example is intended to introduce the modal-based
time-frequency analysis framework in the Hilbert view, and the second example is included
to demonstrate the applicability of RVMD to turbulent flows in terms of extracting tonal
dynamics with hidden nonlinear, non-stationary properties. The parameter dependence of
RVMD is also studied in the latter case to verify our statements in § 3.4.

5.1. The transient cylinder wake

5.1.1. Flow configuration

We begin with considering the transient cylinder wake, a widely adopted problem to
illustrate and validate low-dimensional modelling (Noack er al. 2003; Brunton et al.
2016). A two-dimensional incompressible flow past a cylinder is simulated using a lattice
Boltzmann solver; the flow is initially set as an unstable steady state and then gradually
evolves to a periodic vortex shedding — known as the von Kdrman vortex street. The flow
variables are non-dimensionalized by the cylinder diameter D, the uniform inflow velocity
U and the kinematic viscosity v. We set the Reynolds number Re = UD/v equal to 100 to
ensure the onset of vortex shedding (Zebib 1987), similar to the numerical set-ups of Noack
et al. (2016). The origin of coordinates coincides with the centre of the cylinder, and the
computational domain is set as (x, y) € [—10, 15] x [—10, 10]. A uniform inflow condition
u=1,v = 0is implemented at the inlet and transverse boundaries, and an extrapolation
condition at the outlet boundary. The no-slip boundary condition at the cylinder is imposed
by the immersed boundary method.

To include the whole transient process and ensure a time resolution high enough, 600
snapshots of the mean-subtracted velocity fields (#, v) with sampling interval AtU/D =
0.25 = 1/f, (with f; denoting the dimensionless sampling frequency) are collected to
perform RVMD. In this case, we set the number of modes K = 10 and the filtering
parameter « = 1000/ ]752, and initialize the central frequencies to be uniformly distributed
in the interval [0, 0.6]. The setting of empirical parameters follows the statements in § 3.4.
The optimization reaches convergence after 343 steps with the iteration difference below
0.2 %; the convergence curve of the central frequencies wj are depicted in figure 4(a). All
the modes are indexed by their central frequencies from low to high.

5.1.2. RVMD results and discussion

According to Zebib (1987), the whole flow process can be restated in the language of
dynamical systems as a transition from the unstable fixed point to the stable limit-cycle
oscillation. During the transition, the system experiences three transient evolution stages —
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Figure 4. The RVMD results for the transient cylinder wake: (a) convergence curves of central frequencies;
(b) energy ratios and central frequencies. The frequency axes are scaled linearly.

exponential growth, algebraic growth and exponential relaxation — successively, in which
the algebraic growing stage is non-modal (Schmid 2007) and cannot be captured by
individual exponential terms (Bagheri 2013). A detailed comparative study on various
modal decomposition methods has been carried out by Noack et al. (2016), demonstrating
the inability of POD and DMD to deal with this problem properly. As shown by Noack
et al. (2016), since DMD can only capture oscillation modes with exponential envelopes,
the whole transient process is wiped, indicating a wrong evolutionary trend. POD performs
relatively better than DMD in extracting the temporal behaviour yet mixes multiple
frequencies, leading to confusion in the physical meaning of each mode.

The RVMD results, spatial modes shown by vorticity and corresponding time-evolution
coefficients, are depicted in figures 5 and 6, respectively. As seen, the modes can be
grouped into pairs — the oscillation frequencies and energies are almost the same, but
the phases are different — which is consistent with the previous modal analysis of cylinder
wakes (Bagheri 2013). The post-transient von Kdrman vortex street, i.e. the periodic vortex
shedding, is precisely captured by the first harmonics (modes 4, 5), the second harmonics
(modes 6, 7), the third harmonics (modes 8, 9) and the fourth harmonics (mode 10).
As suggested by Noack er al. (2003), a ‘shift mode’ ¢4(x) in this flow problem can
be defined as the difference between the unstable fixed point and the mean of the limit
cycle to characterize a slow-varying base-flow change between steady and time-averaged
periodic solution. One may naturally find that this definition matches the first type of
elementary non-stationary models as discussed in § 2.1 — flow with time-varying mean
value — and, thus, can certainly be expressed as an ELD. As shown in figures 5(a) and
6(a), the first mode captures the shift mode exactly, with no spurious oscillation mixed
in the time-evolution coefficient. The L? difference between the first RVMD spatial mode
and the mathematically defined shift mode is ||¢; — ¢s|lx = 0.0252 and the inner product
(b1, Ps)x = 0.9997, proving that the RVMD results are quantitatively accurate.

