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PAIRS TRADING WITH OPPORTUNITY COST

CARL LINDBERG,∗ The Second Swedish National Pension Fund

Abstract

Pairs trading is a trading strategy which is used very frequently in the financial industry.
An investment opportunity arises when the spread between two assets, which historically
have exhibited autoregressive behavior, deviates from its recent history. In this case, the
investor takes a long position in the asset which is expected to outperform going forward
and finances this by taking a short position in the other one. If the spread converges,
the investor can close both positions to generate a profit. We model the spread between
two assets as an Ornstein–Uhlenbeck process and assume a constant opportunity cost.
We then study the optimal liquidation strategy for an investor who wants to optimize
profit in excess of the opportunity cost. Including this cost is important from an applied
perspective, as the performance of any investment is always evaluated relative to the
performance of the opportunity set.
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1. Introduction

A pair trade is a portfolio consisting of two positions, a long position in one asset, partly or
fully financed by a short position in another one. These two positions are thought of as being
a single trade, so that the long and short legs are taken on and exited simultaneously. Hence,
a pair trade can, in principle, eliminate the market risk and instead be exposed only to relative
market movements. The standard assumption in pairs trading is that the spread between the legs
of the pair trade is autoregressive. If the spread is observed to be significantly displaced relative
to its perceived mean level, then the investor buys the asset in the pair which is expected to
outperform going forward. This is financed by a short position in the other asset. If the spread
converges, the pair trade can be liquidated to make a profit.

There appears to be limited academic literature on pairs trading given its very widespread
applications in the financial industry. For a historical evaluation of pairs trading, see [4]. In [3],
discrete time pair spreads are modeled as autoregressive processes of order 1. The authors of [2]
model the spread in continuous time as Ornstein–Uhlenbeck processes, and solve the problem
of when it is optimal to liquidate a pair trade. An analogous problem is solved in [6], where the
spread is modeled by an Ornstein–Uhlenbeck process with jumps. The books [1], [8], and [9]
treat some applied aspects of pairs trading.

The present note assumes the same spread model as in [2], namely that the difference X

between two assets is
dX(t) = −μX(t) dt + σ dW(t),

where μ, σ > 0. We extend the problem in [2] to include also an opportunity cost, which is
a key concept in economics and finance. The opportunity cost is essentially the value of the

Received 31 August 2012; revision received 7 March 2013.
∗ Postal address: The Second Swedish National Pension Fund, Box 11155, Gothenburg, 404 24, Sweden.
Email address: carl.lindberg@ap2.se

282

https://doi.org/10.1239/jap/1395771429 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1395771429


Pairs trading with opportunity cost 283

best available alternative which was not chosen. Of course, this alternative changes over time.
To include an opportunity cost is a very important extension from an applied perspective. The
reason is that an investor will always view a trade relative to its opportunity set. The opportunity
cost is assumed to have constant rate of growth.

The model risk associated to pairs trading is quite significant in the sense that the mean
reverting behavior for a spread eventually always breaks down. Hence, we have to account
for this in our model. The model error is, of course, hard to spot; is a large displacement in a
spread a very good pair trade opportunity or a sign of a model failure? We adopt the stop-loss
approach to handle model errors, as in [2] and [6]. This approach, which is industry standard,
states that we believe in the assumed model up to a predetermined loss level B < 0, at which
we abandon the model and liquidate the position to accept the loss.

We set up the optimal stopping problem in Section 2. It is solved in Section 3, where we also
verify that the optimal stopping barrier is monotonically decreasing in the rate of the opportunity
cost.

2. The optimal stopping problem

We model by X a portfolio consisting of a long position in stock S1 and a short position in
stock S2, i.e.

X(t) = γ1S1(t) − γ2S2(t)

for γ1, γ2 > 0. We assume that X is an Ornstein–Uhlenbeck process with dynamics

dX(t) = −μX(t) dt + σ dW(t), (1)

where μ, σ > 0, and W is a Brownian motion. Note that there is no loss of generality to assume
that X has stationary mean 0.

We define the value function as

V (x) = sup
τ≤τB

Ex[X(τ) − cτ ], (2)

where c is the rate of the opportunity cost, and the supremum is taken over all stopping times
that are smaller than

τB = inf{t : Xt ≤ B},
the first hitting time of the stop-loss liquidation level B < 0.

The opportunity cost is the sacrifice related to not investing in the second best of all available
choices. As this alternative varies over time, it is natural to model it as a constant running cost.
From an applied perspective, the inclusion of an opportunity cost in the model is a very important
extension. This is because an investor will always benchmark a trade to its opportunity set.

Note that stopping at B gives the pair trade an upper bound on the possible losses. Further,
if we knew that the model (1) would hold in the future, there would be no reason to have a
stop-loss. This is because we would then know that regardless of how dislocated the spread
was, it would eventually revert back to generating a profit on the trade. However, in practice,
the mean reversion will eventually break down, urging that we impose a stop-loss level.

3. The solution

We define the process Y to have the dynamics

dY (t) = dX(t) − c dt = −(μX(t) + c) dt + σ dW(t).
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It is immediately obvious that the drift of Y is positive if X(t) < −c/μ and negative if
X(t) > −c/μ. Hence, if B ≥ −c/μ then Y (t ∧ τB) is a supermartingale and τ = 0 is optimal.
If B < −c/μ, we expect from general optimal stopping theory, see [7], that the optimal stopping
time is of the form τ ∗ = τB ∧ τb, where

τb = inf{t ≥ 0 : X(t) ≥ b}
for some b > −c/μ which is to be determined. Furthermore, the pair (V , b) solves

σ 2

2
Vxx − μxVx = c if x ∈ (B, b), (3a)

V (B) = B, (3b)

V (b) = b, (3c)

V ′(b) = 1. (3d)

The general solution to the ordinary differential equation 1
2σ 2Vxx − μxVx = c is

F(x) =
∫ x

0
eαy2/2

(∫ y

0
λe−αz2/2 dz + C1

)
dy + C2,

where α := 2μ/σ 2, λ = 2c/σ 2, and C1, C2 are constants. Inserting the general solution into
the free-boundary problem (3), we obtain that the liquidation boundary must solve∫ b

B

eαy2/2
(

−
∫ b

y

λe−αz2/2 dz + e−αb2/2
)

dy − (b − B) = 0. (4)

Lemma 1. Equation (4) admits a unique solution b larger than B if −c/μ > B. Moreover,
b ∈ (−c/μ, −B).

