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Abstract

We derive a nonlinear Schrödinger equation for the propagation of the three-dimensional
broader bandwidth gravity-capillary waves including the effect of depth-uniform cur-
rent. In this derivation, the restriction of narrow bandwidth constraint is extended,
so that this equation will be more appropriate for application to a realistic sea wave
spectrum. From this equation, an instability condition is obtained and then instability
regions in the perturbed wavenumber space for a uniform wave train are drawn,
which are in good agreement with the exact numerical results. As it turns out, the
corrections to the stability properties that occur at the fourth-order term arise from
an interaction between the mean flow and the frequency-dispersion term. Since the
frequency-dispersion term, in the absence of depth-uniform current, for pure capillary
waves is of opposite sign for pure gravity waves, so too are the corrections to the
instability properties.

2020 Mathematics subject classification: primary 76B07; secondary 76B15, 76B45.

Keywords and phrases: nonlinear Schrödinger equation, gravity-capillary waves,
depth-uniform current, broader bandwidth, modulational instability.

1. Introduction

The nonlinear wave–current interactions attract the attention of researchers in ocean
engineering owing to the almost always co-existence of waves with current. It is a
well-known fact that currents can significantly alter the characteristics of surface waves
[3, 15, 19]. From some preceding studies, it has been established that the interactions
between waves and currents essentially depend on the propagation direction of waves
and the depth-uniform current. Research on wave–current interactions have often

1Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah
711103, West Bengal, India; e-mail: souravhalder76@gmail.com, asoke.dhar@gmail.com
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical
Publishing Association Inc.

292

https://doi.org/10.1017/S1446181123000020 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S1446181123000020
https://orcid.org/0000-0001-8653-270X
https://orcid.org/0000-0001-9092-6787
mailto:souravhalder76@gmail.com
mailto:asoke.dhar@gmail.com
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1446181123000020&domain=pdf
https://doi.org/10.1017/S1446181123000020


[2] Modification to the Schrödinger equation 293

supposed that current is uniform with depth [13, 25, 28, 27]. Thus, it is necessary
to derive an equation which deals with the effect of depth-uniform current. In the
analysis of nonlinear evolution of water waves, the nonlinear Schrödinger equation
(NLSE) is frequently used as it can appropriately reflect the modulational instability.
A cubic NLSE including the effects of slowly varying depth and current on the
evolution of Stokes wavepacket was investigated by Turpin et al. [30]. The numerical
result shows that the nonlinear evolution of a wavepacket is directly related to the
instability parameter, which depends strongly on the current and depth variation. A
following current has a stabilizing effect on a wave train, whereas a reverse current
can cause major wave train changes in all depths. Gerber [11] investigated a cubic
NLSE for surface waves on deep water in the presence of a current, and specified
that for the waves propagating in the same direction as the current, the current had
a stabilizing effect on the waves. Further, for an adverse current gradient, a rapid
destabilization of the waves was predicted. This is due to the steepening effect of the
current, as well as the shorter time required for an equivalent amount of growth of the
sidebands, when compared with the still-water case. Stocker and Peregrine [25] made
an extension of Dysthe’s [10] work to cover the effect of depth-uniform current. Later,
Onorato et al. [22] used the current-modified NLSE of Hjelmervik and Trulsen [13]
to investigate the effect of currents on the modulational instability, and argued that
an initially stable wave train in still water would become unstable after entering an
adverse depth-uniform current region.

In general, gravity-capillary waves are formed by wind and generate a fluid flow
in the topmost water layer. In the incipient evolution of wind waves, these waves
play an important role in contributing, to some extent, to the ocean surface stress
and consequently participate in air–ocean momentum transfer. Accurate represen-
tation of the stress is useful in modelling and predicting ocean wave dynamics.
Debsarma and Das [6] derived a fourth-order nonlinear evolution equation (NLEE) for
gravity-capillary waves with a thin thermocline in infinite depth of water, and based
on this equation, they made a stability analysis of a uniform wave train. Brantenberg
and Brevik [2] used a third-order Stokes expansion for periodic gravity-capillary
waves moving on an opposing current. The stability of gravity-capillary waves for
irrotational motion was studied by several authors such as Hogan [14], Djordjevic and
Redekopp [9] based on fourth- and third-order envelope equations, respectively. More-
over, Chen and Saffman [5], Tiron and Choi [26] made the numerical computations
extended to capillary waves, and Zhang and Melville [33] investigated the stability
of gravity-capillary waves numerically including three-wave and five-wave resonant
interactions, apart from four-wave interaction.