In addition, RVMD resolves the intermediate vortex shedding patterns, as shown
in figures 5(b,c) and 6(b,c). The two modes experience a growing—peaking—decaying
process, while the post-transient periodic vortex shedding modes mentioned above have
a later onset and finally reach a stable-oscillation state. Another difference between the
intermediate and the post-transient vortex shedding modes is that the maximum fluctuation
of the former is far from the cylinder, while the maximum fluctuation of the latter nears the
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Figure 5. The RVMD modes (shown by vorticity) for the transient cylinder wake. We perform a zoom-in to
concentrate on the near-wake region plotted for (a—j) modes 1-10.

cylinder. Intriguingly, the central frequencies of the intermediate vortex shedding modes
2,3 & 0.1312 are much the same as the frequency of the most unstable mode (0.1346)
predicted by linear stability analysis (Noack et al. 2003), together with their temporal
evolution, suggesting a potential connection between the two modes and hydrodynamic
instability. As illustrated in figure 7, the trajectories of the transient cylinder wake in
RVMD coordinates, i.e. curves ci—c4, 5 and c1—c2 3, display totally different evolutionary
characteristics (phase space structures). This observation indicates that distinguishing the
two types of vortex shedding modes may be critical to describing the whole flow process,
further affecting the predictive power of the constructed low-dimensional model (Noack
et al. 2003; Rowley & Dawson 2017).

As stated previously, since each RVMD mode can be regarded as an ELD, all the
well-developed techniques in signal processing can be straightforwardly transplanted to

966 A7-21


https://doi.org/10.1017/jfm.2023.435

https://doi.org/10.1017/jfm.2023.435 Published online by Cambridge University Press

Z.-M. Liao and others

20155,=0.0039

@,=0.1310

0 50 100 150 0 50 100 150

209 50 100 0 2 50 100 150
(€9) (h)
2010, =03077 201 e = 04667
= B TRy = R
~ 0 —-*MNWVWV\/\/WVV\/V\/\N\/\/\/V\/\/\I* ~ 0 A WAWWWWWWWWWWWA
QO e - N _———
209 50 100 150 20 50 100 150
@ 20 ) 20
w, = 04693 w50 = 0.6265
s T S O —
= 0 —~AAMMWWWWWWWWWAMAMMAAY = 0 P
1N - U'— ,,,,,,,,,,,,, -7
220 ' : 20 ' :
0 50 100 150 0 50 100 150
t t

Figure 6. Time-evolution coefficients and central frequencies of the RVMD modes for the transient cylinder
wake. (a—j) Modes 1-10. The grey dashed curve indicates the temporal evolution of the shift mode.
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Figure 7. The transient trajectory in RVMD coordinates. The shift mode versus: (a) the post-transient
periodic vortex shedding modes; (b) the intermediate vortex shedding modes.
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Figure 8. The Hilbert spectrum of the time-evolution coefficients and the corresponding spatial modes. In the
Hilbert spectrum, the curve of each RVMD mode is grey-scaled by its energy that evolves in the time-frequency
plane, with darker for higher energy. At the end of the time axis, an abrupt increase or decrease of frequency
arises for each RVMD mode due to the end effects inherent in computing the Hilbert spectrum (Huang et al.
1998), other than the physical evolution dynamics. The corresponding spatially averaged PSD is shown on the
left side. The filter bandwidths of two typical modes (3, 7) are shaded in light-red.

the modal analysis of complex flows. Hence, we performed Hilbert spectral analysis (HSA)
on the RVMD modes to show a fascinating framework of modal-based time-frequency
analysis. By computing the envelope Ay () and the instantaneous frequency dgy /df of each
time-evolution coefficient ci(7), as defined in § 2.2.1, the Hilbert spectrum is depicted in
figure 8. As seen, a one-to-one correspondence exists between the spatial mode and the
evolution curve in the time-frequency plane, providing a sparse, quantitatively accurate
description of the transient dynamics. Through this diagram, one can easily understand
each distinctive low-order dynamic behaviour: how it is spatially organized, at what
frequency and intensity it oscillates, and when it starts and ends. Moreover, the spatially
averaged PSD of the original data and the mode reconstructed fields are shown on the left
side in figure 8. The relations between central frequency, instantaneous frequency and the
spectrum of each signal are indicated transparently by comparing the PSD and the Hilbert
spectrum.

