
JFP 19 (6): 633–644, 2009. c© Cambridge University Press 2009

doi:10.1017/S0956796809007333 First published online 26 May 2009

633

FUNCTIONAL PEARL

Purely Functional 1-2 Brother Trees

RALF HINZE

Computing Laboratory, University of Oxford, Wolfson Building, Parks Road, Oxford OX1 3QD, England

(e-mail: ralf.hinze@comlab.ox.ac.uk)

1 Prologue

Enter the computing arboretum and you will find a variety of well-studied trees:

AVL trees (Adel’son-Vel’skiı̆ & Landis 1962), symmetric binary B-trees (Bayer 1972),

Hopcroft’s 2-3 trees (Aho et al. 1974), the bushy finger trees (Guibas et al. 1977) and

the colourful red-black trees (Guibas & Sedgewick 1978). In this pearl, we look at a

more exotic species of balanced search trees, 1-2 brother trees (Ottmann et al. 1979),

which deserves to be better known. Brother trees lend themselves well to a functional

implementation with deletion (Section 5) as straightforward as insertion (Section 3),

both running in logarithmic time. Furthermore, brother trees can be constructed

from ordered lists in linear time (Section 4). With some simple optimisations in

place, this implementation of search trees is one of the fastest around. So, fasten

your seat belts.

2 Brother trees

A 1-2 brother1 tree, brother tree for short, consists of nullary, unary and binary

nodes.

data Tree a = N0 | N1 (Tree a) | N2 (Tree a) a (Tree a)

An element of type Tree t is called a brother tree iff (a) all nullary nodes have the

same depth (height condition) and (b) each unary node has a binary brother (brother

condition).

The brother condition implies that the root of a brother tree is not unary and

that a unary node has not a unary child. Put positively, a unary node only occurs

as the child of a binary node. We can formalise the invariants of brother trees using

subset types.

B0 a = N0

Bh+1 a = N2 (Uh a ∪ Bh a) a (Bh a) ∪ N2 (Bh a) a (Uh a ∪ Bh a)

Uh+1 a = N1 (Bh a)

The definitions lean on the syntax of datatype declarations with C A1 . . . An

abbreviating the set comprehension {C a1 . . . an | a1 ∈ A1, . . . , an ∈ An }.

1 I decided to stick to the original terminology, even though it is not gender neutral.

https://doi.org/10.1017/S0956796809007333 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007333

634 R. Hinze

Table 1. Number of brother trees of height 0 � h � 5 and size 0 � s � 15

Size s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
H

ei
g
h
t
h

0 1

1 1

2 2 1

3 4 6 4 1

4 16 32 44 60 70 56 28 8 1

5 128 448 864 1552

Fig. 1. Fibonacci tree of height seven, fib-tree 7.

A brother tree of height h with labels of type t is then an element of Bh t ⊆ Tree t .

To give a feel for the restrictiveness of the conditions, Table 1 lists the number of

differently shaped brother trees for a few given heights and sizes. For instance, there

are 1, 553 brother trees of size 15, none of which is deeper than 5. By contrast, the

total number of binary trees of that size amounts to 9, 694, 845, with heights ranging

from 4 to 15.

The sparsest brother tree of a given height is the Fibonacci tree defined

fib-tree :: Integer → Tree ()

fib-tree 0 = N0

fib-tree 1 = N2 N0 () N0

fib-tree (h + 2) = N2 (fib-tree (h + 1)) () (N1 (fib-tree h)) .

Figure 1 displays the Fibonacci tree of height seven. Since unary nodes contain

no elements, they are drawn as small, filled circles. For the example tree, the ratio

between binary and unary nodes is (F9 − 1)/(F8 − 1) = 33/20 = 1.65, where Fn is the

nth Fibonacci number. As the height goes to infinity, the ratio (Fh+2 − 1)/(Fh+1 − 1)

approaches the golden ratio, φ = 1
2
(1 +

√
5) ≈ 1.618. Since Fh+2 − 1 is the minimum

possible size of a brother tree of height h, a brother tree with n elements has height

at most lg(n + 1)/ lgφ ≈ 1.44 lg(n + 1).