The nonlinear spatio-temporal evolution of weak nonlinear surface waves can be
analysed by the cubic NLSE if the wave steepness is small, so that ka � 1 and the
wave bandwidth is narrow (|Δk|/k � 1), where k, a,Δk stand for the characteristic
wavenumber, amplitude and modulation wave vector, respectively. Here, one assumes
that the wave steepness and the bandwidth are of an identical order of magnitude O(ε),
for which the governing nonlinear and dispersive effects balance at third-order O(ε3).
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The resulting third-order NLSE for gravity-capillary waves were derived by
Kawahara [16], and Djordjevic and Redekopp [9] on finite depth. Dysthe [10] derived
an evolution equation for surface gravity waves on deep water by extending the
perturbation analysis one step further which included the fourth-order terms in the
cubic NLSE, and Brinch-Nielsen and Jonsson [4] derived fourth-order NLSE on
arbitrary depth of water. Later, Dhar and Das [7] made an extension of Dysthe’s [10]
work in the presence of air flowing over water. Although the stability analysis made
from fourth-order NLSE gives excellent results compared to the third-order equation,
the limitation in wave bandwidth severely restricts the applicability of third- and
fourth-order Schrödinger equations for three-dimensional sea waves in two ways. First,
the ocean wave spectra from the continental shelf are often bandwidth restricted, but
have bandwidths exceeding the above restriction. Second, these evolution equations
have instability regions for a finite amplitude wave extending outside the narrow
bandwidth constraint. To avoid the restriction in bandwidth, Zakharov’s integral
equation [24, 32] has been modelled. Notwithstanding the Zakharov equation being
more general, it is more costly to evaluate numerically compared to third- and
fourth-order Schrödinger equations. By maintaining the relative simplicity of the
fourth-order Schrödinger equation, it is necessary to find other ways to relax the
bandwidth restriction, while keeping the same order of correctness in nonlinearity.

Keeping this point in mind, Trulsen and Dysthe [29] investigated an evolution equa-
tion for broader bandwidth surface gravity waves on deep water, where the bandwidth
and nonlinearity have been taken as O(ε1/2) and O(ε), respectively. Following Trulsen
and Dysthe [29], in this paper, we have taken finite depth, deep water and infinite
depth as (kd)−1 being O(1), O(ε) and 0, respectively, where k is the characteristic
wavenumber and d denotes the depth of water.

According to Trulsen and Dysthe [29], one avenue of interest is to include some
new linear terms to the fourth-order NLSE derived by Dysthe [10], which results
in a remarkably better resolution in spectral bandwidth. The purpose of the present
paper is to derive a new NLSE for a broader bandwidth and to develop a weakly
nonlinear theory of periodic gravity-capillary waves on deep water in the presence
of depth-uniform current. Therefore, the analysis of Trulsen and Dysthe is extended
here to include the effects of both capillarity and depth-uniform current.

The paper is organized as follows. The framework for the problem is formulated in
Section 1. Governing equations for water waves are given in Section 2. In Section 3,
we present a new NLSE for broader bandwidth with a few results. Section 4 deals with
the stability analysis and some important results and finally Section 5 concludes the
paper.

2. Basic equations of water waves on a running stream

We choose an Eulerian frame oxyz, where oxy represents the plane coinciding with
the undisturbed free surface of water and oz represents the z-axis along the vertically
upward direction. Let z = α(x, y, t) be the equation of the free surface at any time
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t in the perturbed state. We assume that the waves are propagating steadily on a
depth-uniform current U which is moving along the positive direction of the x-axis.
The bottom of the uniform water depth is located at y = −d.

For an inviscid and incompressible flow of the fluid, we state the governing
equations, free surface and the boundary condition of the water wave problem as

∇2φ = 0 in − d < z < α, (2.1)

φz − αt − Uαx = φxαx + φyαy at z = α, (2.2)

φt + Uφx + gα = −1
2

(∇φ)2 +
T
ρ

(1 + α2
x + α

2
y)−3/2

× (α2
xαyy + α

2
yαxx − 2αxαyαxy + αxx + αyy) at z = α, (2.3)

φz = 0 at z = −d, (2.4)

where g is the acceleration due to gravity, φ is the perturbed velocity potential
of waves, T is the surface tension coefficient, ρ is the density of water and
∇ = (∂/∂x, ∂/∂y, ∂/∂z).

In view of nonlinear effects, the primary harmonic produces components given by
the slow drift φ and set down α, the second harmonics φ2, α2 and so on. Therefore,
the solutions of the above equations can be expressed as

A = A +
∞∑

n=1

[An exp{in(kx − σt)} + c.c.], (i =
√
−1), (2.5)

in which A represents φ and α, c.c. means complex conjugate of the previous term,
and k, σ are the wavenumber and the frequency of the carrier wave, respectively. Now,
φ,α, φn, αn (n = 1, 2, . . .) and their complex conjugates are slowly varying functions
on a time scale εt and space scale εx, εy, where ε denotes a slow ordering parameter
measuring the weakness of nonlinearity. Further, as obtained from equation (3.6), φ
depends on the slow vertical variable εz, whereas φn (n = 1, 2, . . .) and their complex
conjugates are functions of z (see [29]). Here, we consider the fourth-order NLEE for
a narrow bandwidth describing the time evolution of α when the motion is weakly
nonlinear, that is, 0 < ε � 1, subject to the following assumptions:

ka = O(ε), |Δk|/k = O(ε), (kd)−1 = O(ε).