Overall, the RVMD results of the transient cylinder wake are all physically
interpretable. Each characteristic behaviour — shift mode, intermediate vortex shedding
and post-transient periodic vortex shedding — is extracted and isolated without scale
mixing. A further combination of RVMD and HSA has demonstrated that the modal-based
time-frequency analysis framework in the Hilbert view is able to provide a concise and
clear description of the transient dynamics.

5.2. The planar supersonic jet

5.2.1. Flow configuration

We then take the planar supersonic jet as an example to demonstrate the applicability of
the proposed method in practical turbulent flows. As we stressed previously, for turbulent
flows, the purpose of RVMD is to extract the energetic tonal components rather than
provide a complete reconstruction of the broadband stationary turbulence. So we will
see later how the RVMD discovers the hidden non-stationarity in the planar supersonic
screeching jet and further hints at some non-trivial interactions between different
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Snapshots

Figure 9. Flow configuration of the planar supersonic jet. The vortex structures are shown by the Q criterion
(coloured by the streamwise velocity), and the divergence of velocity is contoured as the background.

physical processes. Since Powell (1953) first detected the discrete-frequency high-energy
screech in underexpanded supersonic jets, many efforts have been devoted to describing,
explaining and predicting this phenomenon. Understanding the key characteristics and the
underlying mechanisms in screeching jets is crucial for aeroacoustic theory and aerospace
engineering. However, the complex flow processes — shear-induced turbulence, shock
cells and their nonlinear interactions — make it hard to reveal the origin of screech and
present reliable predictions. In recent years, data-driven modal analysis has provided a
new perspective to quantify and interpret this phenomenon (Jovanovi€ et al. 2014; Li et al.
2021; Edgington-Mitchell et al. 2022).

We use data obtained via a high-fidelity implicit large eddy simulation (ILES) on a
Cartesian grid (Ye et al. 2020), computed using an in-house compressible flow solver
HiResX. All the variables are non-dimensionalized using the nozzle height 4, the fully
expanded jet velocity Uj, the far-field pressure po, and density p~o, and the reference
dynamic viscosity (. The jet operates at the nozzle pressure ratio NPR = 2.09 and a fully
expanded Mach number M; = U;/a; = 1.55. The far-field sound speed and the jet sound

speed are as >~ 339 and a; ~ 278 m s~!, respectively. Since the spanwise boundaries of
this simulation are periodic, the three-dimensional effect is relatively weak. The calculated
shock-cell spacing (Lgy >~ 2.51h) and the fundamental screech tone (Strouhal number
Sty = wsh/U; = 0.114) agree well with previous experimental measurements (Raman &
Rice 1994; Panda, Raman & Zaman 1997) and LES data (Berland, Bogey & Bailly 2007).
Details on numerical set-ups have been reported by Ye er al. (2020). A total of 1600
snapshots of the fluctuating pressure are sampled in the streamwise-transverse plane with a
dimensionless time interval Atas/h = 0.1 = 1/f; to perform modal analysis. A rectangle
domain (x, y) € [0.6h, 35.2h] x [—1.86h, 1.86h] is chosen to contain the shock cells and
the surrounding shear layers, as shown in figure 9.

5.2.2. Tests on parameter setting

A study on the parameter setting of RVMD is presented here to verify our statements in
§3.4. The dependence of the RVMD results on the two inputs (the filtering parameter
o and the number of modes K), as well as how the initialization strategies of central
frequencies affect the results, were assessed. The frequencies are represented by Strouhal
number St = wh/Uj; hereafter.
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af? 100 300 1000 3000 10000 30000 100000 300000 1000000 3000000
A (points) 145.63 84.08 46.05 26.59 14.56 8.41 4.61 2.66 1.46 0.84

Table 2. The filtering parameters and the corresponding filter bandwidths (in sampling points).
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Figure 10. The RVMD modes for the planar supersonic jet at different filtering parameter . The marked point
of each RVMD mode is grey-scaled by its energy ratio, i.e. darker for higher energy. The red dash—dotted lines
indicate the fundamental screech tone Sz, = 0.114 and its harmonics.

