
/ . Austral. Math. Soc. (Series A) 34 (1983), 377-393

DUALITIES FOR SOME DE MORGAN ALGEBRAS
WITH OPERATORS

AND LUKASIEWICZ ALGEBRAS

ROBERTO CIGNOLI and MARTA S. DE GALLEGO

(Received 3 September 1981, Revised 22 June 1982)

Communicated by J. B. Miller

Abstract

Algebras (A, V, A, ~ , Y,0,1) of type (2,2,1,1,0,0) such that (A, V, A, ~ ,0,1) is a De Morgan
algebra and y is a lattice homomorphism from A into its center that satisfies one of the conditions (i)
a « ya or (ii) a < ~ a V ya are considered. The dual categories and the lattice of their subvarieties are
determined, and applications to Lukasiewicz algebras are given.

1980 Mathematics subject classification (Amer. Math. Soc): 06 D 30, 03 G 20, 03 G 25, 08 B 15.

Introduction

Throughout this paper, A will denote the class of De Morgan algebras and 6E the
category of De Morgan algebras and homomorphisms. The class of Kleene
algebras (that is De Morgan algebras which satisfy the equation ( a A ~ a ) V ( 6
V~fe) = feV~£>) will be denoted by K, and the corresponding category by %.
For each A in A, B(A) will denote the center of A, that is the subalgebra of all
complemented elements of A, and K(A) the subalgebra of B(A) formed by the
elements a such that the De Morgan negation ~ a coincides with the complement
of a (see Cignoli and de Gallego (1981)).

Let A e A. For each a G A, define Ka - {k G K(A): a < k) and Ha - {k G
K(A): a =£~ a V k}. If for each a in A, Ka{Ha) has a least element, to be
denoted by Va(aa), then A is said to be a V-De Morgan (a-De Morgan)
algebra. These algebras were introduced in Cignoli and de Gallego (1981) in
connection with the theory of n-valued Lukasiewicz algebras.

1 Copyright Australian Mathematical Society 1983
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378 Roberto Cignoli and Marta S. de Gallego [2 ]

Let S (R) be the subclass of the class of v - D e Morgan (a -De Morgan)

algebras, characterized by the property that the map a\-> Va {a H» aa) is a lattice

homomorphism. Our aim in this paper is to investigate the classes S and R. After

recalling in Section 1 some results on the representation of De Morgan algebras

by ordered topological spaces, we show in Section 2 that S is an equational class

that coincides with the class of De Morgan algebras A that are also Stone lattices

and are such that the pseudocomplement a* £ K(A) for each a G A. We call the

algebras in S involutive Stone algebras. We characterize the dual spaces of these

algebras, and as an application, we prove that the lattice of equational subclasses

of S is a six-element chain, and that the class of three-valued Lukasiewicz

algebras can be identified with the class of semi-simple involutive Stone algebras.

In Section 3 we consider the class R, whose elements are called regular a-De

Morgan algebras. We prove that it is an equational class and we develop a duality

theory for the algebras in R. We also show that the class of three-valued

Lukasiewicz algebras can be identified with the class of semi-simple regular a-De

Morgan algebras.

Finally, in Section 4 we consider the class Q of De Morgan algebras endowed

with two operators a and V in such a way that (A, a) £ R and (A, V ) £ S. Each

of the classes of n-valued Lukasiewicz algebras, for 2 < n < 5, is characterized as

an equational subclass of Q and we show that the semi-simple algebras in Q are

exactly the five-valued Lukasiewicz algebras.

We wish to express our gratitude to the referees, whose criticisms to a first draft

of this paper strongly influenced its present form.

1. Priestley's duality for De Morgan algebras

We assume the reader familiar with the theory of De Morgan and Lukasiewicz
algebras, as it is given, for instance, in R. Balbes and P. Dwinger (1974), Chapter
XI. The duality theory of De Morgan algebras, based upon the representation of
bounded distributive lattices by ordered topological spaces due to Priestley (1970,
1972) (see also Cornish (1975)) was developed by Cornish and Fowler (1977,
1979) (see also Cignoli (1979)).

The following notations will be used systematically throughout this paper.
For each integer n > 2, Ln will denote the ^-element chain 0 < l/(« — 1) <

• • • < ( « — 2)/(n — 1) < 1 with the natural lattice structure and ~ (j/(n — 1))

Let I b e a poset ( = partially ordered set) and Y c X. Max Y (Min Y) will

denote the set of maximal (minimal) elements of Y in X, and [Y) ((Y\) the set of

all x in X such that y < x (x «£ y) for some y £ Y. Y is increasing (decreasing) if

Y=[Y)(Y=(Y]).
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Recall that a totally order-disconnected topological space is a triple (X, < , T)
such that (X, < ) is a poset, (X, T) is a topological space and given x, y in X, with
x ^ y, there is a clopen (= closed and open) increasing set U such that x G U
and y £ U. The category of compact totally order-disconnected spaces and
order-preserving continuous functions will be denoted by *5\ As usual, we are
going to denote the objects in 5" by its underlying sets X. For each object X in S",
D( X) will denote the set of increasing clopen subsets of X.