It is important to note that the parameter ε describes both the slow modulations and the
wave amplitude (see [12]). Herein, εα1 is the complex wave amplitude and, to leading
first-order, the wave train is described by εα1 exp{i(kx − σt)}. So the first term on the
right side of equation (3.5) corresponding to a narrow bandwidth is of the order of
magnitude O(ε3), whereas the remaining terms are of the order of magnitude O(ε4), as
the derivative increases the order by one.

The derivation of evolution equation requires that ε is a small parameter and
describes the balance between nonlinearity and wave dispersion about the dominant
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wavenumber k. Typically, one assumes that the wave steepness and bandwidth are
of the same order of magnitude O(ε), for which the nonlinear and dispersive effects
balance at the fourth-order O(ε4).

Subsequently, we assume that the waves are propagating along the x-direction and
the linear dispersion relation for deep water gravity-capillary waves is given by

h(σ, k) = σ2(1 − u)2 − kg(1 + κ) = 0,

where κ = Tk2/(ρg), the nondimensional surface tension coefficient, u = U/cp and
cp = σ/k is the phase velocity of the carrier wave. Then the group velocity of the
carrier wave becomes

c̃g =
cg

cp
=

2u + (1 − u)((1 + 3κ)/(1 + κ))
2

.

3. The new Schrödinger equation for broader bandwidth

To obtain better resolution in wave bandwidth, following Trulsen and Dysthe [29],
we take the assumptions given by

ka = O(ε), |Δk|/k = O(ε1/2), (kd)−1 = O(ε1/2).

We employ here the same harmonic expansions in equation (2.5) for the velocity
potential φ and surface elevation α. In this case, φ, α, φn, αn, (n = 1, 2, . . .), and
their complex conjugates are functions of the slightly faster modulation variables on a
time scale ε1/2t and space scale ε1/2x, ε1/2y, and also φ depends on the slightly faster
variable ε1/2z.

Substituting the expansion for φ given by equation (2.5) in equation (2.1) and then
equating the coefficients of exp{in(kx − σt)} for n = 1, 2, 0, we get the following
equations:

d2φn

dz2 − Δ
2
nφn = 0, (3.1)

where the operator Δn (n = 1, 2) is given by

Δ2
n =

[(
nk − iε1/2

∂

∂x1

)2
− ε ∂

2

∂y2
1

]
.

The solutions of equation (3.1) satisfying the boundary condition in equation (2.4) can
be put in the form

φn =
cosh[(z + d)Δn]

cosh(dΔn)
Bn for n = 1, 2, (3.2)

φ̃ =
cosh[ε1/2k̃(z + d)]

cosh(ε1/2k̃d)
B̃0, (3.3)
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where Δn operates on Bn (n = 1, 2), which are functions of x1 = ε
1/2x, y1 = ε

1/2y,
t1 = ε1/2t. Here, φ̃ is the Fourier transform of φ defined by

φ̃ =

∫ ∫ ∫ ∞

−∞
φ ei(k̃xx1+k̃yy1−σ̃t1) dx1 dy1 dt1,

where k̃2 = k̃2
x + k̃2

y and B̃0 is a function of k̃x, k̃y and σ̃.
On substituting the expansions in equation (2.5) in the Taylor-expanded form of

equations (2.2) and (2.3) about z = 0 and then equating coefficients of exp{in(kx − σt)}
for n = 1, 2, 0 on both sides, we get three sets of equations, in each of which we
substitute the solutions for φn and φ̃ given by equations (3.2) and (3.3), respectively. For
convenience, we have taken the Fourier transform of the set of equations corresponding
to n = 0. To solve the three sets of equations, we make the following perturbation
expansion of the quantities Bn, αn (n = 1, 2, 0)

F1 =

∞∑
n=1

εnF1n , Fm =

∞∑
n=2

εnFmn (m = 0, 2), (3.4)

where Fj stands for Bj and αj (j = 1, 2, 0).
Here, we maintain the same order of correctness in nonlinearity as in the

fourth-order evolution equation for narrow bandwidth, and note that since all the
fourth-order contributions to this equation are not quartically nonlinear, it is enough
to consider the new Schrödinger equation for broader bandwidth only up to O(ε3.5).

It is helpful to use dimensionless variables by introducing the substitutions

σt → σ, k(α, x, y, z)→ (α, x, y, z),
k2

σ
φ→ φ.