If we remove the unary nodes from a brother tree, contracting N1 t to t , we obtain

an AVL tree of the same height! The height and the brother condition translate

to the balance condition of AVL trees: for each node, the height difference of the

https://doi.org/10.1017/S0956796809007333 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007333

Functional pearl 635

children is at most one. Conversely, we can transform an AVL tree to a brother tree

by inserting unary nodes at the appropriate places, so that all paths from the root

to a leaf are equally long.

The standard query operations on binary search trees are easy to adapt for brother

trees. As an example, here is the definition of membership.

member :: (Ord a) ⇒ a → Tree a → Bool

member a N0 = False

member a (N1 t) = member a t

member a (N2 l b r) | a � b = member a l

| a > b = member a r

3 Insertion

Since brother trees are in a one-to-one correspondence to AVL trees, we could adapt

AVL insertion and deletion to the new setting. However, and perhaps surprisingly,

if one starts afresh, two new algorithms emerge.

Insertion consists of two phases: a top-down search and a bottom-up construction

phase. For the first phase, we use the standard algorithm for binary search trees.

During the second phase, we additionally restore the invariants of brother trees

using smart constructors.

insert :: (Ord a) ⇒ a → Tree a → Tree a

insert a t = root (ins t)

where

ins N0 = L2 a

ins (N1 t) = n1 (ins t)

ins (N2 l b r) | a � b = n2 (ins l) b r

| a > b = n2 l b (ins r)

The helper function ins recurses from the root to a leaf. In the base case, the

nullary constructor N0 is replaced by the leaf L2 a , where L2 is a new, auxiliary

data constructor. The functions n1 and n2 are smart versions of the constructors N1

and N2, which among other things eliminate occurrences of the new constructor.

This is actually quite simple. If the new element is inserted into a unary node, it

is expanded to a binary node. By the same logic, a binary node is expanded to a

ternary node. Like L2, a ternary node is an auxiliary data constructor introduced

solely for the purpose of insertion.

data Tree a = · · · | L2 a | N3 (Tree a) a (Tree a) a (Tree a)

All that is left to do is to get rid of the ternary node. If the sole son of a unary node

is ternary, then we can rearrange the tree as follows.

https://doi.org/10.1017/S0956796809007333 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007333

636 R. Hinze

Both transformations are viable. In the code below, we arbitrarily pick the first

alternative.

root (L2 a) = N2 N0 a N0

root (N3 t1 a1 t2 a2 t3) = N2 (N2 t1 a1 t2) a2 (N1 t3)

root t = t

n1 (L2 a) = N2 N0 a N0

n1 (N3 t1 a1 t2 a2 t3) = N2 (N2 t1 a1 t2) a2 (N1 t3)

n1 t = N1 t

The function root ensures that the auxiliary constructors are eliminated if they

propagate to the root. If one of the first two equations matches, then we know that

the tree has grown – like most height-balanced trees, brother trees grow upwards.

For a binary node, we additionally distinguish whether the brother of the ternary

node is unary or binary.

A ternary and a unary node are transformed into two binary ones. If the ternary node

has a binary brother, we propagate the ternary node upwards. The transformations

are implemented by the code below – subtrees are re-used with the help of as-

patterns.