We shall denote by G the class of all pairs (X, g) such that X is an object in ?T
and g: X -» X is an involutorial homeomorphism that is also an order-isomor-
phism from X onto its order-dual. If (X, g) and (X', g') are in G, / : A* -» A" is
said to be a G-function if / is a morphism in 5" and /g = g'f. The category whose
objects are the elements of G and whose morphisms are the G-functions will be
denoted by §.

If (X, g) is in G and U G D(A'), define ~ U = X\g(U). Then
(D(A'), U, n , ~ , 0 , X) is a De Morgan algebra, which we are going to denote
by %X,g). If / is a G-function from {X, g) into (A", g'), define fy(f):
D(X') -> D( A") by the prescription <$(/)(!/') = .T'(£/')• It follows that <$(/) is a
De Morgan homomorphism from ^(A", g') into 6D(Ar, g). Thus ^ is a functor
from % into the opposite category of &. Note that K(fy(X, g)) = {W G

D(A-):g(W)= W).
If .4 is a De Morgan algebra, let <3V(/4) denote the pair (X(^), g), where X(A)

is the set of prime filters of A, ordered by inclusion and with the topology having
as a subbasis the sets of the form a(a) = ( P 6 X(A): a G P) and X(A)\o(a)
for each a in ^4, and g:X(A) -» X(^4) is defined by the prescription: g(P) =
.<4\{~ a: a G P}. It follows that (X(^4), g) is in G. If h: A -»^4' is a morphism in
a, define 9r(h):X(A') -> X(v4) as ?Pr(/i)(i") = /T'(/»'). Then ^Pr(A) is a G-
function and "JPr defines a functor from the category & into the opposite category
of 9.

Moreover, if A is a De Morgan algebra, the map a: A -> ^(^/-(/l)) is a De
Morgan algebra isomorphism, and if ( I , j ) £ G, the function e: X -»
<3V(6D(A') g)) defined by the prescription: e(x) = {f/' G D(Z): x G [/} is an
order-preserving homeomorphism. Thus the functors tyr and D̂ establish a duality
between the categories & and §.

If (A", g) G G, we set Xx = {x G Â  x ^ g(x)} and * 2 = g(A",) = {x G X:

It is well known that a De Morgan algebra A belongs to K if and only if for
each prime filter P of A, P C g(P) or g(P) C P. Thus if we denote by G^ the
class of pairs (X, g) in G such that X = Xx U X2, and by §K the full subcategory
of § whose objects are the elements of G^, then it follows at once that the
restrictions of the functors 6V and €) to the subcategories % of & and @K of %
respectively, establish a duality between % and §K.
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Let ( I , g ) 6 G . If 7 C X, we shall denote by 0 ( 7 ) the relation defined on
D(X) as follows: {U, V) G ®{Y) if and only if U n Y = V n Y. We shall say
that Y C Xis an involutive set if g(Y) = Y.

The following results are essentially due to Cornish and Fowler (1979), and are
based on results of Priestley (1972, 1975) on distributive lattices:

1.1. LEMMA, (i) //(X, g) e G and Y is a closed involutive subset of X, then 0 ( 7 )
is a De Morgan algebra congruence on ^(X, g). Moreover, if IT: tf){X, g) -*

, g ) / 0 ( 7 ) is the natural projection, then

(ii) Let A G A and 0 be a congruence on A. If IT: A -> A/@ is the natural
projection, then Y = <3V(i7p)(<3'r(;4)) is a closed involutive subset of 9r(A), and
(a, b) G 0 if and only if(a(a), o(b)) G 0 ( F ) .

Recall that an equational class C of algebras is said to be congruence-distribu-
tive if the lattice of congruences of each algebra in C is distributive. For an
equational class C, let Si(C) consist of precisely one algebra from each of the
isomorphism classes of the subdirectly irreducible algebras in C. By combining
results of Jonsson (1967) on congruence-distributive classes with the well known
Birkhoff s theorem on the representation of finite distributive lattices by sets,
Davey (1979) obtained the following result, which we quote for further reference:

1.2. THEOREM. Let C be a congruence-distributive equational class generated by a
finite set of finite algebras, and order Si(C) by A < B if and only if A is a
homomorphic image of a subalgebra of B. Then the lattice of equational subclasses of
C is a finite distributive lattice isomorphic to the lattice of decreasing subsets of the
poset Si(C).

2. Involutive Stone algebras

Recall that S denotes the class of V-De Morgan algebras A such that the map
a -> Va is a lattice homomorphism from A into K{A).

2.1. THEOREM. S is an equational class. Indeed, a De Morgan algebra A E S if
and only if there is an operator V : A -» A satisfying the following equations:

(51) VO = O
(52) a A va — a
(53) V(a A b) = Va A vfc
(54) ~ Va A va = 0.
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PROOF. It is plain that the operator V satisfies (S1)-(S4) for each ^ e S .
Conversely, suppose that A E A and V : A -> A fulfills conditions (S1)-(S4). Let
k G K(A). (SI) and (S3) imply that 0 = V(k A ~ k) = vk A v ~ k, and since,
by (S4), Va e K(A) for each a G A, we have that v& < ~ v ~ k. But it follows
from (S2) that k «£ vk and ~ V ~ & < k — k. Consequently, VA: = k. In
particular, v Va = Va for each a E. A, and then V is a closure operator defined
on A such that V{A) — K{A). It is well known that this implies that v a is the
least element in Ka and moreover, since K(A) is a sublattice of A, that v ( d V i )
= Va V vfc for each a, bin A. Therefore, i e S .