Carrying out the perturbation analysis by a standard procedure due to Dhar and
Das [8], we obtain the coupled nonlinear Schrödinger equations for broader bandwidth
in terms of α (α = εα11 + ε

2α12, α11 and α12 being the first two terms in the
perturbation expansion in equation (3.4) of α1 in powers of ε) and φ as follows:

i
(
∂α

∂t
+ cg
∂α

∂x

)
− γ1
∂2α

∂x2 + γ2
∂2α

∂y2 + i
(
γ3
∂3α

∂x3 + γ4
∂3α

∂x∂y2

)
+ γ5
∂4α

∂x4

+ γ6
∂4α

∂x2∂y2 + γ7
∂4α

∂y4 + i
(
γ8
∂5α

∂x5 + γ9
∂5α

∂x3∂y2 + γ10
∂5α

∂x∂y4

)

= μ1|α|2α + i
(
μ2|α|2

∂α

∂x
+ μ3α

2 ∂α
∗

∂x

)
+ α
∂φ

∂x
at z = 0, (3.5)

∇2φ = 0 in − d < z < 0,

∂φ

∂z
= 2
∂

∂x
(|α|2) at z = 0, (3.6)

∂φ

∂z
= 0 at z = −d, (3.7)
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FIGURE 1. Dimensionless coefficients of a new NLSE as functions of u and κ.

where “∗” indicates the complex conjugate; the coefficients appearing in equation (3.5)
are given in Appendix A.

In the new Schrödinger equation (3.5) for broader bandwidth, we have assumed that
the wave steepness is of the order O(ε), whereas the bandwidth is of the order O(ε1/2)
for which the nonlinear and dispersive effects balance at the order of O(ε3.5).

In the absence of capillarity and depth-uniform current, equation (3.5) reduces to
an equation equivalent to of Trulsen and Dysthe [29, equation (21)].

Figure 1 exhibits the variations of different nondimensional coefficients of disper-
sive and nonlinear terms of a new NLSE given by equation (3.5) as functions of u
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and κ. From this figure, it is found that both uniform current and surface tension have
a considerable effect on these coefficients.

4. Modulational instability analysis and results

A solution of the coupled nonlinear Schrödinger equations is given by

α =
α0

2
exp (−iΔσt), φ = φ0,

where α0 and φ0 are real constants and the frequency shift is

Δσ =
μ1

4
α2

0.

We assume the perturbation on this solution as follows:

α =
α0

2
(1 + α′) exp{i(θ′ − Δσt)}, φ = φ0 + φ

′, (4.1)

where α′, θ′ are small real perturbations of amplitude and phase, respectively, and φ′ is
a real small perturbation of φ. Inserting equation (4.1) in equation (3.5), the linearized
version of this equation can be simplified to

R1α
′ + R2θ

′ − (μ2 + μ3)
4

α2
0
∂α′

∂x
= 0 at z = 0, (4.2)

R2α
′ − R1θ

′ − μ1

2
α2

0α
′ +

(μ2 − μ3)
4

α2
0
∂θ′

∂x
− ∂φ

′

∂x
= 0 at z = 0, (4.3)

where

R1 =
∂

∂t
+ cg

∂

∂x
+ γ3

∂3

∂x3 + γ4
∂3

∂x∂y2 + γ8
∂5

∂x5 + γ9
∂5

∂x3∂y2 + γ10
∂5

∂x∂y4 ,

R2 = −γ1
∂2

∂x2 + γ2
∂2

∂y2 + γ5
∂4

∂x4 + γ6
∂4

∂x2∂y2 + γ7
∂4

∂y4 .

The linearized version of equation (3.6) can be expressed as

∂φ′

∂z
= α2

0
∂α′

∂x
at z = 0. (4.4)

From equations (3.7) and (4.1), we also have

∂φ′

∂z
= 0 at z = −d. (4.5)

Now using equation (4.5), we take the plane wave solution of the above equations (4.2),
(4.3) and (4.4) given by
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FIGURE 2. The stability curves in the limit α0 = 0 in the (λ, μ) plane for u = 0 and several values of κ.
Solid lines show the new broader-banded results, dashed lines show the narrow-banded results.

(
α′

θ′

)
=

(
α̂

θ̂

)
exp{i(λx + μy −Ωt)} + c.c.,

φ′ = φ̂[exp{i(λx + μy −Ωt)} + c.c.]
cosh k(z + d)

cosh(kd)
,

where k
2
= λ2 + μ2.