To illustrate the dependence on o (i.e. A), ten trials are performed at the same
number of modes K = 24 and the same initialization of the central frequencies (uniformly
distributed in the whole frequency domain). The values of the filtering parameters and the
corresponding bandwidths (in sampling points) are listed in table 2. As shown in figure 10:
for large « (small filter bandwidth), the central frequencies are fixed at the given initial
values, which means that the adaptivity is dropped; for small « (large filter bandwidth),
RVMD tends to extract the modes which represent low-frequency broadband behaviours
and have poor physical interpretation, while the local energetic dominant behaviours at
relatively high frequencies are neglected. These results indicate that a proper choice of the
filtering parameter « is crucial for the expected properties of RVMD: the ability to capture
narrow-band dynamics and the adaptivity in feature (characteristic frequency) extraction.
For this case, the proposed method realises its best performance when we set aff around
0(10*). When we set @ = 10000 /ﬂz RVMD precisely captures the high-energy harmonic
modes of jet screeching at various time scales. Meanwhile, some low-frequency dynamics
are also extracted; we will show later that these modes reveal an oscillatory stretching of
the shock cells and may affect the intensity of the screeching modes. Although the filtering
parameter is indeed flow-problem dependent, it has been shown here that a proper choice
can be easily made post hoc.

Figure 11(a) displays the results of RVMD with the same filtering parameter o =
10000/ fsz, the same initialization of the central frequencies (uniformly distributed in the
whole frequency domain), but eight different numbers of modes K. Since the filtering
parameter is set appropriately, the adaptivity of RVMD is again proved in these trials.
As shown, the modes that oscillate around the fundamental screech tone are always
captured, while more harmonics and low-frequency dynamics are resolved successively
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Figure 11. The RVMD modes for the planar supersonic jet using the same filtering parameter o« = 10000/, f?
but different numbers of modes K. The central frequencies are initialized to be (a) uniformly and
(b) quadratically distributed in the frequency domain.
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Figure 12. The RVMD results for the planar supersonic jet: energy ratios (E;) and central frequencies
(St, scaled linearly).

as K increases. In figure 11(b), we show the RVMD results with different K with the
central frequencies initialized to be quadratically distributed in the frequency domain,
which means that more frequencies are initialized close to zero. It is evident that compared
with the results in figure 11(a), the algorithm is more likely to extract modes with
relatively lower frequencies, which is consistent with the prior assumption we have made
in initializing the central frequencies.

According to the above discussion, we set the filtering parameter « = 10 OOO/J?S2 and
the number of modes K = 24 in the following content to ensure that dominant dynamic
processes at various time scales are well captured. The central frequencies are initialized
as uniformly distributed in the whole frequency domain, which means that no prior
knowledge is included.

5.2.3. RVMD results and discussion
First, we give a general overview of the RVMD results for the planar supersonic
jet. Figure 12 depicts the energy ratios and the central frequencies of the modes, in
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Figure 13. Spatially averaged PSD of the planar supersonic jet.
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Figure 14. (a) The maximum cross-correlation and (b) the phase lag between each RVMD mode.

which the fundamental screech tone (St; =~ 0.114) and part of its harmonics are also
marked by horizontal light-blue line segments. As indicated, RVMD precisely captures
the screech tones. The first two harmonics (modes 5, 6 and 7, 8) display significant
energetic dominance, and the energy of high-order harmonic modes decrease as the central
frequency increase. Furthermore, several low-frequency energy-containing modes (modes
1, 2) are extracted, whose central frequencies are approximately one order of magnitude
lower than the fundamental screech tone and the energy is between the first and the second
harmonic modes. Figure 13 shows the spatially averaged PSD of the original flow field
and the mode reconstructed one, providing an intuitive illustration of the properties of
RVMD - the distinctive tonal dynamics related to the screech are adaptively extracted
while the surrounding less energetic, apparently incoherent, broadband ‘noises’ induced
by turbulence are dropped. In addition, as stated previously, a mode pair consists of two
modes with similar central frequencies and energies; we then show that the first two
harmonic modes are exactly represented by two mode pairs. To quantify the relations
between modes, the maximum cross-correlation between time coefficients ¢y () and ¢ ()
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is defined as

oo
max/ cx(tcp (t+ 1) dt

Rug = —mee = : (5.1)
oo o0
/ ek (D)2 dt / |ew (]2 dt
—0o0 —0oQ
and the corresponding phase lag is
oo
A¢pr = wrt  with T = argmax {/ ck(Dep(t+ 1) dt} . 5.2)
T —o0

As shown in figure 14, both Rs¢ and R7g exceed 0.95, and the phase lag between the two
modes in each pair is around a quarter |A¢se| ~ |A¢7s3| =~ 1/4 like the Fourier modes
sinwt and cos wt. In the following, modes 5 and 6 are referred to as the fundamental
screeching modes and modes 7 and 8 are referred to as the second-order screeching modes.