If A G S, then ~ Va = a* is the pseudocomplement of A (see J. Varlet (1968)),
and a** — ~ V ~ Va = Va. Since a* V a** = ~ v a V v a = 1, A is a Stone
lattice. The dual pseudocomplement a+ of a also exists, in fact, a+ = V ~ a, and
4̂ is also a dual Stone lattice. Therefore, S is a subclass of the class of double

Stone lattices. More precisely, it is a proper subclass: for instance, 2 © Bj © 1,
where Bn is the Boolean algebra with n atoms, is a double Stone lattice that does
not admit a De Morgan algebra structure.

2.2. REMARK. It is well known that in a Stone lattice A, a G B(A) if and only if
a = a**. Consequently, if A is a De Morgan algebra that is also a Stone lattice,
and if we define v a = a**, we have that the following conditions are equivalent:
(i) The algebra (A, V, A, ~ , v ,0 ,1> G S, (ii) a* = ~ (a**) for each a £A, and
(iii) B(A) = K(A).

Motivated by the above remarks, we shall call the algebras in S involutive Stone
algebras. The category of involutive Stone algebras and homomorphisms will be
denoted by S.

The algebras Ln are important examples of involutive Stone algebras. Note that
for each n s* 2 V(j/(n - 1)) = 1 for 1 =£7 < n - 1 and = 0 for j = 0. If
(A, V, A, ~ , a",...,an"_,,0,1) is an n-valued Lukasiewicz algebra, then the
reduct (A, V, A, ~ , an"_,,0,1> G S (Cignoli and de Gallego (1981)). In particu-
lar, when n — 3 we have that (A, V, A, ~ , a2

3,0,1) G S and that the operator o\
satisfies the relation a A a 2

3 ~ a < f e V ~ o\b for each a, b in A. On the other
hand, if A G S and the relation a A v ~ a s £ Z > V ~ v 6 holds in A, then it is
easy to check that the system (A,\/, A, ~ , A, v ,0 ,1) is a three-valued Luka-
siewicz algebra, where A = ~ V ~ . Therefore we have:

2.3. P R O P O S I T I O N . The class of three-valued Lukasiewicz algebras coincides with
the class of involutive Stone algebras that satisfy the equation ( E S 3 ) ( a A v ~ a ) V
(b V~ vfc) = b V ~ v6.
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We shall denote by Gs the class of pairs (X, g) G G satisfying the following
condition: (S) For each U G D(X), (U] is open and g((U]) = (U]. If X, X' are in
Gs, a G-function / : X -» X' is called an S-function if /(Max X) C Max A". The
category whose objects are the pairs in Gs and whose morphisms are the
S-functions will be denoted by §s.

Let A G S and (X, g) = <$r(A). Since A is a Stone lattice, it follows from
Priestley (1974, Proposition 2), that a(Va) = a(a**) = (o(a)] for each a £ A,
and since Vfl G K(A), we have that g((o(a)]) = (a(a)]. Therefore, (X, g) G Gs.
Conversely, let (X, g) G Gs. Condition (S) implies that (if] is open and increas-
ing for each U G D(A'), and then it follows again from Priestley (1974, Proposi-
tion 2), that D(A') is a Stone lattice and that ({/] = U** - VU. Hence, by taking
into account Remark 2.2, we obtain that %(X, g) = (D(X), U, D,
~ , V, X, 0 ) G S. Moreover, since it follows from Remark 2.2 that the mor-
phisms in § are the De Morgan algebra homomorphisms that preserve the
pseudocomplement, the characterization of the dual maps of Stone algebra
homomorphisms given in Priestley (1974, Proposition 5), implies that the dual
maps of the morphisms in S are exactly the S-functions.

It is now easy to complete the proof of the following theorem, where 9rs

denotes the restriction of the functor 9r to the subcategory § of 6E, and
for each S-function/:

2.4. THEOREM. The categories @s and Sop are naturally equivalent. More precisely,
the composite functors ^3^^ and ^r^g are naturally equivalent to the identity
functors of § and §s respectively. The corresponding unit is e and the co-unit a.

Let (X, g) G Gs. An involutive closed subset Y of X is called an S-set if
[Y) n M a x I C Y.

It was proved in Priestley (1975, Section 4) (see also Davey (1978)) that if X is
the dual space of a pseudocomplemented distributive lattice, then the lattice
congruences that preserve the pseudocomplement are of the form @(Y), where Y
is a closed subset of X such that [Y) n Max X C Y. From this result, Lemma 1.1
and Remark 2.2 we have at once:

2.5. THEOREM. LetAGS and(X, g) - 9rs(A). The map Y i-> @(Y) establishes
an isomorphism from the lattice of S-sets of X onto the order dual of the lattice of
congruences of A.