The perturbed wavenumbers λ, μ and the perturbed frequency Ω satisfy the
nonlinear dispersion relation

[
R1 +

(μ2 + μ3)
4

α2
0λ

][
R1 +

(μ2 − μ3)
4

α2
0λ

]
= R2

[
R2 −

μ1

2
α2

0 +
α2

0λ
2

k tanh(kd)

]
, (4.6)

where

R1 = Ω − cgλ + γ3λ
3 + γ4λμ

2 − γ8λ
5 − γ9λ

3μ2 − γ10λμ
4, (4.7)

R2 = γ1λ
2 − γ2μ

2 + γ5λ
4 + γ6λ

2μ2 + γ7μ
4. (4.8)

A salient feature of the new broader-banded equation is that the neutral stability
curves, as displayed in Figure 2, in the limit α0 = 0 are no longer straight lines.
Note that the fourth-order NLEE corresponding to narrow bandwidth has neutral
stability along the intersecting straight lines γ1λ

2 − γ2μ
2 = 0 (obtained from equation

(4.16)) for α0 = 0. In the new broader-banded theory, the corresponding neutral
stability curves are obtained from R2 = 0 given by equation (4.8), which agree fairly
well with the exact curves of Phillips [23] for large depth and moderate values
of λ, μ.
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The solution of equation (4.6) is given by

R1 = −
μ2

4
α2

0λ ±

√
R2

[
R2 −

μ1

2
α2

0 +
α2

0λ
2

k tanh(kd)

]
+
μ2

3

16
α4

0λ
2. (4.9)

Using equation (4.7), we can write equation (4.9) as

Ω = cgλ − γ3λ
3 − γ4λμ

2 + γ8λ
5 + γ9λ

3μ2 + γ10λμ
4 − μ2

4
α2

0λ

±

√
R2

[
R2 −

μ1

2
α2

0 +
α2

0λ
2

k tanh(kd)

]
+
μ2

3

16
α4

0λ
2. (4.10)

From equation (4.10), the instability occurs if

R2

[
R2 −

μ1

2
α2

0 +
α2

0λ
2

k tanh(kd)

]
+
μ2

3

16
α4

0λ
2 < 0. (4.11)

If the condition in equation (4.11) is satisfied, the perturbed frequency Ω will be
complex valued, and the growth rate of instability represented by the imaginary part
Ωi of Ω becomes

Ωi =

√
R2

[
μ1

2
α2

0 − R2 −
α2

0λ
2

k tanh(kd)

]
−
μ2

3

16
α4

0λ
2. (4.12)

For μ = 0, the instability condition and the growth rate Ωi reduce respectively to

(γ1λ
2 + γ5λ

4)
[
γ1λ

2 + γ5λ
4 − μ1

2
α2

0 +
α2

0|λ|
tanh(dλ)

]
+
μ2

3

16
α4

0λ
2 < 0,

Ωi =

√
(γ1λ2 + γ5λ4)

[
μ1

2
α2

0 − γ1λ2 − γ5λ4 −
α2

0|λ|
tanh(dλ)

]
−
μ2

3

16
α4

0λ
2. (4.13)

The instability regions obtained from equations (4.11) and (4.17) corresponding
to broader bandwidth and narrow bandwidth, respectively, for depth d = 6 and wave
steepness α0 = 0.1, 0.2, are shown in Figures 3 and 4. Figure 3(a) for u = 0, κ = 0 is
identical with [29, Figure 5]. Thus, we can verify that this limiting case is reproduced
properly.

Figures 5 and 6 show the modulational instability regions obtained from equations
(4.11) and (4.17) for α0 = 0.2 and 0.4, respectively, in the case of an infinite depth
of water. The region bounded by the solid line corresponding to new broader-banded
result of Figure 5(a) for u = 0, κ = 0, α0 = 0.2 is found to nearly overlap with the region
obtained from numerical computation of McLean et al. [21, Figure 1(a)]. Therefore, we
conclude that the new NLSE for broader bandwidth gives excellent long wavelength
two-dimensional instability regions for finite but small wave steepness.
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FIGURE 3. The (λ, μ) instability diagrams for d = 6 and α0 = 0.1: (a) u = 0, κ = 0; (b) u = 0.4, κ = 0; (c)
u = 0, κ = 0.035. Solid lines show the new broader-banded result, dashed lines show the narrow-banded
result.

FIGURE 4. The (λ, μ) instability diagrams for d = 6 and α0 = 0.2: (a) u = 0, κ = 0; (b) u = 0.4, κ = 0; (c)
u = 0, κ = 0.035. Solid lines show the new broader-banded results, dashed lines show the narrow-banded
results.