Then we focus on the specific spatial organization of each RVMD mode, as depicted in
figure 15. The fundamental screeching modes are anti-symmetric, indicating a ‘flapping’
behaviour of the jet; the second-order screeching modes are symmetric, indicating
a non-flapping ‘varicose’ behaviour. These results are in good agreement with the
experimental observations of Raman & Rice (1994). In Raman’s work, the symmetry
properties of the two screeching modes are inferred from the phase lag between pressure
signals detected by a pair of microphones symmetrically arranged up and down. However,
it is evident that this property is indicated much more clearly by modal techniques.
Moreover, another property of the spatial organization apart from the difference in
symmetry is that: the anti-symmetric modes span the entire shock-cell region, while the
symmetric modes are localized around the first two/three shock cells. The spatial locality
is much more pronounced for higher-order harmonic modes, as seen in figure 15(i—x).
Convective wavepacket structures can be found within the shear layers on both sides of the
first shock cell. When the shear layers impinge the first normal shock, high-frequency
wavepackets will radiate outwards rather than directly penetrating the shock to travel
downstream, indicating a significant directionality of the pressure fluctuation. In addition,
it is found in figure 15(a,b) that the two low-frequency modes (1, 2) actually represent
a streamwise oscillatory stretching of the shock cell. The energy of the two modes
(especially the first mode) is high enough, so these low-frequency dynamics should not
be ignored when we explain and model the screeching phenomena in planar supersonic
jets.

Videos for the mode reconstructed fluctuating pressure fields (plus the mean field) of
the three typical dynamics extracted by RVMD: the low-frequency shock-cell motion
modes (1, 2), the anti-symmetric fundamental screeching modes (5, 6) and the symmetric
second-order screeching modes (7, 8), are provided as supplementary movies available at
https://doi.org/10.1017/jfm.2023.435. These videos will give the readers a straightforward
illustration of how RVMD extracts and isolates the so-called elementary low-order
dynamics, how they are directly related to the shocks and the screeching phenomena, as
well as how they evolve with time.

As emphasized previously, when dealing with turbulent flows, the purpose of RVMD
is to extract the hidden nonlinear, non-stationary properties expressed by ELDs. Hence,
we then show what is non-trivial that the RVMD results can tell us about the screech
in planar supersonic jets. As depicted in figure 16, the envelopes of the screeching
modes (figure 16c—f) show similar oscillatory behaviour with the temporal evolution
of low-frequency mode (figure 16a), suggesting an intriguing connection between the
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Figure 15. The RVMD modes for the planar supersonic jet. (a—x) Modes 1-24.
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Figure 16. Selected time-evolution coefficients of RVMD modes for the planar supersonic jet: (a,b) modes
1-2; (¢—f) modes 5-8.
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Figure 17. Cross-covariance between the low-frequency mode and the screeching modes.

shock-cell motion and the screeching behaviours — the slow-varying shock-cell motion
modulates the intensity of screech. To quantify the close connection between the two
behaviours, following the method provided by Bernardini & Pirozzoli (2011) and Liu, He
& Zheng (2023), we compute the cross-covariance between the time-evolution coefficient
of the first mode c¢1(#) and the envelopes of screeching modes Ax(f), k =5,6,7, 8, i.e.

/ [c1(t 4 At) — &1 1[Ak(r) — Ag]de

\/ / Y e - ant\/ / T A — Agldi

where the tilde denotes the time average. As shown in figure 17, a considerable relevance
(with absolute values of the cross-covariance around 0.87) has been revealed, convincing
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our inference of the ‘amplitude modulation’ phenomenon. This amplitude modulation
characteristic can also be found in the previous simulation of Berland er al. (2007),
indicated by the pressure history close to the nozzle lip. While in this work, the RVMD
results give us an intuitive glimpse into the physical mechanism — the time-varying
intensity of the screech possibly stems from the nonlinear interactions between the
shock-cell motion and the screech-related flapping/varicose behaviours. However, further
in-depth study and more evidence are needed to confirm this hypothesis.

5.2.4. POD and DMD/DFT results

To justify our statements on the virtues of RVMD, the results obtained by RVMD for the
screeching jet are compared with those by POD and DMD. Since the time-averaged field
has been subtracted, DMD and DFT applied to the fluctuating pressure snapshots yield
equivalent results.