n2 (L2 a1) a2 t1 = N3 N0 a1 N0 a2 t1 -- t1 N0

n2 (N3 t1 a1 t2 a2 t3) a3 (N1 t4) = N2 (N2 t1 a1 t2) a2 (N2 t3 a3 t4)

n2 (N3 t1 a1 t2 a2 t3) a3 t4@(N2) = N3 (N2 t1 a1 t2) a2 (N1 t3) a3 t4

n2 t1 a1 (L2 a2) = N3 t1 a1 N0 a2 N0 -- t1 N0

n2 (N1 t1) a1 (N3 t2 a2 t3 a3 t4) = N2 (N2 t1 a1 t2) a2 (N2 t3 a3 t4)

n2 t1@(N2) a1 (N3 t2 a2 t3 a3 t4) = N3 t1 a1 (N1 t2) a2 (N2 t3 a3 t4)

n2 t1 a1 t2 = N2 t1 a1 t2

Clearly, the smart constructors root , n1 and n2 jointly eliminate the auxiliary

nodes L2 and N3. But, is the result still a brother tree? It is easy to check that the

transformations preserve the height – like N0, the height of L2 a is by definition 0.

Regarding the brother condition, note that a ternary node is either of the form

N3 N0 a1 N0 a2 N0 or of the form N3 (N2 t1 a1 t2) a2 (N1 t3) a3 (N2 t4 a4 t5).

This invariant guarantees that the son of a freshly constructed unary node is never

unary and that a freshly constructed binary node has at most one unary son. The

invariants can be captured using subset types.

B+
0 a = B0 a ∪ L2 a

B+
1 a = B1 a ∪ N3 N0 a N0 a N0

B+
h+2 a = Bh+2 a ∪ N3 (Bh+1 a) a (Uh+1 a) a (Bh+1 a)

https://doi.org/10.1017/S0956796809007333 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007333

Functional pearl 637

Fig. 2. Brother trees generated by from-list [1 . . n] for n = 1, . . . , 15.

The set B+
h t comprises grown trees, which possibly have an auxiliary node as their

root. It is important to note that the auxiliary nodes only appear on the top level,

never below a root node. The functions involved in inserting an element then satisfy

the following invariants, where f ∈ P → Q means that ∀ x . x ∈ P =⇒ f x ∈ Q .

ins ∈ Bh a → B+
h a

ins ∈ Uh a → (Uh a ∪ Bh a)

n1 ∈ B+
h a → (Uh+1 a ∪ Bh+1 a)

n2 ∈ B+
h a → a → (Uh a ∪ Bh a) → B+

h+1 a

n2 ∈ (Uh a ∪ Bh a) → a → B+
h a → B+

h+1 a

root ∈ B+
h a → (Bh a ∪ Bh+1 a)

Note that ins preserves the height, n1 and n2 increase it and root possibly increases

it. The smart constructor n2 is really two-in-one, as it takes care of growth in either

the left or the right subtree.

Finally, all the transformations preserve the search-tree property: the relative

order and multiplicity of elements and subtrees are unchanged.

4 Construction

Using insert we can easily construct a brother tree from an unordered list.

from-list :: (Ord a) ⇒ [a] → Tree a

from-list = foldr insert N0

Figure 2 displays the trees generated by from-list [1 . . n] for n = 1, . . . , 15. Note that

we do not label the nodes as the keys are uniquely determined by the search-tree

property. Rather amazingly, if n is 2i − 1 for some i , we obtain a perfectly balanced

binary tree, perfect tree for short. Moreover, unary nodes are quite rare. In fact, they

only appear immediately below the left spine of a tree. This is not a coincidence.

Since the list is processed from right to left, the elements are actually inserted in

https://doi.org/10.1017/S0956796809007333 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007333

638 R. Hinze

descending order. Consequently, ins always traverses the left spine of the tree to

the leftmost leaf. Since furthermore the left spine contains only binary nodes,

only the first three equations of the smart constructor n2 can possibly match.

Drawing the left spine horizontally, the relevant transformations are

The transformations preserve the following invariant: the right son of a binary node

is either a perfect tree or a unary node applied to a perfect tree (�); the same holds

for the middle son of a ternary node, whereas its right son is always a perfect tree

(�).