FIGURE 5. The (λ, μ) instability diagrams for infinite depth of water and α0 = 0.2: (a) u = 0, κ = 0, solid
line shows the new broader-banded result, dashed line shows the narrow-banded result. Instability regions
for new broader-banded result: (b) κ = 0, black line shows u = 0, blue line shows u = 0.4; (c) u = 0, black
line shows κ = 0, red line shows κ = 0.035. (Colour available online.)
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FIGURE 6. The (λ, μ) instability diagrams for infinite depth of water and α0 = 0.4: (a) u = 0, κ = 0, solid
line shows the new broader-banded result, dashed line shows the narrow-banded result. Instability regions
for new broader-banded result: (b) κ = 0, black line shows u = 0, blue line shows u = 0.4; (c) u = 0, black
line shows κ = 0, red line shows κ = 0.035. (Colour available online.)

From these figures, we have observed a significant change of the instability regions
obtained from broader-banded and narrow-banded results. It is also found that both
depth-uniform current and surface tension have a small effect on the instability regions.
Furthermore, the instability regions become wider with the increase of α0.

In Figure 7, the contour plots of the growth rate of modulational instabilityΩi given
by equation (4.13) in the (λ, u) plane have been plotted for d = 6 and two values of
κ and α0. We observe that the depth-uniform adverse current increases the growth
rate, whereas the following current decreases the growth rate. Further, the growth
rate increases with the increase of wave steepness. It is also found that the effect of
capillarity is to decrease the growth rate giving a stabilizing influence.

Figures 8–11 show contour plots of instability growth rate Ωi given by equation
(4.12) in the (λ, μ) plane for d = 6 and several values of u, κ and α0 corresponding
to the new broader-banded result. We have shown that the growth rate decreases with
the increase of both u and κ, whereas it increases with the increase of α0. Further,
depth-uniform opposing current increases the growth rate. We have also noticed a
small change in the shape and span of the contour plots along both the axes.

Results for fourth-order NLEE on deep water corresponding to narrow bandwidth
may be obtained from equation (3.5) by ignoring the fourth- and fifth-order derivative
terms and are given by

Ω = cgλ − γ3λ
3 − γ4λμ

2 − μ2

4
α2

0λ ±
√

P, (4.14)

where

P = S
[
S − μ1

2
α2

0 +
α2

0λ
2

k tanh(kd)

]
+
μ2

3

16
α4

0λ
2, (4.15)

S = γ1λ
2 − γ2μ

2. (4.16)
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FIGURE 7. Contour plots of growth rate Ωi(λ, u) for d = 6. α0 = 0.2: (a) κ = 0; (b) κ = 0.035. α0 = 0.4:
(c) κ = 0; (d) κ = 0.035.

FIGURE 8. Contour plots of growth rate Ωi(λ, μ) corresponding to new broader-banded result for d = 6,
α0 = 0.2, κ = 0: (a) u = −0.4; (b) u = 0; (c) u = 0.4.

It is important to note that in equation (4.15), the last term (μ2
3α

4
0λ

2)/16 corresponding
to the nonlinear term iμ3α

2(∂α∗/∂x) of equation (3.5) is insignificant within the
fourth-order O(ε4), and has been often neglected in preceding works [7, 10]. However,
the actual behaviour of the evolution equation corresponding to narrow bandwidth
is described by the full expression of equation (4.15). Considering the last term in
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FIGURE 9. Contour plots of growth rate Ωi(λ, μ) corresponding to new broader-banded result for d = 6,
α0 = 0.2, κ = 0.035: (a) u = −0.4; (b) u = 0; (c) u = 0.4.

FIGURE 10. Contour plots of growth rate Ωi(λ, μ) corresponding to new broader-banded result for d = 6,
α0 = 0.4, κ = 0: (a) u = −0.4; (b) u = 0; (c) u = 0.4.

FIGURE 11. Contour plots of growth rate Ωi(λ, μ) corresponding to new broader-banded result for d = 6,
α0 = 0.4, κ = 0.035: (a) u = −0.4; (b) u = 0; (c) u = 0.4.

equation (4.15) according to Trulsen and Dysthe [29], we have observed that its effect
is to reduce the extent of the instability region, as shown in Figure 12. As a check, the
primary instability regions we obtain in Figure 12(a) for u = 0, κ = 0 are compared
with those obtained by Trulsen and Dysthe [29, Figure 1]. Thus, we can verify that
the limiting case is reproduced exactly. Moreover, importance has been attached to the
nonlinear term iμ2|α|2(∂α/∂x) of the NLSE in equation (3.5). We find from equation
(4.14) that it provides the real O(α2

0) correction to the frequency of sufficiently large
plane wave perturbations.

From equation (4.14), the instability occurs if

S
[
S − μ1

2
α2

0 +
α2

0λ
2

k tanh(kd)

]
+
μ2

3

16
α4

0λ
2 < 0. (4.17)
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FIGURE 12. The (λ, μ) instability diagrams for infinite depth and α0 = 0.2: (a) u = 0, κ = 0; (b) u =
0.4, κ = 0; (c) u = 0, κ = 0.035. Solid lines are based on the full expression of equation (4.15), dashed
lines are based on the expression in equation (4.15) excluding the last term.