Let (X, g) G Gs. Since X is the dual space of a Stone lattice, it is well known
(see, for instance, Priestley (1974, Proposition 3)) that for each x G X there is
exactly one nx G Max X such that x < nx. Note that ng(x) = nx for each x G X.
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171 De Morgan algebras with operators 383

For, if g(x) ^ nx, then we would find an U G D(Z) such that g(x) G U and
nx & U, and since nx G Max X, we would have that nx £ (£/]. But this is not
possible, because by condition (S) g((U]) — ([/], and then (£/] has to contain all
the elements comparable with x. Consequently, if for each x G X we define
Yx = {x, nx, g(x), g{nx)}, then Yx is an S-set. Write gx for the restriction of g to
Yx. Since Yx = e-\9rs(Tr)(%(X, g)/@(Yx))), it follows that (Yx, gx) G @s and
that %(YX, gx)=%(X, g)/@(Yx). Moreover, since UxexYx = X, the above
theorem implies that:

2.6. LEMMA. IfA&S and (X, g) = ^r{A), then A is a subdirect product of the
family {%(YX, gx)}xex.

For each x G X we have the following possible cases:

(2a) g(nx)=g{x)<x = nx (2b) g(nx) = x < g{x) = nx

(3) g(nx)<g(x) = x<nx

(4a) g(nx)<g(x)<x<nx (4b) g(nx) <x < g(x) <nx

(5) g(«x) < ^. g(^) < M
x
 a n d ̂  is not comparable with g(x).

Note that in case (i), 1 < i < 4, %{YX, gx) = Li+X. In case (5), %{YX, gx) = S ,̂
where S6 is the six-element involutive Stone algebra obtained by adding a new
zero and a new unit to the Boolean algebra with two atoms, a, b, and with ~
determined by the prescriptions ~ a — a and ~ b = b.

Therefore we have:

2.7. LEMMA. //1 Yx \ = j,j = 1,2,3, then %(YX, gx) = LJ+X. If\Yx\=4, andx is
comparable with g(x), then tf)s(Yx, gx) = L5. If x and g(x) are not comparable,
then %(YX, gx) = S6.

2.8. THEOREM. The subdirectly irreducible algebras in the equational class S are
L,, for 2 < i < 5, and S6. The simple algebras are L2 and L3.

PROOF. It is easy to check that the algebras L2 and L3 are simple and that each
of L4, L5 and S6 has exactly one non-trivial congruence, given by the S-set
Y = Min X U Max X = g(Max A") U Max X, where (X, g) denotes the corre-
sponding Priestley space. Consequently, the algebras L,, 2 < i: < 5 and S6 are
subdirectly irreducible. Suppose now that A is subdirectly irreducible in S. It
follows from the above two lemmas that A is a subdirect product of the algebras
L, (2 «s / < 5) and S6. Since A is subdirectly irreducible, we must have that either
A ss L, for some 2 < j: < 5, or A s S6.
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It follows at once from Theorems 2.5 and 2.8 that S is the congruence-distribu-
tive equational class generated by the algebras Lt, 2 < i =s 5 and S6. Moreover,
since all the £, (2 < / < 5) are subalgebras of S6, and L2 is a subalgebra of each of
the other L,, and L3, LA are subalgebras of L5, and L3 is a homomorphic image of
L4 (under the homomorphism h determined by the prescription h(\/7>) = h (2/3)
— 1/2), it follows from Theorem 1.1 that the lattice of equational subclasses of S
is the chain S, C S2 C • • • C S6 = S, where S, is the class of one-element
algebras, S6 is the equational subclass of S generated by S6 and S, is the
equational subclass of S generated by L,, for 2 < / < 5.

It is worthwhile to point out that the lattice of equational subclasses of the class
of double Stone algebras is a four-element chain (Katriiiak (1974), Corollary 2),
and that the lattice of equational subclasses of the class of Stone algebras is a
three-element chain (Balbes and Dwinger (1974), Chapter VIII, section 7, Theo-
rem 1).

Recall that an algebra is said to be semi-simple if it is a subdirect product of
simple algebras. Note that S3 is the class of semi-simple algebras in S.

2.9. THEOREM. The class of three-valued Lukasiewicz algebras coincides with S3.
Thus, the class of three-valued Lukasiewicz algebras can be characterized as the
class of semi-simple involutive Stone algebras.

PROOF. According to Proposition 2.3, the class of three-valued Lukasiewicz
algebras can be identified with the equational subclass H of S characterized by
the equation (ES3). Since L3 E H, we have that S3 C H. On the other hand, since
the only algebras L, that admit a three-valued Lukasiewicz algebra structure are
L2 and L3, it follows that the subdirectly irreducible algebras in S that belong to
H are L2 and L3. Therefore H C S3.

3. Regular a-De Morgan algebras

A De Morgan algebra A is said to be an a-De Morgan algebra if for each
a EL A, the set Ha= {k £ K(A): a < ~ a V k) has a least element, to be denoted
by aa. If A is an a-De Morgan algebra, we define fia = ~ a ~ a for each a & A.

