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Summary

This report presents a theoretical formulation for predicting heterozygosity of a putative marker
locus linked to two quantitative trait loci (QTL) in a recurrent selection and backcross (RSB)
scheme. Since the heterozygosity at any given marker locus maintained in such a breeding
programme reflects its map location relative to QTL, the present study develops the theoretical
analysis of the QTL mapping method that recently appeared in the literature. The formulae take
into account selection, recombination and finite population size during the multiple-generation
breeding scheme. The single-marker and two-QTL model was compared numerically with the model
involving two linked marker loci and two QTL. Without recombination interference, the two models
predict the same expected heterozygosity at the linked marker loci, indicating that the model is valid
for predicting marker heterozygosity maintained at any loci in an RSB breeding scheme. The
formulation is demonstrated numerically for several RSB schemes and its implications in developing
a likelihood-based statistical framework for modeling the RSB experiments are discussed.

1. Introduction

Dissecting quantitative genetic variation into genes at
a molecular level has been recognized as one of the
greatest challenges facing geneticists in the twenty-first
century. In the last two decades tremendous effort has
been invested in mapping a wide spectrum of quanti-
tative genetic variation in most important species, but
the candidate regions inferred so far have been too
coarse for accurate gene targeting. A method that is
distinct from the current strategies of QTL mapping is
the recurrent selection and backcross (RSB) method
that was originally proposed by Wright (1952) and
extended by Hill (1998). An RSB breeding scheme is
initiated from crossing two inbred lines P1 and P2 that
are assumed to be fixed for different alleles at marker
loci and loci affecting a quantitative trait (QTL). A
random sample of F1 individuals are backcrossed to
the recurrent parental line P2 to produce nF indepen-
dent backcross families with a constant size of N. In
each of these backcross families, n individuals are sel-
ected for phenotype of the non-recurrent parent P1 to

produce the next generation of the backcross families.
The selection and backcrossing are repeated for T
generations to create independent backcross families
BiT with i=1, 2,…, nF. In the RSB scheme, selection
on a quantitative trait plays a role in maintaining the
donor genome regions that contain the QTL, and
the recipient genome is at the same time diluted by
repeated backcrossing. Thus, mapping resolution of
QTL with large effects may be greatly improved by
appropriate implementation of the breeding schemes.

Instead of calculating the test statistic for locating
QTL at any given chromosomal position, the RSB
method surveys the level of heterozygosity at a given
marker locus as an indication of its map location
relative to QTL. Luo et al. (2002) presented a theor-
etical prediction of heterozygosity at any polymorphic
marker locus on a chromosome bearing one or two
genes affecting a quantitative trait (QTL) in an RSB
breeding scheme. This demonstrated that numerical
evaluation of the theoretical prediction under the
three-loci (one marker and two QTL) model had to be
restricted to circumstances where backcross family
size was very small (e.g. not greater than 10). As
the family size increases, calculation of the marker
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heterozygosity involves storing and computing a huge
number of terms, resulting in extensive computer
time and overloading of computer storage. The total
number of terms to be calculated and stored in
evaluating equation (7) in Luo et al. (2002) is math-
ematically equivalent to the number of different con-
figurations of integers ri (i=1, 2,…, K) such that
N=gi=1

K ri, where N is the family size and K=8 in
the present context, the number of all possible geno-
types at the three loci in an RSB population. A
general formula for this number is given in Feller
(1957, p. 36) as

c(K,N)=
N+Kx1

Kx1

� �
:

For example, c(8, 50)=264 385 836. In this short
paper, we present a simplified but much more efficient
method for calculating the marker heterozygosity.

2. Theoretical model and analyses

We first consider three linked loci : two affecting a
quantitative trait and the other being a polymorphic
marker that is devoid of any effect on the trait. In an
RSB scheme described elsewhere (Hill, 1998; Luo
et al., 2002), there are at most two alleles segregating
at each of these loci. The rationale of the model will be
explained in the following discussion. Let the recipient
and donor alleles be denoted by M and m at the
marker locus, and by A and a and B and b at the first
and second QTL respectively. There are eight possible

genotypes in total at the three loci, and they are in-
dexed by i=1, 2,…, 8 corresponding to Mm/Aa/Bb,
Mm/Aa/bb, Mm/aa/Bb, Mm/aa/bb, mm/Aa/Bb, mm/
Aa/bb, mm/aa/Bb and mm/aa/bb. Although there are
three possible orders among the marker and QTL,
their relative genetic distancesmay be defined by c1 and
c2, recombination frequencies between loci 1 and 2
and between loci 2 and 3 respectively. Assuming there
is no recombination interference, the recombination
frequency between the first and the third loci will be
c=c1(1xc2)+(1xc1)c2. For simplicity but without
loss of generality, the design of an RSB scheme is
characterized by four parameters : nF, N, n and T.