Proof. We define

g(x) =
∫ x

B

eαy2/2
(

−
∫ x

y

λe−αz2/2 dz + e−αx2/2
)

dy − (x − B),

and note that b > B is a solution of (4) if and only if g(b) = 0. We have g(B) = 0, and

g′(x) = −(λ + αx)e−αx2/2
∫ x

B

eαy2/2 dy ≥ 0 (5)

if x ∈ [B, −c/μ] and g′(x) < 0 if x > −c/μ. Moreover,

g(−B) =
∫ −B

B

eαy2/2
(

−
∫ −B

y

λe−αz2/2 dz + e−αB2/2
)

dy + 2B < 0

since λ > 0. It follows that g has a unique zero x = b ∈ (−c/μ, −B).

Given the unique solution b of (4), we can verify that the candidate solution (V̂ , b) defined
as

V̂ (x) =

⎧⎪⎨
⎪⎩

∫ x

B

eαy2/2
(

−
∫ b

y

λe−αz2/2 dz + e−αb2/2
)

dy + B, B ≤ x < b,

x, x ≥ b

(6)

is the unique solution to the free boundary problem (3). Note also that V̂ (x) ≥ x for all x ≥ B,
by the proof of Lemma 1 above.
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Theorem 1. The value function V coincides with the function V̂ given in (6). Moreover,
τ ∗ = τB ∧ τb is an optimal stopping time in (2).

Proof. Consider the process Z(t) = V̂ (X(t ∧τB)). By a generalized version of Itô’s lemma,

Z(t) = V̂ (x) +
∫ t∧τB

0

(
σ 2

2
V̂xx(X(s)) − μX(s)V̂x(X(s))

)
1(X(s) �= b) ds

+
∫ t∧τB

0
σ V̂x(X(s)) 1(X(s) �= b) dW(s)

= V̂ (x) +
∫ t∧τB

0
c 1(X(s) < b) ds − μ

∫ t∧τB

0
X(s) 1(X(s) > b) ds

+
∫ t∧τB

0
σ V̂x(X(s)) dW(s).

Let τ be a stopping time. The optional sampling theorem (see, e.g. Problem 3.16 and
Theorem 3.22 of [5]) gives

E

[
Xτ∧τB

−
∫ τ∧τB

0
c ds

]

≤ EV̂ (X(τ ∧ τB)) − E

[∫ τ∧τB

0
c ds

]

= V̂ (x) − E

[∫ τ∧τB

0
(c + μX(s)) 1(X(s) > b) ds +

∫ τ∧τB

0
σ V̂x(X(s)) dW(s)

]

= V̂ (x) + E[MB(τ)], (7)

where

MB(t) = E

[
−

∫ t∧τB

0
(c + μX(s)) 1(X(s) > b) ds +

∫ t∧τB

0
σ V̂x(X(s)) dW(s)

]
.

The Itô integral is a martingale since the integrand is bounded. Therefore, the process MB is a
supermartingale since b > −c/μ, so V̂ (x) + E[MB(τ)] ≤ V̂ (x). Hence,

V (x) ≤ V̂ (x)

since τ is arbitrary.
Now, note that Z(t ∧ τb) is a bounded martingale, and that Z(τb) = X(τB ∧ τb). It follows

that the inequalities in (7) reduce to equalities for τ = τ ∗. This completes the proof.

We prove now that the liquidation region is monotone in the model parameter B and c.

Theorem 2. The optimal stopping boundary b is decreasing as a function of the parameters B

and c.

Proof. We recall that λ = 2c/σ 2. Define

g(b, B, λ) :=
∫ b

B

eαy2/2
(

−
∫ b

y

λe−αz2/2 dz + e−αb2/2
)

dy − (b − B),
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and denote by g′
i the differential with respect to the ith argument. The proof consists of applying

the implicit function theorem to the relation g(b, B, λ) = 0. From (5), we have

g′
1(b, B, λ) < 0

since b > −c/μ by Lemma 1. Further calculations give

g′
2(b, B, λ) =

∫ b

B

(λ + αx)e−αx2/2 dx.

But, from (5) and the fundamental theorem of calculus, we have
∫ b

B

(λ + αx)e−αx2/2
∫ x

B

eαy2/2 dy dx = 0.

We note that h(x) := 1/
∫ x

B
eαy2/2 dy is decreasing in x on (B, b), and define the function

h̃ = h+C, for some constant C, such that h̃(β) = 0. We set f := (λ + αx)e−αx2/2
∫ x

B
eαy2/2 dy,

which gives

g′
2(b, B, λ) =

∫ b

B

f (x)h(x) dx

=
∫ b

B

f (x)h̃(x) dx − C

∫ b

B

f (x) dx

=
∫ −c/μ

B

f (x)h̃(x) dx +
∫ b

−c/μ

f (x)h̃(x) dx

< 0.

It is immediate that g′
3 < 0. The implicit function theorem gives the results.

There is no monotonicity of the liquidation barrier b with respect to the parameters μ and σ .
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