3.1. LEMMA. The following properties hold for each prime filter P of an a-De
Morgan algebra A:

(i)P Cg(P) if and only ifaEP implies aa £ P
(ii) g(P) C P if and only if pa G P implies a G P.
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191 De Morgan algebras with operators 38 5

PROOF, (i) Suppose P C g(P) and let a £ P. Since ~ a & P and aaV ~ aa = 1,
we have that aa £ P. To prove the converse, note first that since aa = 0 if and
only if a «£~ a, we have that a(a A ~ a) = 0 for each a G A. Suppose now that
P C a\P) and let a G P. If a <£ g(P), we would have that a A ~ a G P , and
consequently, 0 = a ( a A ~ a ) £ P . But this is not possible, because, by defini-
tion, prime filters are proper. The proof of (ii) is analogous.

3.2. PROPOSITION. The following are equivalent conditions in any a-De Morgan
algebra A, where a, b denote variables in A:

(i) a(a V b) = aa\/ ab
(ii) aA~aaa£Z>Va~fc

(iii) A is a Kleene algebra.

PROOF, (i) =» (ii): Suppose that (ii) does not hold in A. Then there are elements
a and b in A such that a A ~ aa ̂  b V a ~ b. By the well known Birkhoff-Stone
theorem, we can find a prime filter P of A such that a A ~ aa G P and
bV a ~ b (£ P. These conditions imply that:

(l)aaV a~b&P, (2) a V ~ b G P, and

(3)~aA()gP.

Since (~ a A b) V a(a V ~ b) = ~ (a V ~ Z>) V a(a V ~ b) ̂  a V ~ b, it fol-
lows from (2) and (3) that a(a V ~ / > ) £ P , and taking into account (1), it follows
that « ( a V ~ i ) 4 a n V a ~ ( i . Thus (i) does not hold in A.

(ii) => (iii): We have to prove that condition (ii) implies that for each prime
filter P of A, P C g(P) or g(P) C P. Suppose P % g(P). Then, by Lemma 3.1(i)
we can find an a £ A such that a G P and aa £ P. Since aa V ~ aa = 1, we
have that ~ aa G P. Thus, a A ~ aa G P and (ii) yields that 6 V ~ 06 G P for
each fe G ,4. Hence, by taking into account that jSZ> A — y86 = 0, we obtain from
Lemma 3.1(ii) that g(P) C P.

(iii) =>(i): This was proved in Cignoli and de Gallego (1981, Proposition 2.1

(vii))-

We call an a-De Morgan algebra A regular if a: A -> A is a lattice homomor-
phism. The class of regular a-De Morgan algebras will be denoted by R and the
corresponding category by "31.

3.3. THEOREM. The class R of regular a-De Morgan algebras is equational. More
precisely, a De Morgan algebra A G R if and only if there is an operator a: A -» A
satisfying the following equations:

(Rl) ~aaV aa= I
(R2) (~ a V aa) A a = a
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(R3) aa A a ~ a = 0
(R4) a(a V b) = aaV ab
(R5) a(a A b) = aa A afe.

PROOF. Note first that since a ( a A ~ a ) = 0 (see the proof of Lemma 3.1) we
have that if a satisfies (R5) then it also satisfies (R3). Consequently, equations
(R1)-(R5) hold in each A G R. Conversely, let A G A and suppose that a: A -> A
satisfies (R1)-(R5). Conditions (Rl) and (R2) imply that aa G Ha for each a in
A. Moreover, we have that ak = k for each k G K(A). Indeed, since k A ~ k = 0,
it follows from (R2) that ak = akV (k A ~ k) = (ak V it) A (ait V ~ it) >
(ak V k) A k = k. The same argument applied to ~ k yields a ~ k>~ k, and
taking into account (R3), we obtain that A:<afc<~a~A: s £~~y t = it. Sup-
pose now that k G K(A) and a < ~ a V k. From (R4) and the equality ak = k it
follows that aa < a ~ a V k, and (R3) implies that aa «s k. Therefore aa is the
least element in Ha.

Important examples of regular a-De Morgan algebras are the chains Ln. Note
that for each n > 2, a(j/(n — 1)) = 0 if 1j < n — 1 and = 1 otherwise. If A is
an n-valued Lukasiewicz algebra, then the reduct {A, V, A, ~ , of,0,1)G R,
where t = (n — l ) /2 if n is odd and / = «/2 if n is even (Cignoli and de Gallego
(1981)). In particular, when n = 3, we have that (A, V, A, ~ , a,3,0,1> G R, and
the operation a3 satisfies the relation a\a < a. Note that if A G R, then the
conditions SI, S3, S4 of Theorem 2.1 are satisfied with B replacing V. Moreover,
if the relation aa < a is satisfied for each a E. A, then it follows from Proposition
3.2(ii) that equations S2 and ES3 hold in A with B replacing V. Hence Proposi-
tion 2.3 yields that A is a three-valued Lukasiewicz algebra. Thus we have:

3.4. PROPOSITION. The class of three-valued Lukasiewicz algebras coincides with
the equational subclass of R characterized by the equation (ER3): a V aa = a.

The following results will play an important role in what follows:

3.5. PROPOSITION. Let A G R and X, = X,(v4) be the set of prime filters P of A
such that g(P) C P. Then the maximal elements o/X, are exactly the filters of the
form a'\F), where F is an ultrafilter of the Boolean algebra B(A).