Instead of working on the probability distribution
of the number of individuals with various marker-

QTL genotypes in an RSB family as in the previous
studies (Hill, 1998; Luo et al., 2002), we work out here
the probability distribution of these genotypes within
an RSB family at any number of generations. Let Xt

(or Xkt ), Yt (or Ykt ) and Zt (or Zkt ) be indicator variables
respectively for the genotype at the marker locus,
genotype at the two QTL and genotype at the marker
and QTL at the generation t of an RSB family before
(or after) selection. Xt(Xkt )=1 or 2 for marker geno-
type Mm or mm, Yt(Ykt )=1, 2,…, 4 for four QTL
genotypes Aa/Bb, Aa/bb, aa/Bb and aa/bb, and
Zt(Zkt )=1, 2,…, 8 for the eight marker-QTL geno-
types listed above. The probability distributions are
defined as

ft, i=Pr{Zt=i}, f 0t, i=Pr{Z 0
t=i} i=1, 2, . . ., 8

pt, i=Pr{Yt=i}, p 0
t, i=Pr{Y 0

t =i} i=1, 2, 3, 4

at, ij=Pr{Xt=ijYt=j} i=1, 2; j=1, 2, 3, 4

hij=Pr{Zt=ijZ 0
tx1=j} 1fi, jf8:

To model truncation selection of the quantitative trait
in an RSB family with finite size N in which there are
ri individuals with the ith genotype at the linked QTL
(r1+� � �+r4=N), we need to calculate the probability
that among the n individuals selected from the N in-
dividuals there are si individuals with the ith genotype
at the QTL (s1+� � �+s4=n). A general theory of
phenotypic selection in finite populations was devel-
oped in Hill (1969) and extended to calculate the
probability distribution of si in the RSB setting in Luo
et al. (2002). In the present notation, the probability
has a form

where wi(x) and Wi(x) are respectively the probability
density function and the probability distribution
function of a normal distribution with mean mi, which
is the genetic mean of the ith QTL genotype, and
variance 1.0.

To calculate the aforementioned probability distri-
butions, we need towork out the transition probability
of a given marker-QTL genotype from parental to off-
spring generation. The form of the transition prob-
abilities, HX=(hij), depends on the location of the
marker locus relative to the linked QTL (X=L, M, R
corresponding to the left, middle or right location of
the marker locus). This can be done easily by three-
loci segregation analysis in a backcross population.
For example, HM has a form of

jSR=Pr{S=(s1, s2, s3, s4)jR=(r1, r2, r3, r4)}

=
Y4
k=1

rk

sk

� �X4

i=1

si

Z 1

x1
[1xWi(x)]

six1
Y4
j=1

Wj(x)
rjxsj

Y4
jli

[1xWj(x)]
sjwi(x)dx,

(1)
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With these probabilities and the initial probability
distribution of the marker-QTL genotypes f0,i=Pr
{Z0=i}, which are simply equal to the first column
ofHX, the probability distribution, ft,i, can be worked
out for any t in the following recursive way:

at, ij=Pr{Xt=ijYt=j}=ft, 4(ix1)+j=[ ft, j+ft, 4+j], (2)

pt, i=Pr{Yt=i}=ft, i+ft, 4+i, (3)

Derivation of (4) implies the assumption that (r1, r2,
r3, r4), the numbers of individuals with four different
genotypes at the QTL within an RSB family, follows a
multinomial distribution with parameters qt,i (i=1, 2,
3, 4) and N. The summation is over all possible 0fri
fN (i=1, 2, 3, 4) such that gi=1

4 ri=N, and this in-
volves c(4, N)=(N+1)(N+2)(N+3)/6 terms. Because
selection is only on the QTL other than the marker
locus, the conditional probability of the marker geno-
type given a genotype at the QTL before selection will
remain unchanged after selection. This entails deri-
vation of (5). From the joint distribution of genotypes
at the marker and QTL, the marker heterozygosity
expected for the RSB scheme defined above is thus
given by

ht=ft, 1+ft, 2+ft, 3+ft, 4: (7)

In the above model, the marker locus virtually plays
a role of specifying a chromosomal position at which
its relatedness in map location to the linked QTL is
tested. By searching over all possible map positions of
a chromosome, we may expect that heterozygosity
reaches its peak values at the locations of the QTL.
This thus suggests that heterozygosity at the multiple
linked marker loci would be predicted separately from
the present singlemarker locusmodel if recombination

interference is assumed to be absent. To demonstrate
this, we considered the situation where there were two
markers linked to twoQTL.Under the four-locimodel,
there are 16 possible genotypes segregating in an RSB
breeding scheme. In addition, we need to take six poss-
ible configurations of the relative locations between
the marker loci and QTL into account in calculating
the one-generation genotypic transition probability
HX=(hij). The dynamics of frequencies of the 16 geno-
types and thus heterozygosity at the two marker loci
can be calculated by following the same principle as
that of the above three-loci model. The detailed formu-
lation of the four-loci model analysis is omitted here.