If the condition in equation (4.17) is satisfied, the perturbed frequency Ω will be
complex valued and the growth rate of instability represented by the imaginary part
Ωi of Ω becomes

Ωi =

√
S
[
μ1

2
α2

0 − S −
α2

0λ
2

k tanh(kd)

]
−
μ2

3

16
α4

0λ
2. (4.18)

In the case of one-dimensional perturbation μ = 0, equations (4.17) and (4.18) reduce
respectively to

γ1

[
γ1λ

2 − μ1

2
α2

0 +
α2

0|λ|
tanh(dλ)

]
+
μ2

3

16
α4

0 < 0, (4.19)

Ωi = λ

√
γ1

[
μ1

2
α2

0 − γ1λ2 −
α2

0|λ|
tanh(dλ)

]
−
μ2

3

16
α4

0. (4.20)

Omitting last term of equation (4.19), it becomes

γ2
1λ

2 − γ1

2

[
μ1 −

2|λ|
tanh(dλ)

]
α2

0 < 0. (4.21)

Note that in the absence of depth-uniform current, instability is possible when

(2κ − 1)(3κ2 + 6κ − 1) > 0,

from which the ranges of κ are given by

0 < κ < (2/
√

3 − 1) = 0.1547, 0.5 < κ < ∞.

These results are in agreement with the results obtained by Zakharov [32]. Herein, the
value 0.1547 of κ corresponds to the minimum group velocity and the value 0.5 of κ to
the first Wilton [31] ripple.
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For infinite depth, the expression for maximum growth rate of instability becomes

Gm =
|μ1|
4

[
1 − 1
μ1

(
μ1

γ1

) 1
2

α0

]
α2

0, (4.22)

which occurs for the wavenumber

λm =
1
2

[√
μ1

γ1
− 3

4γ1
α0

]
α0.

For u = 0, Gm takes the form

Gm =
1
16

[
1 +

8
√

6
α0

]
α2

0 (4.23)

in the case of pure capillary waves, and reduces to

Gm =
1
2
[
1 + 9

8κ − 2
(
1 + 73

16κ
)
α0

]
α2

0, (4.24)

when κ is small.
The expressions for Gm given by equations (4.23) and (4.24) are identical with

Hogan’s [14, equations (3.16b) and (3.16c)], respectively. It is important to note that the
correction to the maximum growth rate in equation (4.22) is of fourth-order, involving
three terms, namely, the frequency-dispersion term, the nonlinear term and the mean
flow term. Since the frequency-dispersion term for pure capillary waves is of opposite
sign of pure gravity waves, so too are the corrections to the stability properties.

From equation (4.21), the instability bandwidth for infinite depth is given by

λ =
[√
μ1

2γ1
− 1

2γ1
α0

]
α0.

At marginal stability, Ωr, the real part of Ω then becomes

Ωr = cg

[√
μ1

2γ1
− 1

2γ1
α0

]
α0. (4.25)

Further, the value of the real part of Ω corresponding to λm is

Ωrm =
cg

2

[√
μ1

γ1
− 3

4γ1
α0

]
α0. (4.26)

Result for the third-order Schrödinger equation analysis on infinite depth has been
given previously by Liao et al. [17] for Ω = 0, and may be obtained from equation
(4.20) by omitting the fourth-order terms and setting κ = 0, and it is given by

Ωi

α2
0

=
λ

α0

√
γ1μ1

2
− γ2

1

(
λ

α0

)2
. (4.27)

The maximum growth rate of instability Gm given by equation (4.22) is shown in
Figure 13 as a function of wave steepness α0 for some values of u and κ. For u = 0,
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FIGURE 13. Plot of Gm versus α0 for several values of u and κ. Solid, dashed and dotted lines show the
fourth-order results, dash–dotted lines show the third-order results.

κ = 0, the red dashed curve obtained from the fourth-order result nearly overlaps
with the curve for class I, m = 1 of McLean [20, Figure 6]. So we find an excellent
agreement with the exact numerical result of McLean [20]. As described by McLean,
the class I, m = 1 instability has a growth rate of second-order of wave steepness
for small wave steepness, which is in agreement with the perturbation analysis of
Benjamin and Feir [1]. It is also seen from Figure 13 that the maximum growth rate
obtained from the fourth-order result first increases with α0 and then decreases, while
the growth rate Gm computed from the third-order result (shown as dash–dotted line)
increases steadily with α0. The depth-uniform following current first increases and
then decreases the modulational instability, whereas an opposing current significantly
increases the growth rate. In the absence of depth-uniform current, we observe a
significant change of the maximum growth rate obtained from equations (4.23) and
(4.24) for pure capillary waves (κ → ∞, shown as a dotted line) and pure gravity
waves (κ = 0, shown as a red dashed line), respectively, due to the sign change of
the frequency-dispersion term. Further, the effect of surface tension is to decrease the
growth rate of instability.