The transformations along the left spine are reminiscent of the binary increment

with the ternary node corresponding to a cascading carry. In fact, the construction

of a brother tree from an ordered list can be modelled after a funny variant of the

binary number system that uses the digits 1
2

and 1. Why these two digits? Well, the

i th tree on the left spine has either 1
2

· 2i or 1 · 2i elements, including the element

on the spine. Recall that the value of the binary number b0 . . . bn−1 is
∑n−1

i=0 bi2
i. For

our number system, we constrain the digits to b0 = 1 and bi+1 ∈ { 1
2
, 1}. The binary

increment is then given by 1 + ε = 1, 1 + 1s = 1(1
2

+ s) and 1
2

+ ε = 1
2
, 1

2
+ 1

2
s = 1s,

1
2

+ 1s = 1
2
(1
2

+ s). Thus, the first eight positive numbers are

1, 11
2
, 11, 11

2
1
2
, 111

2
, 11

2
1, 111, 11

2
1
2

1
2
.

These numbers correspond to the trees in the first row of Figure 2. We can use this

correspondence to improve the running time of from-list from Θ(n log n) to Θ(n) for

the special case that the input list is ordered.

First, we define a suitable representation for the left spine of a brother tree.

data Spine a = Nil | Half a (Tree a) (Spine a) | Full a (Tree a) (Spine a)

The constructor Half corresponds to the digit 1
2
, the constructor Full to 1. Consing

an element to the spine is modelled after the binary increment: cons a s implements

1 + s and half a t s implements 1
2

+ s.

cons :: a → Spine a → Spine a

cons a1 Nil = Full a1 N0 Nil

cons a1 (Full a2 t2 s) = Full a1 N0 (half a2 t2 s)

half :: a → Tree a → Spine a → Spine a

half a1 t1 Nil = Half a1 t1 Nil

half a1 t1 (Half a2 t2 s) = Full a1 (N2 t1 a2 t2) s

half a1 t1 (Full a2 t2 s) = Half a1 t1 (half a2 t2 s)

https://doi.org/10.1017/S0956796809007333 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007333

Functional pearl 639

The new construction function from-ord-list first transforms the input list to a spine

and then converts the spine to a brother tree.

from-ord-list :: [a] → Tree a

from-ord-list = from-spine N0 · foldr cons Nil

from-spine :: Tree a → Spine a → Tree a

from-spine t1 Nil = t1
from-spine t1 (Half a1 t2 s) = from-spine (N2 t1 a1 (N1 t2)) s

from-spine t1 (Full a1 t2 s) = from-spine (N2 t1 a1 t2) s

Since cons has a constant amortised running time, from-ord-list works in linear time.

As an aside, note that the functions above are truly polymorphic. In particular,

from-ord-list does not require an Ord a context since we assume that the input is

given in ascending order.

5 Deletion

Deletion is typically more involved than insertion. One reason is that insertion adds

the new element to the fringe of the tree, whereas deletion removes the element

from an arbitrary node, not necessarily a leaf. Second, with the notable exception

of AVL trees, re-balancing seems to be more intricate for deletion. In the case

of red-black trees, for instance, there is an elegant functional insertion algorithm

(Okasaki 1999) that simplifies the complex imperative original (Guibas & Sedgewick

1978). However, for deletion no such improvement is known. In the case of brother

trees, the situation is almost reversed. For a start, we do not need any auxiliary data

constructors: if an element is deleted from a binary node, it is contracted to a unary

node. Like insertion, deletion is a two-phase algorithm.

delete :: (Ord a) ⇒ a → Tree a → Tree a

delete a t = root (del t)

where

del N0 = N 0

del (N1 t) = N 1 (del t)

del (N2 l b r) | a < b = n2 (del l) b r

| a b = case split-min r of Nothing → N1 l

Just (a ′, r ′) → n2 l a ′ r ′

| a > b = n2 l b (del r)

If the to-be-deleted element is found, it is replaced by its inorder successor, if any.

split-min N0 = Nothing

split-min (N1 t) = case split-min t of Nothing → Nothing

Just (a , t ′) → Just (a ,N1 t ′)

split-min (N2 t1 a1 t2) = case split-min t1 of Nothing → Just (a1,N1 t2)

Just (a , t ′
1) → Just (a , n2 t ′

1 a1 t2)

https://doi.org/10.1017/S0956796809007333 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007333

640 R. Hinze

As before, n2 is a smart constructor that locally detects and repairs violations of the

invariants with root finalising the process.

root (N1 t) = t

root t = t

If the first equation matches, the tree has shrunk.