3. Numerical calculation

We demonstrated the theoretical analyses by numeri-
cally calculating the expected marker heterozygosity

HM=

(1xc1)(1xc2)=2 0 0 0 0 0 0 0
(1xc1)c2=2 (1xc1)=2 0 0 0 0 0 0
c1(1xc2)=2 0 (1xc1)=2 0 0 0 0 0
c1(1xc2)=2 c1=2 c2=2 0:5 0 0 0 0
c1c2=2 0 0 0 [(1xc1)(1xc2)+c1c2]=2 0 0 0
c1c2=2 c1=2 0 0 [c1(1xc2)+(1xc1)c2]=2 0:5 0 0
(1xc1)c2=2 0 c2=2 0 [c1(1xc2)+(1xc1)c2]=2 0 0:5 0
(1xc1)(1xc2)=2 (1xc1)=2 (1xc2)=2 0:5 [(1xc1)(1xc2)+c1c2]=2 0:5 0:5 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

p 0
t, i=Pr{Y 0

t=i}=
Xn

si=1

siPr{St=(s1, s2, s3, s4)}=n

=
1

n

Xn

si=1

si
X

0frifN

Pr{Rt=(r1, r2, r3, r4)}Pr{St=(s1, s2, s3, s4)jRt=(r1, r2, r3, r4)}

" #

=
1

n

Xn

si=1

si
X

0frifN

N!Q4
k=1 rk!

Y4
i=1

prit, irjSR

" #
,

(4)

f 0
t, i=Pr{Z 0

t=i}=Pr{Y 0
t=j}Pr{X 0

t=ijY 0
t=j}=p 0

t, jat, ij, (5)

ft+1, i=Pr{Zt+1=i}=
X8

j=1

Pr{Z 0
t=j}Pr{Zt+1=ijZ 0

t=j}=
X8

j=1

f 0t, jhij: (6)
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Fig. 1. Distribution of the expected heterozygosity over a chromosome of 100 cM which carries two linked QTL in four Recurrent Selection and Backcross (RSB) breeding
schemes: (a) N=30, n=5, T=30, m1=3.0, m2=1.5, m3=1.5 and m4=0.0; (b) N=30, n=5, T=30, m1=3.0, m2=2.0, m3=1.0 and m4=0.0; (c) N=50, n=5, T=30, m1=2.0,
m2=1.0, m3=1.0 and m4=0.0; and (d) N=50, n=5, T=30, m1=2.0, m2=0.5, m3=0.5 and m4=0.0. N is the family size, n is the number of individuals selected from each family,
T is the number of consecutive selection and backcrossing of the breeding schemes, and m1, m2, m3 and m4 are means of the four genotypes at the linked QTL. Arrows indicate
locations of the QTL.
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from four RSB schemes defined by four sets of the
parameters. Fig. 1 illustrates the distribution of mar-
ker heterozygosity predicted from these RSB breeding
schemes. The marker heterozygosity was calculated
at every 1 centimorgan (cM) over a chromosome of
100 cM that carried two linked QTL. It can be seen
from the figure that consecutive selection and back-
crossing in the RSB schemes have been effective in
differentiating the recipient genome in the vicinity of
the QTL from the donor genome backgrounds.
Change in the level of heterozygosity at marker loci
during the RSB breeding programme provides useful
information on the QTL locations. In addition, the
design parameters of RSB breeding schemes affect the
sustainment of marker heterozygosity at the vicinity
of QTL and the power in resolving the QTL, indicat-
ing that the RSB breeding schemes may be optimized
to achieve an optimal resolving power of the QTL
mapping.

We surveyed several arbitrarily chosen pairs of
marker loci in Fig. 1a for their heterozygosity levels
that were calculated from either the three-loci model
or the four-loci model mentioned above, and found no
difference between the two methods. Thus, the three-
loci model may be used to assess genetic heterozy-
gosity maintained at any genome location in an RSB
scheme when recombination interference is absent.

The two-QTLmodel under the present study enables
investigation of the power of the RSB method in re-
solving linked QTL and the effect of complex epistasis
on QTL mapping. Following the same principle, the
present analysis can readily be extended to multiple
QTL but it will involve a substantial increase in com-
putational demand. We considered a backcross family
size of 50 in the above numerical demonstration of
the theoretical analysis. This could be a realistic fam-
ily size for most important model organisms, such
as Arabidopsis, tomato,Drosophila or yeast, for which
practising an RSB breeding scheme is feasible. Our
experience shows that a modern personal computer is

powerful enough to carry out the numerical compu-
tation in less than 10 hours of CPU-time even when
the family size is doubled or tripled.

The present study does not merely serve as a sol-
ution to the theoretical gap of the previous research in
the literature. The theoretical model discussed here
can easily be modified into calculation of the con-
ditional probability distribution of genotypes at any
test chromosomal position given its flanking marker
genotype in the RSB populations, entailing a likeli-
hood framework for analysis of the RSB data as
has been done in the conventional interval mapping
technique (Lander & Botstein, 1989).
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