The first 24 POD modes and the first eight expansion coefficients are shown in figures 18
and 19, respectively, to ensure a reasonable comparison. Here, the modes are indexed in
sequence by their energy from high to low. As indicated in figure 20, the first three POD
modes display significantly high energy, while the eigenvalues of the other modes decay
slowly; the frequency-mixing of POD modes is severe as expected. Based on the previous
understanding revealed by RVMD, the first two POD modes represent the anti-symmetric
‘flapping’, and the third POD mode reflects a streamwise shock-cell motion. However,
compared with the RVMD coefficient in figure 16(a), the counterpart in POD modes
is contaminated by high-frequency oscillations, as shown in figure 19(c). Furthermore,
though the POD modes 5 to 7 (figure 18e—g) seem similar to the symmetric modes
captured by RVMD (figure 15g,h), their expansion coefficients are severely distorted
(figure 19e—g), providing a little insight into the dynamics. Moreover, other POD results
display disordered spatial structures and frequency-mixed temporal evolutions, making
them impossible to be interpreted. Nevertheless, POD does have the ability to reflect the
non-stationary properties to some extent, as indicated in figure 19(a—c), with its expansion
coefficients again confirming the existence of the amplitude modulation phenomenon.

Whereas POD could not isolate the dynamics, DMD provides some insight into the
frequency characteristics of the different behaviours. Here, we display the first 24 DMD
modes (with positive frequencies) sorted by their energy in figure 21. The ‘maximum
energy’ criterion for selecting the most representative DMD modes is commonly used in
many situations, especially for dealing with fluid flow in a fully developed state (Chen et al.
2012). As seen, the anti-symmetric modes around the fundamental screech tone (1, 3-6),
the symmetric modes (8, 9, 24) and the low-frequency mode (2) are captured by DMD,
with their spatial contents and frequencies in line with the RVMD results. However, no
information about the non-stationarity can be identified, so one cannot be informed that
the screech intensity is time-varying by examining the DMD/DFT results; this drawback
is shared by all the modal decomposition methods pursuing a strict spectral purity and
requires additional post-processing techniques to recover the non-stationary properties
(Nekkanti & Schmidt 2021).

The above comparative study verifies the capabilities of RVMD, especially in revealing
the non-stationary dynamics hidden in complex turbulent flows. Moreover, thanks to
the adaptivity in feature (frequency) extraction, the finite-number RVMD modes are
more informative than the standard POD and DMD/DFT modes. That is why we call
the proposed method ‘low-redundant’: since the computation and automatic selection
are achieved simultaneously and the IMF-type coefficients can represent amplitude
modulation compactly, RVMD is capable of capturing the dynamics evolving coherently in
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Figure 18. The POD modes for the planar supersonic jet. (a—x) Modes 1-24.
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Figure 19. The POD expansion coefficients for the planar supersonic jet. (a—1) Modes 1-8.
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Figure 20. (a) The POD eigenvalues and (b) PSD of the expansion coefficients for the planar supersonic jet.

space and time with considerably (locally) energetic dominance rather than the incoherent
turbulent background. Overall, the virtues of RVMD, as proved above, respond to the
original intention of low-dimensional modelling (Lumley & Yaglom 2001).
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Figure 21. The DMD/DFT modes (shown by the real part) for the planar supersonic jet. (a—x) Modes 1-24
sorted by energy from high to low.
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6. Conclusion

In this study, we propose a novel method to extract low-order dynamics in complex flows,
namely RVMD. It is the first time that the idea of Hilbert spectral analysis in signal
processing (Huang et al. 1998, 1999) is fundamentally introduced into modal techniques,
providing a modal-based time-frequency analysis framework that is mathematically well
defined.

Novelties of this work are concluded as the following three aspects.

(1) The form of RVMD modes is determined as an ‘ELD’, a newly suggested
concept as a combination of low-order representation and IMF. In other words,
the time-evolution coefficient of each RVMD mode is restricted to be band-limited
around a specific central frequency, which can be formulated as IMF. The ELD
not only inherits the advantages of IMF in characterizing general non-stationary
properties (and transient features) but also holds the physical intuition that the
energy-containing coherent structures always evolve within a specific range of time
scales.