Now, since del or split-min replaces a binary node by a unary one, the brother

condition is possibly violated: a unary node may have a unary brother or it may

not have a brother at all. The first defect is easy to remedy.

If a unary node has a unary son, we have to include its binary father in our

considerations. Let us assume that it is the left subtree of the father that violates

the brother condition – the symmetric case is handled, well, symmetrically. Since the

right subtree must be binary, there are three sub-cases to consider.

For each sub-case, the resulting tree is inevitable; there is no other choice. If the

right subtree contains a unary node, the height condition completely determines the

shape of the tree: no other tree of height 3 has three binary nodes. If the right

subtree consists of three binary nodes, the height condition leaves us with four

choices.

There are no other trees of height 3 with four binary nodes. However, all choices,

with the notable exception of the third, possibly violate the brother condition since

the unary node on the lowest level possibly has a unary son. The third alternative,

on the other hand, is a valid brother tree because it re-uses the subtrees from the

original tree. Only the two upper levels are changed using a ‘left rotation’. Again,

it is easy to see that the transformations preserve the height. In the code below,

https://doi.org/10.1017/S0956796809007333 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007333

Functional pearl 641

subtrees are re-used with the help of as-patterns.

n2 (N1 t1) a1 (N1 t2) = N1 (N2 t1 a1 t2)

n2 (N1 (N1 t1)) a1 (N2 (N1 t2) a2 t3@(N2)) = N1 (N2 (N2 t1 a1 t2) a2 t3)

n2 (N1 (N1 t1)) a1 (N2 (N2 t2 a2 t3) a3 (N1 t4)) = N1 (N2 (N2 t1 a1 t2) a2

(N2 t3 a3 t4))

n2 (N1 t1@(N1)) a1 (N2 t2@(N2) a2 t3@(N2)) = N2 (N2 t1 a1 t2) a2 (N1 t3)

n2 (N2 (N1 t1) a1 (N2 t2 a2 t3)) a3 (N1 (N1 t4)) = N1 (N2 (N2 t1 a1 t2) a2

(N2 t3 a3 t4))

n2 (N2 t1@(N2) a1 (N1 t2)) a2 (N1 (N1 t3)) = N1 (N2 t1 a1 (N2 t2 a2 t3))

n2 (N2 t1@(N2) a1 t2@(N2)) a2 (N1 t3@(N1)) = N2 (N1 t1) a1 (N2 t2 a2 t3)

n2 t1 a1 t2 = N2 t1 a1 t2

Turning to formal treatment, we first introduce subset types that capture the

notion of a shrunk tree.

B−
h a = Bh a ∪ Uh a

U−
h+1 a = N1 (B−

h a)

The functions involved in deleting an element then satisfy the following invariants.

del ∈ Bh a → B−
h a

del ∈ Uh a → U−
h a

split-min ∈ Bh a → Maybe (a,B−
h a)

split-min ∈ Uh a → Maybe (a,U−
h a)

n2 ∈ U−
h a → a → Bh a → B−

h+1 a

n2 ∈ Bh a → a → U−
h a → B−

h+1 a

n2 ∈ B−
h a → a → B−

h a → B−
h+1 a

root ∈ B−
0 a → B0 a

root ∈ B−
h+1 a → (Bh+1 a ∪ Bh a)

Note that del and split-min preserve the height, n2 increases it and root possibly

decreases it.

While the definition of re-balancing is inevitable, delete can alternatively be defined

in terms of an operation that appends, or rather, zips two brother trees of height h

forming a brother tree of height h + 1. The details are left as an exercise to the

reader.