PROOF. Note first that the equality aaa = aa and Lemma 3.1 (i) imply that
a~\F) G X,. Suppose now that P G X, and a~\F) C P. Since F= a~\F) n
B(A) = ? f l B(A), it follows from Lemma 3.1 (i) that P C a~\F). Therefore,
a~\F) is a maximal element in X,. To complete the proof, suppose that P is a
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maximal element in X,, and set F = P n B(A). Lemma 3.1 (i) yields P C a \P)
= a~\F), and since P is maximal, we must have a~\F) — P.

We shall denote by GR the class of pairs (X, g) G GK satisfying the conditions:
(rl) A(U) = (Un g(U)] n [U n g(U)) is open and increasing for each U E
D(A'), and (r2) for each m E Max Xi and each U E D(A'), if m < x for some
x G g(U) D *2, then m G U. If ( A\ g) and (A", g') are in GR, we shall say that/:
A ' - A" is an R-function if it is a G-function and /(Max A',) C Max X[. The
category whose objects are the pairs in GR and whose morphisms are the
R-functions will be denoted by §R.

3.6. LEMMA. Let (X, g) 6 G R . Then the following properties hold for each
(/£D(Jf) and each m E Max Xx:

(i)A(I/)E *(<$(*, g))
(ii) If x G X is comparable with m, then x G A(U) if and only if m G U.

Moreover, we have that:
(iii) For each x in X there is exactly one mx E Max A', that is comparable with x.

Indeed, if x E A*,, then x < mx «£ g(mx) < g(x), and if x G X2, f/ien g(;c) < wx

^ ?(wx) < x.
(iv) //(A", g') « afao m GR and/: X -> A" « a« R-function, thenf(mx) = /w/(jc)

/or eac/i x E X

PROOF, (i) Since X is totally order-disconnected and U D g(C/) is closed in A", a
compactness argument (see Priestley (1974, Proposition 1)) shows that (f/ Pi g(f/)]
is closed, and it follows from the relations g((U H g(U)]) — [U n g(f/)) and
g([U n g(f/))) = (1/ n g(£/)]> that A(t/) is an involutive closed set in X. There-
fore (rl) implies that A(C/) is an involutive clopen increasing set in X, that is, that
A( t / ) e *(<$(*, g)).

(ii) Since (i) implies that A(f/) is simultaneously increasing and decreasing, we
have that x E A(U) «* w E A(£/). Thus to prove (ii) we need to show that
m £ ( / » m £ A ( ( / ) . Suppose first that m E (/. Since w < g(w), we have that
w G (/ fl g((/) C A((/). Suppose now that m & U. Then the maximality of m in
A", and condition (r2) imply that m & (U n X{] U (g(U) D Ar

2], and since A(t/)
C (t/ n *,] U (g(t/) n Ar

2] U f/we have that m ^ A(f/).
(iii) Suppose x E A",. Since Â  is closed in A" (Cornish and Fowler (1979),

Lemma 2.1), there is an m E Max A", such that x < m (Priestley (1974), Proof of
Proposition 3). Then we have that x < m < g(w) < g(x). If x E Ar

2, the above
arguments applied to g(x) yield g(;c) < m < g(w) < x. Moreover, it follows from
condition (r2) that each x in X can be comparable with at most one element of
MaxX.
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(iv) By the definition of R-f unctions it follows that f(x) is comparable with
f(mx) G Max X[.

Let (X, g) G GR and £/, F G D(X). It follows at once from (i) of the above
lemma that for each W G K(%X, g)), U C ~ U U W = (Ar\g(t/)) U W if and
only if A(l/) C W. Consequently A(U) is the least element in Hu, and since
GR C GK, Proposition 3.2 yields that A(C/ U F) = A(t/) U A(F). Moreover, it
follows from (ii) and (iii) of the above lemma that for each x G X, x G A(U n V)
**mxG U n F «* x G A(U) n A(F). Therefore we also have that A(U D F) =
A( t / )nA(F) , and the system ^ ( X , g) = <D(*), U, n , ~ , A, 0 , A">G R.
Suppose now that (A", g') £ Gs and/: A" -> A" is an R-f unction. Define tf)R(f)
= <$(/): %X', g') -> <$( A", g). By Lemma 3.6 we have that for each U G £( A"'),
x 6f ' (A(C/)) ** U3mf(x)=f(mx)**mx G/^^l / ) «* JC G A(r\U)). There-
fore 6^)R(f) is an a-De Morgan algebra homomorphism, and we have defined a
functor ^K from the category §R into the category <3lop.