(2) RVMD, a specific method to extract ELDs as its modes from space—time flow
data, is proposed based on VMD (Dragomiretskiy & Zosso 2014). The RVMD
modes are computed by solving an elaborate optimization problem using the block
coordinate descent algorithm. The most important features of RVMD are: first, the
modes formulated as ELDs can represent dynamical behaviours with nonlinear,
non-stationary temporal evolutions; second, when solving the optimization problem,
the central frequency of each mode is adaptively determined. The relations between
RVMD and existing modal decomposition methods are discussed theoretically or
conceptually, showing that RVMD reduces to POD if the filtering parameter is set as
zero, and the idea of scale separation can be seen as a further extension of the work
of Sieber et al. (2016) and Mendez et al. (2019).

(3) Based on RVMD and the conventional signal-processing techniques, a modal-based
time-frequency analysis framework in the Hilbert view is naturally established:
first, using RVMD to extract low-order dynamics in transient or statistically
non-stationary flows; second, applying Hilbert spectral analysis to obtain the
time-varying envelope (i.e. energy or intensity) and instantaneous frequency of each
distinctive dynamical behaviour, and in turn getting a quantitative understanding of
these dominant, representative, coherent components in complex flows.

The performance of RVMD and the related modal analysis framework have been
illustrated in two canonical flow problems: the transient cylinder wake and the planar
supersonic jet. In both cases, RVMD demonstrates its ability to discover the nonlinear,
non-stationary dynamic processes and reveals some interesting phenomena. For the
transient cylinder wake, the proposed method displays its potential in isolating and
characterizing the transient behaviours — clearly distinguishing the shift mode, the
intermediate and the post-transient vortex shedding patterns, and showing an accurate
time-frequency localization. For the planar supersonic jet, the proposed method reveals
an intriguing hidden non-stationarity — the screeching intensity varies with time and is
modulated by the low-frequency shock-cell motion. In addition, comparison based on the
POD and DMD/DFT results further verifies the virtues of RVMD in particular application
scenarios.

Potential applications of the proposed method include: (1) flows with transient
evolutions between different states; (2) flows with explicit nonlinear, non-stationary
characteristics such as amplitude modulation and frequency modulation; (3) flows with
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tonal components which may be non-stationary but are intuitively neglected in common. In
addition, the main limitations, also the directions of future improvements, are summarized
as follows: the computational costs are far greater than traditional methods such as POD,
DMD and SPOD; since the number of modes K is predetermined, RVMD may not provide
a ‘complete’ reconstruction of the flow field as POD; the automatic determination of the
two prior parameters (number of modes K and filtering parameter «) is to be devised.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.435.
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Appendix A. Variational mode decomposition
The basic idea of variational mode decomposition (VMD; Dragomiretskiy & Zosso 2014)

is to decompose the observed univariate real-valued signal f(7) into K sub-signals u(?),
namely modes, such that:

(1) the linear superposition of the K modes (approximately) reconstructs the input;
(2) the bandwidth of each mode is as compact as possible. In other words, each mode is
supposed to oscillate around a specific central frequency wy.

A constrained optimization problem can be constructed based on the two goals above
and combined with the concepts outlined previously

min i oy {|:<5(t) + 1i> * uk(t)] exp(—ia)kt)} ’ ,
{uk (1), 01} =1 it
< (A1)
such that Y " u(t) = £ (1),
k=1

As the formulation in Wiener filtering (2.10), the squared L?-norm of the gradient is the
bandwidth estimation of each mode. The convolution of §(¢) + i/t and u(¢) leads to the
corresponding analytic representation of ux(f). An exponential of the carrier frequency wy
is multiplied to shift the mode’s frequency spectrum to the baseband, transforming the
original low-pass filter (2.11) into band-pass filters around each wy.
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Appendix B. From time-domain to frequency-domain optimization

Since the observed data and the RVMD modes are real-valued square-integrable functions,
Parseval’s theorem can be applied, and the first term in (3.7) is converted into

K
. . 2
a Y [ioll + sgn(@ + w))en(@ + o) | . (BI)
k=1
with the norm in the frequency domain defined as
o
I @)II3, = / (@) do. (B2)
—00

Performing a variable substitution @’ = w + wy, the norm (B1) becomes
K o0 K o0
Z/ da(o — op)?|er(@) do’ = Z/ 4a(w — wp)?lér(@))? do.  (B3)
0 0
k=1 k=1

Similarly, considering the Hermitian symmetry of real-valued functions, i.e. ¢(w) =
¢(—w) and g(x, w) = g(x, —w), the quadratic penalty term can be written as two times
the integral over the non-negative frequencies

[

Then we get the optimization problem in the frequency domain as (3.9).

dow dx. (B4)

K
2|40x, ) = Y gr () ()
k=1

Appendix C. Block coordinate descent algorithm for RVMD

To deal with the optimization problem (3.9), we employ the block coordinate descent
(BCD) algorithm as described by Liu ef al. (2020). The BCD algorithms solve a global
optimization by successively performing approximate minimization along coordinate
hyperplanes. Since the BCD algorithms are of efficient performance and easy to
implement for handling large-scale non-convex optimization problems, they have been
widely applied in computational statistics and machine learning (Wright 2015).