6 Epilogue

Brother trees lend themselves well to a functional implementation. In particular,

the re-balancing operations are nicely captured by equational rewrite rules. While

insertion and deletion are adaptations of imperative algorithms, the construction of

brother trees appears to be original. A similar approach also works for red-black

trees (Hinze 1999).

Some simple, but effective optimisations suggest themselves. Since all leaves have

the same depth, we can eliminate nullary nodes by specialising the nodes on the

penultimate level: N1 N0 becomes L1 and N1 N0 a1 N0 becomes L2 a1. Alternatively

https://doi.org/10.1017/S0956796809007333 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007333

642 R. Hinze

Table 2. Comparison of red-black trees and 1-2 brother trees. The programs were compiled

using ghc-6.8.2 -O2. The running time is given in seconds, minimum of three runs, as reported

by ghc’s run-time system. All measurements were taken on an unloaded machine, AMD Athlon 64

X2 Dual Core Processor 5000+ with 8GB of main memory. Problem descriptions: (a) sorting;

(b) first build using repeated inserts, then look-up (each element 100 times); (c) first build using

repeated inserts, then destruct using repeated deletes. Data structures: (i) Okasaki’s purely

functional implementation of red-black trees with the smart-constructor optimisation in place,

see Ex.3.10(a) in (1998); (ii) refinement of (i), so that only subtrees on the search path are

checked for red-red violations, see Ex.3.10(b); (iii) 1-2 brother trees with leaf nodes eliminated

and the smart-constructor optimisation incorporated; (iv) like (iii), but additionally doing away

with unary nodes

Random input

(a) Sorting 10,000 50,000 100,000 500,000 1,000,000

Red-black trees 0.01 0.22 0.69 13.96 53.91

Red-black trees’ 0.02 0.32 0.98 17.53 68.21

1-2 brother trees 0.01 0.21 0.67 13.08 50.73

1-2 brother trees’ 0.01 0.20 0.63 12.06 46.79

(b) Searching 10,000 50,000 100,000 500,000 1,000,000

Red-black trees 0.62 5.06 12.42 99.14 257.83

Red-black trees’ 0.63 5.18 12.83 103.41 274.18

1-2 brother trees 0.56 4.75 11.68 93.41 241.99

1-2 brother trees’ 0.62 5.01 12.28 98.09 250.30

(c) Deletion 10,000 50,000 100,000 500,000 1,000,000

Red-black trees 0.05 0.79 2.79 61.88 246.94

Red-black trees’ 0.06 0.96 3.29 72.50 293.14

1-2 brother trees 0.07 0.96 3.41 76.41 309.98

1-2 brother trees’ 0.05 0.69 2.39 52.12 208.49

Strictly ascending input

(a) Sorting 10,000 50,000 100,000 500,000 1,000,000

Red-black trees 0.01 0.17 0.60 15.79 66.70

Red-black trees’ 0.01 0.18 0.63 17.26 73.33

1-2 brother trees 0.00 0.10 0.37 9.74 40.81

1-2 brother trees’ 0.01 0.11 0.38 9.64 40.26

(b) Searching 10,000 50,000 100,000 500,000 1,000,000

Red-black trees 0.41 2.51 5.80 44.79 127.28

Red-black trees’ 0.41 2.52 5.80 46.28 134.20

1-2 brother trees 0.42 2.46 5.51 38.19 100.35

1-2 brother trees’ 0.42 2.51 5.66 39.37 102.35

(c) Deletion 10,000 50,000 100,000 500,000 1,000,000

Red-black trees 0.05 0.81 3.02 77.29 321.07

Red-black trees’ 0.05 0.84 3.21 83.07 344.60

1-2 brother trees 0.05 0.75 2.80 69.25 284.55

1-2 brother trees’ 0.03 0.50 1.85 45.54 187.10

https://doi.org/10.1017/S0956796809007333 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007333

Functional pearl 643

or additionally, unary nodes can be eliminated by introducing skewed binary nodes:

N2 (N1 t1) a1 t2 becomes N12 t1 a1 t2 and N2 t1 a1 (N1 t2) becomes N21 t1 a1 t2.