Let /I G R and (A', g) = <3V(.4). Note first that Proposition 3.2 implies that
(X, g) G GK. Moreover, it follows from Lemma 3.1 that for each prime filter P of
A we have that (1) a~\P) C g(a~\P)) and (2) K a " 1 ^ ) or a"'(P) C
P~\P) Q P. Since a(a) is increasing for each a G A, (1) yields that P G a(aa) <=>
a G a" '(P) <==> a" '(P) G o(a) «• a" '(P) G o(a) n g(a(a)). Hence it follows
from (2) that if P G a(aa), then P G A(a(a)). On the other hand the definition
of aa implies that o(a) (1 g(o(a)) C a{aa) and since o(aa) G ^(^(A", g)), it
follows that A(a(a)) C o(aa). Thus we have that o(aa) = A(a(a)) for each
flE.4, and, consequently, that (X, g) satisfies condition (rl). (X, g) also satisfies
(r2). Indeed, for each ultrafilter F of B(A) we have that a~'(F) G a(a) <=> aa G
F*=>jS~a = ~ a a ^ F . Moreover, it follows from Lemma 3.1(ii) that for each
prime filter P of A, P G g(a(a)) D A"2 if and only if ~ a & P and P\P) C P.
Therefore a~\F) C P G g(a(a)) D A"2 implies a~'(F) G a(a), and applying
Proposition 3.5 we obtain that (A', g) satisfies (r2). Thus we have shown that if
A G R, then 9r{A) G GR. Moreover, if A' G R and A: A -»y4' is an homomor-
phism, we know that 6V(/i): A" -• A" is a G-function, and since for each ultra-
filter F of B(A') we have that (9rh)(a-\F)) = h~\a~\F)) = (ah)~\F) =
(hay\F) = a"\h-\F)) = a~l(h-\F) n B(A)), and since h~\F) D B(^) is
an ultrafilter of B{A), it follows from Proposition 3.5 that / satisfies the condi-
tions of the definition of an R-function.

Now it is easy to complete the proof of the following theorem, where 9rR

denotes the restriction of the functor <3V to the subcategory 91 of &:

3.7. THEOREM. The categories §R and "3lop are naturally equivalent. More pre-
cisely, the composite functors tyrfflu and ^)R9rR are naturally equivalent to the
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identity functors of§R and <3l respectively. The corresponding unit is e and the co-unit

a.

Let (X, g) £ G, . We shall say that an involutive closed set 7 C Xisan R-set if
y E Y implies my G Y. Note that it follows from Lemma 3.6(iii) that an involu-
tive closed set is an R-set if and only [ Y) D Max X, C Y.

3.8. THEOREM. Let A G R and (X, g) = 9r{A). Then the correspondence
©(y) establishes an isomorphism from the lattice ofR-sets of X onto the order dual
of the lattice of congruences of A.

PROOF. Let Y be an R-set of X. It follows from Lemma 3.6 that for each
( / £ D ( I ) , x G A([/) n y implies mx e U n Y, and from this property and
Lemma 1.1 (i) it is easy to deduce that @(y) is a congruence on tyR(X, g) and that

On the other hand, let 0 be a congruence on A and m: A -» A/Q be the natural
projection; since it is an immediate consequence of Lemma 3.6 that R-functions
transform R-sets into R-sets, it follows from Lemma 1.1 (ii) that Y =
<3V(7r)(<3V(v4/0)) is an R-set of X and that (a, b) G 0 if and only if (a(a), o(b))
e 0(y).

Let (X, g) G GR. For each x G Z , define Yx = {x, mx, g(mx), g(x)}. It is
plain that Yx is an R-set. We have the following possible cases:

(l)x = mx = g(mx) = g(x),
(2) x = mx < g(mx) = g(x),
(3)x<mx = g(mx)<g(x),
(4)x<mx<g(mx)<g(x).
The proofs of the following results are similar to those of Lemmas 2.6, 2.7 and

Theorem 2.8 respectively:

3.9. PROPOSITION. Let A G R and(X, g) = 9rR(A). Then:
(i) A is a subdirect product of the family of algebras

(ii) / / | Yx\ = j , then Q)R(YX, gx) a L,.+ 1, 1 <y < 4.

3.10. THEOREM. The subdirectly irreducible algebras in the equational class R are
Li for 2 < i: < 5. 77ie simple algebras are L2 and L3.

Denote by R, the equational subclass of R generated by L,, for 2 < / < 5. It
follows from Theorems 3.8, 3.10 and 1.1 that the lattice of equational subclasses
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of R is the finite distributive lattice having as join-irreducible elements the classes
R;, ordered as follows: R2 < R3, R4 < R5 = R, and R3 not comparable with R4.
Thus the lattice of equational subclasses of R is isomorphic to the lattice obtained
by adding a new zero and a new unit to the Boolean algebra with two atoms.

The proof of the next theorem is analogous to that of Theorem 2.9, taking into
account Proposition 3.4:

3.11. THEOREM. The class of three-valued Lukasiewicz algebras coincides with R3.
Thus, the class of three-valued Lukasiewicz algebras cart be characterized as the
class of semi-simple regular a-De Morgan algebras. Moreover, it coincides with the
intersection R n S.

4. Lukasiewicz algebras

We shall consider now algebras that are simultaneously regular a-De Morgan
algebras and involutive Stone algebras, that is, algebras (A, V, A, ~ ,
a, v,0,1> of type (2,2,1,1,1,0,0) such that (A, V, A, ~ , a,0,1>G R and
< ^ , V , A , ~ , V , 0 , l > E S .