To compute the RVMD modes, we first define auxiliary functions as follows:

@0 = F (6 e of e ofs 5 6 B o) (C1)
P e = F (61 8 ofts gt a ol g k) (©)
1 1 antl 1 1 oantl . . R
Fafl@o = F (61 et oft s gt g oo 0 S0k ) . (C3)

where the superscript (-)" denotes the current iteration step and the function F(-) is

F({qﬁk(X), (), wk}’f:l)

K o0
= Z/ 20(w — wp)?|r(w) | dw
k=170

g

do dx. (C4)

K
Gx, ) = Y gr(x)en(w)
k=1
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Then the original joint problem, i.e. the minimization over ¢, ¢; and wy, is decomposed
into a sequence of iterative sub-optimizations

g+ = argmin [F3H (@)} ()
ored

GZH = argmin Fg’:’l(ék)} , (C6)
Ekeé

" = argmin F:;jl(wk)}, (C7)
wreRT

which can be solved by the calculus of variations.
The corresponding functional for the sub-problem of ¢ (x) is

Jpr(x)] = /Q/O |7, ) — ¢k(x)52(w)|2dw dx, (C8)

where 77 (x, w) is the residual function for the kth mode at iteration step n, formulated as

k—1 K
Mx, o) =4(x, ) = Y ¢ @ @) = Y 6] 0 (o). (C9)

i=1 i=k+1

Let the functional derivative vanish for all variations ¢y (x) 4+ sy (x) € @, § € R, where
¥ is an arbitrary function, we get the necessary condition for extrema

d o0
— [/ / |7 (x, ) — gr (D () — Y (D& ()| dow dx] =0, (C10)
ds [JeJo 5=0
which further leads to the following equation:
0= /Q Re {/O o) [F(x, ) — g (@) ] da)} W (x) dx. (C11)

Since ¥ (x) is arbitrary, the fundamental lemma of calculus of variations implies that the
remaining part in the integrand except ¥ (namely, the real part Re{-} in the above formula)
should be identically zero (Zeidler 2012)

o0 o0
Re {/ () (x, w) da)} =/ |2 ()] de g (x). (C12)
0 0
Finally, let the L?-norm of ¢ (x) be unit, we get the update with respect to ¢y (x)

Re {/OOEZ(w)?Z(x, ) dw}
0 (C13)

ot (x) =

Re {/oo ()i (x, ) da)}
0

X
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Similarly, the updates with respect to ¢ and wy are

/WMWW@MNX

) >0 Cl4
14+ 20(w — a))2 @= (€14

An—H( ) —

YH—l(a))‘ dw

Wit = /0 - (C15)
/ "I’H—](a))‘ da)
0

respectively.

Appendix D. The filtering procedure in RVMD
Suppose the iterative optimization has reached convergence, i.e.

1 ~ antl .~ _ 1
bk _¢n+ N(pz, CkECZ+ NCZ, a)k:wz_l_ wa)’,:. (Dla—c)

’

Here we use ‘~’ instead of ‘=" since the convergence is obtained in a numerical sense
(within specific tolerance). We have the filtering function

&) = 1/[1+ 20010l - w?]. (D2)

In (D2), an even extension is carried out to define the filtering function in the whole
frequency domain. So multiplying it with the Fourier transform of a real-valued function
does not change the Hermitian symmetry of the function. Then, an alternative to (3.11) can
be formulated as

¢>”+1(x) = B / () (x, w) do, (D3)
with

(D4)

Br=1/ H/ Cr(@)7y (x, a)) dw

X

using the Hermitian symmetry. Substituting (D3) into (3.12), we obtain the following
identity:

k(@) = Prgr(w) f [ /Q Fie(x, @) (x, @) dx] k(@) do'. (D5)

Computing the inverse Fourier transform of the two sides and use Parseval’s theorem; the
above formula turns into

o0

ck(t) = Prgr(t) */ [/Q ric(e, Dre(x, 1) dx] cx(f) dr', (D6)

—0o0

where g (1) = F ' {gr(w)}.
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