Furthermore, to avoid unnecessary tests, the smart binary constructor n2 should be

split into two functions that only check for violations of the invariants involving

either the left or the right son (smart-constructor optimisation). Again, the details are

left as an exercise to the reader.

Several implementations of search trees have appeared in the functional pro-

gramming literature, including AVL trees (Myers 1984; Bird 1998), 2-3 trees (Reade

1992), red-black trees (Okasaki 1998; Okasaki 1999; Kahrs 2001) and finger trees

(Hinze & Paterson 2006). But which to choose? Like AVL trees, but unlike 2-3 trees

and red-black trees, brother trees support a simple implementation of deletion. Like

2-3 trees, but unlike AVL trees, there is no need for an additional field that contains

the height or a balance factor. (The colour field of red-black trees can be eliminated

at the cost of an additional constructor.) Finger trees are much more general and

consequently more involved. When it comes to raw speed, initial measurements (see

Table 2) are very encouraging. With the above optimisations in place, brother trees

consistently outperform red-black trees, whose optimised implementation is reported

to fly (Okasaki 1999).

Acknowledgment

I am grateful to Richard Bird for suggesting the use of representation invariants.

References

Adel’son-Vel’skiı̆, G. & Landis, Y. (1962) An algorithm for the organization of information,

Dokl. Akad. Nauk SSSR, 146: 263–266. English translation in Soviet Math. Dokl. 3:

pp. 1259–1263.

Aho, A. V., Hopcroft, J. E. & Ullman, J. D. (1974) The Design and Analysis of Computer

Algorithms. Addison-Wesley Publishing Company.

Bayer, R. (1972) Symmetric binary B-trees: Data structure and maintenance algorithms, Acta

Inform., 1: 290–306.

Bird, R. (1998) Introduction to Functional Programming using Haskell. 2nd ed. Prentice Hall.

Guibas, L. J., McCreight, E. M., Plass, M. F. & Roberts, J. R. (1977) A new representation

for linear lists. In Conference Record of the 9th Annual ACM Symposium on Theory of

Computing, Boulder, Colorado, United States, pp. 49–60.

Guibas, L. J. & Sedgewick, R. (1978) A dichromatic framework for balanced trees.

In Proceedings of the 19th Annual Symposium on Foundations of Computer Science. IEEE

Computer Society, pp. 8–21.

Hinze, R. (1999) Constructing red-black trees. In Proceedings of the Workshop on Algorithmic

Aspects of Advanced Programming Languages, WAAAPL’99, Paris, France, Okasaki, C. (ed).

Columbia University, pp. 89–99 (Technical Report, CUCS-023-99).

Hinze, R. & Paterson, R. (2006) Finger trees: A simple general-purpose data structure,

J. Funct. Program., 16 (2): 197–217.

Kahrs, S. (2001) Functional Pearl: Red-black trees with types, J. Funct. Program., 11 (4):

425–432.

https://doi.org/10.1017/S0956796809007333 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007333

644 R. Hinze

Myers, E. W. (1984) Efficient applicative data types. In Proceedings of the 11th ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages, Salt Lake City, UT, Ken

Kennedy, Mary S. van Deusen, and Larry Landweber (eds.). ACM, pp. 66–75.

Okasaki, C. (1998) Purely Functional Data Structures. Cambridge University Press.

Okasaki, C. (1999) Functional pearl: Red-black trees in a functional setting, J. Funct. Program.,

9 (4): 471–477.

Ottmann, T., Six, H.-W. & Wood, D. (1979) On the correspondence between AVL trees and

brother trees, Computing, 23, 43–54.

Reade, C. (1992) Balanced trees with removals: An exercise in rewriting and proof, Sci.

Comput. Program., 18 (2): 181–204.

https://doi.org/10.1017/S0956796809007333 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007333