In Figure 14, the ratio of the maximum growth rate of instability to its value
in the absence of capillarity corresponding to the third-order result obtained from
equation (4.22) has been plotted against κ for different values of depth-uniform
current u. We observe that the effects of both capillarity and depth-uniform current
are to increase steadily the maximum growth rate.

The perturbed frequency Ωr at marginal stability given by equation (4.25) has been
plotted in Figure 15 against α0 for different values of u and κ. For u = 0, κ = 0, it
is observed that equation (4.25) is fairly close to the exact results of Longuet-Higgins
[18] for α0 < 0.3. In Figure 16, the contour plots ofΩrm(α0, u) given by equation (4.26)
have been plotted for two values of κ.
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FIGURE 14. Normalized maximum growth rate versus κ for some values of u.

FIGURE 15. Curves of marginal stability versus α0 for some values of u and κ.

FIGURE 16. Contour plots of frequency separation of fastest growing sideband Ωrm(α0, u): (a) κ = 0; (b)
κ = 0.035.
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FIGURE 17. Plot of growth rate of instability Ωi/α
2
0 versus λ/α0 for several values of u and κ. BFI refers

to the Benjamin–Feir instability.

Figure 17 shows the growth rate Ωi/α
2
0 given by equation (4.27) as a function of

λ/α0 at different values of u and κ. We find that the depth-uniform adverse current
can largely expand the onset criterion and significantly enhances the instability growth
rate, whereas the depth-uniform following current decreases the growth rate, consistent
with the result of Liao et al. [17]. Furthermore, the influence of the capillary is to
depress the instability growth rate due to modulation.

5. Conclusion

Using the multiple scale method, a current modified NLSE for broader bandwidth
gravity-capillary waves on deep water is investigated. The inclusion of a few new
linear terms to the NLSE corresponding to narrow bandwidth has considerably
improved the resolution in spectral bandwidth. By the improved resolution in spectral
bandwidth, the new equation may satisfy the major objection against using the
band-restricted Schrödinger equation for numerical calculations on three-dimensional
weakly nonlinear water-surface waves. With the new Schrödinger equation, the extent
of the instability region of a Stokes wave has been reduced. Therefore, the results of the
stability analysis for uniform Stokes waves based on the new broader-banded equation
are superior to those based on the narrow-banded equation, and they agree fairly well
with the exact numerical computations of McLean [20] and McLean et al. [21]. We
therefore expect that the new equation has sufficient bandwidth to be effective for
realistic ocean wave problems.
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Appendix A. Coefficients appearing in equation (3.5)

γ1 =
B

2h2
σ(1 + κ)

, γ2 =
1 + 3κ

h2
σ

, γ3 =
2AB − κh4

σ

2h4
σ(1 + κ)

,

γ4 =
(1 − 3κ)h2

σ − 2(1 + 3κ)A
4h2
σ(1 + κ)

, γ5 =
A4 + 4A2B − 6A2κh2

σ − 2Aκh4
σ + 9κ2h2

σ

2h6
σ(1 + κ)

,

γ6 =
(1 − 3κ)Ah2

σ − (1 + 3κ)(2A2 + B) − (h4
σ/2)

2h4
σ(1 + κ)

, γ7 =
2(1 + 3κ)2 + (1 − 3κ)h2

σ

16h2
σ(1 + κ)

,

γ8 =
−2AB(4A2 + 3B) + 4Bκh4

σ + 4uAκh5
σ + 2{h2

k − (u2 − 3κ)h2
σ}κh4

σ

2h8
σ(1 + κ)

,

γ9 =
(1 + 3κ)(4A3 + 6AB − κh4

σ) − (1 − 3κ)(2A2h2
σ + Bh2

σ) + Ah4
σ − (h6

σ/2)

2h6
σ(1 + κ)

,

γ10 =
−2(1 − 3κ)Ah2

σ − 12(1 + 3κ)2A + 4(1 − 9κ2)h2
σ + 3(1 − κ)h4

σ

16h4
σ(1 + κ)

,

μ1 =
2κ2 + κ + 8
h2
σ(1 − 2κ)

, μ2 =
3(4κ4 + 4κ3 − 9κ2 + κ − 8)

h2
σ(1 + κ)(1 − 2κ)2 , μ3 =

(2κ2 + κ + 8)(1 − κ)
2h2
σ(1 + κ)(1 − 2κ)

,

where

A = hk + uhσ, B = h2
k + 2uhkhσ + (u2 − 3κ)h2

σ, hk =
∂h
∂k

, hσ =
∂h
∂σ

.
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