The equational class of such algebras will be denoted by Q and the correspond-
ing category by S. Moreover, Ln (n > 2) will denote the (equational) class of
H-valued Lukasiewicz algebras and £„ the corresponding category.

Note that the algebras L , £ Q for each n 3s 2, and that if A G LM, then the
reduct (A, V, A, ~ , a,", (*„"_,,0,1> G Q, where t — (n - l)/2 if n is odd and
t = n/2 if n is even. In particular, for n = 5, we have that (A, V, A, ~ ,
a2

5, a4,0,1) G Q and that the operators a2 and a4
5 satisfy the relation a A a4 ~ a

=£ b V ~ alb, for each a, b in A. Note that this relation corresponds to the case
/ = 1 in axiom L14 of the definition of n-valued Lukasiewicz algebras given in
Cignoli (1970) (or axiom L10 in the definition given in Balbes and Dwinger
(1974, page 219), where Di = an_i). Conversely, if A G Q and the relation
a A v ~ a < f c V ~ a f e holds in A, then (A, V, A, ~ ,A , a , j 3 , v ,0 , l ) 6L 5 .
Indeed, if we set a,5 = A, a2

5 = a, a3
5 = /? and CT4 = V, it is plain that they satisfy

the axioms L1-L5 and L10 from the characterization of Lukasiewicz algebras
given in Cignoli (1970) (or axioms L1-L9 in Balbes and Dwinger (1974, page 219),
where Di — as_i). Moreover, the inequality a A ~ a2

5a A o%b < b is equivalent to
a/\~aa<bVa~b (see (ii) of Proposition 3.2), and each of the inequalities
a A ~ afa A o%b *£ b and a A ~ 03

5 A aAb < b is equivalent t o a A v ~ a < & V
~ ab. Thus, axiom L14 from Cignoli (1970) (or axiom L10 of Balbes and
Dwinger (1974)) is also satisfied.
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Since it was shown in Cignoli and de Gallego (1981) that the class of
four-valued Lukasiewicz algebras can be identified with the equational subclass of
L5 characterized by the equation aa = fla, and the class of three-valued Luka-
siewicz algebras with the equational subclass of L5 characterized by the equation
aa — ~ V ~ a, we have the following:

4.1. PROPOSITION. The class of five-valued Lukasiewicz algebras coincides with
the equational subclass ofQ characterized by the equation (EQ5) (a A v ~ a) V (fc
V ~ ab) = A V ~ ab. The class of four-valued Lukasiewicz algebras coincides with
the equational subclass of Q characterized by the equations (EQ5) and (EQ6)
aa = fia. The class of three-valued Lukasiewicz algebras coincides with the equa-
tional subclass of Q characterized by the equation (EQ3) aa = ~ V ~ a.

Let Go = Gs fl G/j and §Q be the category whose objects are the elements of
GQ and whose morphisms are the functions that are simultaneously morphisms in
QR and §s.

If (X, g) G Ge, define %(X, g) = <D(*), U, n , ~ , A, V, X, 0> and i f / i s
a morphism in §Q, set ^ ( Z ) = ^ ( Z ) . Then, if 9rQ denotes the restriction of the
functor 6V to the subcategory 2- of &, it follows from Theorems 2.3 and 3.7 that:

4.2. THEOREM. The categories @gP and 2 are naturally equivalent. More precisely,
the composite functors ^r^Q and ^g^Vg are naturally equivalent to the respective
identity functors. The corresponding unit is e and the co-unit a.

If (X, g) e Ge, we shall say that F C l i s a Q-set if it is both an R-set and an
S-set. It follows at once from Theorems 2.5 and 3.8 that if A G Q, then the
correspondence Yi-> ®(Y) establishes an isomorphism from the lattice of S-sets
in 'S'r(A) onto the order dual of the lattice of congruences on A. If for each
x G A', we set Yx = {x, mx, nx, g(mx), g{nx), g(x)} and gx is the restriction of g
to Yx, then the arguments used in the proofs of Lemmas 2.6 and 3.9 show that
(Yx, gx) G GQ and that ^ (A" , g) is a subdirect product of the family
{%(XX, gx)}xex,

By examining the possible cases, we get that | Yx \ =£ 6 and that if | Yx \ = j , then
^)Q{YX, gx) = Lj+X, for 1 <> < 6. Thus we can establish:

4.3. THEOREM. The subdirectly irreducible algebras in the equational class Q are
L, for 2 < / < 7. The simple algebras are Li for 2 < i < 5.

Let Q, denote the equational subclass of Q generated by the algebra L,,
2 «£ / < 7. It follows from the above results and Theorem 1.1 that the lattice of
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equational subclasses of Q is given by the following Hasse diagram:

Q

Q 6

Now it is easy to prove the following:

4.4. THEOREM. The class L, coincides with the class Q, for i = 2,3,4 and 5. In
particular, the class of five-valued Lukasiewicz algebras can be characterized as the
class of semisimple algebras in Q.

4.5. COROLLARY. The proper, non-trivial equational subclasses o/L5 are L2, L3,
L4 and the class H generated by L3 and L4. The class H is characterized by the
equation (a A ~ a) V (b V ~ ofb) = b V ~ a4

5fe.
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